
APPLICATION OF FPGA TO
REAL-TIME MACHINE LEARNING:

HARDWARE RESERVOIR COMPUTERS
AND SOFTWARE IMAGE PROCESSING

PIOTR ANTONIK

PHD THESIS

1

Université libre de Bruxelles
Faculté des Sciences

Département de Physique

Application of FPGA to real-time
machine learning: hardware reservoir

computers and software image processing

Piotr Antonik

Directed by
Serge Massar and Marc Haelterman

Laboratoire d’Information Quantique
and

Service OPÉRA-Photonique

PhD Thesis

September 2017

To my Dad,

let this be the memorial you never wanted

Jury composition

Prof. Gilles De Lentdecker, president
Interuniversity Institute for High Energies
Université libre de Bruxelles

Prof. Mustapha Tlidi, secretary
Optique non-linéaire théorique
Université libre de Bruxelles

Prof. Serge Massar, promotor
Laboratoire d’Information Quantique
Université libre de Bruxelles

Prof. Marc Haelterman, copromotor
OPÉRA-Photonique
Université libre de Bruxelles

Prof. Guy Van der Sande
Applied Physics Research Group
Vrije Universiteit Brussel

Dr. Daniel Brunner
Département d’Optique
Institut FEMTO-ST

Prof. Thomas Milner
Biomedical Engineering
University of Texas at Austin

Cover image by Ahkâm (freeiconspng.com)

vii

http://www.freeiconspng.com/img/14770

Preface

CONFIDENTIALITY NOTICE

The chapter VI of the present thesis contains confidential information.
The Reader agrees:

(1) not to use the confidential information except as for the pur-
pose of evaluation of the present thesis;

(2) not to disclose any confidential information to any third
party(ies);

(3) not to make any copies of the confidential information;
(4) never to use the confidential information for commercial pur-

poses or any other purposes than the evaluation of the present
thesis.

This dissertation contains the full story of the four years of my PhD. The
structure of the document is quite simple. The first chapter explains the the-
oretical and experimental basics. Throughout my thesis, I worked on four
distinctive experiments. Some of them were my own projects, others were col-
laborations with other researchers in our group. They will be described in four
separate chapters (Ch. II to Ch. V). By the end of my PhD, I took a five-
month internship at the University of Texas at Austin, that will be covered
in Ch. V.6. Finally, Ch. VII concludes the story with a few ideas for future
research.

Before writing this thesis, I had to make a crucial choice: either spend three
to five months writing an original dissertation from scratch, or fill the thesis
with my publications and spend the remaining time on another experiment.
Without much hesitation, I chose the second option. In other words, this thesis
is not so original. In fact, it is a compilation of my journal papers, properly
“glued” together to form a continuous story. This is a somewhat lazy approach
– I do not deny it. But I believe the importance of a thesis consists of its
scientific value. And those extra five months allowed me to complete another
interesting project, thus increasing the significance of my work.

Another word of warning should be written concerning the style of the
present thesis. Scientific English is a very clear and concise communication
tool, but may seem somewhat boring. And after writing a few journal papers
and a dozen of conference proceedings, I wanted to add some colours to the
final publication of my PhD. Therefore, while its tone remains scientific most
of the time, I allowed myself a few minor digressions. The reader will notice
that from the very first lines of the first chapter.

ix

x PREFACE

Final remark, most chapters contain a “bonus” section, describing the chal-
lenges encountered during the realisation of a particular project. These sections
contain the back story of each experiment. In most fields of science, positive
results are published, and the negative remain in the shadows. However, know-
ing what has been tried but did not work may save time in some cases, or even
inspire new ideas. For this reason, I decided to include in this dissertation some
facts that did not make it to the journal papers.

Acknowledgements

It is an immense pleasure to thank the numerous people who made this
thesis possible.

First and foremost, it is difficult to overstate my gratitude to my PhD
supervisor, Prof. Serge Massar. There are two things I long for the most –
freedom and support – and Serge gave me both. While freedom gives birth
to that spark that ignites new ideas, support is the fuel that turns ideas into
projects and, ultimately, results and publications. So thank you, Serge, for
being the best supervisor I could ever wish for. This paragraph would be
dramatically incomplete without a big thanks to Prof. Marc Haelterman, my
co-supervisor, for his everlasting support.

The next hat tip goes to the team of awesome postdocs I had a great
pleasure of working with. I could never complete this thesis alone, and these
are the people who took direct part in some of my projects. Starting with
Dr. François Duport, who took me under his wing right from the start, before
I even started as a PhD student, and taught me everything I needed to work
independently in the lab, and even more. Greeting François in the office as
early as 7 a.m. and regularly seeing him in the lab after 9 p.m. constantly
reminded me that the only time success come before work, is in the dictionary1.
Following with Dr. Anteo Smerieri, who “basically” guided me through the
complex theory of reservoir computing and learning methods. Few people can
speak of intricate algorithms with simple words, and even less could turn it into
an enjoyable show, with particularly well-placed jokes – as was demonstrated
on numerous occasions. Last (chronologically) but not least, comes Dr. Michiel
Hermans, from whom I acquired a much deeper understanding of the machine
learning field in general, and reservoir computing in particular. And on top of
that, the idea of taking an internship abroad was inspired by Michiel, which
ultimately led to an amazing experience in Texas (more on that in Ch. V.6).
Thank you very much for that!

I am particularly grateful to Prof. Thomas Milner for offering me the life-
changing opportunity to join his research team at the University of Texas.
Working with Prof. Milner was a very inspiring experience, and I appreciate
how much I could learn in so little time about various aspects of scientific life.

I would like to thank all the Jury members for their valuable comments
on the present thesis and, in particular, Dr. Daniel Brunner for his in-depth
proof-reading of the manuscript and the long list of questions and comments,
that made this work more accurate and complete.

1Quote credited to Stubby Currence by Quote Investigator.

xi

xii Acknowledgements

Debuting in electronics, and especially in FPGA design, is all but an easy
task. Fortunately, I could benefit from valuable help from several people well-
skilled in this art. Thus, I would like to express my very great appreciation
to Benoit Denègre for providing a solid starting point, as well as Colin Fera,
Matthew Luscher, Ashkan Ashrafi and Arnaud from 4DSP for providing pre-
cious documentation and technical support.

The working environment is only as good as the people who surround
you. In that sense, OPERA-Photonique is the second best thing that hap-
pened to me on this journey. Never before could I imagine that scientific re-
search could be accompanied by numerous fun parties, uncountable pies, video
games and movie nights. Therefore, an enormous shout-out goes to my co-
workers, in alphabetical order: Akram Akrout, Marc Bauduin, Serena Bolis,
Arno Bouwens, Thomas Bury, Ali Chichebor, Charles Ciret, Robin De Gernier,
Rima Dadoune, Evangelia Dimitriadou, Evdokia Dremetsika, Michael Fita Co-
dina, Simon-Pierre Gorza, Wosen Kassa, Pascal Kockaert, Virginie Lecocq,
François Leo, Anh-Dung Nguyen, Laurent Olislager, Nicolas Poulvellarie, Mäıté
Swaelens, Guillaume Tilleman and Quentin Vinckier. Very special thanks to
Prof. Philippe Emplit for creating and maintaining such a productive envi-
ronment, and to our awesome secretaries, Ibtissame Malouli and Alexandra
Peereboom, who just took care of everything.

And when I could not stand the guys from OPERA anymore (just kid-
ding), I could always join my always welcoming colleagues at LIQ, again in
alphabetical order: Cédric Bamps, Olmo Nieto Sileras, Jonathan Silman, Tom
Van Himbeeck and Erik Woodhead. And again, warm thanks to the secre-
taries, Sabrina Serrano Alvarez and David Houssart, for handling my orders,
travel documents, and, most importantly, reimbursing me for all my expensive
conference trips.

The one thing I benefited the most from scientific conferences – besides
the chance to travel to some exotic places on the globe – is the opportunity
to interact with scholars and industry experts, absorbing as much knowledge
from them as possible. My first ICONIP conference in Istanbul, and long
discussions with Prof. João Paulo P. Gomes was a particular revelation. I wish
to acknowledge here their valuable help.

Most of the first chapter of this thesis, as well as one or two papers were
written in various hospitals, clinics and medical centres. I very much appreciate
the efforts of the staff who made the task of writing in waiting halls quite a
comfortable exercise.

I have composed quite a long list so far, but still I have the impression that
I missed someone. To those people I offer my sincere apologies – for my poor
memory, and my gratitude – for their valuable help.

I would like to conclude with people who made a rather indirect contribu-
tion to this work. My big thanks go to my school teachers for letting me do
what I really wanted (that is, solving mathematical, and later, physical prob-
lems) and not paying much attention in class, my school and university buddies
for helping me get through the education process with that much fun, my close
friends Nicolas De Groote, Livio Filippin, Jonathan Bloch and Anton Leonov

xiii

for their support and inspiration. And of course, many sweet thanks go to my
dear Luda, and her sister Sveta, for taking such good care of my new hairstyle.

Most appreciation and gratitude usually goes to people for their positive
contributions. However, as an old saying goes – there can be no evil without
good – I would like to make an exception and express my gratitude to all people
who managed to hurt me, deeply or not, intentionally or not. Thank you for
making me that much stronger!

Family is a true masterpiece of nature, and undoubtedly the most precious
treasure one gets to cherish. And while most of my family lives abroad and
quite far away, I felt a very positive lift every time I went to visit them. Thank
you for filling me with confidence, love and kindness! And what a person would
I be if I failed to mention my beloved sister Maria for her artistic touch and a
very special character. You rock!

And as the best is usually saved for the end, my warmest thanks go to
my parents. This is where words begin to fall short, but I will try my best
anyway. To my mum, thank you for being such a positive, dynamic, kind,
caring and forgiving person. Few grown-ups think twice before leaving their
parent’s home these days, but somehow, you made me think and rethink a
gazillion times. And to my dad, thank you for being a model to me for so
many years, a friend and guide I could follow anytime with my eyes closed.
Thank you for introducing me to arithmetic and basic algebra at the age of
six, and for directing me straight into my current scientific life. There are few
things one has the luxury of being certain of. But for me, not for a second did
I doubt that one day I would be here, preparing the defence of my PhD thesis.
And although I can no longer learn from you as I used to, I can still follow that
bright star on the night sky you turned into.

Author’s publications

Through the course of my PhD, we published the following titles.

Journal papers

One full-length journal paper was issued for each one of the four experi-
ments I worked on. The only exception is the paper [3] that is an extended
version of the conference paper [11], published in a special issue of Neural
Processing Letters covering the ICONIP 2016 conference.

[1] Piotr Antonik, Franois Duport, Michiel Hermans, Anteo Smerieri, Marc
Haelterman, and Serge Massar. “Online Training of an Opto-Electronic
Reservoir Computer Applied to Real-Time Channel Equalization”. In:
IEEE Transactions on Neural Networks and Learning Systems PP.99
(2016), pp. 1–13.

[2] Michiel Hermans, Piotr Antonik, Marc Haelterman, and Serge Mas-
sar. “Embodiment of Learning in Electro-Optical Signal Processors”.
In: Phys. Rev. Lett. 117 (12 2016), p. 128301.

[3] Piotr Antonik, Michiel Hermans, Marc Haelterman, and Serge Massar.
“Random Pattern and Frequency Generation Using a Photonic Reser-
voir Computer with Output Feedback”. In: Neural Processing Letters
(2017), pp. 1–14.

[4] Piotr Antonik, Marc Haelterman, and Serge Massar. “Online Training
for High-Performance Analogue Readout Layers in Photonic Reservoir
Computers”. In: Cognitive Computation 9 (2017), pp. 297–306.

[5] Piotr Antonik, Marc Haelterman, and Serge Massar. “Brain-Inspired
Photonic Signal Processor for Generating Periodic Patterns and Emu-
lating Chaotic Systems”. In: Phys. Rev. Applied 7 (2017), p. 054014.

Conference papers

Most of my conference papers were presented at machine learning venues,
with submissions ranging from 8 half-size pages up to 6 double-column journal-
like pages. This is more than enough to present several results without going
into much detail about the theoretical and experimental aspects. In general,
we presented numerical and preliminary experimental results in conference pro-
ceedings, before submitting the whole story to a journal.

xv

xvi Author’s publications

[6] Piotr Antonik, Anteo Smerieri, François Duport, Marc Haelterman, and
Serge Massar. “FPGA implementation of reservoir computing with on-
line learning”. In: 24th Belgian-Dutch Conference on Machine Learning.
http://homepage.tudelft.nl/19j49/benelearn/papers/Paper_

Antonik.pdf. 2015.
[7] Piotr Antonik, François Duport, Anteo Smerieri, Michiel Hermans, Marc

Haelterman, and Serge Massar. “Online training of an opto-electronic
reservoir computer”. In: APNNA’s 22th International Conference on
Neural Information Processing. Vol. 9490. LNCS. 2015, pp. 233–240.

[8] Piotr Antonik, François Duport, Anteo Smerieri, Michiel Hermans, Marc
Haelterman, and Serge Massar. “Improving performance of opto-electro-
nic reservoir computers with online learning”. In: 20th Annual Sympo-
sium of the IEEE Photonics Society Benelux Chapter. 2015.

[9] Piotr Antonik, Michiel Hermans, François Duport, Marc Haelterman,
and Serge Massar. “Towards pattern generation and chaotic series pre-
diction with photonic reservoir computers”. In: SPIE’s 2016 Laser Tech-
nology and Industrial Laser Conference. Vol. 9732. 2016, 97320B.

[10] Piotr Antonik, Michiel Hermans, Marc Haelterman, and Serge Massar.
“Towards adjustable signal generation with photonic reservoir comput-
ers”. In: 25th International Conference on Artificial Neural Networks.
Vol. 9886. 2016.

[11] Piotr Antonik, Michiel Hermans, Marc Haelterman, and Serge Mas-
sar. “Pattern and frequency generation using an opto-electronic reser-
voir computer with output feedback”. In: APNNS’s 23th International
Conference on Neural Information Processing. Vol. 9948. LNCS. 2016,
pp. 318–325.

[12] Akram Akrout, Piotr Antonik, Marc Haelterman, and Serge Massar.
“Towards autonomous photonic reservoir computer based on frequency
parallelism of neurons”. In: Proc. SPIE. Vol. 10089. 2017, 100890S–
100890S–7.

[13] Piotr Antonik, Michiel Hermans, Marc Haelterman, and Serge Massar.
“Photonic Reservoir Computer With Output Feedback for Chaotic Time
Series Prediction”. In: 2017 International Joint Conference on Neural
Networks. 2017.

Conference abstracts

We also published a few abstracts – short versions of existing journal of
conference papers. They were presented at conferences that allow such submis-
sions with the intent of advertising our work.

[14] Piotr Antonik, Marc Haelterman, and Serge Massar. “Improving Perfor-
mance of Analogue Readout Layers for Photonic Reservoir Computers
with Online Learning”. In: AAAI Conference on Artificial Intelligence.
2017.

http://homepage.tudelft.nl/19j49/benelearn/papers/Paper_Antonik.pdf
http://homepage.tudelft.nl/19j49/benelearn/papers/Paper_Antonik.pdf

.0. Conference abstracts xvii

[15] Piotr Antonik, Michiel Hermans, Marc Haelterman, and Serge Massar.
“Chaotic Time Series Prediction Using a Photonic Reservoir Computer
with Output Feedback”. In: AAAI Conference on Artificial Intelligence.
2017.

[16] Piotr Antonik, Marc Haelterman, and Serge Massar. “Predicting chaotic
time series using a photonic reservoir computer with output feedback”.
In: 26th Belgian-Dutch Conference on Machine Learning. 2017.

[17] Piotr Antonik, Marc Haelterman, and Serge Massar. “Towards high-
performance analogue readout layers for photonic reservoir computers”.
In: 26th Belgian-Dutch Conference on Machine Learning. 2017.

Contents

Jury composition vii

Preface ix

Acknowledgements xi

Author’s publications xv

Chapter I. Introduction 1
I.1. From machine learning to reservoir computing 1
I.1.1. Machine learning algorithms 1
I.1.2. Artificial neural networks 4
I.1.3. Reservoir computing 7
I.1.4. Benchmark tasks 12
I.2. Hardware implementations : opto-electronic delay systems 14
I.2.1. Time-multiplexing 15
I.2.2. Conceptual setup 16
I.2.3. Desynchronisation 18
I.2.4. Experimental setup 18
I.3. Field-Programmable Gate Arrays 23
I.3.1. History 23
I.3.2. Market and applications 26
I.3.3. Xilinx Virtex 6 : architecture and operation 27
I.3.4. Design flow and implementation tools 28

Chapter II. Online training of a photonic reservoir computer 33
II.1. Introduction 33
II.2. Equalisation of non-stationary channels 34
II.2.1. Influence of channel model parameters on equaliser performance 35
II.2.2. Slowly drifting channel 35
II.2.3. Switching channel 35
II.3. Online training 36
II.3.1. Gradient descent algorithm 37
II.4. Experimental setup 38
II.4.1. Input and readout 39
II.4.2. Experimental parameters 40
II.4.3. Experiment automation 40
II.5. FPGA design 41
II.6. Results 44

xix

xx Contents

II.6.1. Improved equalisation error rate 44
II.6.2. Simplified training algorithm 45
II.6.3. Equalisation of a slowly drifting channel 45
II.6.4. Equalisation of a switching channel 49
II.6.5. Influence of channel model parameters on equaliser performance 51
II.7. Challenges and solutions 51
II.8. Conclusion 53

Chapter III. Backpropagation with photonics 55
III.1. Introduction 55
III.2. Backpropagation through time 56
III.2.1. General idea and new notations 57
III.2.2. Setting up the problem 58
III.2.3. Output mask gradient 60
III.2.4. Input mask gradient 61
III.2.5. Multiple inputs/outputs 63
III.3. Experimental setup 63
III.3.1. Online multiplication using cascaded MZMs 65
III.3.2. Mask parametrisation 67
III.4. FPGA design 68
III.5. Results 70
III.5.1. Tasks 70
III.5.2. NARMA10 and VARDEL5 71
III.5.3. TIMIT 72
III.5.4. Gradient descent 74
III.5.5. Robustness 75
III.6. Challenges and solutions 76
III.7. Conclusion 77

Chapter IV. Photonic reservoir computer with output feedback 79
IV.1. Introduction 79
IV.2. Reservoir computing with output feedback 81
IV.3. Time series generation tasks 82
IV.3.1. Frequency generation 82
IV.3.2. Random pattern generation 83
IV.3.3. Mackey-Glass chaotic series prediction 83
IV.3.4. Lorenz chaotic series prediction 84
IV.4. Experimental setup 84
IV.5. FPGA design 86
IV.6. Numerical simulations 88
IV.7. Results 88
IV.7.1. Noisy reservoir 89
IV.7.2. Frequency generation 89
IV.7.3. Random pattern generation 91
IV.7.4. Mackey-Glass series prediction 96
IV.7.5. Lorenz series prediction 99
IV.8. Challenges and solutions 104
IV.9. Conclusion 105

xxi

Chapter V. Towards online-trained analogue readout layer 109
V.1. Introduction 109
V.2. Methods 111
V.3. Proposed experimental setup 111
V.3.1. Analogue readout layer 111
V.3.2. FPGA board 113
V.4. Numerical simulations 113
V.5. Results 115
V.5.1. Linear readout: RC circuit 115
V.5.2. Nonlinear readout 118
V.6. Conclusion 118

Chapter VI. Real-time automated tissue characterisation for intravascular
OCT scans 121

VI.1. Introduction 121
VI.2. Feature extraction 127
VI.2.1. GLCM features 127
VI.2.2. Methods 130
VI.2.3. Operation principle 131
VI.2.4. FPGA design 132
VI.2.5. Results 134
VI.2.6. Perspectives 134
VI.3. Artificial neural network 135
VI.3.1. Network structure 135
VI.3.2. Methods 138
VI.3.3. Operation principle 140
VI.3.4. FPGA design 140
VI.3.5. Results 142
VI.4. Conclusion 142

Chapter VII. Conclusion and perspectives 145

Bibliography 151

CHAPTER I

Introduction

In this chapter we will address three questions: (1) What is reservoir com-
puting? (2) What does it have to do with optics and electronics? (3) What are
FPGAs? That is a lot of information to cover, so let us get started right away!

I.1. From machine learning to reservoir computing

Reservoir computing – what a peculiar concept! Are we talking about a
bucket of water performing computations? The idea may seem weird, but. . . it
is actually not far from reality! In fact, there has been an experiment carried
out in a water tank, where ripples on the surface of water were sampled and used
to process information [18]. But this is not exactly what reservoir computing
is all about. Attributed to the machine learning (ML) field – a subfield of
computer science that studies data processing algorithms capable of learning
from the data itself – reservoir computing is not an algorithm per se, but rather
a set of ideas that significantly simplify another algorithm and make it more
suitable for practical applications. This other algorithm, or, rather, a class
of algorithms, is called artificial neural networks. To understand the whole
story, we need a general overview of the said machine learning field.1 The goal
of this section is thus to present to the reader the bigger picture, following a
top-down approach. We will start with an overview of machine learning, with
some basic ideas and several examples. Then, we will dive into artificial neural
networks, again leaving aside most of unnecessary technical details. Finally,
within neural networks we will finally introduce the RC paradigm, now with
all mathematical details needed to understand how it works.

I.1.1. Machine learning algorithms. ML enjoys a fast evolution in
these days, as people are desperately looking for methods to efficiently pro-
cess the huge amounts of data coming from everywhere, and ML offers several
very promising solutions. Fig. I.1 draws a more or less complete picture of
the machine learning field. Here we will overview a few of these methods (the
most popular ones) with their basic properties and applications, obviously sim-
plifying the details to the bare minimum. The goal here is not to review the
machine learning field, but to give the reader a broad view of the algorithms
that can be found there.

Decision trees: Commonly used in statistics and data mining, decision trees
are predictive models for data classification based on its properties.

1This is obviously a debatable point. But it did work for me – my true revelation on
reservoir computing, how and why it works, happened when I saw what is around – so I am

going to stick to this plan.

1

2 Chapter I. Introduction

ML

Bayesian

Clustering

Decision Tree

Deep Learning

Ensemble

Dimensionality Reduction

Instance Based

Neural Networks

Regression

Regularisation

Rule System

Figure I.1. Map of the machine learning field. Far from be-
ing the most exhaustive, it is sufficient to show what algo-
rithms, or classes of algorithms can be found out there. Figure
inspired by the Mindmap from Machine Learning Mastery.

In a simple decision tree, the leaves are labelled with all possible
classes. On its way from the root to leaves, the input instances
“travel” through decision nodes (where branches of the tree split),
where data parameters define the following path.

Bayesian networks: A Bayesian network is a probabilistic graphical mod-
elling technique used in computational biology, bioinformatics, medi-
cine, engineering, and many other domains. A directed acyclic graph
represents the data as a set of variables and their conditional depen-
dencies, which allows to draw probabilistic relationships between data
features.

k-nearest neighbour: Instance-based algorithms, such as k-nearest neigh-
bour, typically build a database of examples and compare the incom-
ing data using a certain similarity metric in order to find the best
match and make a prediction. They are often used for dimension re-
duction, i.e. removing unnecessary redundancies from very large sets
of data.

Support Vector Machines: Commonly employed as linear classifiers for e.g.
text or image processing, SVMs map the input data into a high-
dimensional space, using specific algorithms, where different classes
can be separated (clustered) by a set of hyperplanes.

Artificial Neural Networks: Family of models, inspired by biological neu-
ral networks, used to estimate or approximate (generally unknown)
functions depending on a large number of inputs. They come in dif-
ferent shapes and flavours, and besides data processing, they are also
used in neuroscience.

http://machinelearningmastery.com/

I.1. From machine learning to reservoir computing 3

Deep learning: A class of ML algorithms that cascade multiple information
processing layers, each successive layer receiving the output of the
previous one as input. The layers learn multiple levels of data repre-
sentation, that correspond to different levels of abstraction, and form
together an hierarchy of concepts. The most successful deep learn-
ing methods involve neural networks and have shown breathtaking
results in speech and image recognition, natural language processing,
drug discovery and recommendation systems. Other less known deep
architectures exist, such as multilayer kernel machines.

To process data, these algorithms need to be trained – in other words,
taught what to do with the data. Remember, ML algorithms are not designed
to perform well on a particular dataset, but rather to execute a certain versatile
task. The training serves to fine-tune the algorithm for better performance on
the dataset of interest. The training can be done using various techniques,
commonly grouped into categories, based on their action principle.

Supervised learning: The algorithm is presented with a labelled dataset,
that is, where the output is known for each input, such as spam/not-
spam classification or a set of tagged images. During the training
process, the model is tuned to correctly classify all the inputs, and
then tested on a new set of data, that was not used for training. This
process is carried on until a desired level of accuracy is achieved on
the test set.

Reinforcement learning: Inspired by behavioural psychology, this methods
is employed when the corrects outputs or labels are unavailable. In-
stead, the algorithm is supplied with a reward (or error) function and
then optimised to maximise (or minimise) it. Such approach is com-
monly used in robotics, where exact movement patterns of different
motors or actuators are unknown, and the robot is trained to optimise
the reward function, given by e.g. the distance travelled.

Unsupervised learning: As the name suggests, here the algorithm does not
use any labelled dataset nor reward function. It is presented with the
data alone and is supposed to find an underlying structure or some
hidden insights. This case is the hardest to understand, as it looks
like some kind of dark magic. Since I have never used such methods,
we shall leave the details aside. A typical example of unsupervised
learning is clustering, that is, the task of grouping a set of objects by
similarity.

Other approaches exist, such as semi-supervised learning, but they lie be-
yond the scope of this introductory overview.

To sum up this section, numerous machine learning algorithms exist, based
on various approaches and suited for different tasks. To process data, they need
to be trained first, and this can also be done in various ways, depending on the
task and the type of data available. Among all the methods lies the family of
artificial neural networks. And since reservoir computing has something to do
with neural networks, let us discuss them in detail in the next section.

4 Chapter I. Introduction

I.1.2. Artificial neural networks. The first model of artificial neural
networks (ANN), introduced in 1943 [19] split the research in two distinct ap-
proaches: the study of actual biological processes in the brain on one side, and
application of neural networks to machine learning. The research stagnated
after the discovery of a fatal flaw: basic neural networks (also known as per-
ceptrons – we will introduce them very soon) were incapable of processing the
basic exclusive-or (XOR) circuit! [20]. On top of that computers did not have
enough power to handle large networks on the long run. Later on, the CMOS
technology (that lead to an explosion of computational speed) and the novel
backpropagation algorithm [21, 22] allowed to efficiently train large multi-layer
networks. Recent advances in GPU-based implementations and the emergence
of highly complex, deep neural networks made this approach very popular and
brought breathtaking results in e.g. speech or text recognition and novel drug
discovery.

Let us take a look inside those networks. They are composed of elementary
computation units – neurons. A biological neuron is a cell capable of producing
a rapid train of electric spikes. Its complex internal dynamics can be described
by the well-known Hodgkin-Huxley model [23] that takes into account the exact
three-dimensional morphology of the cell. Simulating such a precise model is
extremely demanding in computational power, and so is, although of great
interest for brain research, impractical for real-world applications. For this
reason, artificial neurons have been introduced, keeping the spiking behaviour
but greatly simplifying the internal dynamics. A plethora of models have been
proposed to emulate artificial neurons (see e.g. [24–27]). All of them encode
information into spike trains, just as we think biological neurons do. But one
can simplify the neuron one step further and remove the spikes at all by defining
the average spiking frequency a. Such neurons are called analogue neurons and
their behaviour is described by the following simple equation

a = f
(∑

wisi

)
, (I.1)

where a is the output of the neuron (that can also be referred to as the current
state of the neuron, or the activation), si are the inputs coming from the
neighbour neurons in the network, wi are the weights of these connections (thus
making it possible to create weak or strong connections between neurons), and
f is the activation function, that describes how the neuron reacts to its inputs.
Crucially, this simplification removes the complex temporal dynamics of the
neurons and make discrete-time computations possible. This, in turn, allows
to simulate large numbers of neurons with relatively low computational power.

The neurons are gathered in network-like structures with three main char-
acteristics.

Architecture: It defines the size of the network and the connections between
the nodes, which in turn defines how they exchange information. An
example neural network is sketched in Fig. I.2. The circles denote
the nodes, or the neurons, and the arrows show the connections from
the output of a neuron to the input of another. The neurons are com-
monly categorised into three layers, based on their role in the network.
The input layer nodes receive signals from outside and output layer

I.1. From machine learning to reservoir computing 5

Input layer Hidden layer Output layer

winp

winp

wint

wint
wout

wout

Figure I.2. Example architecture of an artificial neural net-
work. The neurons are grouped in three layers – input, hid-
den and output – based on their connections with the outside
world. The network may contain several hidden layers (this
example has only one).

neurons produce output signals of the network. The other neurons,
as they cannot be accessed from the outside of the network, are called
hidden neurons, and can be grouped into one or several layers. All
connections, depicted with arrows, are parametrised with associated
weights – input, output or internal – which define the strength of the
connections.

Activation function: The activation function defines the individual behaviour
of the neurons, that is, how they respond to input signals. To avoid
unconstrained dynamics of the network, the activation function should
be bounded, usually within [−1, 1]. The sigmoid function is one of the
most popular choices, alongside the so-called linear rectifier function
[28]. Other functions, such as hyperbolic tangent or sine, are also
used.

Tunable weights: Artificial neural networks are valued for their ability to
learn by means of adjusting their weighted connections (input, out-
put or internal). Under supervised learning paradigm, for instance,
the network is fed with numerous input instances, and the output
is compared to the desired output. Various training algorithms can
then be used to adjust the weights so that the network output signal
matches as closely as possible to the target output.

Artificial neural networks come in many different shapes and flavours. We
will limit this introduction to a few notable examples, shown in Fig. I.3, leaving
the complete list to specialised literature [28].

Multi-Layer Perceptron: A MLP is a feedforward artificial neural network.
That is, the information flows in one direction, from input to output
neurons (through the hidden ones) with no cycles or loops in the
network.2 Owing to a nonlinear activation function, MLPs are capable

2Note that the example in Fig. I.2 does contain several loops.

6 Chapter I. Introduction

ML Neural Networks

Multi-Layer Perceptrons

Recurrent Neural Networks

Stochastic Neural Networks

Spiking Neural Networks

Radial Basis Function Networks

Figure I.3. Several examples of neural networks.

of partitioning data that is not linearly separable. They found many
applications in speech or image recognition in the 1980s, but have
been superseded by much simpler support vector machines (see Sec.
I.1.1) in the 1990s.

Recurrent neural network: Unlike feedforward networks, RNNs are allowed
to form directed cycles between neurons, which allows them to exhibit
temporal behaviour and adds internal memory. That is, the network
can “remember” the previous inputs and its current state is no longer
entirely defined by the current input. This makes them a powerful
tool that can be applied to digital signal processing, speech and hand-
writing recognition.

Stochastic neural network: Stochastic networks are built by introducing
randomness into the system, either by means of a stochastic transfer
function, or by assigning random weights. This makes them suitable
for optimisation tasks, as local minima are avoided with these random
fluctuations. They have found applications in e.g. bioinformatics and
drug discovery.

Spiking neural networks: Spiking neurons increase the level of realism by
incorporating the temporal dynamics in their operating principle.
Similarly to biological neurons, spiking neurons do not produce an
output at each update cycle, but rather fire a spike whenever their
internal states reaches a certain threshold. They have been used in
studies of biological neural circuits, since they can model simple cen-
tral nervous systems. However, because of the increased computa-
tional power required to simulate these realistic networks, they are
yet to find useful applications in engineering.

Radial basis function networks: A radial basis function is a real-valued
function whose values only depend on the distance from the origin.
Neural networks, based on these functions, are composed of an input
layer, one hidden layer with nonlinear radial basis activation function
neurons and a linear output layer. Such structures can, in principle,
interpolate any continuous function and have been shown to be more
advantageous on complex pattern classification problems. Mathemat-
ical proofs and further details can be found in [28].

I.1. From machine learning to reservoir computing 7

This concludes our brief overview of machine learning and artificial neural
networks. Let me say again that the purpose of this introduction was not to
turn the reader into expert in machine learning, but merely show the general
context of this work. In the next section we will focus on the main topic of
interest – reservoir computing – with much more in-depth discussions.

I.1.3. Reservoir computing. Reservoir Computing (RC) is a set of ma-
chine learning methods for designing and training artificial neural networks,
introduced independently in [29] and in [30]. The idea behind these techniques
is that one can exploit the dynamics of a recurrent nonlinear network to pro-
cess time series without training the network itself, but simply adding a general
linear readout layer and only training the latter. This results in a system that
is significantly easier to train (since one only needs to optimise the readout
weights), yet powerful enough to match other algorithms on a series of bench-
mark tasks.

These ideas can be applied to both recurrent and spiking recurrent neural
networks, which gave birth to two concepts called Echo State Networks (ESN)
[31] and Liquid State Machines (LSM) [30], that are grouped under the reservoir
computing paradigm. An ESN is a sparsely connected, fixed RNN with random
input and internal connections. The neurons of the hidden layer, commonly
referred to as the reservoir, exhibit nonlinear response to the input signal due
to a nonlinear activation function (hyperbolic tangent seems to be the most
common choice). Liquid state machines rely on the same concept, but the
reservoir consists of a “soup” of spiking neurons. The name “liquid” comes
from an analogy to ripples on the surface of a liquid created by a falling object.
Interestingly, this concept has actually been implemented in hardware, that is,
as the name suggests. . . in a tank full of water! [18]

For hardware reasons, as will become clear in Sec. I.2, in this work we
will only deal with analogue neurons, leaving the spiking models aside. From
now on, to simplify the ideas, I will make no distinction between Echo State
Networks and Reservoir Computing.

It is now time to introduce the math used describe the dynamics of a
reservoir computer. Let us denote the neurons (also called nodes, or internal
variables of the reservoir) xi. As they are analogue neurons (see Sec. I.1.2),
we may consider that they evolve in discrete time n ∈ Z, so we note them
xi(n). The index i goes from 0 to N−1, with N being the reservoir size, or the
number of neurons in the network. To fix the ideas, let us consider N = 50,
since this is a value commonly used in experiments. Remember equation I.1
giving the output of an analogue neuron? The evolution equation of a reservoir
node is fairly similar and given by

xi(n+ 1) = f



N−1∑

j=0

aijxj(n) + biu(n)


 , (I.2)

where f remains the nonlinear activation function, u(n) is the external input
signal that is injected into the system, and aij and bi are time-independent
coefficients that determine the dynamics of the reservoir. Specifically, aij is
called the interconnection matrix, since it defines the strengths of connections

8 Chapter I. Introduction

between all the neurons within the reservoir, with 1 being the strongest connec-
tion, and 0 meaning no connection. The vector bi contains the input weights
and defines how strong is the input to each neuron. These coefficients are usu-
ally drawn from a random distribution with zero mean. As an alternative point
of view, this equation can be expressed as follows

Future state
of the i-th
neuron

=
Nonlinear
function of

(
Previous states of
connected neurons

+
Weighted in-
put signal

)
.

This form emphasises the two major contributions to the reservoir dynamics:
the feedback, that is, the previous values of the neighbour neurons and the
input signal. This feedback is the recurrent part of the neural network that
gives it internal memory, essential for some tasks (as will be discussed later in
Sec. I.1.4).

The concept of an Echo State Network suggests that (a) the connections
between the neurons, given by the matrix aij should be sparse (that is, a
relatively low number of connections should be present within the network)
and (b) the exact topology (or connection pattern) does not really matter.
This is a considerable loss from the point of view of general RNNs, as all
these connections “that do not matter” could be trained instead to better
fine-tune the network. But from the point of view of ESNs, and especially
their hardware implementations, this is a massive relief. It allows one to pick
any simple topology or even manually design a specific one that would suit
a potential implementation. And since the present work relies on photonic
implementations of reservoir computing, this is an important point to keep in
mind.

For the rest of this work, we will consider reservoirs with ring-like topology,
as depicted in Fig. I.4. The reason for this choice will be given later, in Sec.
I.2, where we will introduce the experimental setup and time-multiplexing.
It will then become clear that such architecture corresponds naturally to a
delay system. It has been shown in [32] that the performance of such a simple
and deterministically constructed reservoir is actually comparable to a regular
random echo state network.

A possible interconnection matrix aij corresponding to a ring like topology
is

aij = α




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0



, (I.3)

where α is a global scale factor. The physical system we will use corresponds
to a slightly different set of equations, which can be written as

x0(n+ 1) = f (αxN−1(n− 1) + βM0u(n)) , (I.4a)

xi(n+ 1) = f (αxi−1(n) + βMiu(n)) . (I.4b)

I.1. From machine learning to reservoir computing 9

The difference with I.3 corresponds to what the node x0(n+1) is connected to:
in I.3 it is connected to xN−1(n) while in I.4 it is connected to xN−1(n−1). Note
that the structure of the aij matrix is reflected by the dependence of xi(n+ 1)
on xi−1(n), while the matrix itself was replaced by a simple coefficient α. As
it defines the strength of the recurrent part of the network, or feedback, we
shall from now on call it feedback gain or feedback attenuation, depending on
whether it is superior or inferior to 1, respectively. In a similar way, we have
replaced the bi vector by a global scale factor β and a vector Mi, drawn from
a uniform distribution over the interval [−1,+1]. The Mi vector is commonly
called input mask, or input weights, as it defines the strengths of the input
signal u(n) received by each individual neuron xi. The global scale parameter
β is therefore called input gain.

The nonlinear function f can be virtually any bounded function. Un-
bounded functions may work as well, such as the softmax and hardmax func-
tions currently used in deep learning. At the moment of writing these lines,
I could not find any systematic study of reservoir performance with different
nonlinear functions. A common choice is the hyperbolic function y = tanh(x)
[31]. With hardware implementations, however, the choice of f is rather dic-
tated by the choice of a device with a certain nonlinear transfer function. It
could be, for instance, a saturation curve of an optical amplifier [33] or a sat-
urable element [34]. As will be explained later in Sec. I.2, in this work we will
be using exclusively a component with a sine transfer function.

With a sine activation function f(x) = sin(x), Eqs. I.4 become

x0(n+ 1) = sin (αxN−1(n− 1) + βM0u(n)) , (I.5a)

xi(n+ 1) = sin (αxi−1(n) + βMiu(n)) . (I.5b)

These equations describe the behaviour of the system we will discuss later in
this work (see Sec. I.2). It does not get any more complicated than that!

The output of the network is obtained by a simple linear readout layer,
that is, by computing a linear combination of the reservoir states xi(n) and the
readout weights wi as follows

y(n) =

N−1∑

i=0

wixi(n), (I.6)

where y(n) is the temporal output signal. Fig. I.4 gives a graphical overview
of the reservoir computer we have just described.

Let us now discuss how the reservoir does what we want it to do. It
receives a discrete-time temporal signal u(n) as input, and produces in response
another discrete-time temporal signal y(n). With random readout weights wi,
this output signal can be anything, and will most likely be something useless.
However, the goal is to perform a specific function on the input signal u(n) that
would turn it into a desired signal d(n) (examples of such target signals will
be given in Sec. I.1.4). Let us assume that the desired output d(n) is known
for several values of input u(n), for instance, u(1 . . . 1000) and d(1 . . . 1000) are
known. These time series can be used to adjust the readout weights of the
system to produce the correct output, i.e. to emulate the specific function
we want to execute. Remember the different training approaches we discussed

10 Chapter I. Introduction

x0

x1 x2

x5 x4

x3

Miu(n)
∑

wixi(n)

Input signal u(n) Output

signal y(n)

Input layer Reservoir Output layer

Figure I.4. Schematic representation of a reservoir computer
with N = 6 nodes. In terms of artificial neural networks,
its architecture is composed of a single input neuron (which
receives the input signal u(n)), one layer of hidden neurons
and a single output neuron (which produces the output signal
y(n)). The configuration of neurons in the hidden layer can
be arbitrary, but for ease of hardware implementation we use
a ring-like topology. Scheme reprinted from [5].

in Sec. I.1.1? This one falls into the supervised learning category, since we
know the inputs and the desired outputs d(n). Training a general RNN would
require using the backpropagation algorithm (introduced in Sec. I.1.2) to tune
all the internal connections. Under the reservoir computing paradigm this task
is much more simple, as we are only concerned by the readout weights. And
since the readout is linear, there is a simple way of training them.

