
UNIVERSITÉ LIBRE DE BRUXELLES
Faculté des Sciences

Département d’Informatique

Use of simulators
for side-channel analysis

Leakage detection and analysis of cryptographic systems
in early stages of development

Nikita Veshchikov

Brussels, 2017

ISBN: 978-949231243-3

© Nikita Veshchikov, 2017

This work is licensed under a Creative Commons
Attribution-NonCommercial License.

Supervisors

Prof. Dr. Olivier Markowitch Université libre de Bruxelles, Belgium

Prof. Dr. Frédéric Robert Université libre de Bruxelles, Belgium

Doctoral Thesis Committee

Prof. Dr. Lejla Batina Radboud Universiteit, Nijmegen, Netherlands

Prof. Dr. Gilles Geeraerts Université libre de Bruxelles, Belgium

Prof. Dr. Sylvain Guilley Télécom ParisTech and Secure-IC, France

Prof. Dr. Yves Roggeman Université libre de Bruxelles, Belgium

Dr. Liran Lerman Université libre de Bruxelles, Belgium

Acknowledgements

This thesis is the result of 6 years of work at Université libre de Bruxelles (ULB) where
I was doing the research in cryptography while also spending a considerable amount
of time teaching computer sciences to the new students as an assistant during exercise
sessions. All the achievements would not have been possible without the help and
support of many people who I would like to thank.

First of all, I would like to say thank you tomy family, especiallymymom and dad,
who supported my decision to pursue this adventure from the beginning and through
all the years while I was working on it. Спасибо! Next, I would like to thank my
PhD supervisor Olivier Markowitch for giving me a lot of liberty to pursue different
research directions, and my second supervisor Frédéric Robert for always asking me
difficult questions and making me look at the topic from a new angle. Thank you for
guiding me through this journey and for all the feedback on this document. Merci!

While working as a researcher I learned a lot through various teamwork projects
that resulted in publications for which I am very grateful to all my collaborators. I
want to thank my colleague Liran Lerman for being very serious about research and
for all the notes and feedback on the draft of this document. Liran is also the only
person that I know who can be in a quantum state of being in and out of his office at
the same time. הדות! I would also like to thank another colleague of mine Stephane
Fernandes Medeiros for not being so serious. Obrigado! Special acknowledgement
goes to Liran and Stephane as my first co-authors for introducing me to the magical
world of “writing and submitting scientific papers”. I am also very grateful to Jorge
Nakahara Jr, who was as a post-doc in our teamwhile I was working onmy thesis. He
gave me some of the best advices on how to structure my thesis and other documents.
Obrigado! Another person who I would like to thank is Sylvain Guilley, his valuable
inputs helped me to break the encryption scheme of the DPA Contest, which gave
rise to lots of interesting results. Merci! Next, I would like to thank Stjepan Picek for
showing me a very special approach to the word “deadline” and also for all the crazy
awesome time in Šibenik. Hvala ti! I also want to thank Kostas Papagiannopoulos
for the huge amount of experimental work that he did during our collaboration while
I was writing the code and integrating all of his findings in the software. Ευχαριστώ!
I would also like to thank one of my newest colleagues (and co-authors) François

vi

Gérard for the combination of fun and serious work that he brought to the team
while we were working on a relatively unusual paper. Merci! Another person that I
would like to acknowledge is Antonio Paolillo who was my classmate throughout the
university and then also started his PhD in a different domain of computer sciences.
He invited me to work on one of his projects, even though it was not related to the
IT security it was incredibly interesting and challenging enough, so I gladly worked
on it and learned a lot. Grazie!

The research that I did at the university was done at the QualSec group, side by
side with some of the most incredible people I have ever met. I did not get a chance
to write a paper with every single one of them. Nevertheless, I have learned a lot
about cryptography and security from them. I have learned a lot about network
security from Naïm Qachri and I want to thank him, especially for the etc et tout.
Frédéric Lafitte is another person who taught me a lot about the automated approach
to cryptanalysis using SAT solvers, but most importantly about some of the politics
in the domain of cryptographic research. Merci! Another colleague from whom I
learned a lot, especially about voting systems, is the anonymous known as “J”. Spoiler
alert: it is Jérôme Dossogne. Merci! I also learned a great deal about random numbers
and about quantum cryptography from Helena Bruyninckx. Dank je wel!

