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Abstract

Partial differential equations having diffusive, convective and reactive terms appear
naturally in the modeling of a large variety of processes of practical interest in sev-
eral branches of science such as biology, chemistry, economics, physics, physiology
and materials science. Moreover, in some instances several species or components
interact with each other requiring to solve strongly coupled systems of convection-
diffusion-reaction equations. Of special interest for us is the numerical treatment of
the advection dominated continuum dislocation transport equations used to describe
the plastic behavior of crystalline materials.

Analytical solutions for such equations are extremely scarce and practically limited
to linear equations with homogeneous coefficients and simple initial and boundary
conditions. Therefore, resorting to numerical approximations is the most affordable
and often the only viable strategy to deal with such models. However, when classical
numerical methods are used to approximate the solutions of such equations, even in
the simplest one dimensional case in the steady state regime for a single equation,
instabilities in the form of node to node spurious oscillations are found when the
convective or reactive terms dominate over the diffusive term.

To address such issues, stabilization techniques have been developed over the years in
order to handle such transport equations by numerical means, overcoming the stability
difficulties. However, such stabilization techniques are most often suited for particular
problems. Additionally, no extensive work has been carried out for systems of coupled
equations. The reason for this immaturity is the lack of a maximum principle when
going from a single transport equation towards systems of coupled equations.

The main aim of this work is to present a stabilization technique for systems of
coupled multidimensional convection-diffusion-reaction equations based on coefficient
perturbations. These perturbations are optimally chosen in such a way that certain
compatibility conditions analogous to a maximum principle are satisfied. Once the
computed perturbations are injected in the classical Bubnov-Galerkin finite element
method, they provide smooth and stable numerical approximations.

Such a stabilization technique is first developed for the single one-dimensional
convection-diffusion-reaction equation. Rigorous proof of its effectiveness in rendering
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unconditionally stable numerical approximations with respect to the space discretiza-
tion is provided for the convection-diffusion case via the fulfillment of the discrete
maximum principle. It is also demonstrated and confirmed by numerical assessments
that the stabilized solution is consistent with the discretized partial differential equa-
tion, since it converges to the classical Bubnov-Galerkin solution if the mesh Péclet
number is small enough. The corresponding proofs for the diffusion-reaction and the
general convection-diffusion-reaction cases can be obtained in a similar manner. Fur-
thermore, it is demonstrated that this stabilization technique is applicable irrespective
of whether the advective or the divergence form is used for the spatial discretization,
making it highly flexible and general. Subsequently the stabilization technique is
extended to the one-dimensional multiple equations case by using the superposition
principle, a well-known strategy used when solving non-homogeneous second order or-
dinary differential equations. Finally, the stabilization technique is applied to mutually
perpendicular spatial dimensions in order to deal with multidimensional problems.

Applications to several prototypical linear coupled systems of partial differential
equations, of interest in several scientific disciplines, are presented. Subsequently the
stabilization technique is applied to the continuum dislocation transport equations,
involving their non-linearity, their strongly coupled character and the special boundary
conditions used in this context; a combination of additional difficulties which most
traditional stabilization techniques are unable to deal with. The proposed stabilization
scheme has been successfully applied to these equations. Its effectiveness in stabilizing
the classical Bubnov-Galerkin scheme and being consistent with the discretized partial
differential equation are both demonstrated in the numerical simulations performed.
Such effectiveness remains unaffected when different types of dislocation transport
models with constant or variable length scales are used.

These results allow envisioning the use of the developed technique for simulating
systems of strongly coupled convection-diffusion-reaction equations with an affordable
computational effort. In particular, the above mentioned crystal plasticity models can
now be handled with reasonable computation times without the use of extraordinary
computational power, but still being able to render accurate and physically meaningful
numerical approximations.
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