The goal of the training process is to minimise the difference between the
actual output of the system y(n) and the desired output d(n) within a certain
interval n ∈ [1, T], where both u(n) and d(n) are known. This interval is
commonly referred to as the training interval and its length defines how many
“teacher” inputs have been used to optimise the system. The distance measure
D between d(n) and y(n) is given by

D =
1

T

T∑

n=1

(d(n)− y(n))
2
. (I.7)

Since we want to minimise D by tuning the readout weights wj , taking the
derivative of D with respect to wj yields zero

0 =
∂

∂wj
D =

∂

∂wj

1

T

T∑

n=1

(d(n)− y(n))
2
. (I.8)

Let us develop the right-hand side. The desired output d(n) does not depend
on wj , but the output y(n) does, and following Eq. I.6, we obtain

∂

∂wj
y(n) = xj(n). (I.9)

I.1. From machine learning to reservoir computing 11

Inserting Eq. I.9 into Eq. I.8 and expanding the parenthesis gives

0 =
∂

∂wj

1

T

T∑

n=1

(
d2(n)− 2d(n)y(n) + y2(n)

)
, (I.10a)

=
1

T

T∑

n=1

(−2d(n)xj(n) + 2xj(n)y(n)) , (I.10b)

=
1

T

T∑

n=1

(
N−1∑

i=0

wixi(n)xj(n)− xj(n)d(n)

)
. (I.10c)

And here we obtain a system of linear equations

Rij · wi − Pj = 0 (I.11)

for the readout weights wi, where

Rij =
1

T

T∑

n=1

xi(n)xj(n) (I.12)

is the correlation matrix, and

Pj =
1

T

T∑

n=1

xj(n)d(n) (I.13)

is the cross-correlation vector. The solution of this system is given by

wi =

N−1∑

j=0

R−1
ij Pj (I.14)

and thus, the training of the reservoir computers boils down to the inversion
of the correlation matrix Rij .

The above problem – minimsation of the distance D (Eq. I.7) with respect
to the unknowns w – can be viewed as minimisation of a problem of the form

‖Ax− b‖2, (I.15)

where A is a matrix, x, b are vectors and ‖ · ‖ is the Euclidean norm. Solving
Eq. I.15 is equivalent to finding a solution to a linear system of the kind

Ax = b. (I.16)

The standard approach to solving such a system is to invert A using the ordi-
nary least squares algorithm [35]. However, in some cases, the problem Ax = b
is ill-posed. That is, no x satisfies the equation, or more than one x does, or the
solution x has very large values, which makes it unstable with respect to small
variations of A or b. All these problems arise when the matrix A has small or
vanishing eigenvalues. In such cases, using ordinary least squares leads to an
overdetermined (over-fitted) or underdetermined (under-fitted) solution. The
most common method for regularisation of ill-posed problems is the Tikhonov
regularisation [36], also known as ridge regression or weight decay in the ma-
chine learning field. The method consists in adding a regularisation term

‖Ax− b‖2 + ‖Γx‖2, (I.17)

12 Chapter I. Introduction

where Γ is a suitably chosen Tikhonov matrix. In many cases, it is chosen as a
multiple of the identity matrix Γ = αI, with a fixed coefficient α. The solution
is now x = (A + αI)−1b, which is better posed than the original problem.
That is, such regularisation gives preference to solutions with smaller norms.
It is mostly used in simulations, as experimental noise already does a good
job of preventing overfitting in physical implementations. Typically, we set
α ∈ [10−9, 10−1], depending on the reservoir size and the task.

I.1.4. Benchmark tasks. We have just shown that the training of a
reservoir computer requires the knowledge of the target signal d(n). In simple
words, it is the output we want the system to produce. And this output depends
on the task we want the system to perform. This section presents two of the
most popular benchmark tasks used to test experimental reservoir computers.
Many other tasks can be found in the the literature, but they are out of scope
of this thesis, simply because I did not consider them in my experiments. More
advanced tasks, such as VARDEL [37] and chaotic time series prediction will
be introduced in Ch. III and Ch. IV, respectively, as they require important
improvements of the Reservoir Computer scheme in order to be solved.

I.1.4.1. Wireless channel equalisation. This task is based on a real-life situ-
ation, depicted in Fig. I.5. Consider a wireless transmission between an emitter
and a receiver. These could be, for instance, a message sent from a broadcast
satellite to a ground station, or from a ground station to a personal mobile
device. The message arrives to its destination altered by noise and various
distortions. The possible causes are (a) interference between different echos
of the message, propagating through different paths and thus arriving at the
receiver at different moments, (b) imperfect behaviour of the hardware and (c)
noise, captured at any stage of the transmission. For this reason, an equaliser is
placed at the receiving end to recover the original message. Multiple digital al-
gorithms have been implemented to perform this task. However, the increasing
demand for higher bandwidths requires very fast Analogue-to-Digital Convert-
ers (ADCs) that have to follow the high bandwidth of the channel with sufficient
resolution to sample correctly the distorted signal [38]. Current manufactur-
ing techniques allow producing fast ADCs with low resolution, or slow ones
with high resolution, obtaining both being very costly. This is where analogue
equalisers, such as an opto-electronic reservoir computer, become interesting,
as they could equalise the signal before the ADC and significantly reduce the
required resolution of the converters, thus potentially cutting costs and power
consumption [39–41]. Moreover, optical devices may outperform digital devices
in terms of processing speed [39, 42]. It can for instance be shown that reservoir
computing implementations can reach comparable performance to other digi-
tal algorithms (namely, the Volterra filter [43]) for equalisation of a nonlinear
satellite communication channel [44].

To emulate a wireless transmission, one starts by generating a message,
usually composed of random symbols. The message is then fed through a
model of the channel that adds the alterations, caused by transmission, and
noise, thus producing a signal that would have been captured at the receiver
end. Since the goal of the task is to recover the clean message from the distorted
one, the former becomes the target signal d(n) for the reservoir computer, while

I.1. From machine learning to reservoir computing 13

Figure I.5. Wireless channels are omnipresent in our every-
day life. The cell phones transmit call and texts to ground
stations, that in turn, transfer data to satellites. Smartphones
exchange data through Wi-Fi, 3G/4G and Bluetooth. Emer-
gency services, law enforcement agents, taxi drivers communi-
cate with radios. Music and latest news are broadcast to our
cars so we do not get bored while sitting in traffic. The list is
too long to fit into this page. All these channels are imperfect
and the received message often needs to be corrected in order
to be readable. This is done by equalisers at the receiving and
of the transmission chain. Image reprinted from ConceptDraw.

the latter will be used as the input signal u(n). To avoid confusions, the reader
should keep in mind that d(n) is both the target signal for the RC and input
signal for the channel model, while u(n) is the output of the channel, but the
input for the RC.

The specifics of this task have been defined in [45] and introduced to the
reservoir computing field in [29]. The channel input signal d(n) contains 2-
bit symbols with values picked randomly from {−3,−1, 1, 3}. The channel is
modelled by a linear system with memory of length 10

q(n) = 0.08d(n+ 2)− 0.12d(n+ 1) + d(n)

+ 0.18d(n− 1)− 0.1d(n− 2) + 0.091d(n− 3)

− 0.05d(n− 4) + 0.04d(n− 5) + 0.03d(n− 6)

+ 0.01d(n− 7),

(I.18)

that mimics the interference between different echos, followed by an instanta-
neous memoryless nonlinearity

u(n) = q(n) + 0.036q2(n)− 0.011q3(n) + ν(n), (I.19)

that replicates the nonlinear behaviour of a signal amplifier at the emitting
point, where u(n) is the channel output signal and ν(n) is the added Gaussian

http://www.conceptdraw.com/How-To-Guide/wireless-networking-for-mac

14 Chapter I. Introduction

noise. The reservoir computer has to restore the clean signal d(n) from the
distorted noisy signal u(n). The performance is measured in terms of wrongly
reconstructed symbols, called the Symbol Error Rate (SER).

Note that although the input signal d(n) has a symmetric symbol distri-
bution around 0, the output signal u(n) loses this property, with the symbols
lying within the [−2.8, 4.5] interval. The equaliser must take this shift into
account and correct the symbol distribution properly.

I.1.4.2. NARMA10. This task is the nonlinear version of the Autoregressive-
Moving-Average model (ARMA) of order 10, hence NARMA10. The original
ARMA model, introduced in [46], consists of two parts: an autoregressive part
and a moving average part [47]. The model is suitable for description of sys-
tems that combine a series of unobserved shocks (the moving average part) as
well as their own behaviour (the autoregressive part). Stock market prices is a
good example of such a system.

NARMA10 seems to be a more complex task than channel equalisation.
That is, the first opto-electronic reservoir computer, reported by our team [48],
achieved very good results on the channel equalisation, that were only slightly
improved since then in subsequent experiments. The first experimental results
on NARMA10, however, presented in [48] were surpassed in several works, such
as e.g. [49] and [2]. The latter will be presented in Ch. III.

The basic idea of the NARMA10 task is the emulation of a nonlinear system
of order 10, hence the name of the task. Other system orders are used, but we
will not consider them here. The input signal u(n) is drawn randomly from a
uniform distribution over the interval [0, 0.5]. The target output d(n) is defined
by the following equation

d(n+ 1) = 0.3d(n) + 0.05d(n)

(
9∑

i=0

d(n− i)
)

+ 1.5u(n− 9)u(n) + 0.1. (I.20)

Since the reservoir does not produce d(n) exactly, its performance is mea-
sured in terms of an error metric. We use the Normalised Mean Square Error
(NMSE), given by

NMSE =

〈
(y(n)− d(n))

2
〉

〈
(d(n)− 〈d(n)〉)2

〉 , (I.21)

where 〈.〉 is an average over time. A perfect match yields NMSE = 0, while a
completely off-target output gives a NMSE of 1.

I.2. Hardware implementations : opto-electronic delay systems

Now that we have covered the key theoretical aspects of reservoir com-
puting, we may address the following question: how does one implement such
networks in hardware. This can be done in numerous ways, going from fol-
lowing the idea to the letter, i.e. with a bucket filled with water [18], up to
complex electronic, acoustic and optical solutions [33, 48–58]. The length of

I.2. Hardware implementations : opto-electronic delay systems 15

the list shows the abundant interest that RC has received from experimental
researchers.3

In this work, however, we will focus in particular on one such implemen-
tation: the first opto-electronic reservoir reported by the OPERA-Photonique
group. It combines optics and electronics for a high-speed system. All my
experiments were based on this setup, with several add-ons. Therefore, a good
explanation of its working principle would not be a luxury. In this section we
discuss every component of the setup, how they work all together and how it
can be used to process information under the RC paradigm.

I.2.1. Time-multiplexing. As have been explained in Sec. I.1.3, a reser-
voir is a network of neurons. Each neuron evolves in time following the activa-
tion function. In hardware implementations, this function could be processed
by a device, or a dedicated component of the setup: an array of transistors,
for instance, or a sequence of operations performed by a microprocessor. Some
devices can be made to update multiple neurons in parallel, that is, their oper-
ating principle allows for multiple physical or virtual inputs and outputs (e.g.
the parallel frequency-multiplexed scheme proposed in [59]). Others, such as
the light intensity modulator, used in this thesis (it will be presented in Sec.
I.2.4), can only process one neuron at a time. This means that, in principle,
one needs N such modulators, one for each neuron. And since these devices
are not cheap, the price of the setup becomes a big problem.

The solution to this issue relies in a careful analysis of Eqs. I.5. In fact,
one may notice that neurons xi do not need to be updated simultaneously.
Since each neuron xi only depends on one neighbour xi−1, they can be up-
dated in a ordered way, that is, one after another. This simple idea allows to
replace N activation function components by just one, that would process the
queue of neurons x0, . . . , xN at each timestep n. Such procedure is commonly
called time-multiplexing, as instead of processing all neurons simultaneously,
in parallel, they are stacked in a queue, or in other words, time-multiplexed.

Fig. I.6 illustrates the above idea. In order to update the states of all the
neurons using only one instance of the activation function, the neurons need to
be stacked in a queue. This can be achieved by defining a piecewise constant
function of time, with each constant interval corresponding to the value of a
certain neuron xi(n) of the network at time n. The output of the function gives
the updated states of the neurons at the next timestep n + 1, in the form of
a new piecewise constant function. To avoid misunderstanding, care should be
taken not to confuse the physical time of the piecewise signal, and the discrete
time n. While the latter is indeed called time for convenience, it is no more
than a basic index.

Time-multiplexing thus allows to significantly simplify experimental im-
plementations of reservoir computing. However, this is not the only way to
proceed, and the idea itself is far from being flawless. The processing speed
of the activation function component defines how fast it can update each neu-
ron. This means that implementing large reservoirs would results in very long

3Although I cannot guarantee the completeness of this list, I did my best to cite all

experimental setups known at the moment of writing these lines.

16 Chapter I. Introduction

f

x0(n)

x1(n)xN−1(n)

x0(n+ 1)

x1(n+ 1)xN−1(n+ 1)

Figure I.6. The basics of time-multiplexing. To update the
neural network with one instance of the activation function,
the states are encoded into a piecewise constant function of
time, where the constant intervals contain the values of the
neurons xi(n) at time n. The signal is fed through the acti-
vation function block that outputs another piecewise constant
signal, containing updated values of neurons xi(n+ 1).

queues that would take considerable time to process. In other words, the scala-
bility of the setup becomes an issue. An alternative and very promising way is
to encode the reservoir states into different frequencies of a polychromatic light
beam. In that case, the network size is only limited by the number of different
frequencies that could be created, and this number can go up to hundreds of
thousands with particular light sources. And since the frequencies propagate
all together, in parallel, all neurons could be processed in parallel. This idea is
being studied in our lab at the moment of writing these lines, and I refer the
reader to the papers published so far [12, 59]

I.2.2. Conceptual setup. We have just covered how time-multiplexing
allows to implement the activation function with just one component instead
of N . But there is still work to be done. Eqs. I.5 also contain a sum of the
input signal with previous states of the network. This requires, in principle, a
memory block to store the past values. A different approach consists in using
a delay system, and in this section we will explain how to do that.

Fig. I.7 illustrates a conceptual setup that implements Eqs. I.5 with a
delay loop. Time-multiplexing is used here not only to process all the states
with one instance of the activation function, but also to store previous values
in the delay line. The concept of storage may be misguiding at first, as the
previous values are not “sitting” in some place, waiting for them to be called, as
it would happen in a memory block. Instead, they are constantly on the move,
as they propagate through the delay line in the form of a piecewise constant
analogue signal. The length of the delay line is chosen precisely so that the
feedback signal comes back when it is needed, exactly at the right time (the
“right time” will be defined more precisely in the following paragraphs). And
that is the beauty of this simple idea [51].

Let us overview, step by step, what happens in this conceptual setup.
Suppose that, in the beginning, the system is idle and no signal is present
in the delay line. The inputs start arriving from the left as a piecewise con-
stant signal. Each input value u(0), u(1), . . . , u(n) is multiplied by the in-
put mask Mi, which gives N values u(n)Mi for each n. In other words,
the constant intervals of the input signal correspond to the following values:

I.2. Hardware implementations : opto-electronic delay systems 17

Input

βMiu(n)

+

f b

Readout: xi(n+ 1)

α

T

Feedback

αxi−1(n)

Figure I.7. Conceptual scheme of a hardware setup imple-
menting Eqs. I.5. The activation function block f outputs the
updated reservoir states, which then propagate through the
delay loop. The former consists of an amplifier (or attenua-
tor) that applies the feedback gain (or attenuation) α and the
delay T . The adder sums the input signal from the left with
the feedback signal from the right. The inputs and the neu-
ron values are encoded into piecewise constant signals through
time-multiplexing. The duration of the delay T is precisely
set so that the feedback neurons xi−1 are added to the right
inputs Miu.

u(0)M0, u(0)M1, . . . , u(0)MN−1, u(1)M0, u(1)M1, The input signal is first
processed by the summation block that adds the input and feedback signals.
As we have said above, no feedback signal is present in the loop yet, so the
input signal moves upwards on the scheme unaltered. It is then processed by
the activation function block that outputs the reservoir states xi at time n = 1.
The output of this block is also the most suitable place to read the state of the
neural work. That is why the readout arrow on the scheme is located here.

At this point, the updated reservoir states begin their journey in the de-
lay loop on the right-hand side of the scheme. They are first fed through a
component that applies the feedback scaling factor, that is, multiplies all the
values by the feedback gain α. Next comes the delay T , accurately chosen so
that the feedback signal comes back to the summation block at the right time.
Specifically, the neuron xi−1(n) arrives to the sum from the right at the same
time as the input u(n)Mi, so as to satisfy Eqs. I.5.

Here is a simple example to illustrate the whole process. Consider the first
input u(0)M0 that enters the system. Since no feedback is present at the adder
yet, it becomes the reservoir state x0(1) at the output of the activation function.
Then, it propagates through the delay loop and arrives at the summation block

18 Chapter I. Introduction

from the right precisely at the moment when the input u(1)M1 enters the
system from the left.

I.2.3. Desynchronisation. Before we move to the actual experimental
setup, let me say a few words on the principle of desynchronisation, that we
used in the above process without actually naming it. From what was explained
above, a reservoir state xi−1(n) is summed up with an input value u(n)Mi. This
may seem counter-intuitive, as one may want to combine it with u(n)Mi−1 to
match the indexes. However, there are a few reasons to mismatch them (and,
by the way, this is why this approach is called desynchronisation). First, this
is done to satisfy Eqs. I.5. One may argue that this is not the actual reason,
as these equation were derived from the ring-like topology that we created
artificially. The genuine reason for desynchronising the system is to create
interaction between the neurons.

Imagine that, with synchronous indexes, input Miu(n) is summed with the
feedback xi(n). That means that the neuron xi(n), through the course of its
evolution from timestep 0 to timestep n, has only seen input values u(n)Mi with
index i, and only its own previous values xi(n − 1), . . . , xi(0). Such a system
is no longer a network of neurons, but a mere set of independent variables. An
important property of a neural network is the ability of the neurons to exchange
information between them.

To wrap up, desynchronisation is a way to interconnect the neurons within
the network. It is important to note that this is not the only approach. In [52],
practically the same delay system is run synchronously. The interconnections
are created by an added low-pass filter that links the reservoir states together,
as its output depends on current and past input values.

I.2.4. Experimental setup. We can now make the final step towards
the experimental setup, schematised in Fig. I.8. Although this setup is the
core part of all of my experiments, it is not the novelty of my work, as it has
been designed before I joined the lab [48]. For this reason, I present it here,
in the introductory chapter, alongside all other concepts that were well known
and established before I started my research.

This experiment is often qualified as opto-electronic, electro-optic, or pho-
tonic4. In Fig. I.8, electrical cables and components are drawn in black, and
grey lines correspond to optical components and fibre. Remember that the
reservoir states are encoded into piecewise constant temporal signals. In this
setup, these signals are generated in two different mediums – light and electric-
ity. Thus, several components serve to either generate one of the two mediums
or convert the signal from one medium to another.

At first sight, the setup in Fig. I.8 is quite different from the conceptual
design depicted in Fig. I.7. Let us first go through all the components involved
here, and then explain how they do the same thing as the conceptual model.
The photonic reservoir computer is composed of the following devices.

4Photonics is quite a tricky term. I am yet to find an established and precise definition
and, in my experience, various scientists interpret this concept differently. In the present

work, for simplicity, I make no distinction between these three terms.

I.2. Hardware implementations : opto-electronic delay systems 19

1©

2©

3©

4©

5©

6©

7©

8©
9©

SLD

MZ
90/10

Att

Amp Comb

Pf

S
p
o
o
l

Pr

Mi × u(n)

xi(n+ 1)

Input

Readout

Figure I.8. Schematic representation of the photonic reser-
voir, introduced in [48]. It contains a light source (SLD), a
Mach-Zehnder intensity modulator (MZ), a 90/10 beam split-
ter, an optical attenuator (Att), a fibre spool (Spool), two
photodiodes (Pr and Pf), a resistive combiner (Comb) and
an amplifier (Amp). Optical and electronic components are
shown in grey and black, respectively.

1○ An optical experiment starts with a light source: a SLD (superlu-
miniscent diode) producing broadband light at the standard telecom-
munication wavelength 1550 nm.

2○ The light intensity is modulated by the Mach-Zehnder intensity mod-
ulator (MZ) that shapes it proportional to the input electrical voltage.
In other words, it serves to transfer information from an electrical sig-
nal into an optical one.

3○ Following the light path in optical fibre, next comes a 90/10 splitter.
As its name suggests, it splits the light beam in two fractions with
the given ratio.

4○ A photodetector, or photodiode (Pr) produces an electrical signal
proportional to the input optical signal. Its function may been as the
opposite of the intensity modulator – to transfer information from an
optical signal into an electrical one.

5○ The function of the optical attenuator (Att) is given explicitly by its
name – it attenuates the light intensity by a fixed factor, nothing
more.

6○ The fibre spool (Spool) is a big reel of optical fibre. Its purpose is to
delay the signal between the optical attenuator (Att) and the following
photodiode (Pf). As the speed of light in the standard optical fibre is,
roughly, 2 × 108 m/s, one kilometre of fibre creates a delay of about
5 µs. As will be shown below, this order of magnitude is sufficient for
this setup.

20 Chapter I. Introduction

Component Main characteristics
Light source Thorlabs SLD1550P-A40

- centre wavelength: 1550 nm
- FWHM: 33 nm
- maximum output power: 40 mW

Intensity modulator EOSPACE AX-2X2-0MSS-12
- bandwidth: > 10 GHz
- Vπ (at 1 GHz): 4.5 V

Photodiodes TTI TIA-525I
- bandwidth: DC to 35 MHz or DC to 125 MHz
(switchable)
- maximum output voltage: 2 Vp-p

- maximum linear input: 1.2 mW
Optical attenuator Agilent 81571A

- attenuation range: 0− 60 dB
- resolution: 0.001 dB

Fibre spool Standard SMF-28e fibre
- length: approx. 1.5 km

Resistive combiner Home-made star format power splitter
- resistors (3x): 16.7 Ω

Amplifier Mini Circuits ZHL-32A+
- gain: 25 dB
- bandwidth: 0.05− 130 MHz
- maximum input: 2 Vp-p at 50 Ω

Table I.1. Main components of the opto-electronic reservoir,
schematised in Fig. I.8.

7○ A second photodiode (Pf), identical to (Pr), converts the delayed
optical signal into voltage.

8○ This voltage is added up with an external electrical signal, containing
the inputs to the system.

9○ Finally, the newly produced voltage is amplified by an electrical ampli-
fier (Amp), as the Mach-Zehnder modulator “expects” input voltages
much larger than the photodiode Pf can generate.

Tab. I.1 lists the exact device models used for this setup with their main
characteristics.

The key element of the setup is the Mach-Zehnder intensity modulator,
since it carries out the activation function of the neurons. The light intensity
at its output is given by [48]

I(t) =
I0
2

+
I0
2

sin

(
πV (t)

Vπ
+ φ

)
, (I.22)

where I0 is the input light intensity and V (t) is the time-dependent voltage
driving the modulator. The bias φ can be adjusted by applying a DC voltage
Vφ to the modulator. The constant voltage Vπ is an intrinsic characteristic of
the modulator, that corresponds to the voltage needed to go from a maximum

I.2. Hardware implementations : opto-electronic delay systems 21

to the next minimum of light intensity at the output of the modulator (in our
case, Vπ ≈ 4.5 V). The transfer function of the modulator is the reason why
we use a sine activation function, as have been mentioned previously.

The reservoir states xi(n) can be both positive and negative. Hence, the
voltage V (t), driving the modulator, consists of positive and negative values.
However, the Mach-Zehnder outputs a modulated light intensity that only holds
positive values. Therefore, the output voltage of the feedback photodiode Pf is
strictly positive. It can be broken down into a DC voltage VDC, proportional to
the light intensity I0/2, and an AC voltage VRF, proportional to the intensity
fluctuations around the mean value. The DC voltage is cut off by the high-
pass filter of the amplifier, so that only VRF is amplified and used to drive
the modulator V (t) ∼ VRF. The filter thus allows both positive and negative
reservoir states, despite the fact that they are encoded into strictly positive
light intensity. More details on this aspect can be found in the Supplementary
Material of [48].

We will now discuss the operating principle of the entire setup. We will
proceed in the same manner as we did with the conceptual setup, so as to
highlight the similarity between the schemes. To start, let us suppose that the
experiment is idle (that is, no signals are present at any point) at the moment
when the first input comes into the reservoir.

The inputs arrive into the system as an electrical signal (the bottom right
corner on the scheme). This signal is the same piecewise constant function
containing the input signal u(n), multiplied by the input mask Mi. The resis-
tive combiner (Comb) sums the input and feedback signals. Since the latter is
null5 , the input signal alone is amplified (Amp) and applied to the intensity
modulator (MZ), that shapes the light intensity into the same piecewise con-
stant function, proportional to the sine of the input electrical signal. In other
words, the input signal Miu(n) is passed through the modulator transfer func-
tion (here, sin(x)) and transferred from voltage to light intensity, so that the
optical output contains values sin(Miu(n)). This optical signal is then split in
two. 10% are sent to the readout photodiode Pr. Similar to the readout arrow
in the conceptual setup, the readout photodiode allows to capture the reservoir
states, as it produces an electrical signal proportional to xi(n + 1). At this
point, n = 0 and xi(1) = sin(Miu(0)) since there is no feedback signal yet in
the reservoir. The 90% of the optical signal make their way into the optical
attenuator (Att), where the feedback attenuation (α in Eqs. I.5) is applied.
The resulting feedback signal then propagates through the delay line6. Finally,
the feedback neurons are transferred back from light intensity into voltage by
the feedback photodiode (Pf). To illustrate the process in motion, consider the
N + 1-st input M0u(1) passing through the combiner. No feedback is added
to this input, as xN−1(0) is null. However, moments later, as the next (N + 2-
st) input M1u(1) enters the combiner, it is being added to the first feedback

5Technically, it is not null: the SLD is emitting light, hence the DC voltage VDC ∼ I0/2
is present. But we can ignore it, since it is filtered by the amplifier.

6Note that the delay T is the total propagation time from the MZ optical output to its
electric input, that is, the full loop. In other words, fibre patch cords and electrical cables

also add up to the delay, but their contribution is relatively small.

22 Chapter I. Introduction

value x0(1) = sin(M0u(0)), obtained from the first input M0u(0) to the reser-
voir. Note the mismatch of indexes because of the desynchronisation of the
reservoir, as was explained in I.2.3.

Accurate choice of delay T is key for precise combination of the input
with the feedback. This can be done in two ways. Cutting optical fibre at
the desired lengths is very unpractical, so instead of adjusting T , we tune the
duration of the intervals in the piecewise constant signals. This can be easily
achieved with signal generation and acquisition devices. In practice, we start
by building a reservoir computer with a certain fibre spool, then measure the
delay time T by sending in a spike and estimating the time between its echos
on a scope. A basic scope with 60 MHz bandwidth allows to measure T with
enough precision. From the number of neurons N that we want to fit into the
reservoir, we define the duration of one neuron θ = T/N . In other words, θ is
the duration of each constant step of the piecewise signal. For instance, with
1 km of fibre and T = 5 µs we can fit N = 50 neurons by setting θ = 100 ns.
This corresponds to a frequency of 10 MHz. The signals can be generated
and recorded by arbitrary waveform generators (AWG) and data acquisition
cards, respectively. To get rid of the transients, induced by finite bandwidths
of physical devices, the acquired signal can be sampled at a higher frequency,
e.g. 200 MHz, and then averaged over 20 samples.

To conclude this section, I list several typical characteristics of the exper-
imental setup. These values are presented for readers willing to accurately
reproduce our experiment.

- All electronic inputs and outputs are impedance-matched to 50 Ω.
- The SLD pump current is set to 250 − 350 mA, so that the opti-

cal power at the readout photodiode does not exceed 1 mW (linear
response threshold).

- The input gain is usually set between 0.1 and 0.5 (dimensionless values
used in simulations). This roughly corresponds to signals ranging
from 25 mVp-p to 125 mVp-p.

- With input voltages of 120 mVp-p and higher, the output of the am-
plifier spans the Vπ interval [−4.5 V,+4.5 V].

- The feedback attenuations are typically tuned between 4.5 dB and
6 dB – lower values would put the cavity in a regime where it oscillates
spontaneously, which decreases its performance as a reservoir, while
higher values would not provide enough feedback to the reservoir;

- The photodiodes (TTI TIA-525I) carry two amplification stages, with
selectable coupling (DC or AC). To avoid saturation of the second
amplification stage, both photodiodes are set to AC coupling. The
cutoff frequency (100 Hz) is sufficiently low to keep the signal dis-
tortion minimal. We also select the minimum 1x gain and maximum
bandwidth of 135 MHz.

- The fibre spool of approx. 1.5 km yields a (measured) delay of 7.94 µs.
To fit 50 neurons into the reservoir, we set the sampling frequency at
128.4635 MHz (with θ = 155.7 ns) and average the reservoir states
over 20 samples.

I.3. Field-Programmable Gate Arrays 23

I.3. Field-Programmable Gate Arrays

So far we have discussed the theory behind reservoir computing (Sec. I.1),
and how it could be implemented physically in an opto-electronic experiment
(Sec. I.2). What follows deviates completely from those two topics. This
section introduces the true novelty of my work – an amazing device that I
had a chance to play with for four years – a FPGA chip. Its outstanding
properties, such as high computational speed and intrinsic parallelism, were
crucial in most of the experiments presented in this thesis. Therefore, it is
natural to devote a section to thoroughly introduce the FPGAs. After a short
history lesson, we will discuss the internal structure of the specific FPGA chip I
was using, together with the software tools required to program and operate it.
The contents of the historical introduction is inspired by [60] with additional
information taken from [61] and [62]. The rest of the section is mostly original,
with some facts from [63].

I.3.1. History.
I.3.1.1. From transistors to integrated circuits. Our story begins in 1947 at

Bell Labs, when John Bardeen, William Shockley and Walter Brittain invented
the first transistor. . . at least according to Bell Labs legal documents. The first
patents on field-effect transistors were issued in 1925 in Canada to Julius Edgar
Lilienfeld and in 1939 in Germany to Oskar Heil, although there is no direct
evidence that these devices were actually built. Anyways, the 1956 Nobel Prize
in Physics for the discovery of the transistor effect was awarded to Shockley,
Bardeen and Brattain.

Many consider the transistor to be one of the greatest inventions of the 20th
century. Its main applications are amplification and switching of electronic
signals, and it plays the role of the main building block of the whole modern
electronic industry. But how did we get there?

The first junction transistors were bulky, consumed a lot of power and
suffered from various performance issues, such as trapping or scattering of car-
riers. Operating multiple transistors together in an electronic circuit did not
seem possible at that time. However, several technological advances changed
the situation completely. In 1959, Dawon Kahng and Martin M. Atalla at
Bell Labs invented the metal-oxide-semiconductor field-effect transistor (MOS-
FET). With a design fundamentally different from the previous bipolar junction
transistor, the MOSFET was composed of an insulating layer of silicon diox-
ide on the surface of a semiconductor (crystalline silicone), with a metallic gate
electrode on top. The subsequent progress of clean rooms, reducing contamina-
tion to unprecedented levels, and the evolution of photolithography contributed
to the development of the Si–SiO2 technology, thus making the MOSFET the
most widely used type of transistor in integrated circuits. Let us explore the
reasons of such a massive success.

There are two main types of MOSFETs: pFETs and nFETs. They either
block or open the current flow depending on what value they receive, 0 or 1.
The CMOS (complementary metal-oxide semiconductor) technology, patented
in 1963 by Frank Wanlass, took the MOS transistors to the next level. Pairing
pFETs with nFETs during the fabrication process of the integrated circuit, so

24 Chapter I. Introduction

R1

R1

R2

A

B

NAND(A,B)

+VCC

Figure I.9. Logic NAND gate built with two transistors.

that one in each pair is always off, allowed to significantly cut power consump-
tion and heat dissipation, as the current only flows when the transistors are
actually switched.

Several transistors can be combined on a protoboard to obtain a logic
gate, e.g. a NAND gate, illustrated in Fig. I.9. An array of several logic
gates, composed of junction transistors, would result in a quite bulky setup.
The MOSFET and CMOS technologies allowed to significantly scale the things
down by printing large amounts of transistors on relatively small areas of silicon.
Such printed boards, called Integrated Circuits (IC), first appeared in 1961. As
the transistor printing technology improved further, allowing to fit more and
more units on smaller areas, the famous Moore’s Law was announced in 1965.
It predicts the number of transistors in IC to double every year. It is used for
goal setting in industry and research. However, it is doomed to break down
very soon. In fact, current photolithography process allows to create chips
with features of just 14 nm. Even with improved techniques, it is unclear how
much further scaling is possible. At 2 nm, transistors would be just 10 atoms
wide, and it is unlikely that they would operate reliably at such a small scale.
Moreover, as the transistors are packed ever tighter, dissipating the energy that
they use becomes much harder [64, 65].

A simple integrated circuit may consist of several logic gates or a single
multiplexer. Modern high-end chips, on the other hand, can contain up to
25 million transistors per square millimetre. The design of such complex ICs
is a costly and time-demanding process, with expenses up to multiple tens of
millions of dollars. In fact, the circuit has to be conceived to suit all required
specifications before being placed on a silicon substrate. This often requires
adjusting individual transistors manually, which is virtually impossible for large
circuits. Therefore, automatic design software tools play an important role in
this design process, that still requires a couple of months of work to get from the
design to production. Given the high production costs, this approach is only
viable for large orders of chips, such as microprocessors for consumer markets.
Smaller projects obviously require a fundamentally different solution to design
and test integrated circuits. This is where field-programmable devices – that
are alterable by the user himself, not solely in the factory – appear on the stage.

I.3. Field-Programmable Gate Arrays 25

Programmable logic devices. A Programmable Logic Device (PLD) is a re-
configurable integrated circuit. Before PLDs were introduced, read-only mem-
ory (ROM) was used to perform arbitrary logic functions. However, mem-
ory blocks operate much slower than dedicated logic circuits, consume more
power and are more expensive in production. In 1970, Texas Instruments de-
veloped the first Programmable Logic Array (PLA): the random-access memory
(RAM) based device was programmed by altering the metal layer during the
production of the IC. In 1978, MMI introduced a Programmable Array Logic
(PAL)7, a device similar to PLA, but instead of two programmable planes, it
had one Programmable Read-Only Memory (PROM) array, a fixed OR plane
and a programmable AND plane, thus allowing to compute sum of products
logic equations with feedback from the outputs. A significant improvement
was made by Lattice Semiconductor in 1985 with their Generic Logic Array
(GAL), that could be programmed and reprogrammed. It combined CMOS
technology with electrically erasable gate technology, making it a high-speed
and low-power logic device.

The first logic arrays (PALs and GALs) were only available in small for-
mats of few hundreds of logic gates. Complex Programmable Logic Devices
(CPLDs) were introduced for bigger logic circuits by linking several PALs with
programmable interconnections. In parallel to the logic arrays, a different type
of devices based on gate arrays was being developed, and gave birth to Field-
Programmable Gate Arrays (FPGAs). The main difference between a CPLD
and a FPGA lies in the architecture. Basically, a logic cell in a CPLD can only
be connected to its neighbours, while in a FPGA it can be linked (routed) to
any other cell across the chip through programmable interconnections. In other
words, a CPLD has programmable logic with stiff connections between cells,
while a FPGA offers programmable logic and programmable interconnections.
Both CPLDs and FPGAs coexist nowadays – the former are limited in size and
capabilities and thus used for simpler designs, while the latter are employed for
the most complex applications.

How do these devices retain their configuration? A PLD can be seen as a
combination of logic and memory units. The former perform individual logic
operations and the latter store the connectivity pattern between the cells, given
to the device during the configuration process. Different methods have been
used through history. The simplest is a silicon antifuse, which works in opposite
way to a normal fuse, creating a connection upon destruction, when a voltage
is applied. Obviously, such method is indeed field-programmable, but can
only be done once. A significant step forward was made with the arrival of
electronic memory. At first, Programmable Read-Only Memory (PROM) was
used in 1970 – it allowed to program the chip fairly easily, but it still was
not reprogrammable – once the memory was set, the chip configuration was
permanent. Erasable PROM (EPROM) appeared one year later, and brought
the valuable advantage of being reprogrammable after erasing its contents with
UV-light. Not the most practical solution though, as the EPROM had to be

7It seems that the engineers ran out of inspiration when they named their devices! Do
not worry if you get lost in all these acronyms, though – we will not use them past this

section.

26 Chapter I. Introduction

removed from the circuit to be erased. The major improvement was made in
1983 with the invention of EEPROM – Electrically Erasable PROM – that
allowed data to be read, erased and rewritten. Still not perfect yet, as it could
only be reprogrammed a limited number of times. For this reason, modern
FPGAs store their configuration in volatile Static RAM (SRAM), which can
be rewritten an unlimited number of times.

To sum up, the need for a simple and inexpensive solution for fast devel-
opment of integrated electronic circuits – more efficient than placing individual
components on a protoboard, and less expensive than following the entire pro-
cess of IC manufacturing – brought to life several families of programmable
logic devices, among which the FPGA – a large array of logic gates (up to two
millions), combined with SRAM blocks to store the internal connections.

I.3.2. Market and applications. Nowadays, FPGA market is domi-
nated by two players: Xilinx and Altera. Together, they hold 90% of the mar-
ket share. Other companies, such as Lattice Semiconductor, Actel, Achronix
and Tabula provide more specialised chips with unique features.

Xilinx offers several FPGA families with a wide range of applications. The
Artix family holds the entry level chips with lowest cost and power consumption
and small form-factor packaging8. The Spartan family targets cost-sensitive
and high-volume requests. The Kintex family is optimised for the best price-
performance. Virtex is the top-level family, with the highest system perfor-
mance and capacity. Several generations of devices exist within each family.
The most recent devices, at the moment of writing those lines, are Family 7
chips. In this work I used a Family 6 device, since it was the latest device on
the market in 2013, when it was purchased.

Altera also offers several FPGA families, based on application needs. Stra-
tix devices offer the highest performance and density, Arria is a family of mid-
range FPGAs, and Cyclone series are the company’s lowest cost, lowest power
chips.

At first, FPGAs were mainly used to connect electronic components to-
gether, such as bus controllers or processors. As they became larger and faster,
with lower cost per logic gate, their application landscape changed dramati-
cally. Modern FPGAs are capable of replacing ASIC chips and are more and
more frequently found in consumer electronic devices. Gone are the days when
they were too expensive for high-volume productions. Furthermore, FPGA
chips became reliable enough for critical applications in space, military and
medical fields. They are now commonly used for high-performance signal pro-
cessing, replacing multiple dedicated DSP processors. The latest trend is the
System on Chip (SoC) platforms, consisting of multi-core processors and high-
capacity logic devices, all on a single chip. The idea is to benefit from the high
computational power of the FPGA without the complex design process. The
user would only interacts with the processor, while the latter could call the
FPGA for support, for instance, to increase its performance on specific tasks
by delegating highly repetitive routines to the FPGA.

8An Artix evaluation board can be purchased for as low as $100.

I.3. Field-Programmable Gate Arrays 27

I.3.3. Xilinx Virtex 6 : architecture and operation. With the his-
torical background set, let us take a closer look inside a FPGA chip. This
section is aimed at users with high interest in FPGA technology. If you are not
one of them, you can skip this part – you will miss a lot of interesting facts,
but this will not prevent you from understanding the experiments described in
the next chapters.

At this point, describing a “general” chip makes no sense, as each manu-
facturer, be it Altera or Xilinx, designs its chips in different ways with different
architectures. We will thus focus on the FPGA chip I have been using through-
out my thesis: the Xilinx Virtex 6. Some parts of this section remain valid for
all FPGAs, but others are unique features only present on Xilinx devices. The
contents of this section was inspired from [63].

Up to now, we simplified the internal structure of a FPGA to (a) a large
number of logic gates and (b) blocks of memory to store the interconnections.
Modern FPGAs are much more complex than that and contain numerous ad-
ditional components. This is what we are going to overview here.

Logic blocks. The primary function of a FPGA is to perform logic opera-
tions, such as AND, OR, NOT, NAND, NOR, XOR, XNOR and more complex
combinations of these. Instead of replicating thousands of individual logic
gates, FPGA manufacturers make use of a more advanced logic block, called
Look-Up Table, or LUT. A general LUT, with n inputs and one output, can
encode any n-input Boolean function by modelling it as a truth table. That
way, several individual logic gates can be replaced by a single logic block. A
Virtex 6 LUT has 6 inputs. The output of a LUT may be stored in a register
(a simple circuit acting as a one-bit memory) in order to implement sequential
logic. Four such LUTs are grouped in a Slice, that also contains eight regis-
ters, multiplexers (used to select inputs) and arithmetic carry logic (used to
perform arithmetical operations). Two slices form a Configurable Logic Block,
or CLB – a feature-rich circuit capable of implementing various logic functions.
A FPGA chip from Virtex-6 family may contain from 104 up to 105 CLBs [66].
Obviously, each CLB contains more features than may be required. During the
implementation process, mapping tools select which components of each CLB
are used, and the others are bypassed or left unconnected from the circuit.