During the 6 years of research activities I had a great opportunity to go to nu-
merous summer schools in Bulgaria, Greece and Croatia (almost every year!) where
I learned a great deal about cryptography and computer security from some of the
best minds in the domain. Those were definitely among the best places to deepen
my knowledge about cryptography and to meet other researchers and future collab-
orators. To be honest, it was also a great place to relax after a long year in Brussels
(but only in the evening after the seminars!). Thus, I would like to thank people from
ECRYPT II who managed the summer school on tools for cryptographers at Mykonos
in 2012; all the organisers and speakers from the summer school on the Design and
security of cryptographic functions, algorithms and devices at Albena in 2013; and
all people who repeatedly organised, managed and made wonderful lectures for the
summer schools on real world cryptography in Šibenik from 2014 to 2016. Thank
you, it was really interesting and helpful!

Another place that will always stay in my memory and where I also learned a lot
of things about computer security, met new people and started a fruitful collabora-
tion is the Digital Security Group at Radboud university at Nijmegen in Netherlands.
I spent there an entire month during a scientific mission which resulted in a publi-
cation. I want to thank Lejla Batina for welcoming me at the group. Hvala! I would
also like to thank Joan Daemen for finding some time to answer my questions and
commenting on some of my ideas while I was there. Dank u! Same goes for Peter
Schwabe who also found a little bit of his time to give me a couple of useful advices at
several occasions. Danke! I also want to thank all the guys and girls from Nijmegen
who welcomed me and made me feel like at home, especially Bariş Ege, Antonio de la

vii

Piedra, Ko Stoffelen, Joost Renes, Joost Rijneveld, VeelashaMoonsamy, Pol VanAubel,
Pedro Maat Massolino, Louiza Papachristodoulou and Freek Verbeek. Bedankt! I also
would like to thank Irma Haerkens who works as a secretary in the Digital Security
Group and who made my life there easier by taking care of all the administrative
arrangements. A special thank you is for Anna Krasnova, who actually gave me the
idea for this short term scientific mission at Radboud. Спасибо!

During these year I repeatedly met some great security researchers in different
cities all over the Europe. We had numerous conversations on a wide variety of topics
which gave me new ideas and insights. So, I would like to thank Lukasz Chmielewski
for all the interesting conversations that we had about side-channel analysis. Dz-
iękuję Ci! I am also grateful to Ricardo Chaves for all the discussions that we had
every time that we met at a workshop and even at the airport. Obrigado!

During my research I sent a tremendous number of e-mails to the authors of
most of the papers that I read. Each time when something was unclear or when I
needed an extra piece of information I was sending new e-mails, sometimes I would
even chase people at conferences to get an answer (at some point I even got a skype
interview to get more details about one of the simulators). This is exactly how I
got some of the information that was not in the original papers. I would like to
thank all the researcherswho answered tomy numerous e-mails, it was really helpful!
The full list is very long, but I want to highlight some of them: Colin O’Flynn from
NewAE for all the extra information about the CHES CTF Challenge (also thank you
for comments on my design of the acquisition board); guys from Riscure, especially
for their workshops on side-channel attacks; the team of researchers who work on
side-channel attacks in Bristol (I have already lost count how many questions I have
asked in my e-mails and during life conversations). Thank you for the answers!

While working at the university I had to juggle between teaching and research
activities. I would like to acknowledge some people who made my life as an assistant
easier and who taught me a lot (which gave me more time for research). I want to
thank Markus Lindström as well as already mentioned Jérôme and Naïm for their
help and advices that I got when I started to work at the university. Tack and Merci!
I also want to express my gratitude to professors Yves Roggeman and Gilles Geeraerts
for their valuables lessons on how to better handle teach students. Merci!