Routing resources. The thousands of CLBs (and other components, de-
scribed below) of a FPGA can be connected in various ways by the user.
Therefore, a sufficient number of routing channels (or paths) should be present
on the chip in order to make any connectivity pattern possible. Surprisingly,
these routing resources occupy most of the physical space on the silicon plate!
In fact, the logic blocks can be pictured as small islands floating in a vast sea of
routing resources. The channels are arranged in vertical and horizontal grids.
As they are printed very densely on the chip, they may resemble a fabric. That
is why the combination of FPGA logic and routing resources is frequently called
FPGA fabric.

Clocking resources. To ensure consistent and predictable outcomes, most
sequential logic is synchronous (or clocked), thus requiring a clock signal driving
the registers. Reliable clock generation and distribution across the distant
corners of the chip is a challenge of extreme importance. No matter how

28 Chapter I. Introduction

efficient the logic is, if different elements are not synchronised properly, the
circuit is doomed to fail. This potential issue is addressed by a dedicated
network, used solely for clock distribution. The complex network consists of
five parallel lanes used for different purposes, such as local or global clock
distribution. These lanes are designed to drive multiple logic blocks at once,
with the shortest propagation delay, thus limiting desynchronisation between
distant components.

A FPGA chip does not have a built-in clock generator, it has to be clocked
from a external oscillator. On the other hand, it accommodates specific cir-
cuitry capable of altering the phase and frequency of an incoming clock. Such
blocks, called Mixed-Mode Clock Managers (MMCMs), can be used as clock
dividers or multipliers.

Memory. Virtex-6 FPGAs typically have several hundreds of small blocks
of RAM spread across the chip, each containing up to 36 kilobits of memory.
An interesting feature of Xilinx devices is another type of memory, called dis-
tributed RAM. The data can be stored in the LUTs of CLBs, each LUT being
capable of holding 64 bits. Between 25% and 50% of all slices can be used
as distributed memory. This allows to keep small amounts of data for direct
access.

DSP Slices. FPGA applications to digital signal processing (DSP) may
require fast and efficient execution of a series of arithmetical operations, such as
multiplication. Addition and subtraction operations can be implemented fairly
easily with bit-logic, but this is far more complex with multiplication. Basically,
a multiplication is nothing more than a sequence of additions, but the main
concern is that it grows quickly with the sizes of multiplicands. For instance,
multiplying two 16-bit numbers requires 16 16-bit adders. To perform these
operations more efficiently, Virtex-6 devices are built with several hundreds
(768 in our particular chip) dedicated DSP slices. Each one of them contains
a full 25-bit by 18-bit multiplier, with several additional features, such as pre-
adders and accumulators [67]. A DSP slice does not compute faster than regular
logic. However, it allows to perform multiplication with a single component,
saving logic and routing resources for other purposes.

Xilinx ML605 evaluation board. For convenience, end-users are offered the
option to purchase a FPGA chip that is mounted on a motherboard-like elec-
tronic circuit, called evaluation board. That way, the chip comes powered,
clocked and ready to use. Moreover, the evaluation board adds useful features
and expands the connectivity of the FPGA. Our Virtex 6 came along with a
ML605 evaluation board, depicted in Fig. I.10. It includes switches, LEDs,
pushbuttons, a small LCD display, a DDR3 RAM bar, as well as many connec-
tion ports, such as PCI Express, DVI, USB, UART and FMC. Some of these
features were extensively used in our experiments and will be discussed later.

I.3.4. Design flow and implementation tools. The creation of a work-
ing hardware implementation is a lengthy process. In this section I will outline
the most important steps.

Coding: First, one has to write down (or code) the idea in a specific hard-
ware description language (HDL). There are two choices here: VHDL

I.3. Field-Programmable Gate Arrays 29

10 www.xilinx.com Virtex-6 Getting Started Guide
UG533 (v1.5) October 20, 2011

Getting Started with the Flash Demonstration

Board Features
The ML605 board features are shown in Figure 1-1. The default switch and jumper settings
are shown in Figure 1-2.

X-Ref Target - Figure 1-1

Figure 1-1: Virtex-6 FGPA ML605 Board Features

SFP DDR3

FMC
(LPC)

FMC
(HPC)

Configuration
Mode Switch

USB 2.0
(Host)

12V Wall Power

12V ATX Power

USB 2.0
(Device)

Pushbuttons
(SW5-SW9)

16x2 LCD Character
Display

MGT Port
(J26-J29)

X8 PCI Express

Platform Flash
(U27)

System ACE

Prog
(SW4)

System ACE RST
(SW3)

CPU RST
(SW10)

PMBus Controller

System Monitor
Headers

PMBus
(J3)

GPIO DIP
Switch
(SW1)

USB to UART
(J21)

MGT Clock
(J30 & J31)

USB JTAG
(J22)

Ethernet

DVI Output

User Clock
(J55-J58)

BPI Flash
(U4)

System ACE
Address

GPIO LEDs

UG533_01_01_121709

X-Ref Target - Figure 1-2

Figure 1-2: Default Jumper and Switches Settings

J69
J18

J65

J42

J66
J67
J68

J54

J19

J35

SW1

S2 S1

UG533_01_02_121709

J66: Shunt over 1–2
J67: Shunt over 1–2
J68: No jumper

J54: Shunt over 1–2 (Full BW)
J65: Shunt over 1–2 (SFP Enable)

S1:
4 ON (SysACE Mode = 1)
3 OFF (SysACE Addr 2 = 0)
2 OFF (SysACE Addr 1 = 0)
1 OFF (SysACE Addr 0 = 0)

S2:
6 OFF (FLASH_A23 = 0)
5 OFF (M2 = 0)
4 ON (M1 = 1)
3 OFF (M0 = 0)
2 ON (CS_SEL = 1)
1 OFF (EXT_CCLK = 0)

SW1:
8 OFF
7 OFF
6 OFF
5 OFF
4 OFF
3 OFF
2 OFF
1 OFF

J42: Shunt over 1–2

J69: Shunt over 1–2

J19: Shunt over 1–2
J35: Shunt over 9–11 and
 shunt over 10–12

J18: Shunt over 1–2 (Bypass FMC LPC)
J17: Shunt over 1–2 (Bypass FMC HPC)
Note: These are the JTAG chain bypasses for
 the FMC LPC and FMC HPC connectors.

Ethernet GMII

FMC Bypass

System Monitor

SFP

PCIe Lane Size Select

System ACE CF Error LED

J17

Figure I.10. Xilinx ML605 evaluation board containing the
Virtex-6 FPGA chip and enough accessories to employ most
of its features. Reprinted from the board getting started guide
[68].

– Very High Speed Integrated Circuit (VHSIC) Hardware Descrip-
tion Language, strong typed, Ada-like language with annoyingly long
syntax, or Verilog – weakly typed, C-like language with more user-
friendly syntax. Writing in those languages is fundamentally different
from coding a regular program intended for a microprocessor: instead
of listing instructions in a particular order, the user describes a hard-
ware (hence hardware description language). In fact, the code is never
called a “program”, since it is not meant to be executed, but a “de-
sign”, as it literally describes the design of an electronic circuit. Most
HDL instructions are of the kind: “connect output port A of com-
ponent X to input port B of component Y”. Modern HDL compilers
are capable of converting more complex structures into logic, such as
arithmetical operations or loops. Extreme caution should be taken
here, as an HDL loop is not a loop of instructions, and will not be
executed as in e.g. C code. Programming in HDL requires a com-
pletely different state of mind – “think hardware” advice appears in
most books and manuals.

Simulation: Writing the code usually goes in parallel with testing its correct
functioning. The implementation of a HDL code – that is, the com-
plete process of converting the human-readable code into bits loaded
in the FPGA – may take a long time, up to an entire day for very com-
plex designs9. Hence, simulating a design is a better option to check
the logic in a reasonable time10. This can be done with various FPGA
emulating programs. In this work, I used iSim, provided by Xilinx

9Implementation times of my designs never exceeded an hour, though.
10From a few seconds, up to a minute, in my experience.

30 Chapter I. Introduction

Figure I.11. Example of schematic produced at the synthe-
sis stage. The VHDL design has been converted into FPGA
primitives, such as input and output buffers, shown here. The
basic design illustrated here creates two clocks (200 MHz and
10 MHz) from the input system clock.

with the evaluation board. It allows to generate input and clock sig-
nals, and visualise the design behaviour as a time trace of all internal
signals. This is particularly handy to verify that all arithmetic and
logic operations are executed correctly.

When the simulation results are satisfactory and the design behaves as
expected, it is passed to a series of software tools that turn the HDL code into
a bitstream that will be loaded into the FPGA. Xilinx Family 6 devices come
with ISE Design Suite, a software package containing all the compilers required
for implementation. The stages of the process are the following:

Synthesis: The first stage converts the HDL code into a theoretical circuit,
using standard components (called primitives) available on the tar-
get FPGA chip. The result can be visualised as a Resistor-Transistor
Logic (RTL) diagram, illustrated in Fig. I.11, but cannot be imple-
mented on a physical chip yet.

Translate: The shortest process of all, it merges the synthesised design with
the input and output ports, as well as timing and placement con-
straints. In short, it gathers all design files together before the actual
implementation takes place.

Map: The core process that last the longest. It takes into account the speci-
ficities of the chip and maps the theoretical design to physical logic
blocks of the FPGA. Several algorithms are run to simplify and opti-
mise the mapping. The total FPGA resources utilisation is displayed
at the end of the process, that tells how many e.g. CLBs or memory
blocks have been used to implement the design.

Place and Route: Although called Place and Route (PAR), this process does
not place anything, since it has already been done during the Map
process. It only routes the design. In other words, it takes the list
of components generated by Map and connects them together, using
FPGA routing resources. This is an easy task for small designs, but
becomes quite challenging, and takes a while, for large designs. Very
large designs may fail at this stage if there is not enough routing paths

I.3. Field-Programmable Gate Arrays 31

on the chip to connect the components in the desired manner. After
routing, PAR checks the timing closure.

Timing closure: Electrical signals travel at finite speed within the FPGA.
Despite the propagation delays being very short, a couple nanosec-
onds at most, they have to be taken into account for a synchronous
design to function properly. And the faster the clock is, the more
critical these delays become. Simulation ignores these delays, they
are only considered during the hardware implementation stage. Max-
imum delays are specified by the user, and commonly called “tim-
ing constraints”. In practice, a specific file lists the clocks used to
drive the chip, together with their frequencies. This information al-
lows PAR to check whether the design meets the so-called “timing
closure”. If it does, and the logic has been checked thoroughly in sim-
ulations, then the circuit should work as expected. If it does not, and
this happens quite often – the real struggle begins. There is no proven
method for meeting time closure. Expert designers can resolve small
delay issues using in-depth knowledge of hardware characteristics and
implementation software. More complex problems can only be solved
by using a slower clock or re-designing the circuit.

Generate bitstream: At last, the design is synthesised, placed, routed, and
the timing closure is met. The last stage is the generation of a bit-
stream, the data that will be loaded into FPGA SRAMs and set its
configuration.

A Virtex chip can be configured in various ways. The bitstream can be
loaded, for instance, from an on-board non-volatile memory. This consists in
loading the bitstream into a specific PROM attached to the evaluation board
and set up the FPGA to load its configuration from this memory chip. It can
also be programmed by an external microprocessor. In this case, the bitstream
is loaded from a e.g. personal computer through the Joint Test Action Group
(JTAG) interface – a standard first introduced for debugging of electronic cir-
cuits, that is now widely used for loading the configuration file into the device
memory. The configuration of the Virtex-6 chip takes about 20 seconds. Once
completed, the FPGA is ready to go.

This concludes the introductory chapter of my thesis. We have covered
most theoretical, experimental, and FPGA-related topics required for under-
standing the experiments described in the following chapters. A few remaining
points, related to particular experiments, will be discussed en route.

CHAPTER II

Online training of a photonic reservoir
computer

This chapter presents the first experiment I performed during my PhD.1

It took me almost a year and half to get going, and six more months to gain
full control of the experiment and obtain publishable results. The reason for
such a slow start is, without any doubt, the immense complexity of FPGA
programming. But let us not focus on the difficulties (we will get to them
later, in Sec. II.7) but rather on the achievements. And as you will find out by
the end of this chapter, this first experiment produced some very interesting
results, that inspired and shaped my following research projects. But first, let
me outline what motivated this research, and what we expected to achieve in
the first place.

II.1. Introduction

The performance of a reservoir computer greatly relies on the training
technique used to compute the readout weights. Offline learning methods, in-
troduced in Sec. I.1.3 and used up to now in experimental implementations
[33, 34, 48, 51–55, 69], provide very good results. However, they start to cause
problems in real-time applications, as they require large amounts of data to be
transferred from the experiment to the post-processing computer. This opera-
tion may take longer than the time it takes the reservoir to process the input se-
quence [33, 34, 48]. Moreover, offline training only works on time-independent
tasks, which is not always the case in real-life applications. The alternative
(and more biologically plausible2) approach is to progressively adjust the read-
out weights using various online learning algorithms such as gradient descent
[70], recursive least squares [71] or reward-modulated Hebbian learning [72].
Such procedures require minimal data storage and have the advantage of being

1The contents of this chapter is based on the journal paper reporting this very experi-
ment [1]. The reader familiar with our work may recognise the same structure, figures and

tables. We wrote an extensive paper about this work and, quite frankly, there is not so much
to add here. The only new part is Sec. II.7, where I devote a few lines to the challenges

encountered during this project (mostly FPGA-related) and how they were solved. But the
rest of this chapter is a duplicate of our paper [1].

2Here is a simple example to illustrate the idea: an average language student needs

to encounter a new word seven times to memorise it. At each such occurrence, the brain
adjusts the connections between neurons, somewhere, and by the seventh time the connection
becomes strong enough for the student to quickly remember the not-so-new-anymore word.

The same approach can be applied to artificial neural networks, and that is what online
learning is all about.

33

34 Chapter II. Online training of a photonic reservoir computer

able to deal with a variable task: should any parameters of the task be altered
during the training phase, the reservoir computer would still be able to produce
good results by properly adjusting the readout weights. And as will be shown
in Ch. V, online learning allows training complex (and even slightly nonlin-
ear) analogue layers without the challenging task of modelling the underlying
structure.

The basic idea of this experiment is to apply this online learning approach
to an opto-electronic reservoir computer and show that such an implementation
would be well suited for real-time data processing. The use of a FPGA board
is inevitable here, as the system needs to be trained in real time, that is, in
parallel with the opto-electronic experiment. Such a system could, in principle,
be applied to any kind of signal processing tasks, in particular to those that
depend on time. A good example of such a task is the wireless channel equali-
sation, already investigated in previous experiments by our lab (see e.g. [33, 48,
49, 73]), and introduced in Sec. I.1.4.1. In addition to its potential real-life ap-
plications, it can be easily extendable from stationary to time-dependent. This
has not been done before, so that is another minor novelty of this experiment.
More on that in Sec. II.2.

Wireless communications is by far the fastest growing segment of the com-
munications industry. The increasing demand for higher bandwidths requires
pushing the signal amplifiers close to the saturation point which, in turn, adds
significant nonlinear distortions into the channel. These have to be compen-
sated by a digital equaliser on the receiver side [74]. The main bottleneck lies in
the Analogue-to-Digital Converters (ADCs) that have to follow the high band-
width of the channel with sufficient resolution to sample correctly the distorted
signal [38]. Current manufacturing techniques allow producing fast ADCs with
low resolution, or slow ones with high resolution, obtaining both being very
costly. This is where analogue equalisers become interesting, as they could
equalise the signal before the ADC and significantly reduce the required reso-
lution of the converters, thus potentially cutting costs and power consumption
[39–41]. Moreover, optical devices may outperform digital devices in terms of
processing speed [39, 42]. It can for instance be shown that reservoir computing
implementations can reach comparable performance to other digital algorithms
(namely, the Volterra filter [43]) for equalisation of a nonlinear satellite com-
munication channel [44].

To sum up, the primary goal of this experiment was to investigate the
possibility of online training of an opto-electronic RC with a FPGA board.
Should this idea work, we then intended to evaluate the performance of the
setup on time-dependent wireless channels. As has been said above, and will
be shown in detail in Sec. II.6, not only we accomplished both parts of the
project, but we also discovered unexpected possibilities of the FPGA, that gave
birth to the experiment described in Ch. IV.

II.2. Equalisation of non-stationary channels

The standard version of the channel equalisation task has been introduced
in Sec. I.1.4.1. However, in that version, the task is static, and is thus of little
interest for the demonstration of an online-trained system. For that reason, we

II.2. Equalisation of non-stationary channels 35

had to tweak it a little bit. And since the task arises from a real-world problem,
making it non-stationary requires almost no effort. One has but to think of the
most common every day situations, like emitters and receivers on the move, or
obstacles suddenly appearing in the way of the signal. Secs. (II.2.2 and II.2.3)
will outline what add-ons we came up with to make the channel equalisation
task time-dependent. The next section II.2.1 discusses an additional study of
the parameters of the channel model [45] that we performed in order to better
understand its internal mechanism.

II.2.1. Influence of channel model parameters on equaliser per-
formance. Eqs. I.18 and I.19 model a particular channel with certain amounts
of symbol interference and nonlinear distortion, defined by the numerical values
of the coefficients employed. To obtain a better understanding of this particu-
lar channel model, and to show which stages of input signal distortion are the
most difficult to equalise, we introduce a more general channel model, given by

q(n) = (0.08 +m)d(n+ 2)− (0.12 +m)d(n+ 1)

+ d(n) + (0.18 +m)d(n− 1)

− (0.1 +m)d(n− 2) + (0.091 +m)d(n− 3)

− (0.05 +m)d(n− 4) + (0.04 +m)d(n− 5)

+ (0.03 +m)d(n− 6) + (0.01 +m)d(n− 7),

(II.1)

u(n) = p1q(n) + p2q
2(n) + p3q

3(n), (II.2)

and we investigate the equalisation performance for different values of param-
eters pi and m. To preserve the general shape of the channel impulse response
we keep the coefficient of d(n) fixed at 1 in Eq. II.1. Fig. II.1 shows the
resulting impulse responses, given by Eq. II.1, for several values of m. The
results of these investigations are presented in Sec. II.6.5.

II.2.2. Slowly drifting channel. The model given by Eqs. I.18 and I.19
describes an idealistic stationary noisy wireless communication channel, that
is, the channel remains the same during the transmission. However, in wireless
communications, the environment has a great impact on the received signal.
Given its highly variable nature, the properties of the channel may be subject
to important changes in real time.

To investigate this scenario, we performed a series of experiments with a
“drifting” channel model, where parameters pi or m were varying in real time
during the signal transmission. These variations occurred at slow rates, much
slower than the time required to train the reservoir computer. We studied two
variation patterns: a monotonic increase (or decrease) and slow oscillations
between two fixed values. Sec. II.6.3 shows the results we obtained with our
implementation.

II.2.3. Switching channel. In addition to slowly drifting parameters,
the channel properties may be subject to abrupt variations due to sudden
changes of the environment. For better practical equalisation performance,
it is crucial to be able to detect significant channel variations and adjust the
RC readout weights in real time. We consider here the case of a “switching”

36 Chapter II. Online training of a photonic reservoir computer

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

d(n+ 2) d(n) d(n− 2) d(n− 4) d(n− 6)

C
h

an
n

el
co

effi
ci

en
ts

Channel memory terms

m = 0
m = 0.05
m = 0.1

Figure II.1. Various channel impulse responses, given by Eq.
II.1, for different values of m. Note that the d(n) coefficient is
kept fixed at 1. Dotted curve shows the default shape defined
by Eq. I.18.

channel, where the channel model switches instantaneously. An example of such
a scenario in real life would be, for instance, a cellular phone disconnecting from
one base station and connecting to another, with a different signal amplifier.
The reservoir computer has to detect such changes and automatically trigger a
new training phase, so that the readout weights get adapted for the equalisation
of the new channel.

Specifically, instead of a constant channel, given by Eqs. I.18 and I.19, we
introduce three channels differing in nonlinearity

u1(n) = 1.00q(n) + 0.036q2(n)− 0.011q3(n), (II.3a)

u2(n) = 0.80q(n) + 0.036q2(n)− 0.011q3(n), (II.3b)

u3(n) = 0.60q(n) + 0.036q2(n)− 0.011q3(n), (II.3c)

and switch regularly from one channel to another, keeping Eq. I.18 unchanged.
The results of this experiment are presented in Sec. II.6.4.

II.3. Online training

The online training approach can be realised through numerous different
algorithms. Since we could not try them all, for obvious reasons, we had to
pick one for this experiment. Before I got into this project, Anteo Smerieri
had already tested in numerical simulations three online training algorithms:
simple gradient descent [70], recursive least squares (RLS) [71] and reward-
modulated Hebbian learning [72]. The choice was basically dictated by the
ease of implementation on the FPGA. While the gradient descent algorithm

II.3. Online training 37

can be expressed with two very simple equations

wi(n+ 1) = wi(n) + λ (d(n)− y(n))xi(n),

λ(m+ 1) = λmin + γ (λ(m)− λmin) ,

where wi are the readout weights and λ is an update rate (we will explain the
math in the following section, the equations are given here merely to illustrate
the complexity of the algorithms), the RLS algorithm, in its compact version,
looks like this

k(n) =
ν−1Γ(n− 1)x(n)

1 + ν−1xTΓ(n− 1)x(n)
,

w(n) = w(n− 1) + k(n) (d(n)− y(n)) ,

Γ(n) = ν−1Γ(n− 1)− ν−1k(n)xT (n)Γ(n− 1),

where k(n), x(n) and w(n) are vectors and Γ(n) is the estimate of the inverse
of the correlation matrix (see Sec. I.1.3), that is, a 50 × 50 matrix for a 50-
neuron reservoir. One does not need to understand the precise meaning of
these equations to get convinced that the second algorithms is more complex
than the simple gradient descent and is, hence, much more complicated to
implement in hardware. The two main complications are matrix operations,
requiring significant amounts of memory, and division – one of the toughest
operations to translate into binary operations (divisions by a power of two being
an exception). And despite several non-negligible advantages in performance
and convergence speed of RLS, simple gradient descent was the lucky winner.
Still, implementing RLS remains an interesting step forward, that would most
likely require a certain development period, but the reward will be a much
faster convergence to optimal readout weights.

II.3.1. Gradient descent algorithm. Without further ado, let us in-
troduce the basic principle of the simple gradient descent. Furthermore, in
this work we also developed two new variants of the algorithm, that we tested
together with the original version. These alternative version are going to be
the topic of Secs. II.3.1.2 and II.3.1.3.

The gradient, or steepest, descent method is an algorithm for finding a local
minimum of a function using its gradient [75]. For the channel equalisation task
considered here, the rule for updating the readout weights is given by [70]

wi(n+ 1) = wi(n) + λ (d(n)− y(n))xi(n), (II.4)

where λ is the step size, used to control the learning rate. The origin of this
procedure is the following: since the error at time n is given by (d(n)− y(n))2

(see Sec. I.1.3), the derivative of the error with respect to wi gives (d(n) −
y(n))xi(n), i.e. the right-hand side of Eq. II.4. At high values of λ, the
weights get close to the optimal values very quickly (in a few steps), but keep
oscillating around these values. At low values, the weights converge slowly to
the optimal values. In practice, we start with a high value λ = λ0, and then
gradually decrease it during the training phase until a minimum value λmin is
reached, according to the equation

λ(m+ 1) = λmin + γ (λ(m)− λmin) , (II.5)

38 Chapter II. Online training of a photonic reservoir computer

with λ(0) = λ0 and m = bn/kc, where γ < 1 is the decay rate and k is the
update rate for the parameter λ.

The gradient descent algorithm suffers from a relatively slow convergence
towards the global minimum, but its simplicity, with few simple computational
steps, and flexibility, as the convergence rate and the resulting performance can
be improved by tuning the parameters λ and γ, make it a reasonable choice for
a first implementation on a FPGA chip.

II.3.1.1. Full version. The step size parameter λ is used to control the
learning rate, and can also be employed to switch the training on or off. That
is, setting λ to zero stops the training process. This is how experiments on
a stationary channel are performed: λ is programmed to decay from λ0 to 0
during a defined period, and then the reservoir computer performance is tested
over a sequence of symbols, with constant readout weights.

II.3.1.2. Non-stationary version. When equalising a drifting channel, the
reservoir should be able to follow the variations and adjust the readout weights
accordingly. This can be achieved by setting λmin > 0 and thus letting the
training process continue during the drift of the channel parameters. This
procedure was used for experiments described in Sec. II.6.3.

II.3.1.3. Simplified version. As mentioned in the previous paragraph, the
equalisation of a non-stationary channel requires keeping λmin > 0. However,
this worsens the equalisation performance, as the readout weights keep oscil-
lating around the optimal values. This can be seen from Eq. II.4, that defines
the update rule for the readout weights: at each time step n, a small correction
∆wi = λ(n)(d(n)− y(n))xi(n) is added to every weight wi. These corrections
are gradually reduced by decreasing the learning rate λ(n), so that the weights
converge to their asymptotic values. In the case of a constant λ, the corrections
∆wi are only damped by the error d(n)−y(n), which stops decreasing at some
point, leaving the wi oscillating around the optimal values.

To check the impact of a constant λ on the equalisation performance we
performed several experiments with a simplified version of the training algo-
rithm by setting γ = 0, and hence λ(n) = λ0 for all n. Although this method
will increase the error slightly, it has several advantages. With λ constant,
there is no need to search for an optimal decay rate k, which results in fewer
experimental parameters to scan and thus shorter overall experiment runtime.
Keeping λ at a constant, non-zero value would also allow the equaliser to follow
a drifting channel, as described in Sec. II.2.2. The results obtained with this
simplified version of the algorithm are shown in Sec. II.6.2.

II.4. Experimental setup

Our experimental setup is depicted in Fig. II.2. It contains three distinctive
components: the opto-electronic reservoir, the FPGA board implementing the
input and the readout layers and the computer used to setup the devices and
record the results. The reader should already be familiar with the reservoir part
– it has been thoroughly discussed in Sec. I.2.4. Thus, in the following sections
we will focus on the new components: the FPGA board (Sec. II.4.1) and the
computer (Sec. II.4.3). Additionally, Sec. II.4.2 outlines the experimental
parameters, tuned to obtain the best results.

II.4. Experimental setup 39

Optoelectronic reservoir Input & Readout

SLED

MZ
90/10

Att

Amp Comb

Pf

1
.6

k
m

Pr

ML605FMC151

DAC

ADC

Gen

Mask

Train

PCClock

u(n)

d(n)

Mi

xi(n)

SER

Mi × u(n)

xi(n)

Figure II.2. Schematic representation of the experimental
setup. The opto-electronic reservoir is highlighted in brown
and has been introduced in Sec. I.2.4. The FPGA board
implements both the input and output layers, generating the
input symbols and training the readout weights. The computer
controls the devices and records the results.

Figure II.3. Xilinx ML605 board with Virtex 6 FPGA chip
and 4DSP FMC150 daughter card (FMC150 and FMC151
cards look practically the same). Image reprinted with per-
mission from www.fpgadeveloper.com

II.4.1. Input and readout. For our implementation, we use the Xilinx
ML605 evaluation board (see Fig. II.3), powered by the Virtex 6 XC6VLX240T
FPGA chip. The board is equipped with a JTAG port, used to load the FPGA
design onto the chip, and a UART port, that we use to communicate with the
board (as described in Sec. II.5). The LPC (Low Pin Count) FMC (FPGA
Mezzanine Card) connector is used to attach the 4DSP FMC151 daughter card,
containing one two-channel ADC (Analogue-to-Digital converter) and one two-
channel DAC (Digital-to-Analogue converter). The ADC’s maximum sampling
frequency is 250 MHz with 14-bit resolution, while the DAC can sample at up
to 800 MHz with 16-bit precision.

http://www.fpgadeveloper.com/2011/07/the-virtex-6-based-ml605.html

40 Chapter II. Online training of a photonic reservoir computer

Table II.1. Gradient descent algorithm parameters

λ0 λmin γ k
0.4 0 0.999 10 – 50

The synchronisation of the FPGA board with the reservoir delay loop is
crucial for the performance of the experiment. For proper acquisition of reser-
voir states, the ADC has to output an integer number of samples per roundtrip
time. The daughter card contains a flexible clock tree, that can drive the con-
verters either from the internal clock source, or an external clock signal. As
the former is limited to the fixed frequencies of the onboard oscillator, we em-
ploy the latter option. The clock signal is generated by a Hewlett Packard
8648A signal generator. With a reservoir of N = 51 neurons (one neuron is
added to desynchronise the inputs from the reservoir, as has been discussed in
Sec. I.2.3) and a roundtrip time of 7.94 µs, the sampling frequency is set to
128.4635 MHz, thus producing 20 samples per reservoir state. To get rid of the
transients, induced mainly by the finite bandwidths of the ADC and DAC, the
6 first and 6 last samples are discarded, and the neuron value is averaged over
the remaining 8 samples.

The potentials of the electric signals to and from the mezzanine card need to
be adjusted in order to achieve the most efficient interface without damaging the
hardware. The DAC output voltage of 2 Vp-p is sufficient for this experiment,
as typical voltages of the input signal range between 100 mV and 200 mV. The
ADC is also limited to 2 Vp-p input voltage. With settings described in the
previous section, the output voltage of the readout photodiode does not exceed
1 Vp-p.

II.4.2. Experimental parameters. To achieve the best performance,
we scan the most influential parameters, which are: the input gain β, the
decay rate k, the channel signal-to-noise ratio and the feedback attenuation,
that corresponds to the feedback gain parameter α in Eqs. I.5. The first three
parameters are set on the FPGA board, while the last one is tuned on the
optical attenuator. The input gain β is stored as a 18-bit precision real in
[0, 1[and was scanned in the [0.1, 0.3] interval. The decay rate k is an integer,
typically scanned from 10 up to 50 in a few wide steps. The noise ratios were
set to several pre-defined values, in order to compare our results with previous
reports. The feedback attenuation was scanned finely between 4.5 dB and
6 dB. Lower values would allow cavity oscillations to disturb the reservoir
states, while higher values would not provide enough feedback to the reservoir.
Table II.1 contains the values of parameters we used for the gradient descent
algorithm (defined in Sec. II.3.1).

II.4.3. Experiment automation. The experiment is fully automated
and controlled by a Matlab script, running on a computer. It is designed to
run the experiment multiple times over a set of predefined values of parameters
of interest and select the combination that yields the best results. For statistical
purposes, each set of parameters is tested several times with different random
input masks (see Sec. I.1.3).

II.5. FPGA design 41

At launch, connections to the optical attenuator and the FPGA board are
established, and the parameters on the devices are set to default values. After
generating a set of random input masks, the experiment is run once and the
elapsed time is measured. The duration of one run depends on the lengths
of train and test sequences and varies from 6 s to 12 s. This is considerably
shorter than the offline-trained implementation [48], that required about 30 s.
The script runs through all combinations of scanned parameters. For each com-
bination, the values of the parameters are sent to the devices, the experiment
is run several times with different input masks and the resulting error rates
(see Sec. II.5) are stored in the Matlab workspace. Once all the combinations
are tested, the connections to the devices are closed and all collected data is
saved to a file.

II.5. FPGA design

Rejoice, here comes my favourite section of this chapter, that describes
the FPGA design – the part of the experiment on which I spent the majority
of the time. Ironically, most readers will probably want to skip, or merely
overlook this section, since it is, I admit, quite technical and not so crucial for
understanding of the results in Sec. II.6. But I could not omit it, since this
is the heart of my work, the part I put most energy and time in. Therefore,
I welcome any interested reader to venture in the following paragraphs, but
remind once again that you will not miss any key points if you just go ahead
to the next section.

The FPGA design is written in standard IEEE 1076-1993 VHDL language
[76, 77] and compiled with Xilinx ISE Design Suite 14.7, provided with the
board. We also used Xilinx ChipScope Pro Analyser to monitor signals on the
board, mostly for debugging and testing.

The simplified schematics of our design is depicted in Fig. II.4. Coloured
boxes represent modules (i.e. entities) and the lines stand for data connections
between them. As discussed in Sec. II.4.1, the FPGA board implements both
the input and the readout layers of the reservoir computer. Modules involved
in each of these two functions are highlighted in blue and red, respectively. The
board has a digital connection to a computer (running a Matlab script) and
an analogue one to the experimental setup. The former, realised through a
UART port bridged to a standard COM port, is used to load parameters (e.g.
λ0, γ, . . .) into the board and read the experiment results (i.e. symbol error
rate) from the board. The latter consists of three analogue connections: an
output signal to the reservoir, containing the masked inputs Mi×u(n), a clock
signal clk from the HP signal generator and an input signal from the readout
photodiode, containing reservoir states xi(n).

The operation of the FPGA board is controlled from the computer. A
predefined set of 4-byte commands can be transmitted through the JTAG port,
such as write a specific parameter value into the appropriate register or toggle
the board state from reset to running, and vice versa. The commands are
received and executed by the UART module. In addition, when the FPGA is
running, the module regularly transmits the value of the SER signal to the
computer. In order to prevent collisions in the UART channel, commands

42 Chapter II. Online training of a photonic reservoir computer

M
a
tl
a
b

J
T
A
G

Params

UART

Check

Chan

Step

Train

Fpga2Exp

Exp2Fpga

D
A
C

C
lo
c
k

A
D
C

H
P

C
lo
ck

E
x
p
er
im

en
t

d′(n)

y(n)

λ0, γ, SER
th

x̄(n)

u(n)

clk

pi,mi

SER λ

pi,mi

d(n)

Mi × u(n)

xi(n)

Mi
SNR

Figure II.4. Simplified schematics of the FPGA design. The
ML605 board is shown in green, the FMC151 card’s compo-
nents are rendered in maroon and other devices are coloured
in grey. Smaller boxes and arrows inside the board represent
modules (entities) and signals. The input layer modules (in
blue) generate the target signal d(n) and compute a nonlinear
channel output u(n). The readout layer (in red) receives the
reservoir states xi(n) from the experiment, trains the weights
wi and computes the output signal y(n). The Check mod-
ule evaluates the symbol error rate. The UART module exe-
cutes commands issued by Matlab, sets variable parameters
and sends the results back to the computer.

from computer are only sent when the board is in a reset state, that is, no
channel is being equalised.

The Chan module implements the nonlinear channel model, given by Eqs.
I.18 and I.19, and generates the input signal for the reservoir. It receives the
noise amplitude, for a defined Signal-To-Noise ratio, from the computer via
UART module. The channel parameters pi and mi are supplied by the Params

module. Two Galois Linear Feedback Shift Registers (GLFSRs) with a to-
tal period of about 109 are used to generate pseudorandom symbols d(n) ∈
{−3,−1, 1, 3}. Another GLFSR of period around 2 × 105 generates pseudo-
random numbers used as noise ν(n). The symbol sequence d(n) is sent to the
Train module as a target signal, while the channel output u(n) is multiplied
by the input mask Mi within the Fpga2Exp module, and then converted to an
analogue signal by the FMC151 daughter card.

The analogue reservoir output xi(n) is converted into a digital signal by
the ADC. The time-multiplexed reservoir states are then sampled and averaged
by the Exp2Fpga module, which transmits all the neurons from one reservoir
x̄(n) in parallel to the next module.

The synchronisation of the readout layer with the opto-electronic reservoir
is performed by both Fpga2Exp and Exp2Fpga modules. At the beginning of
a run of the experiment, the former sends a short pulse into the reservoir,
before transmitting the input symbols. This pulse is detected by the Exp2Fpga

module and then used to synchronise the sampling and averaging process with
the incoming reservoir states.

II.5. FPGA design 43

The Train module implements the simple gradient descent algorithm. It
receives the neurons x̄(n), the target signal d(n) and the gradient step λ, com-
putes the reservoir output y(n) with its error from the target signal, and adjusts
the readout weights wi following Eq. II.4. The input target signal d(n) is de-
layed by several periods T to compensate the propagation time of the informa-
tion through the input layer, the opto-electronic reservoir and the Exp2Fpga

module. The reservoir output y(n) is then rounded up to the closest chan-
nel symbol y(n) {−3,−1, 1, 3} and compared to the delayed target signal
d′(n) by the Check module, that counts misclassified symbols and outputs the
resulting Symbol Error Rate.

The evolution of the learning rate λ is governed by a separate module Step,
which implements the Eq. II.5, with initial value λ0 and decay rate γ set on
the computer and transferred to the board through the UART connection. The
module also monitors the performance of the reservoir computer and resets λ to
its initial value λ0 when the Symbol Error Rate exceeds a predefined threshold
value SERth. This feature is used for the switching channel (see Secs. II.2.3
and II.6.4) and allows to improve the performance of the system by adjusting
the readout weights to the new channel parameters.

The gradient descent algorithm is relatively simple, with only few addition
and multiplication operations involved in Eqs. II.4 and II.5. While an adder
can easily be built with a small amount of logic gates, multiplication is more
complicated to implement and requires lots of resources. Moreover, as all read-
out weights are computed in parallel, the size of the design grows quickly with
the number of neurons N . This results in slow implementation process and
very low chances of generating a design that functions correctly. The solution
resides in the use of special DSP48E slices, designed and optimised to perform
a predefined set of arithmetic operations [67]. With proper settings, this dedi-
cated microprocessor is capable of performing a 25 bit × 18 bit multiplication
in less than 6 ns. While the speed gain compared to standard logic blocks
is minimal, the implementation of the FPGA design is greatly simplified, as
hundreds of logic gates and registers get replaced by just one component.

The arithmetic operations mentioned above are performed on real num-
bers. However, a FPGA is a logic device, designed to operate with bits. The
performance of the design thus highly depends on the bit-representation of real
numbers, i.e. the precision. The main limitation comes from the DSP48E
slices, as these are designed to multiply a 25-bit integer by another 18-bit inte-
ger. To meet these requirements, our design uses a fixed-point representation
with different bit array lengths for different variables. Parameters and signals
that stay within the]−1, 1[interval are represented by 18-bit vectors, with 1
bit for the sign and 17 for the decimal part. These are the learning algorithm
parameters λ, λ0 and γ, the input mask elements Mi and the reservoir states
xi(n), extended from the 14-bit ADC output. Other variables, such as reser-
voir output y(n) and readout weights wi span a wider [−16, 16] interval and
are represented as 25-bit vectors, with 1 sign bit, 4 bits for the integer part and
20 bits for the decimal part.

Table II.2 reports total FPGA resource usage of our implementation. The
design requires relatively few registers and Lookup Tables (LUTs). Most of the

44 Chapter II. Online training of a photonic reservoir computer

Table II.2. Total Usage of FPGA Resources

Registers LUTs Block RAM DSP48E
Used 12288 5661 198 161

Available 301440 150720 416 768
Utilisation 4% 3% 47% 20%

Table II.3. Optimal reservoir computer parameters

α β Vφ
5.1± 0.3 dB 0.225± 0.025 1.6 V

arithmetic operations are performed by the DSP48E slices, and their number
grows roughly as 3×N , thus theoretically limiting our reservoir to 255 neurons.
Note that this restriction can be easily overcome by rearranging the DSP48E
slices in a less concurrent design. High internal memory (block RAM) usage is
due to several ChipScope modules (not shown in Fig. II.4), added to monitor
internal FPGA signals. To conclude, our implementation can be expanded to
work with much bigger reservoirs.

II.6. Results

This section presents the results of different investigations outlined in Secs.
II.2 and II.3.1. All results presented here were obtained with the experimental
setup described in Sec. II.4.

II.6.1. Improved equalisation error rate. Fig. II.5 presents the per-
formance of our reservoir computer for different Signal-to-Noise Ratios (SNRs)
of the wireless channel (green squares). We investigated realistic SNR values
for real world channels such as 60 GHz LAN [78] and Wi-Fi [79]. For each SNR,
the experiment was repeated 20 times with different random input masks. Av-
erage SERs are plotted on the graph, with error bars corresponding to maximal
and minimal values obtained with particular masks. We used noise ratios from
12 dB up to 32 dB, and also tested the performance on a noiseless channel,
that is, with infinite SNR. The RC performance was tested over one million
symbols, and in the case of a noiseless channel the equaliser made zero error
over the whole test sequence with most input masks.

The experimental parameters, such as the input gain β and the feedback
attenuation α, were optimised independently for each input mask. Fig. II.6
shows the dependence of the SER on these parameters. The plotted SER
values are averaged over 10 random input masks. For this figure, we used data
from a different experiment run with more scanned values. For each curve,
the non-scanned parameter was set to the optimal value. The equaliser shows
moderate dependence on both parameters, with an optimal input gain located
within 0.225± 0.025 and an optimal feedback attenuation of 5.1± 0.3 dB. The
MZ modulator DC bias voltage Vφ is set to 1.6 V, which yields a slightly shifted
transfer function in order to compensate the input symbols distribution (see
Sec. I.1.4.1). These parameters are summarised in Tab. II.3

II.6. Results 45

We compare our results to those reported in [48], obtained with the same
opto-electronic reservoir, trained offline (blue dots). For high noise levels
(SNR ≤ 20 dB) our results are similar to those in [48]. For low noise lev-
els (SNR ≥ 24 dB) the performance of our implementation is significantly
better. Note that the previously reported results are only rough estimations of
the equaliser’s performance as the input sequence was limited by hardware to
6000 symbols [48]. In our experiment the SER is estimated more precisely over
one million input symbols. For the lowest noise level (SER = 32 dB) an SER of
1.3× 10−4 was reported in [48], while we obtained an error rate of 5.71× 10−6

with our setup. One should remember that common error detection schemes,
used in real-life applications, require the SER to be lower than 10−3 in order
to be efficient. Digital equalisation algorithms, based on bilinear decision feed-
back equalisers [45] and ESNs with random reservoirs [29], report error rates
of 10−3 and 10−5, respectively. These values are only provided for illustration,
as it makes little sense to compare numerical algorithms and physical systems.