I am also very grateful to the people who accepted my request to be in the jury at
the defence of my thesis: Lejla Batina, Gilles Geeraerts, Sylvain Guilley, Yves Rogge-
man and Liran Lerman. Thank you for the time you spent reading the text and also
for finding the time for the defence itself. Most importantly, thank you for all the
questions and remarks that allowed me to improve this document.

I want to applaud all the people who read and commented on various preliminary
versions of this text or some parts of it: both of my supervisors, all the jury members,
but also my mother (who read everything), my uncle (who helped me with the ab-
stract) and Stjepan (who double-checked everything about evolutionary algorithms).

viii

Your inputs were very valuable and allowed me to greatly improve the final result.
Thank you very much!

A very special word of appreciation goes for the help with the illustrations that
I used in this document. I would like to thank a great photographer Nina Ricci-
Fedotova for helping me to create beautiful photos of the hardware at the lab. Grazie
mille, спасибо! Another very big thank you is for a very creative Masha Kashlyaeva
for the magnificent artwork for the cover of this book. Спасибо!

I alsowant to acknowledge several organisations that helpedme a lot by financing
my numerous (work related!) trips to Bulgaria, Croatia, France, Greece, Netherlands,
Taiwan and Unites States. I want to thank Faculté des Sciences of ULB for the yearly
budget that allowed to go to conferences where I presented my work. I also want
to thank Fonds de la Recherche Scientifique de la Belgique for funding my trips to
various workshops where I met other researchers. Another organisation that helped
me to learn more about cryptography also by funding one of my trips to the summer
school is ECRYPT, thank you guys! I also want to express my gratitude to all the peo-
ple who manage the ICT COST Action IC1204, the funding form this action allowed
me to work during a whole month in Nijmegen. Thank you!

All the trips to workshops and conferences would not have been possible without
some extra help. I want to thank secretaries of our department Pascaline Browaeys
and Véronique Bastin for their help with the management of my trips and for making
sure I get all the refunds at the end of it! I also want to thank our secretary Maryka
Peetroons for her help with the massive amount of administrative paperwork and
arrangements that I had to bear during all these years. Merci!

Teaching computer sciences to students was a huge part of my activities at ULB.
I want to thank all the students who made my life more challenging and much more
fun. Special thanks is for all the students who decided to do their master theses and
other security-related projects under my supervision, reading your works allowed
me to understand how to present my own results better, I also learned a couple of
things thanks to your works. A special acknowledgement goes to guys from UrLab
(the hackerspace), who invited me at some point to give a talk on “the stuff that I do
that is related to security”, it made me reflect on how to better explain what exactly
my research topic is all about. Another special word of gratitude is for old and new
members of Cercle Informatique (the student fraternity), thank you for the interest
in my work and for your questions about it (that mostly happen over a beer). I would
also like to thank UrLab and Cerlce Informatique for their help in the organisation of
cryptography related event that I somehow managed to organize!

Finally, I want to thank all my friendswho supportedme by regularly asking “How
is your PhD?” and “How many pages do you have to write?” every time we met. Thank
you for showing your interest in my work by asking me questions about security
and cryptography such as “Could you break into a bank?” and also for listening my
(probably too exhaustive) explanations. Thank you very much!

ix

Use of simulators
for side-channel analysis

Nikita Veshchikov

Abstract

Cryptography is the foundation of modern IT security, it provides algorithms and
protocols that can be used for secure communications. Cryptographic algorithms en-
sure properties such as confidentiality and data integrity. Confidentiality can be en-
sured using encryption algorithms. Encryption algorithms require a secret informa-
tion called a key. These algorithms are implemented in cryptographic devices. There
exist many types of attacks against such cryptosystems, themain goal of these attacks
is the extraction of the secret key. Side-channel attacks are among the strongest types
of attacks against cryptosystems.

Side-channel attacks focus on the attacked device, theymeasure its physical prop-
erties in order to extract the secret key. Thus, these attacks target weaknesses in an
implementation of an algorithm rather than the abstract algorithm itself. Power anal-
ysis is a type of side-channel attacks that can be used to extract a secret key from a
cryptosystem through the analysis of its power consumption while the target device
executes an encryption algorithm. We can say that the secret information is leaking
from the device through its power consumption. One of the biggest challenges in the
domain of side-channel analysis is the evaluation of a device from the perspective of
side-channel attacks or in other words the detection of information leakage. A device
can be subject to several sources of information leakage and it is actually relatively
easy to find just one side-channel attack that works (by exploiting just one source
of leakage), however it is very difficult to find all sources of information leakage or
to show that there is no information leakage in the given implementation of an en-
cryption algorithm. Evaluators use various statistical tests during the analysis of a
cryptographic device to check that it does not leak the secret key. However, in order
to perform such tests the evaluation lab needs the device to acquire themeasurements
and analyse them. Unfortunately, the development process of cryptographic systems
is rather long and has to go through several stages. Thus, an information leakage that
can lead to a side-channel attack can be discovered by an evaluation lab at the very
last stage using the final product. In such case, the whole process has to be restarted
in order to fix the issue, this can lead to significant time and budget overheads. The
rationale is that developers of cryptographic systems would like to be able to detect
issues related to side-channel analysis during the development of the system, prefer-

xiii

xiv

ably on the early stages of its development. However, it is far from being a trivial task
because the end product is not yet available and the nature of side-channel attacks
is such that it exploits the properties of the final version of the cryptographic device
that is actually available to the end user.

The goal of this work is to show how simulators can be used for the detection
of issues related to side-channel analysis during the development of cryptosystems.
This work lists the advantages of simulators compared to physical experiments and
suggests a classification of simulators for side-channel analysis. This work presents
existing simulators that were created for side-channel analysis, more specifically we
show that there is a lack of available simulation tools and that therefore simulators
are rarely used in the domain. We present three new open-source simulators called
Silk, Ascold and Savrasca. These simulators are working at different levels of ab-
straction, they can be used by developers to perform side-channel analysis of the
device during different stages of development of a cryptosystem. We show how Silk
can be used during the preliminary analysis and development of cryptographic al-
gorithms using simulations based on high level of abstraction source code. We used
it to compare S-boxes as well as to compare shuffling countermeasures against side-
channel analysis. Then, we present the tool called Ascold that can be used to find
side-channel leakage in implementations with masking countermeasure using the
analysis of assembly code of the encryption. Finally, we demonstrate how our sim-
ulator called Savrasca can be used to find side-channel leakage using simulations
based on compiled executable binaries. We use Savrasca to analyse masked imple-
mentation of a well-known contest on side-channel analysis (the 4th edition of DPA
Contest), as a result we demonstrate that the analysed implementation contains a
previously undiscovered information leakage. Through this work we also compared
results of our simulated experiments with real experiments coming from implemen-
tations on microcontrollers and showed that issues found using our simulators are
also present in the final product. Overall, this work emphasises that simulators are
very useful for the detection of side-channel leakages in early stages of development
of cryptographic systems.

Utilisation des simulateurs
pour l’analyse des attaques
par cannaux auxiliaires

Nikita Veshchikov

Résumé

La cryptographie est la fondation de la sécurité de données, elle nous fournit algo-
rithmes et protocoles que l’on peut utiliser pour sécuriser les transmissions de don-
nées. Les algorithmes cryptographiques permettent d’assurer les propriétés telles
que la confidentialité et l’intégrité de données. La confidentialité peut être assurée à
l’aide des algorithmes de chiffrement, la sécurité des algorithmes de chiffrement se re-
pose sur une valeur secrète qu’on appelle une clé. Ces algorithmes sont implémentés
dans des dispositifs cryptographiques. Il existe beaucoup d’attaques contre de tels
systèmes, le but principal de ces attaques est d’extraire la clé secrète. Les attaques
par canaux auxiliaires sont parmi les attaques les plus puissantes contre les systèmes
cryptographiques.