To the best of our knowledge, the results presented here (at 32 dB SNR) are
the lowest error rates ever obtained with a standalone experimental reservoir
computer. SERs around 10−4 have been reported in [33, 34, 48] and a passive
cavity based setup [49] achieved a 1.66 × 10−5 rate (this values is limited by
the use of a 60000-symbol test sequence), but no results below 10−5 have been
published so far. However, this is not the main achievement of this experiment.
Indeed, had it been possible to test [48] on a longer sequence, it is possible that
comparable SERs would have been obtained. The strength of this setup resides
in the adaptability to changing environment, as will be shown in the following
sections.

II.6.2. Simplified training algorithm. The performance of the simpli-
fied training algorithm is shown in Fig. II.5 (brown dots). The equaliser was
tested with 10 random input masks and one million input symbols, the train-
ing was performed over 100000 symbols. Only three parameters were scanned
during these experiments: the input gain β, the feedback attenuation α and
the signal-to-noise ratio. The learning rate λ was set to 0.01. The overall
experimental runtime was significantly shorter: while an experiment with full
training algorithm would last for about 50 hours, these results were obtain in
approximately 10 hours (which is due to five different values of k tested in the
former case).

For high noise levels the results of the two algorithms are close and for
low noise levels the simplified version yields slightly worse error rates. The
performance is much worse in the noiseless case and strongly depends on the
input mask: we notice a difference of almost two orders of magnitude between
the best and the worst result. This performance loss is the price to pay for the
simplified algorithm and shorter experimental runtime.

II.6.3. Equalisation of a slowly drifting channel. Besides the envi-
ronmental conditions, the relative positions of the emitter and the receiver can
have a significant impact on the properties of a wireless channel. A simple ex-
ample is a receiver moving away from the transmitter, causing the channel to
drift more or less slowly, depending on the relative speed of the receiver. Here

46 Chapter II. Online training of a photonic reservoir computer

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

12 16 20 24 28 32 ∞

S
E

R

SNR (dB)

Paquot et al. (2012)
FPGA setup (full algorithm)

FPGA setup (simplified algorithm)

Figure II.5. Experimental results obtained with our setup.
Symbol Error Rates (SERs) are plotted against the Symbol-
to-Noise Ratio (SNR). The equaliser was tested with 20 dif-
ferent random input masks over one million input symbols,
average values are plotted on the graph (green squares). For
the noiseless channel (SNR = ∞), for most choices of input
mask, the RC made no errors over the test sequence. Blue
dots show the results of the opto-electronic setup with offline
training [48]. For low noise levels, our system produces error
rates significantly lower than [48], and for noisy channels the
results are similar. Brown diamonds depict the SERs obtained
with the simplified version of the training algorithm (see Sec.
II.3.1.3). The equalisation is less efficient than with the full
algorithm, but the optimisation of experimental parameters
takes less time.

we show that our Reservoir Computer is capable of dealing with drifts with
time scales of order of a second. This time scale is in fact slow compared to
those expected in real life situations, but the setup could be sped up by several
orders of magnitude, as will be shown in the next section.

A drifting channel is a good example of a situation where training the
reservoir online yields better results than offline. We have previously shown
in numerical simulations that training a reservoir computer offline on a non-
stationary channel results in an error rate ten times worse than with online
training [7]. We demonstrate here that an online-trained experimental reservoir
computer performs well even on a drifting channel if λmin is set to a small non-
zero value (see Sec. II.3.1.2).

At first, we investigated the relationship between the channel model coef-
ficients and the lowest error rate achievable with our setup. That is, would the
equalisation performance be better or worse if one of the numerical values in
Eqs. I.18 and I.19 was changed by, for instance, 10%. Given the vast amount of

II.6. Results 47

10−5

10−4

10−3

0.1 0.15 0.2 0.25 0.3

4.5 4.8 5.1 5.4 5.7 6

S
E

R

Input gain β

Feedback attenuation α (dB)

Input gain (β)
Feedback attenuation (α)

Figure II.6. Dependence of the equaliser performance (at
32 dB SNR) on the experimental parameters. Average SERs
(over 10 random input masks) are plotted against the input
gain (blue dots) and the feedback attenuation (green squares).
The optimal feedback attenuation has to be set around 5.1 ±
0.3 dB, outside this region the SER deteriorates by roughly
one order of magnitude. The input gain shows a minimum
around 0.225± 0.025.

possibilities of varying the 4 parameters pi and m, we picked those that seemed
most interesting and most significant. We thus tested the amplitude of the lin-
ear part, given by the parameter p1, the amplitude of the quadratic and cubic
parts, given by p2 and p3, and the memory m of the impulse response. For each
test, only one aspect of the channel was varied and other parameters were set
to default values (as in Eqs. I.18 and I.19). The results of these investigations
are presented in Sec. II.6.5.

We then programmed these parameters to vary during experiments in two
different ways: a monotonic growth (or decay) and a periodic linear oscillation
between two defined values. The results of these experiments are depicted in
Fig. II.7.

Fig. II.7(a) shows the experimental results for the case of monotonically
decreasing p1 from 1 to 0.652. The blue curve presents the resulting SER with
λmin = 0, that is, with training process stopped after 45000 input symbols.
The green curve depicts the error rate obtained with λmin = 0.01, so that
the readout weight can be gradually adjusted as the channel drifts. Note that
while in the first experiment the SER grows up to 0.329, it remains much lower
in the second case. The increasing error rate in the latter case is due to the
decrease of p1 resulting in a more complex channel. Brown curves show the
best possible error rate obtained with our setup for different values of p1, as
presented in Sec. II.6.5. With p1 approaching 0.652, the obtained error rate
is 8.0 × 10−3, which is the lowest error rate achievable for this value of p1, as

48 Chapter II. Online training of a photonic reservoir computer

10−4

10−3

10−2

10−1

100

0 1 2 3 4
0.6

0.7

0.8

0.9

1
S

E
R

(a)

10−4

10−3

10−2

10−1

100

0 1 2 3 4
0.6

0.7

0.8

0.9

1

p
1

(b)

10−4

10−3

10−2

10−1

100

0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

S
E

R

Symbols (×105)

(c)

10−4

10−3

10−2

10−1

100

0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

p
2

Symbols (×105)

(d)

Figure II.7. Symbol error rates (left axis, log scale), aver-
aged over 10k symbols, produced by the experimental setup
with a drifting channel. Each panel presents data obtained
from one experiment run with a fixed input mask and optimal
parameters α, β and k. Two different training methods were
tested: blue curves show the results produced by the full train-
ing algorithm with λmin = 0 (see Sec. II.3.1.1), while green
curves depict those obtained with the non-stationary version
with λmin > 0 (see Sec. II.3.1.2). Dashed brown lines display
the best performance that can be obtained with our system
(the details are discussed in Sec. II.6.5) for given values of
variable parameters pi and m (right axis, linear scale), shown
in black (see Sec. II.6.5 for details). The x-axis, shown in sym-
bols, can also be expressed as time, given that one symbol is
processed in T = 7.94 µs. (A) & (B) Monotonically decreas-
ing and oscillating p1. (C) & (D) Monotonically increasing
and oscillating p2. Figure continued on next page.

demonstrated in Fig. II.9a. This shows that the non-stationary version of the
training algorithm allows a drifting channel to be equalised with the lowest
error rate possible.

Fig. II.7(b) depicts error rates obtained with p1 linearly oscillating between
1 and 0.688. With λmin = 0 (blue curve) the error rate is as low as 1 × 10−4

when p1 is around 1, and grows very high elsewhere. With λmin = 0.01,

II.6. Results 49

10−4

10−3

10−2

10−1

100

0 1 2 3 4
−0.028

−0.024

−0.02

−0.016

−0.012

−0.008
S

E
R

(e)

10−4

10−3

10−2

10−1

100

0 1 2 3 4
−0.028

−0.024

−0.02

−0.016

−0.012

−0.008

p
3

(f)

10−4

10−3

10−2

10−1

100

0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

S
E

R

Symbols (×105)

(g)

10−4

10−3

10−2

10−1

100

0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

m

Symbols (×105)

(h)

Figure II.7. (continued) (D) & (E) Monotonically decreas-
ing and oscillating p3. (F) & (G) Monotonically increasing
and oscillating m.

the obtained SER is always at the lowest value possible: at the point where
p1 = 0.688, it stays at 5.0× 10−3, which again is close to the best performance
for such channel, illustrated by the brown curve.

We obtained similar results with parameters p2, p3 and m, as shown in
Figs. II.7(c)-(d). Letting the reservoir computer adapt the readout weights by
setting λmin > 0 produces the lowest error rates possible for a given channel,
while stopping the training with λmin = 0 results in quickly growing SERs.

II.6.4. Equalisation of a switching channel. Fig. II.8 shows the error
rate produced by our experiment in case of a switching noiseless communica-
tion channel. The parameters of the channel are programmed to switch in
cycle among Eqs. II.3 every 266000 symbols. Every switch is followed by a
steep increase of the SER, as the reservoir computer is no longer optimised for
the channel it is equalising. The performance degradation is detected by the
algorithm, causing the learning rate λ to be reset to the initial value λ0, and
the readout weights are re-trained to new optimal values.

For each value of p1, the reservoir computer is trained over 45000 symbols,
then its performance is evaluated over the remaining 221000 symbols. In case
of p1 = 1, the average SER is 1 × 10−5, which is the expected result. For
p1 = 0.8 and p1 = 0.6 we compute average SERs of 7.1 × 10−4 and 1.3 ×

50 Chapter II. Online training of a photonic reservoir computer

10−5

10−4

10−3

10−2

10−1

100

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

S
E

R

λ
,
p

1

Symbols (×105)

SER
p1

λ
Best SER

Figure II.8. Symbol error rate (left axis), averaged over
10000 symbols, produced by the FPGA in case of a switching
channel. The value of p1 (right axis, green curve) is modified
every 266000 symbols. The change in channel is followed im-
mediately by a steep increase of the SER. The λ parameter
(right axis, orange curve) is automatically reset to λ0 = 0.4
every time a performance degradation is detected, and then
returns to its minimum value, as the equaliser adjusts to the
new channel, bringing down the SER to its asymptotic value.
After each variation of p1, the reservoir re-trains. The low-
est error rate possible for the given channel is shown by the
dashed brown curve.

10−2, respectively, which are the best results achievable with such values of p1

according to our previous investigations (see Fig. II.9a). This shows that after
each switch the readout weights are updated to new optimal values, producing
the best error rate for the given channel.

Note that the current setup is rather slow for practical applications. With
a roundtrip time of T = 7.94 µs, its bandwidth is limited to 126 kHz and
training the reservoir over 45k samples requires 0.36 s to complete. However,
it demonstrates the potential of such systems in equalisation of non-stationary
channels. For real-life applications, such as for instance Wi-Fi 802.11g, a band-
width of 20 MHz would be required. This could be realised with a 15 m fibre
loop, thus resulting in a delay of T = 50 ns. This would also decrease the
training time down to 2.2 ms and make the equaliser more suitable for realistic
channel drifts. The speed limit of our setup is set by the bandwidth of the
different components, and in particular of the ADC and DAC. For instance
with T = 50 ns and keeping N = 50, reservoir states should have a duration of
1 ns, and hence the ADC and DAC should have bandwidths significantly above
1 GHz (such performance is readily available commercially). As an illustration

II.7. Challenges and solutions 51

of how a fast system would operate, we refer to the optical experiment [54] in
which information was injected into a reservoir at rates beyond 1 GHz.

II.6.5. Influence of channel model parameters on equaliser per-
formance. This section presents the results obtained after in-depth investiga-
tion of the channel model (Eqs. I.18 and I.19) and its parameters, as discussed
in Sec. II.2.1.

Figure II.9a shows the equalisation results for different values of p1. We
tested each value over 10 random input masks, with independent experimental
parameters optimisation for each run. Average values are presented on the
plot, with error bars depicting best and worst results obtained among different
masks. The equaliser performance was tested on a sequence of one million
inputs, and in several cases we obtained zero misclassified symbols. Note that
the observed increase of the SER with reduction of p1 is natural as the linear
part contains the signal to be extracted. When decreasing p1, not only the
useful signal gets weaker, but the nonlinear distortion also becomes relatively
more important.

Figures II.9b and II.9c present the dependence of the SER on parameters
p2 and p3, respectively. These parameters define the amplitude of the nonlinear
distortion of the signal, and as they grow, the channel becomes more nonlinear
and thus more difficult to equalise. The results of equalisation with different
values of m are shown in figure II.9d, higher values of m increase the temporal
symbol mixing of the channel, hence worse results.

II.7. Challenges and solutions

The previous Sec. II.6 listed all the successful results we obtained with this
project. The present section is devoted to the other side of the coin, that is, the
challenges and problems we encountered in this work. Such a presentation is of
little interest for a scientific paper, where only final results matter, but could
interest a reader trying to replicate this experiment, partially or in full, who
seeks to find out how we actually managed to make the setup work. And since
the real new part of this experiment if the FPGA board (the opto-electronic
reservoir was already a well-known and functioning system when I started this
project), the FPGA design was the main source of troubles. Here they are, and
how I managed to solve them.

The first thing that comes to mind is the very steep learning curve of FPGA
programming and a completely wrong approach adopted by myself, mostly be-
cause of lack of knowledge. Unlike most other programming languages, learning
as you go is a very bad idea. There is so much to learn and understand about
FPGA internals and mechanisms before even thinking of going somewhere.
Well, certainly, very basic, academic designs could be completed while learn-
ing, but not a complex one, such as the one described in Sec. II.5, involving
non-trivial logic, several clock domains, multi-cycle paths and complex timing
constraints. This is, probably, the reason for such a slow start of my thesis.

Completing a FPGA design is a very long task. The implementation time,
that is, the compilation process, from the VHDL code all the way down to
the FPGA bitstream, of a very basic design takes a couple of minutes on my

52 Chapter II. Online training of a photonic reservoir computer

10−6

10−5

10−4

10−3

10−2

10−1

0.6 0.7 0.8 0.9 1

S
E

R

p1

(a)

10−5

10−4

10−3

10−2

10−1

0.04 0.06 0.08 0.1

S
E

R

p2

(b)

10−6

10−5

10−4

10−3

10−2

10−1

100

−0.04 −0.03 −0.02 −0.01

S
E

R

p3

(c)

10−6

10−5

10−4

10−3

10−2

10−1

0 0.02 0.04 0.06 0.08 0.1

S
E

R

m

(d)

Figure II.9. Error rates for different values of channel pa-
rameters pi and m. The results were measured over one million
input symbols, with 10 random input masks and zero noise.
(A) Lower p1 implies lower linear part of the channel, con-
taining the useful signal, which naturally results in higher er-
ror rates. (B) Increasing the quadratic component p2 of the
channel makes it more nonlinear, and thus more difficult to
equalise. (C) Increasing the cubic component |p3| of the chan-
nel makes it more nonlinear, and thus more difficult to equalise.
(D) Higher values of m make the channel equalisation more
complex.

high-end laptop. A medium design would require from 30 minutes to an hour.
Complex designs, approaching 80− 90% of total resources utilisation of a large
FPGA would take hours, or even a day to compile. Fortunately, the above
design falls in the second category, with a compilation time of approximately 40
minutes. Imagine the oh-so-common debugging process, with an error occurring
at hardware level, where the simulator can no longer help. Make a small
correction, launch the compilation and go for lunch. Then, as the correction
did not help, try something else, launch the compilation and. . . go for lunch
again? To sum up, at the latest stages of design development, the compilation
times is the process that takes the bulk of time.

II.8. Conclusion 53

Programming usually comes with errors – humans have this sad tendency.
The most harmful and deceptive problem I have encountered during the de-
velopment of this project, that caused a few broken objects and lots of facial
hair torn, is the well-known overflow. All numbers in the design are allocated a
strict number of bits (usually 18 or 25, see Sec. II.5) and if the scale is chosen
poorly, a summation or multiplication of these numbers may result in a number
too big for such an amount of bits. Which results in the exceeding part being
cut off, and the calculation is performed normally. But the result is, obviously,
incorrect. And such errors are not easy to detect. Moreover, such an overflow
may occur outside the trial case, that is, when the design has to deal with num-
bers it has not been tested on. In other words, the designer thinks that the
code works, but, in fact, it does not. Such unexpected overflow was the reason
of relatively poor equalisation performance of the experiment, published in a
preliminary conference paper [7]. The reservoir was actually equalising a more
complex channel, and some of the symbols in the training and test sequences
were simply wrong. Once this problem was discovered and corrected, we could
obtain the results shown in Fig. II.5.

Lastly, let me say a few words about the DSP48 slices. At first, I hated
them – Xilinx software infers them automatically by default and activates all
their internal registers, that cause a mess in the timing of the design. I was
very pleased when I found the option to disable them. All multiplications
were performed using slice logic at that stage and the compilation was taking
a few hours for a 50-neuron design. This strategy did not seem viable, so I
invested some time into understanding the DSP48 slices. Now, I love them.
They are very complex, but they have so much to offer! And instead of using
hundreds of logic gates and registers, only one DSP slice is required to perform a
multiplication. Much to my joy, the implementation time was greatly reduced.

II.8. Conclusion

In this chapter we covered the first experiment realised for my PhD. In this
work we applied the online learning approach to training an opto-electronic
reservoir computer. We programmed the simple gradient descent algorithm
on a FPGA chip and tested our system on the nonlinear channel equalisation
task. We obtained error rates up to two orders of magnitude lower than pre-
viously reported RC implementations on the channel equalisation task, while
significantly reducing the experimental runtime. We also demonstrated that
our system is well-suited for non-stationary tasks by equalising a drifting and
a switching channel. In both cases, we obtained the lowest error rates possible
with our setup.

So far, so good; what’s next? From our team’s point of view, this exper-
iment was a first step – we employed a FPGA board for the first time and
wanted to see what it was capable of and whether it was worth investigating
this direction further. And this work has shown that, in fact, it definitely is.
Using the FPGA to drive the opto-electronic reservoir allows to perform more
intricate operations on the experiment, such as compute the output in real time
or, as will be shown in Ch. IV, feed the output back as input. This, in turn,
allows to investigate several novel features. These findings greatly influenced

54 Chapter II. Online training of a photonic reservoir computer

the further plans for my thesis, as I was focused on implementing these novel
features.

In our journal paper [1], we proposed two ideas for future work. At the
moment of writing these lines, we have realised them both. First, a FPGA-
driven photonic reservoir computer could implement a full optimisation of the
readout weights and the input mask, as suggested in [80, 81]. With Michiel
Hermans, we performed that experiment right afterwards. We will talk about it
in Ch. III. Second, the real-time training makes it possible to feed the output
signal back into the reservoir. This additional feedback would highly enrich
the dynamics of the system, allowing one to tackle new tasks such as pattern
generation or chaotic series prediction [9]. And we have demonstrated that
experimentally in early 2016. Ch. IV is devoted to this work.

To conclude, I believe that this experiment is the key achievement of my
PhD, that made all subsequent results much easier. Therefore, it was two years
well spent.

CHAPTER III

Backpropagation with photonics

This chapter presents an experiment that was not originally planned as part
of my thesis. The project was set up when Michiel Hermans joined our team
in 2015 with an idea of implementing the backpropagation training algorithm
(more on that in Sec. III.2) in hardware, using our opto-electronic reservoir
computer (see Sec. I.2.4) with one slight modification. After a couple of brain-
stormings, we decided that the idea would be easier to realise with a FPGA
in the setup. I was thus set to assist Michiel Hermans with this experiment,
that we successfully completed in March 2016. Michiel Hermans designed the
setup and performed most of the measurements, while I built the experiment
and programmed the FPGA.

The content of this chapter is based on our paper [2]. The paper itself,
being a Letter, is quite succinct, but the Supplementary Material covers most
of the theoretical and experimental aspects of this work. The only part not
covered in the paper – the FPGA design – is presented in this thesis in Sec.
III.4.

III.1. Introduction

One of the main difficulties when using nonlinear dynamical systems, such
as neural networks, is to train their internal parameters. The backpropagation
(BP) algorithm [82, 83] is one of the most important algorithms in this area,
and is behind the remarkable successes achieved in the field of deep learning in
the last decade [84]. The simple idea behind the BP algorithm is to compute the
derivative (or gradient) of a cost function in the parameter space of the system.
The gradient is then subtracted from the parameters themselves in order to
reduce the cost function. This process is repeated until the cost function no
longer reduces. We will cover BP much more in detail in Sec. III.2.

In hardware implementations of neural networks the training of internal
parameters is also key and the use of the BP algorithm is highly beneficial in
order to improve performance [80, 81]. However implementing the BP algo-
rithm in hardware systems can be difficult because of the need of an accurate
model to compute the gradient and because of the resources necessary to run
the BP algorithm. Remarkably, in certain cases it can be implemented phys-
ically on the system it is optimising [85]. The basic idea behind this advance
is to use a slightly modified version of the system for propagating error signals
backwards, i.e. for running the BP algorithm. Such self-learning computing
systems could be highly advantageous, as any gain in terms of processing speed

55

56 Chapter III. Backpropagation with photonics

or limited power consumption will also apply to the training phase. Further-
more having the same hardware computing the BP algorithm eliminates, to
a large extent, the need for an accurate model of the system. This idea may
conceivably also have implications for biological neural networks, as these are
physical system that – using mechanisms that are not yet well understood –
can both compute and carry out their own training process. A proof of concept
experiment in which physical BP was tested on a simple task was reported in
[85]. However, it left open the question of whether the algorithm, with all the
imperfections inherent in an experiment, can provide the same improvement in
performance as numerical approaches [80, 81].

In this experiment we implemented the BP algorithm physically on the
slightly modified opto-electronic reservoir computer, introduced in Sec. I.2.4.
The key innovation is to modify the system by adding a photonic component
capable of implementing both the nonlinearity and its derivative, so that it can
be used both as signal processor and to perform the BP algorithm. We tested
our system on several tasks considered hard in the machine learning community,
including a real world phoneme recognition task, obtaining state of the art
results when the BP algorithm is used. This experiment thus demonstrates
the full potential of physical BP. It constitutes an important step towards self-
learning hardware, with potential applications towards ultra-fast, low energy
consumption, computing systems.

III.2. Backpropagation through time

Backpropagation through time, or simply backpropagation, is a time-hon-
oured method for training recurrent neural networks [82, 83]. Essentially, one
defines a cost function based on the desired network output and, using the
chain rule, determines the gradient of this cost function with respect to the in-
ternal parameters of the system (weights). The term “backpropagation” stems
from the fact that, due to the recursion in RNNs, computing the gradient in-
volves propagating an error signal backward through the system updates, i.e.,
backward in time [80].

In simple words, the algorithm works as follows. The RNN is fed with an
input I, that propagates through the network, from input to output neurons,
in a certain number of timesteps (updates). Using a set of readout weights, the
output O is computed. It is then compared with the target output T and an
error E is computed. At this point, the network is inverted, figuratively. The
error signal E is propagated backwards through the linearised network, from
output to input neurons, in the same manner as the initial input signal I was
propagated in the forward direction. That is, output neurons act as inputs and
input neurons are considered as system outputs. This allows to compute the
error on each neuron, i.e. how its value should be changed (to first order in
the error) in order to get closer to the desired value T . Obviously, the neurons
states cannot be “corrected”, but the weights can be. These errors are thus
used to compute corrections for the input, internal and readout weights, so
that that the system output O for a given input I gets closer to the target T .
The (usually small) corrections are applied iteratively until the error between
O ant T can no longer be decreased.

III.2. Backpropagation through time 57

And now we will explicitely derive the equations behind the backprop algo-
rithm. This is probably the most computationally intense section of this thesis.
Big thanks to Michiel Hermans for doing all the hard work!

III.2.1. General idea and new notations. Before we dive into calcu-
lations, let me present the notations used in this chapter, matching the original
paper [2].

In typical RC tasks, the goal is to map an input sequence si (where i ∈
{1, · · · , L}, with L the total sequence length) to an output sequence yi, which
has target values y∗i , for example a speech signal to a sequence of labels. In
order to use delay-coupled systems as reservoir computers, the discrete time
input sequence si is encoded into a continuous time function z(t) by the input
mask m(r) and bias mask mb(r), where r ∈ [0, T], with T the masking period,
as follows

z(t) = z(iT + r) = m(r)si +mb(r) . (III.1)

Our opto-electronic reservoir computer with a sine nonlinearity obeys the equa-
tion

a(t+D) = µ sin (a(t) + z(t)) , (III.2)

where a(t) is the state variable and D is the delay. The factor µ corresponds
to the total loop amplification. Eq. III.2 can be seen as a special case of the
Ikeda delay differential equation [86].

One then needs to map the continuous time state variable a(t) to a discrete
time output sequence yi. This is performed using an output mask u(r) where
r ∈ [0, T] and a bias term ub as follows:

yi =

∫ T

0

dr a(iT + r)u(r) + ub . (III.3)

In the RC paradigm the input mask is typically chosen randomly, and the
output mask u(r) and ub is determined by solving a linear system of equations
which minimises the mean square error C between the desired and actual output
C =

〈
(yi − y∗i)2

〉
i
.

The goal of applying error backpropagation to RC is to optimise both the
input and output masks m(r), mb(r), u(r) and ub, knowing the reservoir state
a(t), and the desired output y∗i . To this end one needs the gradient of the error
function C =

〈
(yi − y∗i)2

〉
i

with respect to the masks, given by

ē(iT + r) = eiu(r) , (III.4)

e(t−D) = J(t) (e(t) + ē(t)) , (III.5)

J(t) = µ cos (a(t) + z(t)) , (III.6)

dC

dm(r)
=

∑

i

e(iT + r)si , (III.7)

dC

dmb(r)
=

∑

i

e(iT + r) , (III.8)

where ē(t) = ∂C/∂a(t) is a continuous time signal and, as above, i ∈ {1, · · · , L}
and r ∈ [0, T]. One can then iteratively improve the masks so as to lower C.
In the following sections we will explicitely derive the above equations.

58 Chapter III. Backpropagation with photonics

si

m(r) mb(r)

NL

yi

ub u(r)

a(t)

D

z(t)

ei

u(r)

D

J(q)

e (q)

e(q)

(A)

(B)

Figure III.1. A: Schematic depiction of the forward system
as given be Eqs. (III.9, III.10, III.11). B: Schematic depiction
of the backward system as given by Eqs. (III.15, III.20), where
q is the backwards time.

III.2.2. Setting up the problem. We wish to find the gradient of a
cost function C with respect to the parameters that can be optimised. In order
to achieve this we have to use the chain rule through all the dependencies
that describe the system. Fig. III.1 gives a schematic of how the forward and
backward equations must be implemented experimentally. Fig. III.2 depicts
the information flow in the forward and backward systems.

We first recall the relevant equations describing the forward system. The
input signal z(t), formed by concatenating the input masks weighted with the
current input sample si can be rewritten as

z(t) = sdt/Tem(t mod T) +mb(t mod T), (III.9)

where d.e indicates the ceiling function, so that dt/T e = i gives the index of si
corresponding to the time t. We use the modulo operation in the argument of
the input masks to indicate that the masks are repeated over time. Next we
write down the expression for the reservoir state a(t):

a(t+D) = µ sin (a(t) + z(t)) . (III.10)

Finally, we can write the formula for the output instances yi as follows:

yi = ub +

∫ T

0

dr u(r)ai(r), (III.11)

with ai(r) = a(r + (i− 1)T), the i-th segment of the recording of a(t).
In what follows, for the sake of generality and of simplicity of notation,

we take the input and output masks to be continuous functions of time. We

III.2. Backpropagation through time 59

Figure III.2. A: Schematic depiction of information flow
when the system is used in the forward direction. On the
bottom, the input sequence si is converted to a continuous-
time signal z(t) (with time running from left to right). Each
instance in the sequence is multiplied with the finite-length
masking signal m(t) and added to mb(t). These sequences are
then concatenated in time to form z(t), the input to the for-
ward system. The output a(t) of the forward system is then
converted into an output sequence yi by segmenting a(t) in
time, and multiplying the segments with the output masks
u(t), and integrating over each of them. B: Schematic depic-
tion of the information flow in the “backwards” mode. The
derivatives ∂C/∂yi are used as an input sequence. They are
multiplied by u(t) which now plays the role of input mask.
This yields the signal ē(t) that serves as input for the back-
ward system. The output of the backward system is e(t).

denote functional derivatives with respect to time dependent functions as ordi-
nary derivatives. The case, relevant to practical implementations, in which the
masks depend on a finite number of parameters, is discussed in Sec. III.3.2.
For simplicity in the derivations we will assume, unless indicated otherwise,
that all variables, both in continuous time t and discrete time i, are defined
for i and t going from −∞ to ∞. If we have a specific finite input sequence
si with i ∈ {1, · · · , L}, we simply extend this beyond these bounds assuming

60 Chapter III. Backpropagation with photonics

that all extra si are equal to zero. Similarly, we assume that z(t) is zero if
dt/T e /∈ {1, · · · , L}. Subsequently, if we sum or integrate over i or t without
indicating limits, this indicates a summation or integration from −∞ to ∞. In
practice it turns out that if we only have a finite sequence, we only need to
compute states over its corresponding time span. Similarly, when performing
backpropagation, we only need to compute backwards over the same time span.
All states outside of this interval do not influence the gradient computation,
which means there are no problems in considering only finite intervals. This
matters, as in realistic training scenarios we typically train on relatively short
sequences (in the case of the present paper of length 100).

III.2.3. Output mask gradient. For the output masks we can write

dC

du(r)
=
∑

i

∂C

∂yi

dyi
du(r)

. (III.12)

For example, if the cost function we wish to minimise is the squared error over
the interval of the input sequence

C =

L∑

i=1

(yi − y∗i)2,

ei =
∂C

∂yi
= 2(yi − y∗i) for i ∈ {1, · · · , L}.

∂C

∂yi
= 0 for i /∈ {1, · · · , L}.

The second factor in Eq. (III.12) we can get from Eq. III.11:

dyi
du(r)

= ai(r),

such that the gradient for the output mask u(t) is simply given by

dC

du(r)
=
∑

i

∂C

∂yi
ai(r),

or, given the fact that ∂C/∂yi = 0 outside the interval in which the sequence
is defined

dC

du(r)
=

L∑

i=1

∂C

∂yi
ai(r). (III.13)

Similarly we find that

dC

dub
=

L∑

i=1

∂C

∂yi
.

III.2. Backpropagation through time 61

III.2.4. Input mask gradient. The case of the input masks is more
involved. Working out the chain rule we find

dC

dm(r)
=

∑

i

∂C

∂yi

dyi
dm(r)

.

=
∑

i

∂C

∂yi

∫
dt′

∂yi
∂a(t′)

da(t′)

dm(r)
.

=

∫
dt′ ē(t′)

da(t′)

dm(r)
, (III.14)

where we have used

ē(t′) =
∂C

∂a(t′)
=
∑

i

∂C

∂yi

∂yi
∂a(t′)

.

From Eq. III.11 we can obtain (using a modulo function in the argument of
u(r))

∂yi
∂a(t′)

= δi,dt′/Teu(t′ mod T),

i.e., equal to zero when t′ did not fall in the segment of time used to produce
yi, and equal to the output mask otherwise. This yields

ē(t′) = u(t′ mod T)
∂C

∂ydt′/Te

= u(r)ei (III.15)

where r = t′ mod T and i = dt′/T e. In other words, ē(t) is produced by
masking the sequence ∂C/∂yi with the output mask u(r).

The second factor in Eq. III.14 we work out as follows. Using the chain
rule we get

da(t′)

dm(t)
=

∫
dt′′

da(t′)

dz(t′′)

dz(t′′)

dm(t)
. (III.16)

and
da(t′)

dz(t′′)
=
∂a(t′)

∂z(t′′)
+

∫
dt′′′

∂a(t′)

∂a(t′′′)

da(t′′′)

dz(t′′)
.

From Eq. III.10 we obtain the partial derivatives

∂a(t′)

∂z(t′′)
=

∂a(t′)

∂a(t′′)

= µδ(t′ − t′′ −D) cos(a(t′ −D) + z(t′ −D)),

Or, more compactly,

∂a(t′)

∂z(t′′)
= δ(t′ − t′′ −D)J(t′),

with

J(t′) = µ cos(a(t′ −D) + z(t′ −D)).

This yields
da(t′)

dz(t′′)
= J(t′)

[
δ(t′ − t′′ −D) +

da(t′ −D)

dz(t′′)

]
.

62 Chapter III. Backpropagation with photonics

By filling in the expression for da(t′ −D)/dz(t′′) recursively we can write this
as

da(t′)

dz(t′′)
=

∞∑

i=0


δ(t′ − t′′ − iD)

i−1∏

j=0

J(t′ − jD)


 . (III.17)

By filling in Eq. III.17 in Eq. III.16, and inserting the result in Eq. III.14 we
obtain

dC

dm(r)
=

∫
dt′ dt′′ ē(t′)

∞∑

i=0

δ(t′ − t′′ − iD)

i−1∏

j=0

J(t′ − jD)
dz(t′′)

dm(r)
. (III.18)

We can solve the integral over t′ explicitly. We denote this by e(t′′):

e(t′′) =

∫
dt′ ē(t′)

∞∑

i=0

δ(t′ − t′′ − iD)

i−1∏

j=0

J(t′ − jD)

=

∞∑

i=0

ē(t′′ + iD)

i−1∏

j=0

J(t′′ + (i− j)D)

=

∞∑

i=0

ē(t′′ + iD)

i∏

j=1

J(t′′ + jD). (III.19)

It is straightforward to prove that e(t) is equal to Eq. III.5 (with arguments
shifted by D)

e(t) = J(t+D)(e(t+D) + ē(t+D)). (III.20)

Indeed, if we recursively fill in the expression for e(t + D) in Eq. III.20, we
obtain Eq. III.19. Using this we can reduce Eq. III.18 to

dC

dm(r)
=

∫
dt′′ e(t′′)

dz(t′′)

dm(r)
.

From the expression of z(t) we find that

dz(t′′)

dm(r)
= δ(t′′ mod T − r)sdt/Te.

Inserting this we can find the final expression for the gradient for the input
mask

dC

dm(r)
=
∑

i

siei(r),

or, again using the fact that we defined si = 0 for i /∈ {1, · · · , L},

dC

dm(r)
=

L∑

i=1

siei(r), (III.21)

with ei(r) = e(r−(i−1)T), the i-th segment of the time trace of e(t). Similarly
for m0(t) we can write

dC

dmb(r)
=

L∑

i=1

ei(r). (III.22)

III.3. Experimental setup 63

III.2.5. Multiple inputs/outputs. The above explanation is easily ex-
tended to multiple input and output dimensions. Suppose that we have a
multivariate time series si, where the k-th element at time step i is denoted
by si[k]. We can then easily construct z(t) by defining as many input masks
mk(t) as there are input dimensions and adding them all up

z(t) =
∑

k

sdt/Te[k]mk(t mod T) +mb(t mod T),

The desired output can similarly exist of a multivariate time series with ele-
ments y∗i [l]. To produce an output yi[l] we simply define an output mask ul(t)
and bias u0

l for each output channel

yi[l] = u0
l +

∫ T

0

dtul(r)ai(r).

The same procedure can now be used to determine the gradients with
respect to the multivariate input and output masks. We find

dC

dul(r)
=

L∑

i=1

dC

dyi[l]
ai(r), (III.23)

and

dC

du0
l

=

L∑

i=1

dC

dyi[l]
. (III.24)

The source of the BP equation is now

ē(t′) =
∑

l

ul(t
′ mod T)

dC

dydt′/Te[l]
, (III.25)

the recurrence for the error e(t), eq. (III.20), is unchanged, and one has

dC

dmk(r)
=

L∑

i=1

si[k]ei(r) .

III.3. Experimental setup

In order to use the same hardware for both the signal processing and its
own training, one exploits the very close analogy between Eqs. III.1 and III.4
– both are formed in the same way from a discrete time sequence, multiplied
by a periodic mask – as well as the very close analogy between Eqs. III.2 and
III.5 – both are delay systems. However the equation for e(t) depends on future
values, so it needs to be solved backwards in time. In practice one time-inverts
ē(t) and J(t) before computing e(t) to obtain a linear delayed equation

e(q +D) = J(q) (e(q) + ē(q)) , (III.26)

where we use q instead of t to remind oneself that we are dealing with time-
inverted signals. We also note that J(t), the derivative of the nonlinear func-
tion, is a cosine, which can also be implemented using the intensity modulator.
Although this property of the sine function is key for this experiment, other
types of nonlinearity can be implemented in analogue hardware (see Sec. III.7).

64 Chapter III. Backpropagation with photonics

SLD
MZM1 MZM2

90/10

1
.6

 k
m

att.

amp.

photodiodes

DAC

ADC

FPGA/PC

add.

Figure III.3. Schematic representation of the experimental
system. SLD: superluminescent diode; MZM1 and MZM2:
dual input/dual output Mach-Zehnder Modulators; V1 and V2:
driving voltages of the MZMs; att.: programmable optical at-
tenuator; add.: electrical combiner; amp.: pulse amplifier.

In this work we have shown how Eqs. III.2 and III.26 can be realised
using the same physical setup, depicted in Fig. III.3. It looks very similar
to the opto-electronic reservoir computer discussed in Sec. I.2.4. The key
difference (and innovation) is the use of two dual input/dual output Mach-
Zehnder modulators (MZMs), which allows to implement both Eqs. III.2 and
III.26 using the same physical system. Taking into account the incoherence
of light in the two branches between the modulators, the output of the upper
branch of MZM2 (see Fig. III.3) can be found to be

I+
2 =

I0
2

[1 + sin(V1/V0) sin(V2/V0)] , (III.27)

where I0 is the input intensity in the upper branch of MZM1, V1 and V2 are the
driving voltages and V0 a constant depending on the MZM. The computational
details will be presented below, in Sec. III.3.1. In the forward mode, we choose
V1/V0 = π/2. The transfer function thus acts as a sinusoidal function for the
input argument V2/V0 = a(t)+z(t). The constant offset I0/2 is removed by the
high-pass filter of the amplifier, that drives the MZM. Therefore, once the loop
is closed, we end up with Eq. III.2. In the backward mode we drive MZM1 with
a voltage V1/V0 = a(q) + z(q) + π/2, and MZM2 with a signal proportional
to ē(q) + e(q), but scaled down sufficiently such that sin(V2/V0) ≈ V2/V0 =
ē(q) + e(q), which gives the desired functionality for the adjoint system Eq.
III.26.

In order to train our reservoir computer, we first choose a value of µ close
to the threshold for instability. We then iterate the following three steps for
(typically) several thousands of iterations, during which performance slowly
improves until it converges:

1) We take the training data (typically a small subsequence of the complete
set), and convert it to z(t) using the input masks. We feed this signal to the
experimental setup, physically implementing Eq. III.2. Next, we measure and

III.3. Experimental setup 65

MZM

RF

B

Figure III.4. Schematic representation of a dual input/dual
output Mach Zehnder modulator. The MZM is driven by the
sum of two input voltages: one constant bias voltage VB and
a fast signal VRF.

record the signal a(t), and generate an output sequence yi using the output
masks.

2) From the output and the desired target values we compute the sequence
ei = ∂C/∂yi at the output, and convert it to ē(t), now using the output mask
as an input mask. Next we time-invert it and feed it back into the experimental
setup. Simultaneously we drive the first MZM with the (time-inverted) signal
a(q) + z(q) in order to implement the online multiplication with J(q). We
record the response signal e(q).

3) From the recorded signals a(t) and e(t) we obtain the gradients for the
masking signals, which we use to update the input and output masks,

m(r) ← m(r)− η dC/dm(r),

mb(r) ← mb(r)− η dC/dmb(r),

u(r) ← u(r)− η dC/du(r),

ub ← ub − η dC/dub, (III.28)

where η is a (typically small) learning rate. In order to speed up convergence
we applied a slightly more advanced variant of these update rules known as
Nesterov momentum [87, 88] (see Sec. III.5.4 for more details).

The FPGA, depicted in Fig. III.3, simultaneously generates the voltage
signal that represents z(t) and records the voltage signal representing a(t). It
also performs a minimal signal processing step by selecting and averaging over
the middle samples of each masking step (see Sec. III.3.2 for more details).
The remaining processing steps are carried out on a PC. The FPGA operation
is discussed further in Sec. III.4.