Les attaques par canaux auxiliaires se focalisent sur le dispositif cryptographique,
elles analysent les propriétés physiques du dispositif attaqué pour en extraire la clé
secrète. Donc, ce type d’attaque exploite les faiblesses de l’implémentation de l’al-
gorithme plutôt que d’attaquer l’abstraction qui est l’algorithme de chiffrement en
lui même. L’analyse de la consommation d’énergie est un des types d’attaque par
canaux auxiliaires, on peut l’utiliser pour extraire la clé secrète d’un système cryp-
tographique en analysant sa consommation d’énergie pendant que le dispositif exé-
cute l’algorithme de chiffrement. On dit qu’il y a une fuite d’information à travers
sa consommation d’énergie. Un des plus grands défis dans le domaine des attaques
par canaux auxiliaires est l’évaluation des dispositifs cryptographiques cet-à-dire la
détection de fuite d’information à travers les canaux auxiliaires. Un système cryp-
tographique peut être sujet à plusieurs fuites d’information, il est donc plus facile de
trouver une attaque qui permet d’extraire la clé secrète (en utilisant une source de
fuite d’information) que de trouver toutes les attaques ou de montrer qu’il n’y a pas
de fuite d’information dans l’implémentation donnée d’un algorithme de chiffrement.
Les évaluateurs utilisent des tests statistiques afin de détecter les fuites d’information
venant d’une implémentation. Un laboratoire a besoin du dispositif pour acquérir les
données et les analyser. Malheureusement, le processus du développement d’un dis-
positif cryptographique est assez long et nécessite beaucoup d’étapes. Donc, si une
fuite d’information qui mène à une attaque est détectée par un laboratoire d’évalua-
tion c’est fait à la dernière étape du développement en utilisant le produit final. Dans

xvii

xviii

ce cas il faut revenir au début du processus du développement pour éliminer le prob-
lème qui mène à une fuite, cela peut engendrer des frais supplémentaires importants.
En résumé, les développeurs des systèmes cryptographiques aimeraient pouvoir dé-
tecter les problèmes liés aux attaques par canaux auxiliaires le plus tôt possible dans
le processus du développment du dispositif. Néanmoins, ce n’est pas une tâche facile,
car le produit final n’est pas encore disponible et la nature des attaques par canaux
auxiliaires est telle qu’elle exploite les propriétés du produit final.

Le but de ce travail est de montrer comment les simulateurs peuvent être util-
isés pour détecter des problèmes liés aux fuites d’information et aux attaques par
canaux auxiliaires pendant le développement d’un système cryptographique. Ce tra-
vail présente les avantages des simulateurs comparés à des expériences physiques et
propose une classification des simulateurs existants qui sont utilisés dans le domaine
des attaques par canaux auxiliaires. Dans ce travail on présente les simulateurs exis-
tants et on souligne le fait qu’il y a un manque de simulateurs disponibles dans le do-
maine des attaques par canaux auxiliaires, ce qui est une des raison pour un taux faible
d’utilisation des simulateurs dans ce domaine. On présente trois nouveaux simula-
teurs, développés en tant que logiciels libres, qu’on appelle Silk, Ascold et Savrasca.
Ces trois simulateurs opèrent à des différents niveaux d’abstraction, ils peuvent être
utilisés par des développeurs pour analyser le produit en développement du point de
vue des attaques par canaux auxiliaires à différentes phases du développement du sys-
tème. On montre comment on peut utiliser Silk pendant les tests et analyses prélimi-
naires et durant le développement des nouveaux algorithmes cryptographiques en se
basant sur le code source de haut niveaux d’abstraction. Nous avons utilisé Silk pour
comparer des S-boxes ainsi que pour comparer des techniques de mélange qui sont
utilisées en tant que contre-mesures contre les attaques par canaux auxiliaires. En-
suite, nous présentons l’outil Ascold qui peut être utilisé pour détecter des fuites d’in-
formation dans les implémentations qui utilisent la contre-mesure appelée masquage,
l’outil en question se base sur l’analyse du code assembleur. Enfin, nous montrons
comment le simulateur Savrasca peut être utilisé pour trouver des fuites d’informa-
tion à travers les canaux auxiliaires en se basant sur une simulation faite à partir du
code binaire exécutable compilé. Nous avons utilisé Savrasca pour analyser l’implé-
mentation masquée venant d’un concours sur les attaques par canaux auxiliaires (la
4ème édition de DPAContest), nous avons pumontrer que l’implémentation analysée
contient des fuites d’information qui n’étaient pas découvertes auparavant. Durant
ce travail nous avons aussi comparé des résultats basés sur les simulations avec les
résultats qui utilisent des vrais mesures prises sur un micro-contrôleur, nous avons
montré que les problèmes que l’on peut trouver à l’aide de nos simulateurs sont en
effet présents dans l’implémentation finale. En conclusion, ce travail souligne que les
simulateurs sont très utiles pour la détection de fuite d’information et pour l’anal-
yse des attaques par canaux auxiliaires tôt dans le processus du développement des
systèmes cryptographiques.