Sending and receiving data to and from the FPGA was the main speed
bottleneck of the experiment (more on that in Sec. III.6). Even though a
single training iteration lasts only about 0.6 seconds for the NARMA10 and
VARDEL5 task, most of this time is spent on the communication overhead
with the PC (buffering). If the entire experiment were to be performed on the
FPGA (which is feasible), a single training iteration would take of the order of
milliseconds.

III.3.1. Online multiplication using cascaded MZMs. We used two
back to back dual input/dual output Mach-Zehnder modulators for implemen-
tation of both Eqs. III.2 and III.26 using the same setup. The main fact
we rely on is that the spectrum of the SLD is narrow enough to allow for a

66 Chapter III. Backpropagation with photonics

large extinction ratio by the MZMs, but is broad enough that the light in the
two branches entering MZM2 from MZM1 can be considered incoherent. In
the present experiment, the coherence length of the light from the SLD is of
the order of a few hundreds of micrometers, which means that a very small
difference in path length for the connections in between MZM1 and MZM2 is
sufficient to make the two signals incoherent.

Consider the operation of a single MZM, schematised in Fig. III.4. The
intensities of the incoming light sources are denoted by Ia and Ib, and the MZM
is driven by a voltage V , which is the sum of a constant bias voltage VB and
a fast voltage signal VRF. The bias voltage was omitted in the main text to
avoid confusion. Taking into account the incoherence between the two input
signals, the intensities of the output branches (I+ and I−) are given by

I+ = Ia
1 + sin(V/V0)

2
+ Ib

1− sin(V/V0)

2
,

I− = Ia
1− sin(V/V0)

2
+ Ib

1 + sin(V/V0)

2
, (III.29)

with V0 a constant depending on the MZM.
It is now easy to model the output of the two cascaded MZMs. Suppose

the source has an intensity I0, and no light enters the second input of MZM1.
And suppose MZM1 and MZM2 receive voltages V1 and V2, respectively. The
output intensities I+

1 and I−1 of MZM1 are given by

I+
1 = I0

1 + sin(V1/V0)

2
,

I−1 = I0
1− sin(V1/V0)

2
. (III.30)

The intensity I+
2 at the first output branch of MZM2 is then

I+
2 = I0

(1 + sin(V1/V0))(1 + sin(V2/V0))

4
(III.31)

+I0
(1− sin(V1/V0))(1− sin(V2/V0))

4
(III.32)

=
I0
2

[1 + sin(V1/V0) sin(V2/V0)] . (III.33)

In the experiment MZM1 receives a constant bias signal on top of an RF
driving signal, such that V1/V0 = π/2 +V ′1/V0, with V ′1 the RF signal. We can
thus write:

I+
2 =

I0
2

[1 + cos(V ′1/V0) sin(V2/V0)] .

We use the setup in two modes. In the forward mode, V ′1 = 0, so that the
cascaded MZMs behave as

I+
2 =

I0
2

[1 + sin(V2/V0)] ,

i.e., the transfer function acts as a sinusoidal function for the input argument
V2/V0, which is equal to the sum of the input signal z(t) and the system state
a(t). Note that a constant offset I0/2 is added to the output. We use, however,
amplifiers with a high-pass filter to drive the MZMs, which remove the DC

III.3. Experimental setup 67

offset. Therefore, once the loop is closed, this constant bias is removed, and we
effectively end up with Eq. III.2.

In the backwards mode, we drive MZM1 with a voltage V ′1 proportional to
a(q−D) + z(q−D). MZM2 is driven with a signal proportional to ē(q) + e(q),
but scaled down sufficiently such that sin(V2/V0) ≈ V2/V0 = ē(q) + e(q). This
means that in the backwards mode we can write

I+
2 =

I0
2

[1 + cos (a(q +D) + z(q +D)) (ē(q) + e(q)] ,

which is (up to the constant bias, and the factor µ which is imposed later by
the optical attenuator) the desired functionality for the adjoint system (given
by Eq. III.26).

III.3.2. Mask parametrisation. While the BP theory, discussed in Sec.
III.2, is generally valid for continuous-time signals, an experimental setup is
limited by the finite bandwidth of the DAC/ADC, and the analogue electronic
parts. To make sure that these effects play a limited role, we parametrise
the input and output masks as piecewise constant functions, which has been
common practice for reservoirs of this type [48]. To this end we divide the
delay D into an integer number ND of equal time segments, called masking
steps. Next, we ensure that the masking period T has a total duration that
also contains an integer number NT of masking steps, in our case one less than
the delay: NT = ND − 1. This allows for the mixing of the states over time,
as detailed in [48].

The input and output masks are picked to be constant for the duration
of each masking step. This implies that z(t) is piecewise constant. The fact
that both T and D are an integer number of masking steps makes that changes
in a(t) only occur in between the masking steps, i.e., they are synchronised
with the masking steps, and this is valid for the backwards pass too. In short,
a(t), ē(t) and e(t) are all piecewise constant signals, with values that remain
constant during each masking step.

In practice this allows us to reduce effects of noise by averaging the signals
representing a(t) and e(t) over several measuring samples during a single mask-
ing step. Typically we pick a set of samples from the middle of each masking
step, and discard those at the beginning and the end as they may contain arte-
facts caused by the limited bandwidth of the ADC. More importantly, it allows
us to make a discrete time approximation of the entire system. For example,
let us consider equation III.11. The mask u(t) is made up of NT constant seg-
ments of equal length, with values during the segments denoted uk. Similarly,
each segment ai(r) = a (t− (i− 1)T) is piecewise constant, with values we can
for example denote with aik. The integral reduces to

yi = ub +

NT∑

k=1

aikuk,

(where we absorbed the factor T that emerges from the integration into the
values uk). Each particular value aik can be interpreted as the state of the
k-th “neuron” or “node” state during the i-th instance of the input sequence.
We can still use the expressions for the gradients in Eqs. III.13, III.21 and

68 Chapter III. Backpropagation with photonics

III.22. Indeed, by construction, the gradient for the output mask u(t) for the
duration of a single masking step is a constant (as a(t) remains constant over
the segment). The same holds for the gradients for the input masks. This
implies that u(t) and m(t) remain piecewise constant during training, and we
can in practice describe them simply as lists of values instead of a continuous-
time functions.

Note that the choice of dealing with bandwidth limitations by using piece-
wise constant functions is not the only possible avenue. One alternative would
be to impose bandwidth constraints on m(t) and u(t), such that the finite signal
generator bandwidth and sampling rates form no obstacle in treating the setup
as a continuous-time setup. We chose the piecewise-constant constraint as it
is more directly related to existing implementations of delay-coupled electro-
optical signal processors, and it allows to identify a specific number of “virtual
nodes” (the number of segments within the masking period T). In other words,
the choice of NT determines the “complexity”, or the number of degrees of free-
dom of the system.

III.4. FPGA design

The FPGA design is my key contribution to this project. As will be shown
below, it allowed to significantly speed up the experiment, which is crucial for
iterative algorithms. The design itself is much simpler than the previous one
(see Sec. II.5): it performs no computations and only basic signal processing
on the acquired data. The main novelty is the Ethernet interface with the
computer, that took me some time to develop (more on that in Sec. III.6). It
alows a much faster data transfer than the archaic UART, used previously.

The simplified schematics of the design is depicted in Fig. III.5. Rect-
angular boxes represent modules (entities), and rounded rectangles stand for
electronic components: the FMC151 daughtercard, the Marvell Alaska PHY
device (88E1111) for Ethernet communications (ETH), the Hewlett Packard
8648A clock generator, the PC, running Matlab, and the opto-electronic ex-
periment.

The operation of the FPGA is controlled from Matlab through a Gbit
Ethernet connection. Data and various commands, such as memory read/write
or state change, are encapsulated into standard UDP packages. The Ethernet

module interfaces the Marvell Ethernet PHY chip with the rest of the design,
receives the UDP packets (frames) and decodes the commands and the data.
It also ensures data transmission from the FPGA to the computer.

The UDP packets are read at the PHY level on the FPGA (see [89] for a
reference on the OSI model). For simplicity, the board does not have a MAC
nor an IP address. Matlab sends the packets to a random address, since the
cable only connects two devices. The design discards the PHY, TCP and UDP
headers from the received packet and only reads the data. It also ignores the
checksum at the end of the frame. The first bytes are interpreted as commands
and the following, if any, are considered as data and written in the FPGA
memory.

III.4. FPGA design 69

Matlab

ML605

BRAM si OR ei

1 OR J

Ethernet

si, ei J,m, u

Fpga2Exp

Exp2Fpga
a OR e

FMC151

ADC

CLK

DAC si OR ei (to add.)

1 OR J (to MZM1)

HP Experiment

a OR e (from photodiode)

Figure III.5. Simplified schematics of the FPGA design.
Modules (entities) are represented by rectangular boxes, elec-
tronic components are shown with rounded rectangles. Ex-
ternal hardware, such as the computer, running Matlab, the
opto-electronic reservoir and the external clock generator are
shown in grey. During the forward pass, the FPGA sends the
inputs si to the electrical combiner (labelled “add.” in Fig.
III.3), drives the MZM1 with a constant signal equal to 1 to
keep it transparent, and records the reservoir states a from the
readout photodiode. During the backward pass, the MZM1 is
driven by the Jacobian J , the combiner is fed with the errors
ei and the error signal e is recorded.

Blocks of Random-Access Memory (BRAM) are used to store data, such
as the inputs si and ei for the forward and backward runs, respectively, the
Jacobian J , as well as the input and output masks u and m.

Sending packets to the computer is a more challenging process, as the
addresses (MAC, IP and port number) must match the computer settings for
the data to reach Matlab. Moreover, a 32-bit Cyclic Redundancy Check (also
known as the checksum) must be appended to the frame for the computer to
accept the packet (and not drop it as a corrupt frame). I assigned an arbitrary
IP to the computer and used the default UDP port in Matlab. These addresses
are hard-coded in the FPGA design, and the CRC is computed inside the
Ethernet module.

The FMC151 daughtercard outputs two 14-bit signals from the ADCs and
receives two 16-bit signals for the DACs. It is also used to deliver a clock
signal from an external clock generator, that produces a high-precision signal,
allowing to synchronise the FPGA with the delay loop of the experimental
setup. This clock signal was generated by the Hewlett Packard 8648A signal
generator.

The Fpga2Exp module controls the two signals sent to the opto-electronic
reservoir through the dual-channel DAC. During the forward pass, it generates
the masked input signal m × si by multiplying the inputs si by the mask m,
both being read from the BRAM. During the backward pass, it outputs u× ei
through one channel, and J through the other.

The reservoir states a(t), as well as the error signal e(q) from the experiment
are sampled and averaged by the Exp2Fpga module. The number of samples
depends on the task and the reservoir size, as will be discussed in Sec. III.5.
The data is buffered in blocks of RAM (not shown here) and then encapsulated

70 Chapter III. Backpropagation with photonics

into UDP packages in the Ethernet module and transfered to the computer
throught Ethernet.

Since the FPGA performs minimal calculations in this experiment, a legit-
imate question comes to mind: do we need a FPGA at all? And the answer
is yes, we do. Since BP is an iterative process, the experiment needs to be
repeated a large number of times for the training to be completed. As will be
shown in Sec. III.5, this number varies from 104 for NARMA and VARDEL
up to 106 for TIMIT tasks. Without the FPGA, as in [48], the opto-electronic
experiment can be run in approximately 30 s. That is, one training cycle for
the NARMA task would have taken about 4 days. With the FPGA, one run
takes 0.6 s, cutting the duration of a training cycle to a more manageable time
of 2 hours.

III.5. Results

We validated the experimental setup on three time series processing task.

III.5.1. Tasks. We consider first of all the NARMA10 task, introduced
in Sec. I.1.4.2. The second task we will call VARDEL5 (from variable delay).
Here, the input sequence consists of independent and identically distributed
digits drawn from the set {1, 2, 3, 4, 5}. The desired output is then given by
y∗i = si−si , i.e., the goal is to retrieve the input instance delayed with the
number of time steps given by the current input. As a performance metric
for NARMA10 and VARDEL5 we use the normalised root mean square error
(NRMSE), which is given by

NRMSE =

√
〈(yi − y∗i)2〉i
〈(y∗i)2〉i

.

The NRMSE varies between 0 (perfect match), and 1 (no relation between
output and target).

The third task is a frame-wise phoneme labelling task. We use the TIMIT
dataset [90], a speech dataset in which each time step has been labelled with one
of 39 phonemes. The input data is high-dimensional (consisting of 39 frequency
channels), and the desired output is one of (coincidentally) 39 possible output
classes. The goal is to label each frame in a separate test set. Consequently,
the performance metric is now the classification error rate, i.e., the fraction
of misclassified phonemes in the test set. Note that the masking scheme and
BP algorithm is easily extended to multidimensional in – and output sequences
(see Sec. III.2.5). The TIMIT task has been studied before in the context of
RC, which has shown it to be challenging, typically requiring extremely large
reservoirs to obtain competitive performance [91, 92].

For all these tasks we compared performance of the fully trained system
to traditional RC, where we kept the input and bias masks fixed and random,
and only optimised their global scaling and the feedback strength parameter
µ. The results are shown in Fig. III.6. The experimental setup is successful
in performing both useful computations, and implementing its own training
process. The fully trained system consistently outperforms the RC approach
in all tasks considered.

III.5. Results 71

Full Reservoir Full Reservoir Full Reservoir
0

0.2

0.4

0.6

0.8

N
R

M
S

E
 /

 C
E

R

NARMA10 VARDEL5 TIMIT

A

B

A

Figure III.6. Comparison of performances for the three tasks
under consideration. We show either NRMSE (for NARMA10
and VARDEL5) or the classification error rate (CER) for
TIMIT. For each task we show performance for a fully trained
systems (Full) vs. those trained using the RC paradigm
(Reservoir). Error bars indicate standard deviations if avail-
able.

III.5.2. NARMA10 and VARDEL5. In the case of NARMA10 and
VAR-DEL5 we divided T into 80 equal time intervals (NT = 80), which al-
lowed us to take 16 samples during each masking step, where we averaged over
the middle 8 in order to get piecewise-constant values for a(t) and e(t). We
chose the number of training iterations at 10000 and 20000 for VARDEL5 and
NARMA10, respectively, chosen heuristically as a trade-off between the time
required for an experiment and the final performance (a single iteration lasted
approximately 0.6 s).

The cost functions used for NARMA10 and VARDEL5 are the aforemen-
tioned sums of squared errors. We repeated the training cycles 10 times, each
time with different random input mask initialisations. Output masks were
always initialised at zero. For all backpropagation experiments we set the feed-
back parameter strength parameter µ effectively equal to one (such that the
system is at the “edge of stability”), which we found to give the best perfor-
mance.

For the NARMA10 task we improve over all previous experimental results.
The previous best was published in [49], which reported an NRMSE of 0.249
for 50 virtual nodes, and 0.22 for 300 virtual nodes, whereas here we obtain a
NRMSE of 0.185 for 80 nodes (note that in [49] the authors report normalised
mean square error (NMSE, presented here in Sec. I.1.4.2), which is the square
of the NRMSE). That result was obtained on an experimental setup that was
specially designed to produce a minimal amount of noise (using a passive cavity
as a reservoir). The lowest reported experimental NRMSE on a setup equivalent
to ours was 0.41 [48]. Note that we obtain a better average performance for
the RC setup (NRMSE = 0.32), which is most likely due to the higher number
of virtual nodes (80 as opposed to 50 in [48]).

72 Chapter III. Backpropagation with photonics

−4

−2

0

2

4

0 20 40 60 80

V
al

u
e

Mask element

BPT-optimised
Random

(a) m(r)

−4

−2

0

2

4

0 20 40 60 80

V
al

u
e

Mask element

BPT-optimised
Random

(b) mb(r)

Figure III.7. Comparison of BP-optimised input masks
(dotted curves) and random RC masks (solid curves) for the
VARDEL5 task, for m(r) (left panel) and mb(r) (right panel).

For the VARDEL5 task, we cannot directly compare to literature, however
as pointed out in chapter 5 of Michiel Hermans’ thesis [93], this task is an
important example of a task that is so nonlinear that it is nearly impossible to
solve it with RC. This is confirmed here: the NRMSE of RC is 0.66, indicating
that the reservoir has only captured the task on a very rudimentary level. The
fully trained system shows a drastically better performance (NRMSE = 0.15).
This shows that training the input masks not just allows for better performance
on existing tasks, but also allows to tackle tasks that are so intricate that they
are considered beyond the reach of traditional RC.

In Fig. III.7 we depict the masks m(r) and mb(r) for the RC implementa-
tion (when they are chosen at random), and after optimisation using the BP
algorithm, for the VARDEL5 task. One sees that the BP algorithm dramati-
cally changes the input masks. In particular, the mask m is very large at some
specific values of r, and almost zero for other values. This suggests that in
some sense what the optimised reservoir is doing is storing the value of the
input on specific neurons, and then keeping it in memory for some time, before
mixing it nonlinearly with the input several time steps in the future. In Fig.
III.8 we depict how the NRMSE converges over time for the VARDEL5 task,
as the BP algorithm slowly improves the input and output masks.

For the reservoir computing results we measured average performance as
a function of three scaling parameters: the feedback strength parameter µ and
the scaling of the input mask and bias mask. Once optimal parameters were
determined we ensured that the output masks were trained on an unlimited
amount of input training data (in practice we observed the test error for in-
creasing amounts of training data, and stopped as soon as the performance
no longer improved). This was to ensure that we have a fair comparison to
the backpropagation setup, where we generate unlimited amounts of data too.
Each experiment was is repeated 10 times, giving rise to the error bars in Fig.
III.6.

III.5.3. TIMIT. For the TIMIT task we used 106 training iterations,
that took two weeks to complete. For this reason, we only performed a single

III.5. Results 73

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

N
R
M
S
E

Iterations

Figure III.8. Evolution of the NRMSE during the training
process on the VARDEL task. The error falls sharply during
the first 300 iterations, and then decreases slowly towards 0.15.

full training cycle. We picked µ at a value slightly under one, but we found in
simulations that performance did not strongly depend on it for a broad range
of values.

Measurement noise plays a smaller role in a classification task such as this
one, and we divided T into 200 masking steps, taking 8 samples in each and
averaging over the middle 4, thereby increasing the number of virtual nodes NT
while taking into account the hardware constraints (sample rates of the DAC
and ADC). Most likely this number can be increased further, for example, using
only 4 samples per masking steps and averaging over the middle 2. In practice
we are also limited by the relatively slow communication between the PC and
the FPGA, and increasing NT increases the amount of data that needs to be
transferred, slowing down the experiment considerably.

The goal here is to minimise a classification error rate, which is not di-
rectly differentiable. One possible strategy is simply to try and minimise the
MSE between the output and the target labels (1 for the correct class, zero
for all others). Classification would then be performed by the winner-take-all
approach, where we simply select the output channel with the highest output
as the “winner”. In practice, using MSE for classification suffers from some
drawbacks. Most importantly MSE will put a lot of emphasis on producing
the exact target values (close to zero or one), while we are only interested in
performance after selecting the highest output. A better approach is to use a
so-called softmax function at the output, which converts the output values into
a set of probabilities, and minimise the cross-entropy with the target proba-
bilities (again, 1 for the correct class and zero for all others). Details on this
strategy can be found in e.g. [70]. In practice, the conversion of the output

74 Chapter III. Backpropagation with photonics

yi[k] into probabilities is performed using the softmax function

pi[k] =
exp(yi[k])∑
l exp(yi[l])

.

The cost function is the cross-entropy

C = −
L∑

i=1

∑

k

ti[k] ln pi[k],

where we denote the target outputs as ti[k]. It can then be shown that

dC

dyi[k]
= pi[k]− ti[k],

(and again zero if i /∈ {1, · · · , L}). This means that the error we have at the
output takes on virtually the same form as before, only this time there is the
intermediary step of the softmax function. Gradients for the output masks are
almost the same as before, except for equations III.23 and III.24 where we use
pi[k] − ti[k] instead of yi[k] − y∗i [k]. As far as the rest of the BP algorithm
goes, we now simply have to mask these “output errors” to produce ē(q), and
the rest plays out exactly as before.

For the RC approach, optimising the parameters (input scaling, bias scaling
and feedback gain) on the hardware would be too costly in terms of time.
Therefore we optimised them on a PC using a simulation of the physical setup.
Once we decided on the parameters, we ran all the TIMIT data through the
physical setup and recorded all the responses. Next we trained output weights,
again using gradient descent with the above cross-entropy loss.

We obtained a classification error rate of 34.8% for fully trained systems,
vs. 42.9% for the standard RC approach. These results are only slightly worse
than similar experimental results presented in [81], (33.2% for fully trained
systems and 40.5% for the RC approach) where 600 virtual nodes were used as
opposed as 200 in our case.

III.5.4. Gradient descent. We used stochastic gradient descent to train
the masks. For each iteration, we drew a 100 time step sequence to deter-
mine a gradient. This sequence was either generated on the fly (in the case of
VARDEL5 and NARMA10), or drawn randomly from a training set (TIMIT).
Note that as the BP equation is linear, we are in principle free to rescale ē as
we wish. In practice, in order to keep MZM2 in the linear regime, we scaled the
input error signal ē(t) by dividing it by its standard deviation and multiplying
with a factor 0.1. The learning rate η we choose equal to 0.25 at the start of the
training process, after which it drops linearly to zero throughout the course of
the experiment. On top of that we use Nesterov momentum with a momentum
factor 0.9 to speed up convergence [87, 88]. Nesterov momentum is a heuristic
method that finds widespread use in speeding up convergence of stochastic gra-
dient descent. The idea of momentum in gradient descent is to give parameter
updates a certain inertia, meaning that previous parameter updates still count
in the current one, which helps with overcoming local minima and speeds up
convergence. Nesterov momentum is a simple variation of this principle, where

III.5. Results 75

the algorithm measures the gradient one update step ahead in order to change
its momentum “ahead of time”.

III.5.5. Robustness. Our work shows that physical BP is robust against
imperfections of the physical setup, as illustrated by the following imperfections
we were confronted with.

The first imperfection was the high-pass filtering operation of the amplifiers
used to drive the MZMs, with a cut-off frequency of 20 kHz. While the high-
pass filter is a desirable property (to get rid of voltage bias), this corresponds
to a typical time scale of about 8 µs, which is about the same as the loop delay
and therefore not negligible. The current experimental setup does not take this
filtering operation into account explicitly.

The second imperfection was an imbalance in losses between the two fibres
connecting MZM1 with MZM2.

The third imperfection was that the system was not perfectly linear during
the backwards pass, since MZM2 is never a perfectly linear system. There is
also an important trade-off here. One can reduce the residual nonlinearity by
reducing the amplitude of the incoming voltage signal that represents ē(t). But
in turn this also reduces the signal-to-noise ratio of the measurement during
the backpropagation phase, such that one needs to find a good balance between
these two effects.

All these effects are imperfections inherent to the physically implemented
backpropagation phase, but both in simulation and in the actual experiments
we found that they only had a very minor impact on the training process and
the overall performance.

One parameter that turned out to be crucial was the bias voltage of MZM2.
The reason is that even a small offset from an effectively zero level introduces a
systematic error in the backpropagation process, such that the measured signal
(denoted as ec(t) to indicate that it is corrupted) becomes

ec(t−D) = J(t)(ec(t) + ē(t) + ẽ),

with ẽ a constant offset caused by an incorrectly set voltage bias of MZM2. It
turned out that, in the experiments, keeping this bias level effectively equal to
zero was difficult: very slight drifts on the effective working point of the MZM
occurred over the course of minutes/hours. Luckily, the backpropagation is a
linear process. This means that we can recover e(t) by performing a second
measurement right after measuring ec(t)

er(t−D) = J(t)(er(t) + ẽ),

and

e(t) = ec(t)− er(t).
In other words we simply need to perform two measurements after each other,
where in the second one we send a “zero” input error, and subtract this from
the first measurement in order to remove the influence of the offset of MZM2.
This turned out to solve the problem.

76 Chapter III. Backpropagation with photonics

III.6. Challenges and solutions

We had to face two big challenges while working on this project. The
first one is FPGA-related and it had an immense impact on the speed of the
experiment. The first design I created used the archaic UART interface to
transfer data to and from the computer, as in my first experiment (see Ch.
II), with a maximum transfer rate of 128 kbit/s. In this case, one run of the
experiment lasted 16 seconds, with more than 99% of the time spent on data
transfer.

Obviously, a faster connection was required. Two options were available at
this stage: Gbit Ethernet or PCI Express, both widely used in modern com-
puters. Since the latter is more complex to implement on hardware level, I
picked the Ethernet. Although I did manage to make it work in a reasonable
time, this was a poor choice on the long run. Ethernet, by its definition, is not
suitable for connections between a PC and its periferals. In short, Ethernet
is an intrinsically unreliable protocol – the hardware is designed to drop data
(sent by chunks called packets or frames) when it is not capable of processing
it in time. Therefore, upper-layer protocols, such as TCP/IP, incorporate ac-
knowledgement of received data and requests to retransmit packets that did
not make it to the destination. These protocols are usually implemented in
software, and designing them in hardware would have taken a lot of time. So
I simply skipped them, and hoped for the best.

A good proof of Ethernet’s unreliability was found during the first full-
length experiments. We discovered that, sometimes, the data received from
the FPGA was wrong. The error, spotted after a couple of long and desperate
nights, was hard to believe in at first: some packets did not arrive in the
same order to the computer as they were sent, meaning that the flow of time-
multiplexed data, transmitted by the FPGA, was broken. And this is actually
normal for an Ethernet card to switch the order of packets, whenever it chooses
to, for. . . reasons.

A few problems were encountered on the way to a well-working two-way
Ethernet connection. In principle, Xilinx offers ready-to-use plug-and-play
blocks, called IP cores, that can handle various features of the FPGA. One
such core provides the Ethernet connectivity. Sadly, it simply did not work.
The source files were missing important pin connections, including the clock
signal to the Ethernet PHY chip. Fortunately, after hours of Googling, I found
the solution in Satnam Singh’s MSDN Blog [94]. Still, the Xilinx IP was too
complex for my needs, so I decided to rip off all that was not necessary and
only leave the basic interface with Ethernet PHY chip.

Sending data from the computer to the FPGA was easy, as the latter was
programmed to disregard addresses and port numbers, and only read the data.
That is, the computer could send the data to a random address, it would still
be received by the FPGA. The other way around was different, as the computer
and Matlab ruthlessly filter out all packets that are not explicitely addressed to
them. That means that the FPGA had to set the headers just right. Moreover,
IP protocol requires a valid checksum, that is, a cyclic redundancy check, ap-
pended at the end of the packet, so that the receiving hardware can verify that
the data is not corrupted. If the checksum does not pass the test, the packet

III.7. Conclusion 77

is dropped. That is, the FPGA design had to compute the CRC-32 for each
data frame. All these problems were resolved, but required a certain effort.

At 1 Gbit/s Ethernet data transfer rate, sending the acquired signal from
the FPGA to the computer requires a fraction of a millisecond. However,
Matlab needs a minimal 0.6 s delay to process this data. I could not find the
reasons for such slow buffering, and we had no choice but to live with it. But
it is important to note that, should this Matlab problem be resolved, each
iteration of the experiment could, in principle, run several orders of magnitude
faster.

The second big challenge, encountered and solved by Michiel Hermans, was
already described in Sec. III.5.5. At first, the error rate, similar to the one
plotted in Fig. III.8, did not want to decrease below 0.2. We fought with the
settings of the intensity modulator for a couple of days, trying to make it as
symmetric as possible, untill Michiel Hermans came up with a much better
solution. Adding a third “blanc” pass increased the experiment runtime by
33%, but allowed us to achieve much better results with the setup.

III.7. Conclusion

Our work confirms the results anticipated in [80, 81]: the performance
of delay-based reservoir computers can be drastically improved by optimising
both input and output masks. Furthermore, following the proposal of [85], we
showed that the underlying hardware is capable of running a large part of its
own optimisation process. We performed our demonstrations on a fast electro-
optical system (whose speed could be readily improved by several orders of
magnitude, see, e.g. [54]), and on tasks considered hard in the RC community.
Importantly, our work has revealed that the BP algorithm is robust against
various experimental imperfections, as the performance gains we obtained on
all three tasks were similar to those predicted by numerical simulations.

Although our experiment relies on the sine nonlinearity and its cosine de-
rivative, other nonlinear functions can also be successfully realised in hardware
with their derivatives. For instance, the so-called linear rectifier function, which
truncates the input signal below a certain threshold, is a popular activation
function in neural architectures [95]. Its derivative is a simple binary function
which can be easily implemented using an analogue switch, as in [85]. In [96]
it is shown how to implement a sigmoid nonlinearity and its derivative. And
in [49, 55] the nonlinearity is quadratic, and therefore the derivative, which is
linear, should also be easy to implement. Furthermore, the BP algorithm is ro-
bust against imperfect implementation of the derivative, as shown here in Sec.
III.5.5 and also in the Supplementary Material of [85] (see Supplementary Note
4). Therefore we expect that physical implementation of the BP algorithm will
be possible in a wide variety of physical systems.

Our setup still requires some slow digital processing to perform the mask-
ing and to compute gradients from the recorded signals. Performing masking
operations in analogue hardware, however, is actively being researched: several
readout schemes have been proposed [73, 97, 98] and a few have been realised
experimentally [73, 97]. Moreover, Ch. V of this thesis presents a numerical
experiment demonstrating how to improve analogue readout layers with online

78 Chapter III. Backpropagation with photonics

learning. These approaches could be used to speed up the present setup. An-
other limitation is the large amount of data transfered between the FPGA and
the computer. Implementing the full training algorithm on the FPGA would
drastically increase the speed of the experiment.

Nowadays, there is an increased interest in unconventional, neuromorphic
computing, as this could allow for energy efficient computing, and may provide
a solution to the predicted end of Moore’s law [64]. These novel approaches to
computing will likely be made with components that exhibit strong element-
to-element variability, or whose characteristics evolve slowly with time. Self-
learning hardware may be the solution that enables these systems to fulfil their
potential. The results in [85] and in this work therefore constitute an important
step towards this goal.

Contrary to my first experiment, this project was completed in a couple
of months. Sadly, we could not develop this research direction any further as
Michiel Hermans left the team shortly after our paper [2] was written.

CHAPTER IV

Photonic reservoir computer with output
feedback

This chapter presents, arguably, the most important experiment of my
PhD. Not because I worked on it for a long time, but because it brought the
most interesting, novel and even unexpected results.

Somewhat similar to Ch. III, this project – as it is – was not part of my
thesis. The original plan was to build an analogue output layer (see Ch. V)
and then feed the output signal back into the reservoir and see what it does.
But how often do things go as planned, if ever? After the very good results
obtained in the online training project (see Ch. II), we decided to shortcut
the analogue part of the experiment, for two reasons. First, an analogue layer
would be more complex and we had no guarantee it would work sufficiently well.
It is one thing to be able to compute the output of the system, but another to
obtain a high-quality output signal that could be fed back as input. Second,
analogue layers have already been researched [73, 97, 98], while nobody has
ever reported an experimental reservoir computer with output feedback so far,
neither digital, nor analogue. Therefore, the experimental demonstration of the
novel features of such a system seemed a much more attractive and innovative
idea.

The content of this chapter is based on our paper [5]. It is relatively long
– we tested the setup on four new tasks (not yet considered by our lab) and
performed an in-depth study of the reservoir output properties – and so is this
chapter. Some additional results from our paper [3] are also included.

IV.1. Introduction

Forecasting is one of the central problems in science: how can we predict
the future from the past? Over the past few decades, artificial neural networks
have gained a significant popularity in the time series forecasting community.
Compared to previously employed statistics-based techniques, they are both
data driven and non-linear, more flexible and do not require an explicit model
of the underlying process. A review of artificial neural networks models for
time series forecasting can be found in [99]. Reservoir computing can be di-
rectly applied to short-term prediction tasks, that focus on generating a few
future timesteps. As for long-horizon forecasting, that involves predicting the
time series for as long as possible, it is possible with a small modification of
the architecture, namely by feeding the RC output signal back into the reser-
voir. This additional feedback significantly enriches the internal dynamics of
the system, enabling it to generate time series autonomously, that is without

79

80 Chapter IV. Photonic reservoir computer with output feedback

receiving any input signal. With this modification, reservoir computing can
be used for long-term prediction of chaotic series [9, 29, 100–102]. In fact,
this approach holds, to the best of our knowledge, the record for such chaotic
time series prediction [29, 102]. A reservoir computer with output feedback
can also achieve the easier task of generating periodic signals [103–105], and of
producing a tunable frequency [10, 106, 107].

The aim of the present work is to explore these novel applications exper-
imentally. Indeed, they have been widely studied numerically, but no experi-
mental implementation has been reported so far. There are multiple motiva-
tions for this investigation. First of all, reservoir computing is a biologically
inspired algorithm. Indeed one of the main motivations of the seminal paper
[30] was to propose how microcircuits in the neocortex could process informa-
tion. More recently it has been realised that the cerebellum has a structure
very similar to that of a reservoir computer [108, 109]. Generating time se-
ries with specific attributes is an important property of biological neural and
chemical circuits (for e.g. movement control, biological rhythms, etc). Are bi-
ological circuits similar to reservoir computers used to generate trainable time
series? Investigating this process experimentally can shed light on this tanta-
lising question, for instance by clarifying which kinds of time series, and what
training processes are robust to experimental imperfections.

Second, generation of time series with specific properties is an important
task in signal generation and processing. Given the possibility that photonic
reservoir computing could carry out ultra-fast and low energy optical signal
processing, this is an important area to explore, again with the aim of under-
standing which tasks are robust to experimental imperfections.

Finally, this investigation raises a new fundamental question in nonlinear
dynamics: given a system that emulates a known chaotic time series, how does
one quantify the quality of the emulation. Answering this question becomes
vital in case of experimental implementations, as physical systems are affected
by noise, and thus cannot output anything better than an approximate, noisy
emulation of the target chaotic time series. The comparison techniques previ-
ously used in numerical investigations fail in such situations, and one needs to
develop new evaluation metrics.

Experimental implementation of these ideas requires, in principle, a fast
readout layer capable of generating and feeding back the output signal in real-
time. Several analogue solutions have been under investigation recently [73,
97, 98], but none are as yet capable of realising this application. In fact, to
successfully train an analogue readout layer with offline learning methods, used
in most experimental RC setups up to now, a very precise model of the readout
setup is required, which is hardly achievable experimentally, as shown in [73]:
it is virtually impossible to characterise each hardware component of the setup
with sufficient level of accuracy. The reason for this sensitivity is that the
output is a weighted sum with positive and negative coefficients of the internal
states of the reservoir. Therefore errors in the coefficients quickly build up and
become comparable to the value of the desired output. For this reason, we
chose the approach of a fast real-time digital readout layer implemented on a
FPGA chip. The use of high-speed dedicated electronics makes it possible to

IV.2. Reservoir computing with output feedback 81

compute the output signal in real time, as has been demonstrated in Ch. II,
and feed it back into the reservoir. In order to keep the experiment simple,
we used as reservoir the opto-electronic delay system introduced in [48, 51, 52]
and discussed in Sec. I.2.4, that has shown state-of-the-art results on several
benchmark tasks and is fairly easy to operate.

Our experiments show that the system successfully solves two periodic
time series generation tasks: frequency and random pattern generation, that
have been previously investigated numerically [10, 104, 106]. The first task
allows to demonstrate different timescales within the neural network, and the
second can be used as a memory metric. The photonic computer manages to
generate both sine waves and random patterns with high stability (verified on
the timescale of several days). Furthermore, we apply the RC to emulation
of two chaotic attractors: Mackey-Glass [110] and Lorenz [111] systems. In
the literature, the performance on these tasks is quantified by computing the
prediction horizon, i.e. the duration for which the RC can accurately follow
a given trajectory on the chaotic attractor [29]. However, this method fails
in the presence of a relatively high level of experimental noise, with a Signal-
to-Noise Ratio (SNR) of roughly 40 dB, as will be discussed in Sec. IV.7.1.
This noise was not problematic in previous experiments using the same opto-
electronic reservoir [1, 48], but turns out to be intolerable for a system with
output feedback. This raises the question of how to evaluate a system that
emulates a known chaotic time series in the presence of noise. In this study, we
introduce several new approaches, such as frequency spectrum comparison and
randomness tests. These approaches are based on well-known signal analysis
techniques, but they are employed for the first time here for the evaluation
of a chaotic signal generated by a reservoir computer. Our results show that,
although the RC struggles at following the target trajectory on the chaotic
attractor, its output accurately reproduces the core characteristics of the target
time series.

IV.2. Reservoir computing with output feedback

The introduction of the output feedback requires a minor change of nota-
tions, used in Sec. I.1.3. Since the RC can now receive two different signals
as input, we shall denote I(n) the input signal, which can be either the ex-
ternal input signal I(n) = u(n), or its own output, delayed by one timestep
I(n) = y(n− 1).

The reservoir computer is operated in two stages, depicted in Fig. IV.1: a
training phase and an autonomous run. During the training phase, the reservoir
computer is driven by a time-multiplexed teacher signal I(n) = u(n), and the
resulting states of the internal variables xi(n) are recorded. The teacher signal
depends on the task under investigation (which will be introduced in Sec. IV.3).
The system is trained to predict the next value of the teacher time series from
the current one, that is, the readout weights wi are optimised so as to get as
close as possible to y(n) = u(n + 1). Then, the reservoir input is switched
from the teacher sequence to the reservoir output signal I(n) = y(n− 1), and
the system is left running autonomously. The reservoir output y(n) is used to
evaluate the performance of the experiment.

82 Chapter IV. Photonic reservoir computer with output feedback

x0

x1 x2

x5 x4

x3x0

x1 x2

x5 x4

x3

Miu(n)
∑

wixi(n)

Teacher input
signal u(n)

Output
signal y(n)

Input layer Reservoir Output layer

(a)

x0

x1 x2

x5 x4

x3x0

x1 x2

x5 x4

x3

Miy(n− 1)
∑

wixi(n)

Delayed output
y(n− 1)

Output
signal y(n)

Input layer Reservoir Output layer

(b)

Figure IV.1. Schematic representation of the training stage
(a) and the autonomous run (b) of our reservoir computer
(here with N = 6 nodes). During the training phase, the reser-
voir is driven by a teacher input signal u(n), and the readout
weights wi are optimised for the output to be as close as possi-
ble to u(n+1). During the autonomous run, the teacher signal
is switched off and the reservoir is driven by its own output
signal. The readout weights wi are kept constant and the per-
formance of the system is measured in terms of how long or
how well it can generate the desired output.

IV.3. Time series generation tasks

Feeding the output back into the reservoir allows the computer to au-
tonomously (i.e. without any external input) generate time series. We tested
the capacity of the experiment to generate both periodic and chaotic signals,
with two tasks in each category.

IV.3.1. Frequency generation. Frequency generation is the simplest
time series generation task considered here. The system is trained to generate
a sine wave given by

u(n) = sin (νn) , (IV.1)

where ν is a real-valued relative frequency. The physical frequency f of the
sine wave depends on the experimental roundtrip time T (see Sec. I.2.4) as
follows

f =
ν

2πT
. (IV.2)

IV.3. Time series generation tasks 83

This task allows to measure the bandwidth of the system and investigate dif-
ferent timescales within the neural network.

IV.3.2. Random pattern generation. Random pattern generation is
a natural step forward from the frequency generation task to a more complex
problem – instead of a regularly-shaped continuous function, the system is
trained to generate an arbitrarily-shaped discontinuous function (that remains
periodic, though). Specifically, a pattern is a short sequence of L randomly
chosen real numbers (here within the interval [−0.5, 0.5]) that is repeated peri-
odically to form an infinite time series [9]. Similarly to the physical frequency
in Sec. IV.3.1, the physical period of the pattern is given by τpattern = L · T .
The aim is to obtain a stable pattern generator, that reproduces precisely the
pattern and does not deviate to another periodic behaviour. To evaluate the
performance of the generator, we compute the MSE between the reservoir out-
put signal and the target pattern signal during the training phase and the
autonomous run, with a maximal threshold set to 10−3. This value is some-
what arbitrary, and one could have picked a different threshold. As will be
illustrated in Figs. IV.12 and IV.16 in Sec. IV.7, the 10−3 level corresponds
to the point where the RC strongly deviates from the starting trajectory on
the chaotic attractor. For consistency, we have used this threshold in all our
experiments, for all tasks. If the error does not grow above the threshold dur-
ing the autonomous run, the system is considered to accurately generate the
target pattern. We also tested the long-term stability on several patterns by
running the system for several hours, as will be described in Sec. IV.7.