Использование симуляторов
для анализа атак

по сторонним каналам

Никита Сергеевич Вещиков

Аннотация

Криптография является основой и фундаментом современной информацион-
ной безопасности— эта наука предоставляет алгоритмыи протоколы, которые
можно использовать для безопасной передачи данных. Криптографические
алгоритмы помогают обеспечивать такие свойства, как, например, конфиден-
циальность и целостность данных. Конфиденциальность может быть обес-
печена с помощью алгоритмов шифрования. Для выполнения задачи в ал-
горитмах шифрования используют секретное число, которое специалисты по
шифрованию называют ключом. Реализацию алгоритмашифрования обычно
называютшифровальным устройством или, в более общем случае, криптогра-
фической системой. Существует огромное множество разнообразных видов
атак на криптографические системы, главной целью этих атак является из-
влечение секретного ключа шифрования. Атаки по сторонним каналам — это
один из самых мощных и эффективных видов атак на шифровальные устрой-
ства и другие криптографические системы.

При атаках по сторонним каналам, атакующие концентрируют свои уси-
лия на само́м шифровальном устройстве — они используют его физические
свойства и характеристики для того, чтобы извлечь ключ шифрования. Таким
образом, подобные атаки нацеливают свои усилия на уязвимости инедостатки
в реализации алгоритма, а не на сам алгоритм. Атаки по энергопотреблению
являются одной из разновидностей атак по сторонним каналам, они могут
быть использованы для извлечения секретного ключа из криптографического
устройства путём анализа энергопотребления устройства во время выполне-
ния алгоритма шифрования. Можно сказать, что происходит утечка инфор-
мации из шифровального устройства благодаря данным, полученным через
анализ его энергопотребления. Одной из самых сложных задач в области атак
по сторонним каналам является оценка криптографических устройств с точки
зрения этих атак. Другими словами, обнаружение утечек информации через
сторонние каналы — одна из самых сложных проблем в этой области. Шиф-
ровальное устройство может иметь несколько недостатков, приводящих к раз-
ным источникам утечки информации. Найти одну работающую атаку по сто-
ронним каналам (использующую один источник утечки информации) доста-

xxi

xxii

точно легко, а обнаружить все источники утечек информации или доказать,
что в конкретном данном устройстве их нет, очень сложно. Лаборатории, за-
нимающиеся оценкой утечек информации, часто прибегают к помощи ста-
тистических тестов для анализа шифровальных устройств, чтобы обнаружить
утечку информации по сторонним каналам. Однако, для проведения подоб-
ных тестов необходимо само криптографическое устройство для проведения
опытов и сбора данных для их последующего анализа. К сожалению, процесс
разработки криптографических систем трудоёмок и занимает много времени.
Следовательно, утечку информации, которую можно использовать для атаки
по сторонним каналам, можно обнаружить только на са́мом последнем этапе
разработки системы во время анализа готового устройства. В случае обнаруже-
ния утечки информациинеобходимо вернуться к разработке системыдля того,
чтобы исправить ошибку, а такой подход может привести к большим затратам
времени и накладным расходам. Отсюда следует, что разработчики крипто-
графических устройств хотели бы иметь возможность обнаружения проблем,
связанных с атаками по сторонним каналам, предпочтительно на самых ран-
них стадиях разработки криптографических систем. Тем не менее, это далеко
не самая простая задача, так как в процессе разработки само устройство еще
не доступно (не готово), в то время как природа атак по сторонним каналам
такова, что они используют свойства конечного продукта, то есть, устройства,
которое попадет в руки конечным пользователям.

Цель этой работы — показать, как симуляторы могут быть использованы
для обнаружения утечек информации и атак по сторонним каналам во время
разработки криптографических систем. В данной работе перечисляются пре-
имущества симуляторов над обычными экспериментальными способами об-
наружения атак по сторонним каналам, и здесь представлена классификация
симуляторов для анализа атак по сторонним каналам. В работе рассмотрены
существующие симуляторы, разработанные для анализа утечки информации
через сторонние каналы; более того: нам удалось показать что в области атак
по сторонним каналам не хватает легкодоступных симуляторов, что является
одной из главных причин, по которым симуляторы редко используются в этой
области. Здесь представлены три новых симулятора с открытым кодом: Silk
[силк], Ascold [аскольд] и Savrasca [савраска]. Эти симуляторы оперируют
данными на разных уровнях абстракции, они могут быть использованы на
разных стадиях процесса разработки шифровальных устройств для обнаруже-
ния утечек информации по сторонним каналам. В этой работе показано, как
симулятор Silk может быть использован для предварительного анализа и для
разработки новых алгоритмов; этот инструмент основан на анализе программ,
написанных на языке высокого уровня абстракции. Симулятор Silk был ус-
пешно использован для сравнения S-блоков, а также для сравнения алгорит-
мов перемешивания, которые используются в качестве защиты от атак по сто-

xxiii

ронним каналам. Затем, в данной работе представлен симулятор Ascold, он
может быть использован для обнаружения утечек информации в реализаци-
ях алгоритмов, которые используют маскировку в качестве защиты от атак
по сторонним каналам. Этот инструмент основан на анализе программы на
языке ассемблера. И наконец, эта работа демонстрирует, как симулятор Sav-
rasca может быть использован для обнаружения утечек информации на ос-
нове анализа скомпилированного исполняемого файла. Этот симулятор был
успешно использован для анализа реализации алгоритма шифрования с ис-
пользованием маскировки в качестве контрмеры против атак по сторонним
каналам, данный алгоритм был представлен на конкурсе атак по сторонним
каналам (4-я версия конкурса DPAContest [дипиэй контест]). В результате ана-
лиза с помощью нашего симулятора в данной реализации были обнаружены
ранее неизвестные уязвимости, которые могут быть использованы для атак
по сторонним каналам. В ходе этой работы результаты атак, основанных на
симуляторах, были сравнены с результатами атак на реализациях алгоритмов
шифрования в микроконтроллерах. Было успешно показано, что проблемы,
обнаруженные с помощью симуляторов, также присущи шифровальным ус-
тройствам. В общем, эта работа подчеркивает, что симуляторы являются очень
ценным инструментом для обнаружения утечек информации и для анализа
атак по сторонним каналам на ранних стадиях в процессе разработки крипто-
графических систем.

Contents

List of Notations v
Cryptography . v
Side-channel analysis . v
Statistics . vi
Sets and elements . vi
List of Abbreviaitons . vii

List of Figures ix

List of Tables xi

List of Listings xiii

1 Introduction 1

I Preliminary notions 5

2 Cryptography 7
2.1 Ciphers . 8

2.1.1 Block ciphers . 10
2.1.2 Attacks on block ciphers . 17

2.2 Summary . 20

3 Side-channel analysis 21
3.1 Types of side-channel attacks . 22

3.1.1 Information channel . 22
3.1.2 Invasiveness . 24
3.1.3 Interference . 24
3.1.4 Profiled and unprofiled attacks 26
3.1.5 Simple and differential analysis 27
3.1.6 Summary of types of side-channel attacks 28

i

ii Contents

3.2 Power analysis . 28
3.2.1 Acquisition setup . 29
3.2.2 Target operation . 35
3.2.3 Leakage model . 39
3.2.4 Distinguishers . 41
3.2.5 Key enumeration . 51