IV.3.3. Mackey-Glass chaotic series prediction. The Mackey-Glass
delay differential equation

dx

dt
= β

x(t− τ)

1 + xn(t− τ)
− γx, (IV.3)

with τ , γ, β, n > 0 was introduced to illustrate the appearance of complex
dynamics in physiological control systems [110]. To obtain chaotic dynamics,
we set the parameters as in [29]: β = 0.2, γ = 0.1, τ = 17 and n = 10. With
these characteristics, the Kaplan-Yorke dimension of the chaotic attractor is
2.1 [112].

The equation was solved using the Runge-Kutta 4 method with a stepsize
of 1.0. To avoid unnecessary computations and save time, both in simulations
and experiments, we pre-generated a sequence of 106 samples that we used for
all numerical and experimental investigations.

During autonomous run, without the correct teacher signal, the system
slowly deviates from the desired trajectory. The MSE is used to evaluate both
the training phase and the autonomous run. We then compute the number of
correct prediction steps, i.e. steps for which the MSE stays below the 10−3

threshold (see Sec. IV.3.2), during the autonomous run and use this figure to
evaluate the performance of the system.

84 Chapter IV. Photonic reservoir computer with output feedback

IV.3.4. Lorenz chaotic series prediction. The Lorenz equations, a
system of three ordinary differential equations

dx

dt
= σ (y − x) , (IV.4a)

dy

dt
= −xz + rx− y, (IV.4b)

dz

dt
= xy − bz, (IV.4c)

with σ, r, b > 0, was introduced as a simple model for atmospheric convection
[111]. The system exhibits chaotic behaviour for σ = 10, b = 8/3 and r = 28
[113], that we used in this study. This yields a chaotic attractor with the
highest Lyapunov exponent of λ = 0.906 [29]. The system was solved using
Matlab’s ode45 solver and a stepsize of 0.02, as in [29]. We used all computed
points, meaning that one timestep of the reservoir computer corresponds to
a step of 0.02 in the Lorenz time scale. To avoid unnecessary computations
and save time we pre-generated a sequence of 105 samples that we used for
all numerical and experimental investigations. Following [29], we used the x-
coordinate trajectory for training and testing, that we scaled by a factor of
0.01.

IV.4. Experimental setup

Our experimental setup, schematised in Fig. IV.2, consists of two main
components: the opto-electronic reservoir and the FPGA board. The structure
and operation of the opto-electronic reservoir have been discussed in Sec. I.2.4.
In this section we will focus on a few particular aspects of this experiment. The
functioning of the FPGA will be presented in Sec. IV.5.

As the neurons are time-multiplexed, the maximal reservoir size depends
on the delay from the fibre spool (Spool) and the sampling frequency of the
Analogue-to-Digital converter (ADC). While increasing the latter involves rel-
atively high costs, one can lengthen the delay line fairly easily. In this work,
we used two spools of single mode fibre of lengths 1.6 km and 10 km, approx-
imately. The first produced a delay of 7.93 µs and allowed to fit N = 100
neurons into the reservoir. The second spool was used to increase the delay up
to 49.2 µs and the reservoir size up to N = 600. In both cases, the reservoir
states were sampled at approximately 200 MHz (the precise frequency, given
in Sec. IV.5, depends on the delay loop) and each state was averaged over 16
samples in order to decrease the noise and remove the transients induced by
the finite bandwidth of the Digital-to-Analogue converter (DAC).

The experiment is operated as follows. First, the input mask Mi and the
teacher signal u(n), generated in Matlab, are uploaded on the FPGA board,
which then generates the masked input signalMi×u(n), sent to the reservoir via
the DAC. The resulting reservoir states xi(n) are sampled and averaged by the
FPGA, and then sent to the computer in real time. That is, the design allows to
capture the reservoir states for any desired time interval. After training of the
reservoir, the optimal readout weights wi are uploaded on the board. Because
of the relatively long delay needed for the offline training, the reservoir needs

IV.4. Experimental setup 85

Opto-electronic reservoir

SLD

MZ
90/10

Att

Amp Comb

Pf

S
p
o
o
l

Pr

ML605FMC151

DAC

ADC

In

Mask

Out

MatlabClock

u(n)

Mi

OR

xi(n)

y(n)

Mi × [u(n) OR y(n− 1)]

xi(n)

wi

Mi

u(n)

Figure IV.2. Schematic representation of the experimental
setup. Optical and electronic components of the photonic
reservoir are shown in grey and black, respectively. It contains
an incoherent light source (SLD), a Mach-Zehnder intensity
modulator (MZ), a 90/10 beam splitter, an optical attenua-
tor (Att), a fibre spool (Spool), two photodiodes (Pr and Pf),
a resistive combiner (Comb) and an amplifier (Amp). The
FPGA board implements the readout layer and computes the
output signal y(n) in real time. It also generates the analogue
input signal I(n) and acquires the reservoir states xi(n). The
computer, running Matlab, controls the devices, performs the
offline training and uploads all the data (u(n), wi and Mi) on
the FPGA.

to be reinitialised in order to restore the desired dynamics of the internal states
prior to running it autonomously. For this reason, we drive the system with
an initialisation sequence of 128 timesteps (as illustrated in Fig. IV.9), before
coupling the output signal with the input and letting the reservoir computer
run autonomously. In this stage, the FPGA computes the output signal y(n) in
real time, then creates a masked version Mi×y(n) and sends it to the reservoir
via the DAC.

As the neurons are processed sequentially, the output signal y(n) can only
be computed in time to update the 24-th neuron x23(n+1). For this reason, we
set the first 23 elements of the input mask Mi to zero. That way, all neurons
contribute to solving the task, but the first 23 do not “see” the input signal
I(n). Note that this reflects an aspect that is inherent to any experimental
implementation of time-multiplexed reservoir computing with feedback. In
principle, the output y(n) has to be computed after the acquisition of the
last neuron xN−1(n) at timestep n, but before the first neuron x0(n + 1) of
the following timestep. However, in time-multiplexed RC implementations,
these states are consecutive, and the experiment cannot be paused to let y(n)
be computed. There may therefore be a delay (whose duration depends on
the hardware used) before y(n) is computed and can be fed back into the
reservoir. In the present experiment, this delay is approximately 115 ns, which
corresponds to 23 neuron durations. This delay is mainly due to propagation
times between the intensity modulator (MZ) and the ADC in one hand, and
the DAC and the resistive combiner on the other. The FPGA computation

86 Chapter IV. Photonic reservoir computer with output feedback

Clock Gen

Experiment

xi(n)

Matlab

ML605FMC151

CLK expclk

ADC

DAC
Mi × I(n)

ETH

ethclk

fmc151

etherphy

exp2fpga

xi(n)

fpga2exp

etherctrl

bramRec

comprcout

y(n)

bram2ether

bramWts

wi

bramMsk

Mi

bramInp

u(n)
BRAMs

Figure IV.3. Simplified schematics of the FPGA design.
Modules (entities) are represented by rectangular boxes, on-
board electronic components are shown with rounded rectan-
gles. External hardware, such as the computer, running Mat-
lab, the opto-electronic reservoir and the external clock gen-
erator are shown in grey. The design is driven by two clocks:
the experimental clock expclk and the Ethernet clock ethclk.
Signals from these two clock domains are drawn in solid and
dashed lines, respectively.

time also plays a role here, but it does not exceed 20 ns. As we will see below
this delay has an impact on system performance.

IV.5. FPGA design

The same Xilinx ML605 evaluation board (see Sec. I.3.3) is used in this ex-
periment, paired with a 4DSP FMC151 daughtercard. The simplified schemat-
ics of the design is depicted in Fig. IV.3. Rectangular boxes represent mod-
ules (entities), and rounded rectangles stand for electronic components on the
ML605 board, namely the FMC151 daughtercard and the onboard Marvell
Alaska PHY device (88E1111) for Ethernet communications (ETH).

The operation of the FPGA is controlled from the computer, running Mat-
lab, via a simple custom protocol through a Gbit Ethernet connection. Data
and various commands, such as memory read/write, or state change, are en-
capsulated into standard UDP packages. The etherphy module interfaces the
FPGA design with the Marvell Ethernet PHY chip, and the etherctrl module
receives the UDP packets (frames) and decodes the commands and the data.
It also creates the frames for sending data from FPGA to the computer.

Blocks of Random-Access Memory (BRAM) are used to store data, such as
teacher inputs u(n), input masks Mi and readout weights wi, that are generated
on the computer and uploaded on the FPGA. Each type of data is assigned a
specific module, since they vary in size (e.g. 600 values for the input mask and
up to 3000 for the teacher signal) and resolution, as will be explained below.
The bramRec is a buffer-like module, designed to transfer the signal recorded
from the experiment directly to the computer through Ethernet, without per-
manently storing it in memory. It consists of two blocks of RAM of 2048 bytes
each, that are used as follows: while the recorded signal is written into the first
block, bram2ether reads the contents of the second, that is then encapsulated

IV.5. FPGA design 87

into four UDP frames sent to the computer. When the first block is full, the
blocks are switched and the process continues.

The FMC151 daughtercard is interfaced with the rest of the design through
the fmc151 module, that outputs two 14-bit signals from the ADCs and receives
two 16-bit signals from the DACs. The FMC151 card is also used to deliver a
clock signal from an external clock generator, that produces a high-precision
signal, allowing to synchronise the FPGA with the delay loop of the experimen-
tal setup. This clock signal was generated by the Hewlett Packard 8648A signal
generator. As our experiment has two delay loops (see Sec. IV.4), these need
to be precisely synchronised. To this end, we fine-tuned the clock frequency so
as to fit 16 samples per neuron into the roundtrip time T . Specifically, for the
large spool with N = 600 reservoir states, we sampled at 195.4472 MHz, while
for the small spool with N = 100 neurons we sampled at 203.7831 MHz.

The fpga2exp module controls the signal sent to the opto-electronic reser-
voir through the DAC. During the training phase, it generates the masked input
signal Mi × u(n) by multiplying the inputs u(n) by the mask Mi, both being
read from the BRAMs. During the autonomous run, it receives the reservoir
output signal y(n), computed by the comprcout module, masks it and transfers
to the DAC.

The neuron states xi(n) from the photonic reservoir are sampled and aver-
aged by the exp2fpga module. During the training phase, these are buffered in
bramRec, then processed by the bram2ether module and sent to the computer.
During the autonomous run, the reservoir states are used by the comprcout, to-
gether with the readout weights wi, read from the bramWts memory, to compute
the reservoir output y(n). It is then injected back into the reservoir through
the fpga2exp, and also transferred to the computer through the bramRec and
bram2ether modules.

The design is driven by two clocks: the experimental clock expclk (around
200 MHz, depending on the loop delay T , see above) that operates data ac-
quisition and generation modules and allows to synchronise the FPGA with
the experiment, and the 125 MHz Ethernet clock ethclk. Both clocks have to
be managed properly within the design, as several signals, such as inputs or
weights, coexist in both clock domains. That is, data to BRAMs comes from
the Ethernet modules, and is thus driven by the ethclk clock. On the other
hand, this same data is used by the fpga2exp module, and has to appear in
the expclk clock domain. To this end, we exploit the dual-port capability of
Xilinx block RAMs. That is, data is written into memory blocks through port
A at clock ethclk and read from port B at clock expclk (and vice versa for the
bramRec). This allows for smooth transition of data between clock domains.
The two clock domains are depicted in Fig. IV.3 as follows: signals running at
expclk are shown in solid lines, and those clocking at ethclk are drawn with
dashed lines.

The arithmetic operations computed by the FPGA are performed on real
numbers. However, the chip is a logic device, designed to operate bits. The
performance of the design thus highly depends on the bit-representation of real
numbers, i.e. the precision. The main constraint comes from the ADC and
DAC, limited to 14 and 16 bits, respectively. Numerical simulations, reported in

88 Chapter IV. Photonic reservoir computer with output feedback

[9], show that such precision is sufficient for all tasks studied in this work. It was
also shown in [9] that the precision of the readout weights wi has a significant
impact on the performance of the system. For this reason we designed the
experiment for optimal utilisation of the resolution available. The reservoir
states were tuned to lie within a]−1,+1[interval. They are thus represented as
16-bit integers, with 1 bit for the sign and 15 bits for the decimal part. Another
limitation comes from DSP48E slices, used to multiply the states xi(n) by the
readout weights wi. These blocks are designed to multiply a 25-bit integer by
a 18-bit integer. To meet these requirements, we also keep the readout weights
wi within the]−1, 1[interval and represent them as 25-bit integers, with 1 sign
bit and 24 decimal bits. To ensure that wi ∈]− 1, 1[, we amplify the reservoir
states digitally inside the FPGA. That is, the xi(n) are multiplied by 8 after
acquisition, prior to computing the output signal y(n).

IV.6. Numerical simulations

In addition to the physical experiments, we investigated the proposed setup
in numerical simulations, to have a point of comparison and identify possible
malfunctions. To this end, we developed three models that simulate the exper-
iment to different degrees of accuracy. Our custom Matlab scripts are based
on [9, 48].

Idealised model: It incorporates the core characteristics of our reservoir com-
puter, i.e. the ring-like architecture, the sine nonlinearity and the
linear readout layer (as described by equations I.5 and I.6), disre-
garding all experimental considerations. We use this model to define
the maximal performance achievable in each configuration.

Noiseless experimental model: This model emulates the most influential
features of the experimental setup, such as the high-pass filter of the
amplifier, the finite resolution of the ADC and DAC, and precise input
and feedback gains. This model allows to cross-check the experimental
results and to easily identify the problematic points.

Noisy experimental model: Contrary to the noiseless numerical models in-
troduced above, our experimental implementation is noisy, which, as
will be explained below, has a significant impact on performance. In
order to compare our experimental results to a more realistic model,
we estimated the level of noise present in the experimental system
(see Sec. IV.7.1), and incorporated this noise into the noisy version
of the experimental model.

IV.7. Results

In this section we present the experimental results, compare them to nu-
merical simulations and discuss the performance of the reservoir computer on
each task introduced in Sec. IV.3.

The two periodic signal generation tasks were solved using a small reservoir
with N = 100 and a fibre spool of approximately 1.6 km. The chaotic signal
generation tasks, being more complex, required a large reservoir of N = 600
for decent results, that we fit in a delay line of roughly 10 km.

IV.7. Results 89

IV.7.1. Noisy reservoir. For most tasks studied here, we found the ex-
perimental noise to be the major source of performance degradation in com-
parison to numerical investigations. In fact, previously reported simulations
[9] considered an ideal noiseless reservoir, while our experiment is noisy. This
noise can come from the active and even passive components of the setup: the
amplifier, which has a relatively high gain and is therefore very sensitive to
small parasitic signals (e.g. from the power source), the DAC, the photodiodes
and the optical attenuator (shot noise). In-depth experimental investigations
have shown that, in fact, each component contributes more or less equally to
the overall noise level. Thus, it cannot be reduced by replacing one “faulty”
component. Neither can it be averaged out, as the output value has to be
computed at each timestep. This noise was found to have a significant impact
on the results, as will be shown in the following sections. For this reason we
estimated the level of noise present in the experimental system and incorpo-
rated it to the numerical models. This allows us to “switch off” the noise in
simulations, which is impossible experimentally.

Fig. IV.4 shows numerical and experimental reservoir states of a 100-
neuron reservoir, as received by the readout photodiode. That is, the curves
depict the time-multiplexed neurons: each point represents a reservoir state
x0...99(n) at times n = 1 and n = 2. The system does not receive any input
signal I(n) = 0. The experimental signal is plotted with a solid grey line.
We use it to compute the experimental noise level by taking the standard
deviation of the signal, which gives 2×10−3. We then employed this noise level
in the noisy experimental model to compare experimental results to numerical
simulations. The dotted black curve in Fig. IV.4 shows the response of the
noisy experimental model, with the same amount of Gaussian noise (standard
deviation of 2.0× 10−3) as in the experiment. The choice of a Gaussian noise
distribution was validated by experimental measurements.

The level of the experimental noise can also be characterised by the Signal-
to-Noise Ratio (SNR), defined as [114]

SNR = 10 log10

(
RMS2

signal

RMS2
noise

)
,

where RMS is the Root Mean Square value, given by

RMS(xi) =

√√√√ 1

N

N∑

i=1

x2
i .

We measured RMSsignal = 0.2468 and RMSnoise = 0.0023, so the SNR is equal
to approximately 40 dB in this case. Note that this figure is given as an
indicator of order of magnitude only as the RMS of the reservoir states depends
on the gain parameters (α and β in Eqs. I.5) and varies from one experiment
to another.

IV.7.2. Frequency generation. We found the frequency generation task
to be the only one not affected by noise. That is, our experimental results
matched accurately the numerical predictions reported in [10]. Concretely, we
expected a bandwidth of ν ∈ [0.06, π] with a 100-neuron reservoir. The upper

90 Chapter IV. Photonic reservoir computer with output feedback

−0.005

0

0.005

0.01

x0(1) x50(1) x0(2) x50(2) x99(2)

N
o
is
e
a
m
p
li
tu
d
e
(a
rb
.
u
n
it
s)

Time-multiplexed reservoir states xi(n)

Experiment
Simulation with noise

Figure IV.4. Illustration of the noise inside the experimental
reservoir. Experimental (solid grey line) and numerical (dotted
black curve) reservoir states xi(n) are shown in the case when
the input signal is null I(n) = 0, scaled so that in normal
experimental conditions (non-zero input) they would lie in a
[−1, 1] interval. Although the input signal is null I(n) = 0,
the actual neurons are non-zero because of noise. Numerical
noise was generated with a Gaussian random distribution with
standard deviation of 1× 10−3 so that to reproduce the noise
level of the experiment.

limit is a signal oscillating between −1 and 1 and is given by half of the sam-
pling rate of the system (the Nyquist frequency). The lower limit is caused by
the memory limitation of the reservoir. In fact, low-frequency oscillations cor-
respond to longer periods, and the neural network can no longer “remember” a
sufficiently long segment of the sine wave so as to keep generating a sinusoidal
output. These numerical results are confirmed experimentally here.

We tested our setup on frequencies ν ranging from 0.01 to π, and found that
frequencies within [0.1, π] are generate accurately with any random input mask.
Lower frequencies between 0.01 and 0.1, however, were produced properly with
some random masks, but not all. For this reason, we investigated the [0.01, 0.1]
interval more precisely, since this is where the lower limit of the bandwidth
lies. For each frequency, we ran the experiment 10 times for 104 timesteps with
different random input masks and counted the number of times the reservoir
produced a sine wave with the desired frequency (MSE < 10−3, see Sec. IV.3.2)
and amplitude of 1. The results are shown in Fig. IV.5. Frequencies below
0.05 are not generated correctly with most input masks. At ν = 0.7 the output
is correct most of the times, and for ν = 0.08 and above the output sine wave is
correct with any input mask. The bandwidth of this experimental RC is thus
ν ∈ [0.08, π]. Given the roundtrip time T = 7.93 µs, this results in a physical
bandwidth of 1.5 – 63 kHz. Note that frequencies within this interval can be

IV.7. Results 91

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06 0.08 0.1

S
u
cc
es
s
ra
te

Relative frequency ν

Figure IV.5. Determination of the lower limit of the reser-
voir computer bandwidth. Frequencies above 0.08 are gener-
ated very well with any of the 10 random input mask, and are
therefore not shown on the plot. Frequencies below 0.05 fail
with most input masks. We thus consider 0.08 as the lower
limit of the bandwidth, but keep in mind that frequencies as
low as 0.02 could also be generated, but only with a carefully
picked input mask.

Table IV.1. Optimal RC parameters for frequency generation

α β Vφ
4.25− 5.25 dB 0.02− 0.5 0.9 V

generated with any random input mask Mi. Lower frequencies, down to 0.02,
could also be generated, but only with a suitable input mask.

Fig. IV.6 shows an example of the output signal during the autonomous
run. The system was trained for 1000 timesteps to generate a frequency of
ν = 0.1, and successfully accomplished this task with a MSE of 5.6× 10−9.

The above results were obtained by scanning the input gain β and the
feedback gain α to obtain the best results. It was found that β has little impact
on the system performance so long as it is chosen in the interval β ∈ [0.02, 0.5],
while the feedback gain α, on the contrary, has to lie within a narrow interval
of α ∈ [4.25, 5.25] dB (this corresponds approximately to α ∈ [0.85, 0.95]),
otherwise the reservoir yields very poor results. The DC bias Vφ of the MZ
modulator was set to 0.9 V to ensure a symmetric transfer function (φ = 0).
These parameters are summarised in Tab. IV.1.

IV.7.3. Random pattern generation. The random pattern generation
task is more complex than frequency generation and is slightly affected by the
experimental noise. The goal of this task is two-fold: “remember” a pattern

92 Chapter IV. Photonic reservoir computer with output feedback

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1000 1100 1200 1300

O
u
tp
u
t
si
g
n
a
ls

(a
rb
.
u
n
it
s)

Discrete time n

RC output
Target output

Figure IV.6. Example of an autonomous run output signal
for frequency generation task with ν = 0.1. The experiment
continues beyond the range of the figure.

of a given length L and be able to reproduce it for an unlimited duration.
We have shown numerically that a noiseless 51-neuron reservoir is capable of
generating patterns up to 51-element long [9]. This is a logical result, as,
intuitively, each neuron of the system is expected to “memorise” one value
of the pattern. Simulations of a noisy 100-neuron reservoir, similar to the
experimental setup, show that the maximum pattern length is reduced down
to L = 13. This means that noise significantly reduces the effective memory
of the system. In fact, the noisy neural network has to take into account the
slight deviations of the output from the target pattern so as to be able to follow
the pattern disregarding these imperfections. Fig. IV.7 illustrates this issue.
Periodic oscillations of one neuron of the reservoir are shown, with intended
focus on the upper values and an adequate magnification so as to see the small
variations. It shows that the neuron oscillates between similar, but not identical
values. This makes the generation task much more complex, and requires more
memory, hence the maximal pattern length is shorter.

We obtained similar results in the experiments. Fig. IV.8 shows the evo-
lution of the MSE measured during the first 1000 timesteps of 104-timestep
autonomous runs with different pattern lengths. Plotted curves are averaged
over 100 runs of the experiment, with 5 random input masks and 20 random
patterns for each length. The initial minimum (at n = 128) corresponds to the
initialisation of the reservoir (see Sec. IV.4), then the output is coupled back
and the system runs autonomously. Patterns with L = 12 or less are generated
very well and the error stays low. Patterns of length 13 show an increase in
MSE, but they are still generated reasonably well. For longer patterns, the
system deviates to a different periodic behaviour, and the error grows above
10−3.

IV.7. Results 93

0.1

0.11

0.12

0.13

0.14

0.15

0.16

1250 1300 1350 1400

R
es
er
v
o
ir

st
a
te

x
0
(n

)

Discrete time n

Figure IV.7. Example of behaviour of one neuron in a noisy
experimental reservoir. For clarity, the range of the Y axis
is limited to the area of interest. Because of noise, despite a
periodic input signal u(n), the reservoir state takes similar,
but not identical values.

10−4

10−3

10−2

10−1

0 200 400 600 800 1000 · · · 9000 9200 9400 9600 9800 10000

Autonomous run starts

· · · 10 · · ·
· · · 11 · · ·
· · · 12 · · ·

· · · 13 · · ·

· · · 14 · · ·
· · · 15 · · ·

· · · 16 · · ·

L

10

11

12

13

14

15

16

L

A
u
to
n
o
m
o
u
s
ru
n
M
S
E

Discrete time n

Figure IV.8. Evolution of MSE during experimental au-
tonomous generation of periodic random patterns of lengths
L = 10, . . . , 16 as function of discrete time n. The autonomous
run starts at n = 128, as indicated by the arrow. Pat-
terns shorter than 13 are reproduced with low MSE < 10−3,
while patterns longer than 14 are not generated correctly with
MSE > 10−3. In the latter cases, the reservoir dynamics re-
mains stable and periodic, but the output only remotely re-
sembles the target pattern.

Fig. IV.9 shows an example of the output signal during the autonomous
run. The system was trained for 1000 timesteps to generate a pattern of length
10. The reservoir computer successfully learned the desired pattern and the
output accurately matches the target signal. Fig. IV.10 illustrates a case with

94 Chapter IV. Photonic reservoir computer with output feedback

−0.6

−0.3

0

0.3

0.6

0.9

50 100 150

Autonomous run starts

O
u
tp
u
t
si
g
n
a
ls

(a
rb
.
u
n
it
s)

Discrete time n

Target output
RC output

Figure IV.9. Example of an output signal for random pat-
tern generation task, with a pattern of length 10. The reservoir
is first driven by the desired signal for 128 timesteps (see Sec.
IV.5), and then the input is connected to the output. Note
that in this example the reservoir output requires about 50
timesteps to match the driver signal. The autonomous run
continues beyond the scope of the figure.

Table IV.2. Optimal RC parameters for pattern generation

α β Vφ
4.25− 5.25 dB 0.02− 0.5 0.9 V

a longer patter (L = 14), that could not be learned by the system. As can
be seen from the plot, the RC captured the general shape of the pattern, but
cannot accurately generate individual points. The MSE of this run is 5.2×10−3,
which is above the acceptable 10−3 threshold.

We also tested the stability of the generator by running it for several hours
(∼ 109 timesteps) with random patterns of lengths 10, 11 and 12. The output
signal was visualised on a scope and remained stable and accurate through the
whole test.

The above results were obtained by scanning the input gain β and the
feedback gain α to obtain the best results. As for frequency generation, it
was found that β has little impact on the system performance so long as it is
chosen in the interval β ∈ [0.1, 1], while the feedback gain α, on the contrary,
has to lie within a narrow interval of α ∈ [4.25, 5.25] dB (this corresponds
approximately to α ∈ [0.85, 0.95]). The DC bias of the MZ modulator was
set to Vφ = 0.9 V to ensure a symmetric transfer function (φ = 0). These
parameters are summarised in Tab. IV.2.

IV.7.3.1. Numerical study of the impact of noise. Since the noise plays
such an important role, we performed a series of numerical experiments with

IV.7. Results 95

−0.6

−0.3

0

0.3

0.6

0.9

1950 1960 1970 1980 1990 2000

O
u
tp
u
t
si
g
n
a
ls

(a
rb
.
u
n
it
s)

Discrete time n

Target output
RC output

Figure IV.10. Example of an autonomous run output after
1950 timesteps, with a pattern of length L = 14. The RC
outputs a periodic signal that clearly does not match the target
pattern (MSE = 5.2× 10−3).

different levels of noise to find out to what extent it affects the performance
of the computer.1 We used the noisy model of the experiment with Gaussian
white noise with zero mean and standard deviations ranging from 10−2 to as
low as 10−8. These simulations allow to estimate the expected performance of
the experiment for different levels of noise.

Fig. IV.11 shows the maximum pattern length L that the reservoir com-
puter is able to generate for different levels of noise. The maximal length
is determined using the 10−3 autonomous error threshold, as described in Sec.
IV.3.2. That is, if the NMSE does not grow above 10−3 during the autonomous
run, the reservoir computer is considered to have successfully generated the
given pattern. For statistical purposes, we used 10 different random patterns
for each length L, and only counted the cases where the system have succeeded
in all 10 trials. The results show that the noise level of 10−8 is equivalent to an
ideal noiseless reservoir. As the noise level increases, the memory capacity of
the reservoir deteriorates. At a level of 10−3, the maximum pattern length is
decreased down to 10, which matches the experimental results presented here.
For higher noise levels the results are, obviously, even worse.

Overall, these results show what level of noise one should aim for in order
to obtain a certain performance from an experimental reservoir computer with
output feedback. Our experiments have confirmed the numerical results for
the noise level of 10−3. In principle, one could double the maximal pattern
length by carefully re-building the same experiment with low-noise components,
namely a weaker amplifier and a low-Vπ intensity modulator, which would lower
the noise to 10−4. Switching to a passive setup, such as the coherently driven

1These results have been published in [3].

96 Chapter IV. Photonic reservoir computer with output feedback

0

20

40

60

80

100

10−8 10−7 10−6 10−5 10−4 10−3 10−2

Theoretical maximum

Our experiment

M
ax

im
al

p
a
tt

er
n

le
n
g
th

(L
)

Noise level (standard deviation)

Figure IV.11. Impact of experimental noise on the perfor-
mance of a reservoir computer with output feedback. The
graph presents numerical results obtained with an accurate
model of the experimental setup. Noise levels are shown as
standard deviations of the Gaussian noise used in the simula-
tions. The system was tested on the random pattern genera-
tion task and the performance metric is the maximal length L
of a pattern that the reservoir could generate. The theoretical
maximum is L = 100, since we used a reservoir with N = 100
neurons. Noise levels of 10−8 and below are equivalent to an
ideal noiseless system. The arrow indicates the experimental
results presented in this work.

cavity reported in [49], could potentially lower the noise down to 10−5 or even
10−6, with performance approaching the maximum memory capacity.

IV.7.4. Mackey-Glass series prediction. Chaotic time series genera-
tion tasks were the most affected by the experimental noise. This is not surpris-
ing, since chaotic systems are, by definition, very sensitive to noise. Reservoir
computing was first applied to this class of tasks in [29]. In their numerical
work, the authors investigated the capacity of the computer to follow a given
trajectory in the phase space of the chaotic attractor. We also tried this ap-
proach, but since our experimental system performs as a “noisy” emulator of
the chaotic attractor, its trajectory deviates very quickly from the target one,
especially with a SNR as low as 40 dB (see Sec. IV.7.1). For this reason, we
considered different approaches to evaluate the performance of the system, as
will be described below.

The system was trained over 1500 input samples and was running au-
tonomously for 600 timesteps. In particular, we prepared 2100 steps of the
Mackey-Glass series for each run of the experiment and used the first 1500 as

IV.7. Results 97

Table IV.3. Optimal RC parameters for the Mackey-Glass task

α β Vφ
4.25− 5.25 dB 0.1− 0.3 0.9 V

a teacher signal u(n) to train the system and the last 600 both as an initial-
isation sequence (see Sec. IV.5) and as a target signal d(n) to compute the
MSE of the output signal y(n). These 2100 samples were taken from several
starting points t (see Eq. IV.3) in order to test the reservoir computer on
different instances of the Mackey-Glass series. We scanned the input gain and
the feedback attenuation (β and α in Eqs. I.5) to find optimal dynamics of
the opto-electronic reservoir for this task. We used β ∈ [0.1, 0.3] and tuned
the optical attenuator in the range [4.25, 5.25] dB, which corresponds approx-
imately to α ∈ [0.85, 0.95], with slightly different values for different instances
of the Mackey-Glass series. The DC bias of the MZ modulator was set to
Vφ = 0.9 V to ensure a symmetric transfer function (φ = 0). These parameters
are summarised in Tab. IV.3.

Fig. IV.12 shows an example of the reservoir output y(n) (dotted black
line) during the autonomous run. The target Mackey-Glass series is shown in
grey. The MSE threshold was set to 10−3 and the reservoir computer predicted
435 correct values in this example. Fig. IV.13 displays the evolution of the
MSE recorded during the same autonomous run. The plotted error curve was
averaged over 200-timestep intervals. It exceeds the 10−3 threshold within
n ∈ [500, 600] and reaches a constant value of approximately 1.1 × 10−1 after
2500 timesteps. At this point, the generated time series is completely off the
target (see Fig. IV.14 for illustration).

The noise inside the opto-electronic reservoir, discussed in Sec. IV.7.1,
makes the outcome of an experiment inconsistent. That is, several repetitions
of the experiment with same parameters may result in significantly different
prediction lengths. In fact, the impact of noise varies from one trial to another.
In some cases it does not disturb the system much. But in most cases it induces
a significant error on the output value y(n), so that the neural network deviates
very quickly from the target trajectory. To estimate the variability of the
results, we performed 50 consecutive autonomous runs with the same readout
weights and the same optimal experimental parameters. While the system
produced several very good predictions (of order of 400), most of the outcomes
were rather poor, with an average prediction length of 63.7 and a standard
deviation of 65.2. We obtained similar behaviour with the noisy experimental
model, using the same level of noise as in the experiments. Changing the ridge
regression parameter in the training process (see Sec. I.1.3) did not improve the
results. This suggests that the reservoir computer emulates a “noisy” Mackey-
Glass system, and therefore, using it to follow a given trajectory does not
make much sense with such a high noise level. Nevertheless, the noise does
not prevent the system from emulating the Mackey-Glass system – even if the
output quickly deviates from the target, it still resembles the original time
series. Therefore, we tried a few distinct methods of comparing the output of
the system with the target time series.

98 Chapter IV. Photonic reservoir computer with output feedback

−0.6

−0.4

−0.2

0

0.2

0.4

0 100 200 300 400 500 600

Autonomous run starts MSE exceeds threshold

O
u
tp
u
t
si
g
n
a
ls

(a
rb
.
u
n
it
s)

Discrete time n

MG series
RC output

Figure IV.12. Example of reservoir computer output sig-
nal y(n) (dotted black line) during autonomous run on the
Mackey-Glass task. The system was driven by the target sig-
nal (solid grey line) for 128 timesteps and then left running
autonomously, with y(n) coupled to the input I(n) (see Sec.
IV.2). The MSE threshold was set to 10−3. The photonic
reservoir computer with N = 600 was able to generate up to
435 correct values.

10−4

10−3

10−2

10−1

0 1000 2000 3000 4000 5000

A
u
to
n
o
m
o
u
s
ru
n
M
S
E

Discrete time n

Figure IV.13. Evolution of MSE during experimental au-
tonomous generation of the Mackey-Glass chaotic time series
(same run as in Fig. IV.12). The error curve, averaged over
200 timesteps, crosses the 10−3 threshold approximately be-
tween n = 500 and n = 600.

IV.7. Results 99

−0.6

−0.4

−0.2

0

0.2

0.4

9600 9700 9800 9900 10000

O
u
tp
u
t
si
g
n
a
ls

(a
rb
.
u
n
it
s)

Discrete time n

MG series
RC output

Figure IV.14. Output of the experimental reservoir com-
puter (dotted black line) at the end of a long run of 104

timesteps. Although the system does not follow the starting
trajectory (solid grey line), its output still resembles visually
the target time series.

We performed a new set of experiments, where, after a training phase of
1500 timesteps, the system was running autonomously for 104 timesteps in or-
der to collect enough points for data analysis. We then proceeded with a simple
visual inspection of the generated time series, to check whether it still looks
similar to the Mackey-Glass time series, and does not settle down to simple pe-
riodic oscillations. Fig. IV.14 shows the output of the experimental reservoir
computer at the end of the 104-timestep autonomous run. It shows that the
reservoir output is still similar to the target time series, that is, irregular and
consisting of the same kind of uneven oscillations.

A more thorough way of comparing two time series that “look similar”
is to compare their frequency spectra. Fig. IV.15 shows the Fast Fourier
Transforms of the original Mackey-Glass series (solid grey line) and the output
of the experiment after a long run (dotted black line). Remarkably, the reservoir
computer reproduces very accurately the spectrum of the chaotic time series,
with its main frequency and several secondary frequencies.

Finally, we estimated the Lyapunov exponent of the generated time series,
using the method described in the Supplementary Material of [29]. We obtained
0.01 for our experimental implementation, while the value commonly found in
the literature for the Mackey-Glass series is 0.006. The slightly higher value of
the Lyapunov exponent may simply reflect the presence of noise in the emulator.

IV.7.5. Lorenz series prediction. This task was investigated in a sim-
ilar way to the previous one. The reservoir computer was trained over 3000
input samples and was run autonomously for 1000 timesteps. The 4000 sam-
ples were taken from an interval with even distribution of transitions between
the two “wings” of the Lorenz attractor. In fact, we have noticed that the first

100 Chapter IV. Photonic reservoir computer with output feedback

0

2

4

6

8

0 0.05 0.1 0.15 0.2 0.25 0.3

P
ow

er
(a
rb
.
u
n
it
s)

Frequency t−1

MG series
RC output

Figure IV.15. Comparison of Fast Fourier Transforms of the
original Mackey-Glass series (solid grey line) and the time
series generated by the photonic reservoir computer (dashed
black line). The plot is limited to low frequencies as the power
at higher frequencies is almost null. Dominant frequencies
correspond to multiples of 1/τ ≈ 0.06 (see Sec. IV.3.3). The
experiment reproduces the target spectrum notably well.

Table IV.4. Optimal RC parameters for the Lorenz task

α β Vφ
5.1 dB 0.5 0.9 V

1000 samples of the sequence generated by the ode45 solver (see Sec. IV.3.4)
contained more oscillations above zero than below, that is, a transient from the
starting point to the actual chaotic attractor. This uneven distribution forced
the reservoir computer to generate a biased output. We thus discarded the
first 1000 values and trained the system over the interval [1000, 4000] (these
initial transients were also removed in [29]). For optimal performance of the
opto-electronic reservoir, we set the input gain to β = 0.5 and the feedback
attenuation to α = 5.1 dB. The DC bias of the MZ modulator was set to
Vφ = 0.9 V to ensure a symmetric transfer function (φ = 0). These parameters
are summarised in Tab. IV.4.

Fig. IV.16 shows an example of the reservoir output y(n) (dotted black
line) during the autonomous run. The target Lorenz series is shown in grey.
With the MSE threshold set to 10−3, the system predicted 122 correct steps,
including two transitions between the wings of the attractor. As in the Mackey-
Glass study, we performed 50 autonomous runs with identical readout weights
and same optimal parameters, and obtained an average prediction horizon of
46.0 timesteps with a standard deviation of 19.5. Taking into account the higher
degree of chaos of the Lorenz attractor, and given the same problems related

IV.7. Results 101

−0.4

−0.2

0

0.2

0.4

100 200 300 400 500

Autonomous run starts MSE exceeds threshold

O
u
tp
u
t
si
g
n
a
ls

(a
rb
.
u
n
it
s)

Discrete time n

LZ series
RC output

Figure IV.16. Example of reservoir computer output signal
y(n) (dotted black line) during autonomous runs on the Lorenz
task. The system was driven by the target signal (solid grey
line) for 128 timesteps before running autonomously (see Sec.
IV.4). The MSE threshold was set to 10−3. The photonic
system with N = 600 generated 122 correct values in this
example, and predicted two switches of the trajectory from
one lobe of the attractor to the other.

to noise, it is hard to expect a better performance of the reservoir computer
at following the target trajectory. Fig. IV.17 depicts the evolution of the MSE
during the autonomous run. The error curve was averaged over 100-timestep
intervals. The initial dip corresponds to the teacher-forcing of the reservoir
computer with the target signal for 128 timesteps, as discussed in Sec. IV.4.
The error exceeds the 10−3 threshold around the n = 250 mark and reaches a
constant value of approximately 1.5× 10−2 after less than 1000 timesteps. At
this point, the reservoir computer has lost the target trajectory, but keeps on
generating a time series with properties similar to the Lorenz series (see Fig.
IV.18 for illustration).

Similar to the Mackey-Glass task, we performed a visual inspection of the
generated Lorenz series after a long run, and compared the frequency spec-
tra. Fig. IV.18 shows the output of the experiment near the end of a 95000
autonomous run. Although the system is quite far from the target trajectory
(plotted in grey) at this point, it is apparent that it has captured the dynamics
of the Lorenz system very well. Fig. IV.19 displays the Fast Fourier Transforms
of the generated time series (dotted black line) and the computed Lorenz series
(solid grey line). Unlike the Mackey-Glass system, these frequency spectra do
not have any dominant frequencies. That is, the power distribution does not
contain any strong peaks, that could have been used as reference points for
comparison. Therefore, comparing the two spectra is much more subjective

102 Chapter IV. Photonic reservoir computer with output feedback

10−4

10−3

10−2

10−1

0 500 1000 1500 2000

A
u
to
n
o
m
o
u
s
ru
n
M
S
E

Discrete time n

Figure IV.17. Evolution of MSE during experimental au-
tonomous generation of the Lorenz chaotic time series (same
run as in Fig. IV.16). The error curve, averaged over 100
timesteps, crosses the 10−3 threshold near n = 250. The ini-
tial dip corresponds to the warm-up of the reservoir (see Sec.
IV.4).

−0.4

−0.2

0

0.2

0.4

93600 93800 94000

O
u
tp
u
t
si
g
n
a
ls

(a
rb
.
u
n
it
s)

Discrete time n

LZ series
RC output

Figure IV.18. Output of the experiment (dotted black line)
at the end of a long run of 95000 timesteps on the Lorenz task.
Although the system does not follow the starting trajectory
(solid grey line), it does a fairly good job at emulating the
dynamics of the Lorenz system.

in this case. Although the curves do not match, one can still see a certain
similitude between them.

IV.7. Results 103

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6

P
ow

er
(a
rb
.
u
n
it
s)

Frequency t−1

LZ series
RC output

Figure IV.19. Comparison of Fast Fourier Transforms of the
Lorenz series (solid grey line) and the time series generated
by the photonic reservoir computer (dotted black line) during
95000 timesteps. Both spectra are normalised so as to have
equal total power. The curves are smoothened by averaging
over 50 samples and the plot is limited to lower frequencies
(the higher ones being close to zero). Despite some mismatch,
the shape of the dotted curve is roughly similar to the grey
line.

In addition to those visual comparisons, we performed a specific random-
ness test of the generated series. We exploited an interesting property of the
Lorenz dynamics. Since it basically switches between two regions (the wings of
the butterfly), with random transitions from one to the other, one can assign
binary “0” and “1” to these regions and thus transform the Lorenz series into
a sequence of random bits. We used this trick to check the randomness of the
generated series. We solved the Lorenz equation and ran the experiment for
95000 timesteps and converted the resulting time series into two sequences of
approximately 2400 bits. The two were then analysed with the ENT program
[115] – a well known software for testing random number sequences – with the
results shown in Tab. IV.5. Their interpretation requires a brief introduction
of the tests performed by the software.

• The first test computes the entropy per byte (8 bits). Since entropy
is a measure of disorder, i.e. randomness, a truly random sequence
should have 8 bits of entropy per byte. Both sequences are close to the
maximum value, with the Lorenz series being slightly more random.
• The compression is a commonly used indirect method of estimating

the randomness of bytes in a file by compressing it with an efficient
compression algorithm (such as e.g. Lempel-Ziv-Renau algorithm,
used by the Zip program). These algorithms basically look for large

104 Chapter IV. Photonic reservoir computer with output feedback

RC Lorenz
Entropy (/byte) 6.6 7.1
Compression (%) 17 10
Mean (byte) 134.3 125.8
π 2.88 3.00
Correlation −0.08 −0.02

Table IV.5. Results returned by the ENT program for the
bit sequences generated by the experiment (RC) and the in-
tegrated Lorenz system. The Lorenz sequence shows better
figures, but the RC output is not far behind. All these figures
are poor compared to common random series, but this is due
to the very short sequences used here (roughly 300 bytes).

repeating blocks, that should not appear in a truly random sequence.
Again, both sequences could only be slightly compressed.
• The mean value is the arithmetic mean of the data bytes. A random

sequence should be evenly distributed, and thus have a random value
of 127.5. The Lorenz series is very close to this value, and the RC
sequence is fairly close.
• The Monte Carlo method of computing the value of π randomly places

points inside a square and computes the ratio of points located inside
an inscribed circle, that is proportional to π. This is a more complex
test that requires a large sequence to yield accurate results. We note
that, nevertheless, both sequences produce a reasonable estimation of
π.
• Finally, the serial correlation coefficient of a truly random sequence is

zero. Both series present a very low correlation, yet again the Lorenz
series demonstrating a better score.

These results do not prove that the generated sequence is random. One
obviously has to use a much longer sequence of bits for this study, and should
also consider more sophisticated and complete tests, such as Diehard [116] or
NIST Statistical Test Suite [117]. The purpose of these tests was to show that
the output of the RC generator does not consist of trivial oscillations, that only
remotely resemble the Lorenz system. The results show that the randomness of
the RC output is similar to the Lorenz system, which gives reasons to believe
in the similarity between the two time series. This, in turn, indicates, that our
photonic reservoir computer was capable of learning to effectively emulate the
dynamics of the Lorenz chaotic system.

IV.8. Challenges and solutions

When I started this project, my FPGA development skills were on a much
higher level than during the first project (see Ch. II). I had a solid grasp on tim-
ing closure and a clear idea of what could and what could not be implemented
in VHDL. Moreover, several chunks of code could be reused from the previous

IV.9. Conclusion 105

projects, such as the Ethernet connection modules and the FMC151 daughter-
card interface. But this time the FPGA had to be connected very tightly to the
experiment, making the synchronisation of all the module a crucial aspect. In
fact, not only the reservoir states had to be sampled at the right moment, but
the output signal had to be computed and generated in a very tight timeframe.
And since there is no easy way of simulating the opto-electronic reservoir in
Xilinx software, the development of the design was mostly done in hardware,
which was very time-consuming.

Sooner or later, the FPGA design was operational and the first good results
started to come. Sine waves were generated very nicely, and random patterns
were stable for hours and even days. The maximum pattern length was signif-
icantly lower than expected, though, but I did not pay much attention to this
detail at first – I was happy that the experiment generated something stable at
all. We then moved on to the Mackey-Glass task and this is where the prob-
lems began. I managed to record several very good prediction lengths from the
experiment, but the results were very inconsistent. We know now that this is
due to the experimental noise, but we did not have that luxury at the time,
and I passed a lot of time analysing the setup, trying to figure out what was
wrong.

In my previous experiments, unstable outcomes indicated timing problems
with the FPGA chip. I double- (even triple-) checked the design and its be-
haviour only to find that it was functioning flawlessly. Refusing to give up, I
developed a very precise numerical model of the opto-electronic reservoir, tak-
ing into account all known characteristics of the hardware, up to the high-pass
filter – but again, everything except the noise.

The ultimate revelation came when I was comparing individual reservoir
states from two different runs and noticed a significant difference between the
values. A statistical analysis of ten identical runs of the experiment then showed
even higher deviations. Only then I though of adding these deviations to the
simulation model and – at last – the inconsistent outcomes of the experiment
could be reproduced numerically.

Once we acknowledged the noise as an inevitable “feature” of the experi-
ment, a new question arose – how to evaluate the RC performance on chaotic
signals, since it was very bad at following a given trajectory? From observa-
tions of the output signal, we could see that it is far from being trivial – but
how to show this quantitatively? Since these interrogations were new to our
team, we tried to improvise a few simple solutions. The most interesting, in
my opinion, was the ENT test for the Lorenz attractor. Far from being a solid
proof, it gave us some valuable numbers to quantify the properties of the RC
output. I wish we could find something similar for the Mackey-Glass series,
though. . .

IV.9. Conclusion

The present work demonstrates the potential of output feedback in hard-
ware reservoir computing and constitutes an important step towards autono-
mous photonic implementations of recurrent neural networks. Specifically, we
presented a photonic reservoir computer that is capable of generating both

106 Chapter IV. Photonic reservoir computer with output feedback

sine waves of different frequencies and short random patterns with substan-
tial stability. Moreover, it could emulate the Mackey-Glass time series with a
remarkably similar frequency spectrum, and a fairly close highest Lyapunov ex-
ponent. Finally, it could efficiently capture the dynamics of the Lorenz system
and generate a time series with similar randomness properties. To the best of
our knowledge, this is the first report of these task being implemented on an
experimental reservoir computer.

The readout of the reservoir computer is carried out in real time on a
fast FPGA chip. This results in a digital output layer in an analogue device,
that nevertheless allows one to investigate many of the issues that will affect a
system with purely analogue feedback. The latter is a much more complicated
experiment. Indeed the only analogue output layers implemented so far on
experimental reservoir computers were reported in [73, 97, 98]. Using them for
output feedback would require adding an additional electronic circuit consisting
of a sample and hold circuit, amplification, and multiplication by the input
mask. The present experiment allows one to investigate the benefits that output
feedback has to offer to experimental reservoir computing, while anticipating
the difficulties and limitations that will affect a fully analogue implementation.
Such a two-step procedure, in which part of the experiment is analogue and
part digital, is natural, and parallels the development of experimental reservoir
computers in which some of the first experiments were only partially analogue,
see e.g. [51, 53].

This work allowed to highlight a critical limitation of the present opto-
electronic setup, namely the relatively high level of noise generated by the
components. While this was not a concern in previous experiments with offline
readout [48, 73], it becomes critical in this study of the output feedback. Since
this noise cannot be averaged out, it propagates back into the system with out-
put feedback and considerably deteriorates the reservoir states. This problem
does not have a simple solution. One could rethink the entire experimental
setup and rebuild it with new, less noisy components. One could also switch to
a different experimental system, such as the low-noise passive cavity reported
in [49]. In any case, it will probably be difficult to increase the SNR above
60 dB. There may also be algorithmic solutions, such as using conceptors [118,
119].

The high level of experimental noise quickly pushed the reservoir computer,
emulating a chaotic system, away from a given trajectory, which initiated the
search for quantitative methods for the evaluation of the experiment perfor-
mance. In this work, we introduced a few simple techniques, based on stan-
dard signal analysis methods, such as statistics of the prediction length and
visual comparison of the time series and their frequency spectra after a long
autonomous run. We have also proposed case-specific methods, such as the
randomness test, that could only be applied to the Lorenz time series. Overall,
these are only the first steps towards the answer to a very general question:
given a noisy emulator of a known chaotic system, how best to evaluate its
performance? It will be interesting to understand the relationship between the
performance obtained on the estimators above, and the properties of the cha-
otic system, such as the Lyapunov exponents or the dimension and geometry

IV.9. Conclusion 107

of the chaotic attractor. These questions should lead to a rich new direction of
enquiry in the theory of nonlinear dynamics and complex systems.

Adding output feedback to experimental reservoir computers allows them
to solve considerably more complex tasks than without output feedback. Future
work could address nonlinear computations that depend on past information
and that require persistent memory [120], FORCE training [121] (which how-
ever requires that the learning time scale be short compared to the reservoir
time scale) and applications such as frequency modulation [106], or implemen-
tation of conceptors [118, 119]. Ideally, an entirely analogue feedback should
be implemented, like in e.g. [4] (see also Ch. V), rather than the digital feed-
back demonstrated here. The present work is therefore just a first step towards
realising these additional applications.

Finally, going back to the question of biological implementation, our work
shows that the biologically plausible structure of reservoir computing [30, 108,
109] can be trained to generate highly complex temporal patterns, both periodic
and chaotic, even in the presence of moderate levels of noise. Whether nature in
fact implements this mechanism remains to be seen, and will depend amongst
other aspects on the amount of noise present in biological implementations
of reservoir computing, and whether there exist biologically plausible training
mechanisms for this kind of signal generation.

CHAPTER V

Towards online-trained analogue readout layer

This chapter presents the last project that I started with the OPERA-
Photoni-que group (the next and last Ch. V.6 will cover my internship at the
University of Texas at Austin, USA). At the moment of writing these lines, we
published some interesting results, but they are based on numerical simulations
only.

Ironically, building an improved analogue readout layer should have been
the corner stone of my thesis: this was stated in my funding application, and
this probably was the main reason why the lab purchased a FPGA in the first
place.

How comes that this project was not completed? I can see two explana-
tions. First, we found an easier way to achieve the ultimate goal. In fact, one
of the key motivations for an efficient analogue readout was the possibility of
feeding the output signal back into the reservoir. Chapter IV shows how this
can be done with a much more simple digital layer, and what new features can
be obtained out of it. The second reason is a purely personal one. I had the
aspiration to explore new research environments and when such an occasion
appeared, I gladly took it. But I am getting ahead of myself – more on that in
the next chapter (Ch. V.6).

In fine, I believe we replaced my original thesis project with an even better
plan. Instead of investing time into the development of an analogue readout
layer – a direction than has already been explored to some degree [73, 97, 98],
we focused on the in-depth study of an experimental reservoir computer with
output feedback (although digital) – a truly novel direction, that nobody has
investigated so far. But the story of the analogue readout layer is not over yet.
Although the present thesis will only contain numerical results of this work, I
still have a couple of month in front of me to do more.

This chapter, based on our paper [4], is much shorter than the previous
ones: it does not contain sections on the FPGA design or on challenges and
solutions, since it does not present an actual physical experiment.

V.1. Introduction

The major drawback in experimental implementations of reservoir com-
puting, listed in Sec. I.2, is the absence of efficient readout mechanisms: the
states of the neurons are collected and post-processed on a computer, severely
reducing the processing speeds and thus limiting the applicability. An ana-
logue readout would resolve this issue, as suggested in [122]. This research
direction has already been investigated experimentally in [73, 97, 98], but all

109

110 Chapter V. Towards online-trained analogue readout layer

these implementations suffered from significant performance degradation due
to the complex structure of the readout layer. Indeed the approach used in
these works was to characterise with high accuracy the linear output layer,
whereupon it was possible to compute offline the output weights. However it is
virtually impossible to characterise each hardware component of the setup with
sufficient level of accuracy. Furthermore the components in the output layer
may have a slight nonlinear behaviour. It follows that this approach does not
work satisfactorily, as is apparent from the performance degradation reported
in [73].

In this work we address the above issues with the same online learning
approach we discussed in Ch. II. Online training has attracted much attention
in the machine learning community because it allows to optimise the system
gradually, as the input data becomes available. As we have shown in Ch. II,
it can also easily cope with non-stationary input signal, whose characteristics
change with time, as the online approach can keep the model updated according
to variations in the input. Finally, in the case of hardware systems, online
training can easily cope with drifts in the hardware, as the system will adapt
to gradual changes in the hardware components [72, 123].

In the context of reservoir computing, the online training implements a
gradient descent: it gradually changes the output layer to adapt to the task.
More precisely the output layer is characterised by a series of parameters (the
readout weights), and in online training these weights are adjusted in small
increments, so that the output of the system gets closer to the target signal.
The important point in the present context is that, compared to previously used
offline methods, in online training based on gradient descent no assumption is
necessary about how these weights contribute to the output signal. That is, it is
not necessary to model the output layer. Furthermore, the transfer function of
the readout layer could in principle be nonlinear. Here we show, using realistic
numerical simulations, how these features could be highly advantageous for
training hardware reservoir computers.

For concreteness, we consider in simulations the “same old” opto-electronic
reservoir computing setup, introduced in Sec. I.2.4. We add to this setup
an analogue layer that is now trained online by an FPGA chip processing the
simple gradient descent algorithm in real time, as in [1] and Ch. II. The readout
layer consists of a simple Resistor-Capacitor (RC) circuit (as in [97]), instead of
a more complicated RLC circuit (consisting of a resistor R, an inductor L and
a capacitor C) that was used to increase the amplitude of the output signal in
[73].

We investigate the performance of this setup through numerical simulations
on two benchmark tasks and show that previously encountered difficulties are
almost entirely alleviated by the online training approach. In other words,
with a relatively simple analogue readout layer, trained online, and without
any modelling of the underlying processes, we obtain results similar to those
produced by a digital layer, trained offline. We also explore a special case with a
nonlinear readout function and show that this complication does not decrease
much the performance of the system. This work thus brings an interesting
solution to an important problem in the hardware reservoir computing field.

V.3. Proposed experimental setup 111

SLD

MZ
50/50

50/50

Att

Amp Comb

Pf

1
.6

k
m

Pr
xi(n)

MZ

Pb

-
y(n)

C

FPGAD
A
C

ADC

Mi × u(n)

wi(n)

Opto-electronic reservoir

Analogue readout

Figure V.1. Scheme of the proposed experimental setup.
The optical and electronic components are shown in black and
grey, respectively. The reservoir layer consists of an incoher-
ent light source (SLD), a Mach-Zehnder intensity modulator
(MZ), a 50/50 beam splitter, an optical attenuator (Att), an
approximately 1.6 km fibre spool, a feedback photodiode (Pf),
a resistive combiner (Comb) and an amplifier (Amp). The
analogue readout layer contains another 50/50 beam splitter,
a readout photodiode (Pr), a dual-output intensity modulator
(MZ), a balanced photodiode (Pb) and a capacitor (C). The
FPGA board generates the inputs and the readout weights,
samples the reservoir states and the output signal, and trains
the system.

V.2. Methods

This section occupies almost two pages in the original paper [4], but seems
completely useless in this thesis. That is, all methods used in this work have
already been introduced. The reservoir computing principles have been widely
discussed in Sec. I.1.3. The gradient descent algorithm has been outlined
in Sec. II.3.1. And the two benchmark tasks used here – wireless channel
equalisation and NARMA10 – have been introduced in Sec. I.1.4. Therefore,
without further ado, let us move straight to the proposed experimental setup,
which eventually contains something new – an analogue readout layer.

V.3. Proposed experimental setup

Fig. V.1 depicts the proposed experimental setup that we have investigated
using numerical simulations. The opto-electronic reservoir needs no introduc-
tion (see Sec. I.2.4). The analogue readout layer, however, is a different story.

V.3.1. Analogue readout layer. The analogue readout layer uses the
same scheme as proposed in [97]. The optical power it receives from the reser-
voir is split in two. Half is sent to the readout photodiode (TTI TIA-525I), and

112 Chapter V. Towards online-trained analogue readout layer

the resulting voltage signal, containing the reservoir states xi(n), is recorded
by the FPGA for the training process (see Eq. II.4). The other half is modu-
lated by a dual-output Mach-Zehnder modulator (EOSPACE AX-2X2-0MSS-
12) which applies the readout weights wi, generated by the DAC of the FPGA.
The outputs of the modulator are connected to a balanced photodiode (TTI
TIA-527), which produces a voltage level proportional to difference of the light
intensities received at its two inputs. This allows to multiply the reservoir states
by both positive and negative weights [97]. The summation of the weighted
states is performed by a low-pass RC filter. The resistance R of the filter, not
shown on the scheme, is the 50 Ω output impedance of the balanced photodi-
ode. The resulting output signal, proportional to y(n), is also recorded by the
FPGA, for training and performance evaluation.

Let us compute explicitly the output of the analogue readout layer. The
capacitor integrates the output of the balanced photodiode with an exponential
kernel and a time constant τ . The impulse response of the RC filter is given in
[114]

h(t) =
1

RC
e
−t
RC =

1

τ
e
−t
τ , (V.1)

the voltage Q(t) on the capacitor is then given by

Q(t) =

∫ t

−∞
X(s)W (s)h(t− s)ds, (V.2)

where X(t) is the continuous signal, containing the reservoir states, and W (t)
are the readout weights, applied to the dual-output intensity modulator. The
output y(n) is given by the charge on the capacitor at the discrete times t = nT :

y(n) = Q(nT). (V.3)

Since X(t) and W (t) are piecewise functions X(t) = xi(n) and W (t) = wi
for t ∈ [θ(i − 1), θi], where θ = T/N is the duration of one neuron, we can
approximate the integration by a discrete summation to obtain

y(n) = θ

N∑

i=1

wi

(∞∑

k=0

xi(n− k)h(N − i−Nk)

)

=
θ

τ

N∑

i=1

wi

(∞∑

k=0

xi(n− k)e−ρ(N−i−Nk)

)
, (V.4)

where we have introduced the RC integrator ratio ρ = θ/τ .
The readout layer output y(t) = Q(t) is thus a linear combination of the

reservoir states xi, weighted by wi and by the exponential kernel of the RC
filter. Note that contrary to usual reservoir computer outputs (see e.g. Eq.
I.6), in Eq. V.4 the output at time n depends not only on the current states
xi(n), but also on the states at previous times xi(n− k).

In the previous experimental investigation of the analogue readout [73],
the readout weights wi were computed using ridge regression [36] (see also Sec.
I.1.3), assuming an output signal given by Eq. I.6. But since the experiment
produced an output similar to Eq. V.4 instead, the readout weights needed
to be corrected appropriately. For more details, we refer to the original paper
[73]. In the present work, the weights wi are adjusted gradually to match

V.4. Numerical simulations 113

the reservoir output signal y(n) with the target output d(n) (see Sec. II.3.1),
without any assumptions about how these weights actually contribute to the
output signal y(n). This is a much easier tasks, which allows to obtain better
experimental results, as will be shown in Sec. V.5.

V.3.2. FPGA board. Similar to my previous experiments, the reservoir
computer is operated by a FPGA chip. We envision using the same Xilinx
ML605 evaluation board, paired with the 4DSP FMC151 daughter card. For
this experiment, we will need both ADCs and both DACs.

The FPGA generates the input signal Mi×u(n) and sends it into the opto-
electronic reservoir. After recording the resulting reservoir states xi(n) from
one delay loop, it executes the simple gradient descent algorithm in order to
update the readout weights wi(n+ 1). These are sent to the readout layer and
used to generate the output signal y(n), also recorded by the FPGA.

V.4. Numerical simulations

All numerical experiments were performed in Matlab. We used a custom
model of our reservoir computer, based on previous investigations [1, 5, 48]
(see also Secs. II.6.3 and IV.6), that has been shown to emulate very well the
dynamics of the real system. The simulations were performed in discrete time,
and took into account the internal structure of the reservoir computer described
above, such as the ring-like topology, the sine nonlinearity and the analogue
readout layer with an RC filter. The simulations allow to try out different
configurations and to scan various experimental parameters, including values
that are impossible to achieve experimentally or imposed by the hardware. All
simulations were performed on a dedicated high-performance workstation with
12-core CPU and 64 Gb RAM. Since the convergence of the gradient descent
algorithm is quite slow, we limited our investigations to a fast update rate
k = 10 (see Eq. II.5), so that each simulation lasted about 24 hours.

The principal goal of the simulations was to check how the online learn-
ing approach would cope with experimental difficulties encountered in previous
works [73, 97]. To that end, we gathered a list of possible issues and scanned
the corresponding experimental parameters in order to check the system per-
formance. In particular, we investigated the following parameters:

• The RC integrator ratio ρ. This is the most important parameter of
the analogue readout layer. While its accurate measure is not required
in our setup – since we do not correct the readout weights wi – it
defines the integration span of the filter, and thus the reservoir states
that contribute to the output signal. It can thus significantly influence
the results. Another question of importance is how dependent the
system performance is on the exact value of ρ.
• The MZ modulator bias. Mach-Zehnder modulators need to be ap-

plied a constant voltage to maintain their transfer function symmetric
around zero. The devices we were using up to now are subject to slight
drifts over time, often resulting in a non-perfectly symmetric response.
We thus checked in simulations whether such an offset would impact
the results.

114 Chapter V. Towards online-trained analogue readout layer

• The DAC resolution. The precision of the DACs on the FMC151
daughtercard is limited to 16 bits. Numerical investigations have
shown that the precision of readout weights has a significant impact
on the performance, see e.g. [9, 124, 125]. We thus checked whether
the resolution available is enough for this experiment.

Besides these potentially problematic parameters, we also scanned the input
and feedback gain parameters (denoted by β and α in Eqs. I.5) in order to find
the optimal dynamics of the reservoir for each task.

In a separate set of simulations, we investigated the applicability of the
proposed method to nonlinear readout layers. That is, we checked whether the
simple gradient descent method would still work with a nonlinear response of
the analogue readout layer with respect to the reservoir states xi(n) (see Eq.
V.4). We picked two “saturation” functions of sigmoid shape. This choice arises
from the transfer function of common light detectors that are linear at lower
intensities and become nonlinear at higher intensities. We used the following
functions: a logistic function, given by

glg(x) =
2

1 + e−2x
− 1, (V.5)

and the hyperbolic tangent function, given by

ght(x) = 0.6 tanh (1.8x) . (V.6)

These functions, glg and ght, do not model any particular photodiode, but are
two simple examples that allow us to address the above question. Both func-
tions are plotted in Fig. V.4b, together with a linear response, for comparison.

We investigated two possible nonlinearities in the output layer. In the first
case, the readout photodiode (Pr in Fig. V.1) produces a nonlinear response,
while the balanced photodiode (Pb in Fig. V.1) remains linear. This scenario,
that we shall refer to as “nonlinear readout”, allows one to investigate what
happens when the reservoir states xi used to compute the output signal y(n)
(see Eq. I.6) differ from those employed to update the readout weights (see
Eq. II.4). Thus, in this case the update rule (Eq. II.4) for the output weights
becomes

wi(n+ 1) = wi(n) + λ (d(n)− y(n)) g(xi(n)), (V.7)

where g is given by either Eq. V.5 or Eq. V.6, while the output layer is given
by Eq. V.4.

In the second case, called “nonlinear output”, the readout photodiode is
linear, but the balanced photodiode exhibits a saturable behaviour. In this case
the update rule Eq. II.4 for the output weights is unchanged, but the output
layer Eq. V.4 becomes

y(n) =
θ

τ

N∑

i=1

wi

(∞∑

k=0

g(xi(n− k))e−ρ(N−i−Nk)

)
. (V.8)

Note that we have only considered cases with just one nonlinear photodiode, so
as to check whether the difference between the reservoir states used for training
and those to compute the readout (see Eqs. II.4 and I.6, respectively) would

V.5. Results 115

degrade the performance of the system. The scenario with both nonlinear pho-
todiodes is hence more simple, as the reservoir states are the same in both
equations. One could consider the case with two photodiodes exhibiting differ-
ent nonlinear behaviours. In that situation, similar to the results we will show
in Sec. V.5, we expect the algorithm to cope with the difference up to a certain
point, before running into troubles. For this reason, we leave that scenario for
future investigations.

V.5. Results

For clarity, the results are split in two sections. First, we discuss the
influence of the key parameters, listed in Sec. V.4, in the case of a linear
readout layer. Then, we consider the two nonlinear scenarios described above.

V.5.1. Linear readout: RC circuit. For each of the two tasks con-
sidered here, we performed three kinds of simulations: we scanned the RC
integrator ratio ρ = θ/τ in the first simulation, the MZ bias in the second, and
the resolution of the DAC in the third. Furthermore, since different values of
these parameters may work better with different dynamics of the reservoir, we
also scanned the input gain β and the feedback gain α in all three simulations
independently, and applied the optimal values in each case.

For both tasks, we used a network withN = 50 neurons, as in most previous
experimental works [33, 48, 49, 73]. The reservoir was trained on 83000 inputs,
with an update rate k = 10, and then tested over 105 symbols for the channel
equalisation task and 104 inputs for NARMA10 task. For statistical purposes,
we ran each simulation 10 times, with different random input masks. In the
following figures, averaged results over the masks are plotted, while the error
bars give the standard deviation over the different input masks. Results related
to the channel equalisation task are plotted with solid lines, while dashed lines
correspond to those for NARMA10.

For the channel equalisation task, our system yields SERs between 10−4

and 10−3 depending on the input mask, as summarised in Tab. V.1 (first
line). This is comparable to previous experiments with the same opto-electronic
reservoir: error rates of order of 10−4 were reported in [48] using a digital
readout and in [73] with an analogue readout, using an RLC filter. The first
experimental analogue system, using a simple RC circuit, as we did in this
work, performed significantly worse, with SER of order of 10−2 [97]. That
is, online learning does not outperform other methods, but allows to obtain
significantly better results with a simpler setup.

As for the NARMA10 task, we obtain a NMSE of 0.20 ± 0.02. Previous
experiments with a digital readout layer produced 0.168±0.015 [48] and 0.107±
0.012 [49]. With an analogue readout layer, the best NMSE reported was
0.230±0.023 [73]. Our system thus slightly outperforms the analogue approach,
and gets close to the digital one, except for the very good result obtained with
a different reservoir, based on a passive cavity [49]. Again, our results were
obtained with a simple setup and no modelling of the readout, contrary to [73].

Furthermore, the error rates obtained here can be significantly lowered
with more training, as has been demonstrated numerically and experimentally

116 Chapter V. Towards online-trained analogue readout layer

0

0.002

0.004

0.006

0.008

0.01

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5
S
E
R

N
M
S
E

Input gain (β)

SER

NMSE

(a)

0

0.002

0.004

0.006

0.008

0.01

0.6 0.7 0.8 0.9 1

0.2

0.3

0.4

S
E
R

N
M
S
E

Feedback gain (α)

SER

NMSE

(b)

Figure V.2. Reservoir computer performances for different
input (β) and feedback (α) gains (solid lines: channel equali-
sation, dashed lines: NARMA10). (a) While channel equali-
sation is relatively sensitive to β, NARMA10 works well in a
wide range of values. Note that although it seems that higher
input gain would give better results, the dashed curve actu-
ally rises slightly for large β, and the optimum input gain is
around 0.8. (b) Both tasks require a system with significant
memory (feedback gain at least α = 0.8), and even a near-
chaotic regime for NARMA10 (α = 0.95).

in [1] (see also Sec. II.6.2). To keep reasonable simulation times (about 24
hours per simulation), we limited the training to 83000 input values, with an
update rate k = 10. Higher update rates can be used experimentally, since
running the opto-electronic setup is much faster than simulating it. We thus
expect to obtain lower error rates experimentally with longer training sets and
update rates up to k = 200. To illustrate this point with results reported in [1]
(and discussed in Sec. II.6.1), short training sets with k = 10 yielded SERs of
order of 10−4 for the channel equalisation task. Increasing k up to 200 allowed
to decrease the error rate down to 5.7× 10−6.

Figures V.2a and V.2b show the influence of input and feedback gain pa-
rameters on the performance of the system. All curves present a pronounced
minimum, except for the input gain β for the NARMA10 task, where values
above 0.6 seem to produce comparable results. Note that the channel equali-
sation task requires a low input signal with β = 0.2, while NARMA10 works
best with stronger input and β = 0.8. As for the feedback gain, NARMA10
shifts the system close to the chaotic regime with α = 0.95, while channel
equalisation works better with α = 0.8.

Figure V.3a shows the results of the scan of the RC integrator ratio ρ.
Both tasks work well on a relatively wide range of values, with NARMA10
much less sensitive to ρ than channel equalisation. In particular, the channel
is equalised best with ρ = 0.03. With N = 50, this corresponds to τ =
T/0.03N = 5.29 µs, which is shorter than the roundtrip time T = 7.94 µs. On

V.5. Results 117

0

0.005

0.01

0.015

0.02

0.0001 0.001 0.01 0.1 1

0

0.1

0.2

0.3

0.4

0.5
S
E
R

N
M
S
E

RC integrator ratio (ρ)

SER

NMSE

(a)

0

0.002

0.004

0.006

0.008

0.01

0.01 0.1

0.2

0.3

0.4

S
E
R

N
M
S
E

Readout MZ bias

SER

NMSE

(b)

Figure V.3. Impact of the RC integrator ratio (ρ) and
the readout MZ modulator bias on the reservoir computer
performance (solid lines: channel equalisation, dashed lines:
NARMA10). (a) Ratios within ρ ∈ [0.03, 0.08] are suitable for
channel equalisation and ρ ∈ [0.002, 0.07] for NARMA10. Re-
markably, inaccurate choice of ρ, and thus τ , will not result in
significant performance loss, as long as the value lies approxi-
mately in the optimal interval. (b) Although the NARMA10
task is more sensitive to this bias, both tasks work reason-
ably well with a bias up to 0.06, which is superior to expected
experimental deviations.

the other hand, NARMA10 output is best reproduced with ρ = 0.003, which
yields τ = T/0.003N = 52.93 µs. This is significantly longer than the roundtrip
time T , meaning that reservoir states from previous time steps are also taken
into account for computation of an output value. This is not surprising, since
NARMA10 function has a long memory (see Eq. I.20). However, this memory
effect in the readout layer is not crucial, as the system performs equally well
with higher ρ and thus lower τ . All in all, these results are very encouraging
for upcoming experiments, as they show that an accurate choice of capacitor
is not crucial for the performance of the system.

Figure V.3b illustrates the impact of the bias of the readout Mach-Zehnder
modulator on the reservoir computer performance. NARMA10 task is clearly
more affected by this offset, as the NMSE grows quickly from a bias of roughly
0.06. The SER, on the other hand, stays low until 0.1. For a MZ modulator
with Vπ = 4.5 V (see Tab. I.1) this corresponds to a tolerance of roughly
0.1 V, which is superior to expected experimental deviations. The Hameg
power supply that we use to bias the modulator (see Tab. I.1) has a resolution
of 0.001 V.

Figure V.4a shows that the 16-bit DAC resolution is not an issue for this
experiment, as the minimal precision required for good performance is 8 bits,
for both tasks.

118 Chapter V. Towards online-trained analogue readout layer

0

0.002

0.004

0.006

0.008

0.01

0 2 4 6 8 10 12 14 16 18 20

0.2

0.3

0.4

FMC151

S
E
R

N
M
S
E

DAC Resolution

SER

NMSE

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f
(x

)

x

x

flg(x)

fht(x)

(b)

Figure V.4. (a) Impact of the DAC resolution on the reser-
voir computer performance (solid lines: channel equalisation,
dashed lines: NARMA10). The results show that the 16-bit
resolution of the FMC151 daughtercard is sufficient for this
application. (b) Nonlinear response curves of the photodi-
odes: hyperbolic tangent function ght (solid line) and logistic
function glg (dotted line). The linear response is plotted with
a thick grey line.

V.5.2. Nonlinear readout. Table V.1 sums up the results obtained with
a nonlinear readout layer. We used optimal experimental parameters, as de-
scribed above, and generated new sets of data for the training and test phases.
We investigated two scenarios and used two functions of sigmoid shape, x →
glg(x) and x→ ght(x), as described in Sec. V.4. The system was trained over
83000 inputs, with an update rate k = 10, and tested over 105 symbols for
the channel equalisation task and 104 inputs for NARMA10. We report error
values averaged over 10 trials with different random input masks, as well as
the standard deviations. The figures show that the performance deterioration
is more manifest with the hyperbolic tangent function ght, as it is much more
nonlinear than the logistic function glg. Overall, the added nonlinearity does
not have a significant influence on the results in both cases. The SER roughly
doubles, at most, for the channel equalisation task. The impact on NARMA10
is barely noticeable, as the error increase of 5% is smaller than the standard
deviation. Using offline training on the same system (i.e. with nonlinear out-
put) we observed an increase of the SER by one order of magnitude for the
channel equalisation task, and a 30% increase of the NMSE with the NARMA
task. These results show that online training is very well suited for experimen-
tal analogue layers, as it can cope with realistic components that do not have
a perfectly linear response.

V.6. Conclusion

In this work we proposed the online learning technique to improve the
performance of analogue readout layers for photonic reservoir computers. We

V.6. Conclusion 119

Readout
Transfer Chan. Equal. NARMA10
function (SER ×10−3) (NMSE)

Linear x 1.1± 0.7 0.20± 0.02

Nonlinear glg(x) 1.3± 0.9 0.21± 0.03
readout ght(x) 1.2± 0.8 0.21± 0.02

Nonlinear glg(x) 2.0± 1.6 0.21± 0.02
output ght(x) 2.5± 2.1 0.21± 0.01

Table V.1. Summary of reservoir computer performances
with nonlinear readout layers, measured with error metrics
related to the tasks considered here. All values are averaged
over 10 random input masks and presented with their stan-
dard deviations. We used two functions with sigmoid shape
to model the response of the photodiodes. We investigated
two scenarios: in the “nonlinear readout” configuration, the
readout photodiode Pr is nonlinear, while the balanced pho-
todiode Pb is linear, and vice versa in the “nonlinear output”
scheme. The linear case x → x is shown for comparison. For
both tasks, the added nonlinearity does not significantly dete-
riorate the system performance.

demonstrated an opto-electronic setup with an output layer based on a simple
RC filter, and tested it, using numerical simulations, on two benchmark tasks.
Training the setup online, with a simple gradient descent algorithm, allowed to
obtain the same level of performance as with a digital readout layer. Further-
more, our approach does not require any modelling of the underlying hardware,
and is robust against possible experimental imperfections, such as inaccurate
choice of parameters or components. It is also capable of dealing with a non-
linearity in the readout layer, such as saturable response of the photodiodes.
Finally, we expect the conclusions of the present investigation, namely the ad-
vantage of online training, to be applicable to all hardware reservoir computers,
and not restricted to the delay dynamical opto-electronic systems used for the
sake of illustration in the present work.

The results reported in this work will serve as a basis for future investiga-
tions involving experimental validation of the proposed method. Experimental
realisation of an efficient analogue readout layer would allow building fully-
analogue high-performance RCs, abandon the slow digital post-processing and
take full advantage of the fast optical components. Such setups could be ap-
plied to emerging communication channels [126]. Furthermore, fully-analogue
setups would open the possibility of feeding the output signal back into the
reservoir, just as we did digitally in [5] (see Ch. IV). Replacing the digital
layer with an analogue solution would significantly increase the speed of such
generators. Our work thus brings an efficient solution to an important problem
in the reservoir computing field, potentially leading to a significant speed gain
and a broader range of applications.

CHAPTER VII

Conclusion and perspectives

Everything happened by chance,
as planned.

Life humour

The story of my PhD slowly but inevitably comes to an end. For almost
four years I have been working in a fusion of machine learning, FPGA design,
optics and electronics. There was absolutely no way to be bored with such a
variety, and I could not be more happy about it. To be completely honest, I
genuinely loved what I was doing and I feel very thankful towards the past me
for making the right choices that brought me here. Speaking of the past, now
is a good time to draw a short personal conclusion and compare what has been
and what it had become. The whole picture looks very pleasing – so much has
changed where it needed to, while the core values remained true. Some say
that after graduating from a university in science, the best and practically the
only skill one keeps is the ability to learn. For 5 years I have been practising
and mastering this skill, and thoroughly applied it through the 4 years of the
PhD. And I must recognise that ULB did a very good job, now that I can see
how little I knew back then in 2013, and how comfortable I feel now in a field
that used to look so scary. . . Not to be misunderstood, I most certainly realise
that I have merely sampled the very tip of the iceberg, and there is still so
much more to learn. But now that the method has been acquired, the only
thing that remains is but to keep on rolling.

Enough personal comments for now, let us get back to the main topic
and actually conclude this thesis. Prior to my work, experiments on analogue
reservoir computing had mostly investigated the reservoir layer, i.e different
nonlinear nodes, multiplexing schemes or coding techniques (see e.g. [33, 49],
or [146] for a more complete review). The optimisation of the readout weights
and the computation of the output, on the other hand, was done using (some-
what rudimentary) offline training. One notable advance beyond these minimal
systems was the implementation of analogue input and output layers [73, 97].
However, the latter experiments failed to achieve state-of-the-art results due to
incompatibility of offline training with complex and nonlinear readout layers.
Recent trends in neural networks, together with several ideas coming from how
the brain functions suggest that there are many additional ways in which a
reservoir computer can be used, and in particular, different ways in which it
can be trained. When I started my thesis the time was ripe to explore these
more advanced applications of analogue reservoir computing. By interfacing

145

146 Chapter VII. Conclusion and perspectives

a photonic reservoir computer with a FPGA we could address some of these
challenges.

We performed three full experiments, with a fourth in progress. First, we
trained the opto-electronic reservoir online (see Ch. II). This provided shorter
experimental runtimes and more accurate (and significantly lower) error rates
than in previous experiments, and more importantly the online-trained sys-
tem could equalise drifting and switching channels. Second, with a fast Gbit
Ethernet interface between the FPGA and a PC, we could implement the er-
ror backpropagation algorithm in hardware (see Ch. III). As a consequence we
could significantly improve performance on three hard tasks in reasonable time.
One of the fascinating aspects of this experiment is that it showed that a com-
plex training method (error backpropagation) could at least partially be done
in hardware. Third, exploiting the fast computational capability of the FPGA,
we realised a RC with a output feedback and thereby demonstrated a system
capable of solving completely new kinds of tasks, such as generating periodic
and chaotic time series (see Ch. IV). Finally, combining the advantages of
online training with the aspiration for an efficient analogue readout, we started
designing an online-trained analogue readout layer and reported very promising
preliminary numerical results (see Ch. V). We chose to delay the development
of the experiment to accommodate an additional and very interesting project
(see Ch. V.6).

These experiments open many new avenues of research, some short-term,
which are rather simple extensions of the work already realised, others longer-
term which would require much more investment.

Advanced online learning. Our first experiment with the FPGA board
(see Ch. II) showed that a photonic reservoir computer could be trained on-
line, and that the idea worked quite well. Now that the feasibility has been
demonstrated, one can think of improving the realisation. Most importantly,
we used a basic and very slow training algorithm that requires several seconds
to converge on a setup that runs on the microsecond timescale. As has been
discussed in Ch. II, Anteo Smerieri investigated two much more efficient algo-
rithms: recursive least squares and reward-modulated Hebbian learning. We
did not implement them back then because I was only starting with the FPGA
designs and did not have the necessary skills. The task seems feasible now, and
the time investment should be substantially rewarded. In short, the weights
would converge 1000 times faster (roughly, 103 updates instead of 106). Several
less crucial but still important improvements could also be added to the FPGA
design, with a more efficient resource utilisation and a faster communication
scheme between the computer and the FPGA.

In a much longer-term perspective, one could imagine a system in which
the online training is done in hardware. That is, one could conceive an ana-
logue system that implements the output layer (including multiplication by the
readout weights), but also an analogue system that computes an error signal
and uses it to optimise the readout weights following the update equation (such
as Eq. II.4).

Fully-hardware backprop. The backpropagation experiment by Michiel Her-
mans (see Ch. III) demonstrated the advantage of training the input mask.

147

While it is now more challenging to improve the actual RC performance, one
can further increase the efficiency of the experiment. As explained in Ch. III,
most of the computations were performed on the computer. The FPGA chip
should take care of that instead for a much faster setup. As a reminder, one
of the limiting factors in our experiments was the slow convergence rate. This
was especially problematic with the experiment on the TIMIT task, that took
two weeks to complete. Optimising the input mask on the FPGA would resolve
this bottleneck.

A longer term challenge is to figure out how to implement the error back-
propagation algorithm in other systems than the one we used. And an even
longer term challenge would be to implement it entirely in the analogue domain,
without using any digital help.

Output feedback. The story of the reservoir computer with output feedback
is a different one. We spent a significant amount of time on this experiment
but could not find a simple way of improving the results due to the noise floor
of our experimental system. This, however, does not mean that the situation is
hopeless. There are several ideas we could try. The most conservative one is to
keep the opto-electronic reservoir scheme, but build an entirely new experimen-
tal setup with low-noise components. This requires in-depth knowledge of the
electronics and optics market and a significant financial investment. A more
liberal idea is to get rid of the opto-electronic reservoir and switch to a different
experiment. My fellow PhD colleague, Quentin Vinckier, developed a new op-
tical reservoir computer with a passive cavity [49], with very low level of noise,
since there are now active components inside the delay loop. The challenge
here is first to master the anything-but-trivial experiment, much more complex
than the opto-electronic reservoir, and only then to build a new interface for
the FPGA. Several other ideas have been proposed in our paper [5], such as
the use of conceptors [118, 119], but we did not have the time to implement
them.

Another challenge would be to realise a fully analogue reservoir computer
with output feedback. For instance, one could consider using the analogue
output presented in [73], and feed this back into the reservoir. Implementing
this is a major challenge.

Online-trained analogue readout. The online training of an analogue read-
out layer is probably the most promising short-term goal. In fact, we have
paved most of the the road. Therefore, the plan of action is very simple here:
just do it, now experimentally.

Ultra-fast systems. Another challenge would be to implement the same
experiments I have reported in my thesis, but using much faster systems. Ex-
perimental reservoir computers based on delay dynamical systems can be much
faster than the experiment I implemented, see e.g. [54, 58]. Can online train-
ing, physical error backpropagation or output feedback be implemented using
these reservoirs? A major challenge here is that FPGAs themselves may no
longer be able to follow the speed of the reservoir.

Besides the experiments discussed above, during the last year of my the-
sis, I took an amazing opportunity to spend five months in the sunny Texas,

148 Chapter VII. Conclusion and perspectives

applying my FPGA skills and machine learning knowledge to the field of coro-
nary imaging. Exploiting the parallel computational capacities of the FPGA,
we could reduce the runtime of the automated plaque characterisation algo-
rithm, based on artificial neural networks and developed at UTexas prior to
my arrival, from days to tens of seconds (see Ch. V.6). This speedup brings
the method much closer to potential clinical use. Future investigations, with a
possible collaboration between ULB and UTexas, may see the neural network
replaced by an optical reservoir computer, tightly linked to the OCT device
used for artery imaging. This also opens several directions for future research.

Real-time plaque characterisation on FPGA. The continuation of my project
with UTexas seems a very exciting research direction. That is, the two main
design blocks have been developed, and all that remains is to connect them to-
gether, with some hardware optimisation. However, there are situations where
one should take things slowly, and this is one of them. Dr. Milner’s team
had already came to realisation that, while the neural network classifier with
feature extraction is a functioning approach, it may not be the simplest or the
most optimal one. A few quick tests on my own, not presented in this thesis,
have suggested that the neural network could be simplified, and that not all
of the 300 features are necessary. The details are yet to be confirmed, but the
general idea sounds promising. Which brings us to the next point.

Efficient plaque classification algorithm. The neural network classifier for
plaque characterisation allowed to achieve state-of-the-art results in terms of
sensitivity and specificity. No one could possibly deny that it is a good classifier.
But it may not be the best one. After some analysis of the network structure
and its core characteristics, it should be possible to understand what exactly
makes it a good classifier and how complex it should be. Again, this is an
investigation that we have already started in Austin, but it is too soon to draw
any conclusions.

Novel applications of RC. During the summer of 2016, I supervised an in-
tern who was working on applications of reservoir computing to various pattern
recognition tasks. Although we obtained some promising preliminary results,
the idea requires to be further investigated. The motivation arises from my
personal point of view. While reservoir computing is a very elegant model, it
seems to me that its optical implementations are being investigated as a “toy”,
and they are yet to find a “killer” application. This is why, I believe, finding
the perfect problem to solve with optical reservoir computing is an interesting
avenue of research. And it turns out that my internship in Texas might just
have brought a candidate for such an application. Consider the following sce-
nario. On the one hand, there is the optical coherence tomography for scanning
the arteries. On the other – a neural network classifier in charge of analysing
the OCT images and characterising different tissue types. Would it be possi-
ble to replace the neural network with an optical reservoir computer and fit it
nicely alongside OCT? Such an application would exploit all the main benefits
of photonic RC – high-speed optical processing, low energy consumption, ease
of training the reservoir – and most certainly attract the key players in the
$500 million coronary imaging market [136].

149

In conclusion, there are many directions in which the results presented
in the present thesis could be extended. Some are relatively simple and easy
to follow, others are more ambitious and challenging. But the key point is
the following. When I joined OPERA-Photonique four years ago, photonic
reservoir computing had been demonstrated in its simplest versions, and the
team had an FPGA board and an idea of what to do with it. Four years
later, several advanced information processing tasks have been demonstrated
by interfacing the FPGA with the experiment, opening up many perspectives
for future research. Thus today the lab still possesses the same FPGA, but
now with half-a-dozen new ideas. Therefore, while it is time for me to bow out,
the story of FPGA-enhanced photonic reservoir computing is only beginning!

On a final note, let us take another quick peek into the future. I have pre-
sented several posters at machine learning conferences, with audiences expert
in neural networks, but relatively new to optical implementations of reser-
voir computing. Quite often, participants were curious about the future and
practical applications of our experiments. In particular, at my last Benelearn
conference in June 2017, a dutch scholar, fascinated by our work, asked whether
optical reservoir computing would be “the future”. While I definitely admire
the simplicity of the concept and the processing speeds that can be achieved
with fast optical setups, I think that this is an overstatement. So what could
we actually expect from optical RC in the near future?

As Michiel Hermans often told us, the computational power of a machine
learning algorithm depends on the number of trainable parameters. In reser-
voir computing, this number is significantly reduced, which favours the sim-
plicity of the system but deteriorates its performance on complex tasks. For
comparison, experimental reservoir computers typically count at most a few
hundred of trainable parameters, while deep learning, that currently domi-
nates the machine learning world, totals millions of them. Therefore, I do
not expect reservoir computers to become ubiquitous – they are too simple to
deal with challenging tasks, such as image processing. But I believe there is
a niche where reservoir computing will prevail over the competition. A niche
that requires, for instance, moderately complex processing of optical signals at
very high speeds, with low energy consumption. In that case, all of the main
advantages of optical RC could be exploited.

A realistic commercial application of optical RC does not seem possible
without a fast and robust device, probably integrated on a chip. This endeav-
our would probably require joining the efforts of several research group across
Europe: the integrated reservoir [55] from UGent, the high-speed systems [54,
58] from IFISC and FEMTO-ST, and the low-energy passive coherent cavity
[49] from our group. It is virtually impossible to tell how much time such
a large-scale collaboration would take, but the resulting system could attract
multiple clients from the industry. For instance, it could be used in optical
communications for routing the packets without converting them to digital do-
main, thus increasing processing speed and cutting costs on analogue-to-digital
converters. Furthermore, as my internship in Texas has recently suggested,
medical imaging, such as intravascular OCT, could also benefit from embed-
ded optical computing for image pre-processing or analysis. To conclude, I do

150 Chapter VII. Conclusion and perspectives

not think that optical reservoir computing is the future, but I believe it will
most certainly be part of it.

Bibliography

[18] Chrisantha Fernando and Sampsa Sojakka. “Pattern recognition in a
bucket”. In: European Conference on Artificial Life. Springer. 2003,
pp. 588–597.

[19] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical bio-
physics 5.4 (1943), pp. 115–133.

[20] Marvin Minsky and Seymour Papert. Perceptrons: Anlntroduction to
Computational Geometry. MIT Press, Cambridge, Mass, 1969.

[21] Paul Werbos. Beyond regression: New tools for prediction and analysis
in the behavioral sciences. 1974.

[22] Paul J Werbos. “Backpropagation through time: what it does and how
to do it”. In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560.

[23] Alan L Hodgkin and Andrew F Huxley. “A quantitative description of
membrane current and its application to conduction and excitation in
nerve”. In: The Journal of physiology 117.4 (1952), p. 500.

[24] Richard FitzHugh. “Mathematical models of threshold phenomena in
the nerve membrane”. In: The bulletin of mathematical biophysics 17
(1955), pp. 257–278.

[25] Wulfram Gerstner. “A framework for spiking neuron models: The spike
response model”. In: Handbook of Biological Physics 4 (2001), pp. 469–
516.

[26] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single
neurons, populations, plasticity. Cambridge university press, 2002.

[27] Eugene M Izhikevich. “Which model to use for cortical spiking neu-
rons?” In: IEEE transactions on neural networks 15.5 (2004), pp. 1063–
1070.

[28] Simon Haykin. Neural networks: a comprehensive foundation. Prentice
Hall, 1998.

[29] Herbert Jaeger and Harald Haas. “Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communication”. In: Sci-
ence 304 (2004), pp. 78–80.

[30] Wolfgang Maass, Thomas Natschläger, and Henry Markram. “Real-time
computing without stable states: A new framework for neural computa-
tion based on perturbations”. In: Neural comput. 14 (2002), pp. 2531–
2560.

[31] Herbert Jaeger. “The “echo state” approach to analysing and training
recurrent neural networks - with an Erratum note”. In: GMD Report
148 (2001).

151

152 BIBLIOGRAPHY

[32] Ali Rodan and Peter Tino. “Minimum complexity echo state network”.
In: IEEE Trans. Neural Netw. 22 (2011), pp. 131–144.

[33] François Duport, Bendix Schneider, Anteo Smerieri, Marc Haelterman,
and Serge Massar. “All-optical reservoir computing”. In: Opt. Express
20 (2012), pp. 22783–22795.

[34] Antoine Dejonckheere, François Duport, Anteo Smerieri, Li Fang, Jean-
Louis Oudar, Marc Haelterman, and Serge Massar. “All-optical reservoir
computer based on saturation of absorption”. In: Opt. Express 22 (2014),
pp. 10868–10881.

[35] Takeshi Amemiya. Advanced econometrics. Harvard University Press,
1985.

[36] Andrei Nikolaevich Tikhonov, AV Goncharsky, VV Stepanov, and Ana-
toly G Yagola. Numerical methods for the solution of ill-posed problems.
Vol. 328. Springer Netherlands, 1995.

[37] Michiel Hermans. “Expanding the theoretical framework of reservoir
computing”. PhD thesis. Ghent University, 2012.

[38] Jaspreet Singh, Sandeep Ponnuru, and Upamanyu Madhow. “Multi-
gigabit communication: the ADC bottleneck”. In: Ultra-Wideband, 2009.
ICUWB 2009. IEEE International Conference on. IEEE. 2009, pp. 22–
27.

[39] David Amory Sobel and Robert W Brodersen. “A 1 Gb/s mixed-signal
baseband analog front-end for a 60 GHz wireless receiver”. In: Solid-
State Circuits, IEEE Journal of 44.4 (2009), pp. 1281–1289.

[40] Xiaodong Feng, Guanghui He, and Jun Ma. “A new approach to reduce
the resolution requirement of the ADC for high data rate wireless re-
ceivers”. In: Signal Processing (ICSP), 2010 IEEE 10th International
Conference on. IEEE. 2010, pp. 1565–1568.

[41] Su-Khiong Yong, Pengfei Xia, and Alberto Valdes-Garcia. 60 GHz Tech-
nology for Gbps WLAN and WPAN: from Theory to Practice. John Wi-
ley & Sons, 2011.

[42] Khursheed Hassan, Theodore S Rappaport, and Jeffrey G Andrews.
“Analog equalization for low power 60 GHz receivers in realistic mul-
tipath channels”. In: Global Telecommunications Conference (GLOBE-
COM 2010), 2010 IEEE. IEEE. 2010, pp. 1–5.

[43] Jerry Malone and Mark A Wickert. “Practical volterra equalizers for
wideband satellite communications with twta nonlinearities”. In: Digi-
tal Signal Processing Workshop and IEEE Signal Processing Education
Workshop (DSP/SPE), 2011 IEEE. IEEE. 2011, pp. 48–53.

[44] Marc Bauduin, Anteo Smerieri, Serge Massar, and François Horlin. “Equal-
ization of the non-linear satellite communication channel with an echo
state network”. In: Vehicular Technology Conference (VTC Spring),
2015 IEEE 81st. IEEE. 2015, pp. 1–5.

[45] V John Mathews and Junghsi Lee. “Adaptive algorithms for bilinear
filtering”. In: SPIE’s 1994 International Symposium on Optics, Imaging,
and Instrumentation. International Society for Optics and Photonics.
1994, pp. 317–327.

BIBLIOGRAPHY 153

[46] Peter Whitle. Hypothesis testing in time series analysis. Vol. 4. Almqvist
& Wiksells, 1951.

[47] Edward James Hannan. Multiple time series. Vol. 38. John Wiley &
Sons, 2009.

[48] Yvan Paquot, Francois Duport, Anteo Smerieri, Joni Dambre, Benjamin
Schrauwen, Marc Haelterman, and Serge Massar. “Optoelectronic reser-
voir computing”. In: Sci. Rep. 2 (2012), p. 287.

[49] Quentin Vinckier, François Duport, Anteo Smerieri, Kristof Vandoorne,
Peter Bienstman, Marc Haelterman, and Serge Massar. “High-perfor-
mance photonic reservoir computer based on a coherently driven passive
cavity”. In: Optica 2.5 (2015), pp. 438–446.

[50] Felix Schürmann, Karlheinz Meier, and Johannes Schemmel. “Edge of
Chaos Computation in Mixed-Mode VLSI-A Hard Liquid.” In: NIPS.
2004, pp. 1201–1208.

[51] Lennert Appeltant, Miguel Cornelles Soriano, Guy Van der Sande, Jan
Danckaert, Serge Massar, Joni Dambre, Benjamin Schrauwen, Claudio
R Mirasso, and Ingo Fischer. “Information processing using a single
dynamical node as complex system”. In: Nat. Commun. 2 (2011), p. 468.

[52] Laurent Larger, MC Soriano, Daniel Brunner, L Appeltant, Jose M
Gutiérrez, Luis Pesquera, Claudio R Mirasso, and Ingo Fischer. “Pho-
tonic information processing beyond Turing: an optoelectronic imple-
mentation of reservoir computing”. In: Opt. Express 20 (2012), pp. 3241–
3249.

[53] Romain Martinenghi, Sergei Rybalko, Maxime Jacquot, Yanne Kouo-
mou Chembo, and Laurent Larger. “Photonic nonlinear transient com-
puting with multiple-delay wavelength dynamics”. In: Phys. Rev. Let.
108 (2012), p. 244101.

[54] Daniel Brunner, Miguel C Soriano, Claudio R Mirasso, and Ingo Fis-
cher. “Parallel photonic information processing at gigabyte per second
data rates using transient states”. In: Nature communications 4 (2013),
p. 1364.

[55] Kristof Vandoorne, Pauline Mechet, Thomas Van Vaerenbergh, Martin
Fiers, Geert Morthier, David Verstraeten, Benjamin Schrauwen, Joni
Dambre, and Peter Bienstman. “Experimental demonstration of reser-
voir computing on a silicon photonics chip”. In: Nat. Commun. 5 (2014),
p. 3541.

[56] Nicholas D Haynes, Miguel C Soriano, David P Rosin, Ingo Fischer, and
Daniel J Gauthier. “Reservoir computing with a single time-delay au-
tonomous Boolean node”. In: Physical Review E 91.2 (2015), p. 020801.

[57] Jacob Torrejon, Mathieu Riou, Flavio Abreu Araujo, Sumito Tsunegi,
Guru Khalsa, Damien Querlioz, Paolo Bortolotti, Vincent Cros, Akio
Fukushima, Hitoshi Kubota, et al. “Neuromorphic computing with nano-
scale spintronic oscillators”. In: arXiv preprint arXiv:1701.07715 (2017).

[58] Laurent Larger, Antonio Baylón-Fuentes, Romain Martinenghi, Vladimir
S. Udaltsov, Yanne K. Chembo, and Maxime Jacquot. “High-Speed
Photonic Reservoir Computing Using a Time-Delay-Based Architecture:

154 BIBLIOGRAPHY

Million Words per Second Classification”. In: Phys. Rev. X 7 (1 2017),
p. 011015.

[59] Akram Akrout, Arno Bouwens, François Duport, Quentin Vinckier, Marc
Haelterman, and Serge Massar. “Parallel photonic reservoir computing
using frequency multiplexing of neurons”. In: arXiv:1612.08606 (2016).

[60] Edin Kadric. “An FPGA Implementation for a High-Speed Optical Link
with a PCIe Interface”. PhD thesis. 2011.

[61] Kaitlyn Franz. History of the FPGA. (2015). url: http : / / blog .

digilentinc.com/history-of-the-fpga/.
[62] Wikipedia. Transistor. 2017. url: http://en.wikipedia.org/wiki/

Transistor.
[63] Evgeni Stavinov. 100 Power Tips for FPGA Designers. CreateSpace

Independent Publishing Platform, 2011.
[64] M. Mitchell Waldrop. “The chips are down for Moore’s law”. In: Nature

530 (2016), pp. 144–147.
[65] Peter Bright. Moores law really is dead this time. 2016. url: https:

//arstechnica.com/information-technology/2016/02/moores-

law-really-is-dead-this-time/.
[66] Virtex-6 Family Overview. DS150 (v2.4). Xilinx Inc. 2012.
[67] Virtex-6 FPGA DSP48E1 Slice. UG369. Xilinx Inc. 2011.
[68] Getting Started with the Xilinx Virtex-6 FPGA ML605 Evaluation Kit.

UG533 (v1.5). Xilinx Inc. 2011.
[69] Kristof Vandoorne, Wouter Dierckx, Benjamin Schrauwen, David Ver-

straeten, Roel Baets, Peter Bienstman, and Jan Van Campenhout. “To-
ward optical signal processing using photonic reservoir computing”. In:
Optics Express 16 (2008), pp. 11182–11192.

[70] Christopher M Bishop. Pattern recognition and machine learning. Springer,
2006.

[71] Simon Haykin. Adaptive filter theory. Prentice-Hall, Upper Saddle River,
New Jersey, 2000.

[72] Léon Bottou. “Online Algorithms and Stochastic Approximations”. In:
Online Learning and Neural Networks. Cambridge University Press,
1998.

[73] François Duport, Anteo Smerieri, Akram Akrout, Marc Haelterman,
and Serge Massar. “Fully analogue photonic reservoir computer”. In:
Sci. Rep. 6 (2016), p. 22381.

[74] Sergio Benedetto and Ezio Biglieri. Principles of digital transmission:
with wireless applications. Springer Science & Business Media, 1999.

[75] George B Arfken. “Mathematical methods for physicists”. In: Orlando
FL: Academic Press, 1985.

[76] “IEEE Standard VHDL Language Reference Manual.” In: ANSI/IEEE
Std 1076-1993 (1994).

[77] Volnei A. Pedroni. Circuit Design with VHDL. MIT Press, 2004.
[78] Jingjing Wang, Hao Zhang, Tingting Lv, and T Aaron Gulliver. “Ca-

pacity of 60 GHz wireless communication systems over fading channels”.
In: Journal of Networks 7.1 (2012), pp. 203–209.

http://blog.digilentinc.com/history-of-the-fpga/
http://blog.digilentinc.com/history-of-the-fpga/
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Transistor
https://arstechnica.com/information-technology/2016/02/moores-law-really-is-dead-this-time/
https://arstechnica.com/information-technology/2016/02/moores-law-really-is-dead-this-time/
https://arstechnica.com/information-technology/2016/02/moores-law-really-is-dead-this-time/

BIBLIOGRAPHY 155

[79] Melissa Duarte, Ashutosh Sabharwal, Vaneet Aggarwal, Rittwik Jana,
KK Ramakrishnan, Christopher W Rice, and NK Shankaranarayanan.
“Design and characterization of a full-duplex multiantenna system for
WiFi networks”. In: Vehicular Technology, IEEE Transactions on 63.3
(2014), pp. 1160–1177.

[80] Michiel Hermans, Joni Dambre, and Peter Bienstman. “Optoelectronic
Systems Trained With Backpropagation Through Time”. In: IEEE Trans-
actions on Neural Networks and Learning Systems 26.7 (2015), pp. 1545–
1550.

[81] Michiel Hermans, Miguel Soriano, Joni Dambre, Peter Bienstman, and
Ingo Fischer. “Photonic Delay Systems as Machine Learning Implemen-
tations”. In: JMLR 16 (2015), pp. 2081–2097.

[82] David E. Rumelhart, James L. McClelland, and PDP Research Group.
“Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, Vol. 1”. In: Cambridge, MA, USA: MIT Press, 1986.
Chap. Learning Internal Representations by Error Propagation, pp. 318–
362.

[83] Paul J Werbos. “Generalization of backpropagation with application to
a recurrent gas market model”. In: Neural networks 1.4 (1988), pp. 339–
356.

[84] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
Nature 521.7553 (2015), pp. 436–444.

[85] Michiel Hermans, Michaël Burm, Thomas Van Vaerenbergh, Joni Dambre,
and Peter Bienstman. “Trainable hardware for dynamical computing
using error backpropagation through physical media”. In: Nature com-
munications 6 (2015), p. 6729.

[86] Kensuke Ikeda and Kenji Matsumoto. “High-dimensional chaotic behav-
ior in systems with time-delayed feedback”. In: Physica D: Nonlinear
Phenomena 29.1 (1987), pp. 223–235.

[87] Yurii Nesterov. “A method of solving a convex programming problem
with convergence rate O (1/k2)”. In: Soviet Mathematics Doklady 27.2
(1983), pp. 372–376.

[88] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. “On
the importance of initialization and momentum in deep learning”. In:
Proceedings of the 30th international conference on machine learning
(ICML-13). 2013, pp. 1139–1147.

[89] Hubert Zimmermann. “OSI Reference Model - The ISO Model of Ar-
chitecture for Open Systems Interconnection”. In: IEEE Transactions
on Communications 28.4 (1980), pp. 425–432.

[90] John S. Garofolo and NIST. TIMIT Acoustic-phonetic Continuous Speech
Corpus. Linguistic Data Consortium, 1993.

[91] Fabian Triefenbach, Azarakhsh Jalalvand, Benjamin Schrauwen, and
Jean-Pierre Martens. “Phoneme recognition with large hierarchical reser-
voirs”. In: Adv. Neural Inf. Process. Syst. 23 (2010), pp. 2307–2315.

[92] Fabian Triefenbach, Kris Demuynck, and Jean-Pierre Martens. “Large
vocabulary continuous speech recognition with reservoir-based acoustic
models”. In: IEEE Signal Processing Letters 21.3 (2014), pp. 311–315.

156 BIBLIOGRAPHY

[93] Michiel Hermans and Benjamin Schrauwen. “Infinite sparse threshold
unit networks”. In: Proceedings of the International Conference on Ar-
tificial Neural Networks. 2012, pp. 612–619.

[94] Satnam Singh. Using the Virtex-6 Embedded Tri-Mode Ethernet MAC
Wrapper v1.4 with the ML605 Board. 2011. url: http://blogs.msdn.
microsoft.com/satnam_singh/2011/02/11/using- the- virtex-

6-embedded-tri-mode-ethernet-mac-wrapper-v1-4-with-the-

ml605-board/.
[95] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rec-

tifier Neural Networks.” In: 14th International Conference on Artificial
Intelligence and Statistics. Vol. 15. 106. 2011, p. 275.

[96] Bingxue Shi and Chun Lu. Generator of neuron transfer function and
its derivative. US Patent 6429699. 2002.

[97] Anteo Smerieri, François Duport, Yvan Paquot, Benjamin Schrauwen,
Marc Haelterman, and Serge Massar. “Analog readout for optical reser-
voir computers”. In: Advances in Neural Information Processing Sys-
tems. 2012, pp. 944–952.

[98] Quentin Vinckier, Arno Bouwens, Marc Haelterman, and Serge Massar.
“Autonomous all-photonic processor based on reservoir computing par-
adigm”. In: Conference on Lasers and Electro-Optics. Optical Society
of America. 2016, SF1F.1.

[99] G. Peter Zhang. “Neural Networks for Time-Series Forecasting”. In:
Handbook of Natural Computing. Ed. by Grzegorz Rozenberg, Thomas
Bäck, and Joost N. Kok. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 461–477.

[100] Francis wyffels and Benjamin Schrauwen. “A comparative study of Reser-
voir Computing strategies for monthly time series prediction”. In: Neu-
rocomputing 73.1012 (2010), pp. 1958 –1964.

[101] Meiling Xu, Min Han, and Shunshoku Kanae. “L1/2 Norm Regularized
Echo State Network for Chaotic Time Series Prediction”. In: APNNS’s
23th International Conference on Neural Information Processing (ICO-
NIP). Vol. 9886. LNCS. 2016, pp. 12–19.

[102] The 2006/07 Forecasting Competition for Neural Networks & Computa-
tional Intelligence. http://www.neural-forecasting-competition.
com/NN3/. 2006.

[103] Francis wyffels, Benjamin Schrauwen, and Dirk Stroobandt. “Stable
output feedback in reservoir computing using ridge regression”. In: In-
ternational Conference on Artificial Neural Networks. Springer. 2008,
pp. 808–817.

[104] Ken Caluwaerts, Michiel D’Haene, David Verstraeten, and Benjamin
Schrauwen. “Locomotion Without a Brain: Physical Reservoir Comput-
ing in Tensegrity Structures”. In: Artificial Life 19.1 (2013), pp. 35 –
66.

[105] Ren Felix Reinhart and Jochen Jakob Steil. “Regularization and stabil-
ity in reservoir networks with output feedback”. In: Neurocomputing 90
(2012), pp. 96 –105.

http://blogs.msdn.microsoft.com/satnam_singh/2011/02/11/using-the-virtex-6-embedded-tri-mode-ethernet-mac-wrapper-v1-4-with-the-ml605-board/
http://blogs.msdn.microsoft.com/satnam_singh/2011/02/11/using-the-virtex-6-embedded-tri-mode-ethernet-mac-wrapper-v1-4-with-the-ml605-board/
http://blogs.msdn.microsoft.com/satnam_singh/2011/02/11/using-the-virtex-6-embedded-tri-mode-ethernet-mac-wrapper-v1-4-with-the-ml605-board/
http://blogs.msdn.microsoft.com/satnam_singh/2011/02/11/using-the-virtex-6-embedded-tri-mode-ethernet-mac-wrapper-v1-4-with-the-ml605-board/
http://www.neural-forecasting-competition.com/NN3/
http://www.neural-forecasting-competition.com/NN3/

BIBLIOGRAPHY 157

[106] Francis wyffels, Jiwen Li, Tim Waegeman, Benjamin Schrauwen, and
Herbert Jaeger. “Frequency modulation of large oscillatory neural net-
works”. In: Biological Cybernetics 108.2 (2014), pp. 145–157.

[107] Herbert Jaeger. “Echo state network”. In: Scholarpedia 2.9 (2007), p. 2330.
[108] Tadashi Yamazaki and Shigeru Tanaka. “The cerebellum as a liquid

state machine”. In: Neural Networks 20.3 (2007), pp. 290 –297.
[109] Christian Rössert, Paul Dean, and John Porrill. “At the Edge of Chaos:

How Cerebellar Granular Layer Network Dynamics Can Provide the Ba-
sis for Temporal Filters”. In: PLOS Computational Biology 11.10 (Oct.
2015), pp. 1–28.

[110] Michael C Mackey and Leon Glass. “Oscillation and chaos in physiolog-
ical control systems”. In: Science 197.4300 (1977), pp. 287–289.

[111] Edward N Lorenz. “Deterministic nonperiodic flow”. In: Journal of the
atmospheric sciences 20.2 (1963), pp. 130–141.

[112] J Doyne Farmer. “Chaotic attractors of an infinite-dimensional dynam-
ical system”. In: Physica D: Nonlinear Phenomena 4.3 (1982), pp. 366–
393.

[113] Morris W Hirsch, Stephen Smale, and Robert L Devaney. Differential
equations, dynamical systems, and an introduction to chaos. Academic
press, Boston, MA, 2003.

[114] Paul Horowitz and Winfield Hill. The art of electronics. Cambridge Uni-
versity Press, 1980.

[115] John Walker. ENT Program. http://www.fourmilab.ch/random/.
[116] George Marsaglia. The Marsaglia Random Number CDROM including

the Diehard Battery of Tests of Randomness. http://stat.fsu.edu/
pub/diehard/.

[117] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine
Barker. A statistical test suite for random and pseudorandom number
generators for cryptographic applications. Tech. rep. National Institute
of Standards and Technology, 2001.

[118] Herbert Jaeger. “Conceptors: an easy introduction”. In: CoRR abs/1406.
2671 (2014).

[119] Herbert Jaeger. “Controlling Recurrent Neural Networks by Concep-
tors”. In: CoRR abs/1403.3369 (2014).

[120] Andr David Kovac, Maximilian Koall, Gordon Pipa, and Hazem Toutounji.
“Persistent Memory in Single Node Delay-Coupled Reservoir Comput-
ing”. In: PLOS ONE 11.10 (Oct. 2016), pp. 1–15.

[121] David Sussillo and L.F. Abbott. “Generating Coherent Patterns of Ac-
tivity from Chaotic Neural Networks”. In: Neuron 63.4 (2009), pp. 544
–557.

[122] Damien Woods and Thomas J Naughton. “Optical computing: Photonic
neural networks”. In: Nature Physics 8.4 (2012), pp. 257–259.

[123] Shai Shalev-Shwartz. “Online Learning and Online Convex Optimiza-
tion”. In: Foundations and Trends in Machine Learning 4.2 (2012),
pp. 107–194.

http://www.fourmilab.ch/random/
http://stat.fsu.edu/pub/diehard/
http://stat.fsu.edu/pub/diehard/

158 BIBLIOGRAPHY

[124] Miguel C Soriano, Silvia Ort́ın, Daniel Brunner, Laurent Larger, CR Mi-
rasso, Ingo Fischer, and Luıs Pesquera. “Optoelectronic reservoir com-
puting: tackling noise-induced performance degradation”. In: Optics ex-
press 21.1 (2013), pp. 12–20.

[125] Miguel C Soriano, Silvia Ort́ın, Lars Keuninckx, Lennert Appeltant,
Jan Danckaert, Luis Pesquera, and Guy Van der Sande. “Delay-based
reservoir computing: noise effects in a combined analog and digital im-
plementation”. In: IEEE transactions on neural networks and learning
systems 26.2 (2015), pp. 388–393.

[126] Marc Bauduin, Quentin Vinckier, Serge Massar, and François Horlin.
“High performance bio-inspired analog equalizer for DVB-S2 non-linear
communication channel”. In: Signal Processing Advances in Wireless
Communications (SPAWC), 2016 IEEE 17th International Workshop
on. IEEE. 2016, pp. 1–5.

[127] Aldons J. Lusis. “Atherosclerosis”. In: Nature 407.6801 (2000), pp. 233–
241. issn: 0028-0836.

[128] Frank D Kolodgie, Allen P Burke, Andrew Farb, Herman K Gold, Jun-
ying Yuan, Jagat Narula, Aloke V Finn, and Renu Virmani. “The thin-
cap fibroatheroma: a type of vulnerable plaque: the major precursor
lesion to acute coronary syndromes”. In: Current opinion in cardiology
16.5 (2001), pp. 285–292.

[129] Hiroshi Yabushita, Brett E. Bouma, Stuart L. Houser, H. Thomas Aretz,
Ik-Kyung Jang, Kelly H. Schlendorf, Christopher R. Kauffman, Milen
Shishkov, Dong-Heon Kang, Elkan F. Halpern, and Guillermo J. Tear-
ney. “Characterization of Human Atherosclerosis by Optical Coherence
Tomography”. In: Circulation 106.13 (2002), pp. 1640–1645. issn: 0009-
7322.

[130] Brett E. Bouma, Martin Villiger, Kenichiro Otsuka, and Wang-Yuhl Oh.
“Intravascular optical coherence tomography (Invited)”. In: Biomed.
Opt. Express 8.5 (2017), pp. 2660–2686.

[131] John Noble, Harry Lemoine Greene, and Fred F Ferri. Textbook of pri-
mary care medicine. Mosby, 2001.

[132] Daniel Chamié, Zhao Wang, Hiram Bezerra, Andrew M. Rollins, and
Marco A. Costa. “Optical Coherence Tomography and Fibrous Cap
Characterization”. In: Curr Cardiovasc Imaging Rep 4.4 (2011). 9090[PII],
pp. 276–283. issn: 1941-9066.

[133] Wikipedia. Atherosclerosis. 2017. url: http://en.wikipedia.org/
wiki/Atherosclerosis.

[134] Fabio Tavora, Nathaniel Cresswell, Ling Li, David Fowler, and Allen
Burke. “Frequency of acute plaque ruptures and thin cap atheromas at
sites of maximal stenosis”. pt. In: Arquivos Brasileiros de Cardiologia
94 (2010), pp. 153–159.

[135] Hector M Garcia-Garcia, Ik-Kyung Jang, Patrick W Serruys, Jason C
Kovacic, Jagat Narula, and Zahi A Fayad. “Imaging plaques to predict
and better manage patients with acute coronary events”. In: Circulation
research 114.12 (2014), pp. 1904–1917.

http://en.wikipedia.org/wiki/Atherosclerosis
http://en.wikipedia.org/wiki/Atherosclerosis

BIBLIOGRAPHY 159

[136] Barbara G. Goode. “Optical Coherence Tomography/Cardiology: To-
tally tubular: Cardiovascular OCT goes prime time”. In: BioOptics
World (2010). url: http://www.bioopticsworld.com/articles/

print/volume-3/issue-4/features/optical-coherence.html.
[137] Milosz Jaguszewski and Ulf Landmesser. “Optical Coherence Tomogra-

phy Imaging: Novel Insights into the Vascular Response After Coronary
Stent Implantation”. In: Current Cardiovascular Imaging Reports 5.4
(2012), pp. 231–238.

[138] Vikram L Baruah, Aydin Zahedivash, Taylor B Hoyt, Deborah Vela, L.
Maximilian Buja, Thomas E Milner, and Marc D Feldman. “Abstract
19246: Histology-Validated Neural Networks Enable Accurate Plaque
Tissue and Thin-Capped Fibroatheroma Characterization Through In-
travascular Optical Coherence Tomography”. In: Circulation 134.Suppl
1 (2016), A19246–A19246. issn: 0009-7322.

[139] Vikram Baruah, Aydin Zahedivash, Hoyt Taylor, Austin McElroy, Deb-
orah Vela, L. M. Buja, Thomas Milner, and Marc Feldman. “TCT-570
Histology-Validated Neural Networks Enable Plaque Tissue and Thin-
Capped Fibroatheroma Characterization Through Intravascular Optical
Coherence Tomography Based Virtual Histology”. English. In: Journal
of the American College of Cardiology 68.18 (2016).

[140] Vikram Baruah, Aydin Zahedivash, Taylor Hoyt, Austin McElroy, Deb-
orah Vela, L. Maximilion Buja, Marc Feldman, and Thomas Milner.
“Automated Coronary Plaque Characterization Using Intravascular Op-
tical Coherence Tomography and a Smart-Algorithm Approach - Vir-
tual Histology OCT”. In: Journal of the American College of Cardiology:
Cardiovascular Imaging (). (manuscript in progress).

[141] Robert M Haralick, Karthikeyan Shanmugam, et al. “Textural features
for image classification”. In: IEEE Transactions on systems, man, and
cybernetics 3.6 (1973), pp. 610–621.

[142] Xiaofeng Yang, Srini Tridandapani, Jonathan J Beitler, David S Yu,
Emi J Yoshida, Walter J Curran, and Tian Liu. “Ultrasound GLCM
texture analysis of radiation-induced parotid-gland injury in head-and-
neck cancer radiotherapy: An in vivo study of late toxicity”. In: Medical
physics 39.9 (2012), pp. 5732–5739.

[143] Mryka Hall-Beyer. A Grey Level Co-occurrence Matrix tutorial. 2007.
url: http://www.fp.ucalgary.ca/mhallbey/tutorial.htm.

[144] MathWorks Benelux. Hyperbolic tangent sigmoid transfer function. 2017.
url: http://nl.mathworks.com/help/nnet/ref/tansig.html.

[145] MathWorks Benelux. Log-sigmoid transfer function. 2017. url: http:
//nl.mathworks.com/help/nnet/ref/logsig.html.

[146] Guy Van der Sande, Daniel Brunner, and Miguel C Soriano. “Advances
in photonic reservoir computing”. In: Nanophotonics 6.3 (2017), pp. 561–
576.

http://www.bioopticsworld.com/articles/print/volume-3/issue-4/features/optical-coherence.html
http://www.bioopticsworld.com/articles/print/volume-3/issue-4/features/optical-coherence.html
http://www.fp.ucalgary.ca/mhallbey/tutorial.htm
http://nl.mathworks.com/help/nnet/ref/tansig.html
http://nl.mathworks.com/help/nnet/ref/logsig.html
http://nl.mathworks.com/help/nnet/ref/logsig.html

	Jury composition
	Preface
	Acknowledgements
	Author's publications
	Journal papers
	Conference papers
	Conference abstracts

	Chapter I. Introduction
	I.1. From machine learning to reservoir computing
	I.1.1. Machine learning algorithms
	I.1.2. Artificial neural networks
	I.1.3. Reservoir computing
	I.1.4. Benchmark tasks

	I.2. Hardware implementations : opto-electronic delay systems
	I.2.1. Time-multiplexing
	I.2.2. Conceptual setup
	I.2.3. Desynchronisation
	I.2.4. Experimental setup

	I.3. Field-Programmable Gate Arrays
	I.3.1. History
	I.3.2. Market and applications
	I.3.3. Xilinx Virtex 6 : architecture and operation
	I.3.4. Design flow and implementation tools

	Chapter II. Online training of a photonic reservoir computer
	II.1. Introduction
	II.2. Equalisation of non-stationary channels
	II.2.1. Influence of channel model parameters on equaliser performance
	II.2.2. Slowly drifting channel
	II.2.3. Switching channel

	II.3. Online training
	II.3.1. Gradient descent algorithm

	II.4. Experimental setup
	II.4.1. Input and readout
	II.4.2. Experimental parameters
	II.4.3. Experiment automation

	II.5. FPGA design
	II.6. Results
	II.6.1. Improved equalisation error rate
	II.6.2. Simplified training algorithm
	II.6.3. Equalisation of a slowly drifting channel
	II.6.4. Equalisation of a switching channel
	II.6.5. Influence of channel model parameters on equaliser performance

	II.7. Challenges and solutions
	II.8. Conclusion

	Chapter III. Backpropagation with photonics
	III.1. Introduction
	III.2. Backpropagation through time
	III.2.1. General idea and new notations
	III.2.2. Setting up the problem
	III.2.3. Output mask gradient
	III.2.4. Input mask gradient
	III.2.5. Multiple inputs/outputs

	III.3. Experimental setup
	III.3.1. Online multiplication using cascaded MZMs
	III.3.2. Mask parametrisation

	III.4. FPGA design
	III.5. Results
	III.5.1. Tasks
	III.5.2. NARMA10 and VARDEL5
	III.5.3. TIMIT
	III.5.4. Gradient descent
	III.5.5. Robustness

	III.6. Challenges and solutions
	III.7. Conclusion

	Chapter IV. Photonic reservoir computer with output feedback
	IV.1. Introduction
	IV.2. Reservoir computing with output feedback
	IV.3. Time series generation tasks
	IV.3.1. Frequency generation
	IV.3.2. Random pattern generation
	IV.3.3. Mackey-Glass chaotic series prediction
	IV.3.4. Lorenz chaotic series prediction

	IV.4. Experimental setup
	IV.5. FPGA design
	IV.6. Numerical simulations
	IV.7. Results
	IV.7.1. Noisy reservoir
	IV.7.2. Frequency generation
	IV.7.3. Random pattern generation
	IV.7.4. Mackey-Glass series prediction
	IV.7.5. Lorenz series prediction

	IV.8. Challenges and solutions
	IV.9. Conclusion

	Chapter V. Towards online-trained analogue readout layer
	V.1. Introduction
	V.2. Methods
	V.3. Proposed experimental setup
	V.3.1. Analogue readout layer
	V.3.2. FPGA board

	V.4. Numerical simulations
	V.5. Results
	V.5.1. Linear readout: RC circuit
	V.5.2. Nonlinear readout

	V.6. Conclusion

	Chapter VI. Real-time automated tissue characterisation for intravascular OCT scans
	VI.1. Introduction
	VI.2. Feature extraction
	VI.2.1. GLCM features
	VI.2.2. Methods
	VI.2.3. Operation principle
	VI.2.4. FPGA design
	VI.2.5. Results
	VI.2.6. Perspectives

	VI.3. Artificial neural network
	VI.3.1. Network structure
	VI.3.2. Methods
	VI.3.3. Operation principle
	VI.3.4. FPGA design
	VI.3.5. Results

	VI.4. Conclusion

	Chapter VII. Conclusion and perspectives
	Bibliography