3.3 Analysis of side-channel attacks . 52
3.3.1 Performance of an attack . 53

3.4 Countermeasures . 55
3.4.1 Masking . 55
3.4.2 Hiding . 60
3.4.3 Other countermeasures . 61
3.4.4 Summary on countermeasures 63

3.5 Summary . 64

4 The problem of leakage detection 65
4.1 Leakage detection . 66
4.2 Analysis during early stages . 68
4.3 Goals . 71

II Contributions 73

5 Simulation tools for side-channel analysis 75
5.1 Motivation . 78
5.2 Levels of abstraction . 83
5.3 Survey of existing simulators . 86

5.3.1 Other works related to simulations 94
5.4 Summary . 95

6 SILK 97
6.1 Description of the tool . 98

6.1.1 Parameters . 99
6.1.2 Discussion . 102

6.2 Evaluation of S-boxes . 104
6.2.1 Results based on theoretical metrics 105
6.2.2 Experimental results on simulations 106
6.2.3 Experimental results on a real device 112

6.3 Improvement of S-boxes . 114
6.3.1 Genetic algorithms and search strategy 114
6.3.2 Results for Correlation Power Analysis 117
6.3.3 Results for Template Attacks 121

Contents iii

6.3.4 Discussion . 122
6.4 Scalable shuffling schemes . 127

6.4.1 Extensions of random start index 128
6.4.2 Reverse shuffle . 131
6.4.3 Sweep swap shuffle . 132

6.5 Analysis of shuffling schemes . 135
6.5.1 Randomization . 135
6.5.2 Number of shuffles . 137
6.5.3 Resources . 139
6.5.4 Resistance against side-channel attacks 142
6.5.5 Applications & modifications 147
6.5.6 Discussion . 147

6.6 Summary . 150

7 ASCOLD 153
7.1 Acquisition setup and evaluation . 154
7.2 ILA-Breaching Effects . 154

7.2.1 Overwrite effect . 155
7.2.2 Memory remnant effect . 156
7.2.3 Neighbour leakage effect . 158

7.3 Description of the tool . 161
7.4 1st order masked S-box for Rectangle cipher 163
7.5 Summary . 168

8 SAVRASCA 171
8.1 Description of the tool . 172
8.2 Analysis of the DPA Contest 4 . 174
8.3 Analysis of AES-RSM used in DPA Contest 4 178

8.3.1 Mask bias . 178
8.3.2 Experimental results . 182
8.3.3 Balanced values for masks . 189

8.4 Note on DPA Contest 4.2 . 194
8.5 Summary . 196

9 Conclusions 199

A Silk example 207

B Success rate of S-boxes using simulations 209

C S-boxes generated using evolutionary computations 211
C.1 Success rate of attacks on the S-boxes 213

iv Contents

D Heatmaps of shuffling schemes 215

E Success rates of attacks on shuffling schemes 221

F Ascold example 225

G List of microcontrollers supported by SAVRASCA 227

Bibliography 229

List of Notations

Cryptography

D Decryption algorithm

E Encryption algorithm

G Key generation algorithm

δF Differential uniformity of a function F

NF Nonlinearity of a function F

S S-box (Substitution function)

C A set of ciphertexts

Z A set of intermediate values used in an encryption algorithm

P A set of plaintexts

c A ciphertext

z An intermediate value manipulated by an algorithm

k A cryptographic key

p A plaintexts

Lower index i, ith part (byte) of a key (plaintext, ciphertext or intermediate value)

v

vi Sets and elements

Side-channel analysis

T A set of power traces

T A power trace

h Hypothesis about the value of an encryption key

L∗ True leakage function

L Leakage model (function that models the leakage)

Statistics

ρ Correlation coefficient

µ Mean value

P Probability of an event

σ2 Variance

Sets and elements

|x| absolute value of x

{0, 1}∗ Set of all binary strings

{0, 1}n Set of all binary strings of length n

‖X‖ cardinality of set X

X [i] The ith element of the set or list X

X [·] All elements of the set X

x⊕ y exclusive-or between values x and y

X ⊕ y exclusive-or between the set X = x1, x2, · · ·xN and value y, the result is
the set R = r1, r2, · · · rN of the same size N where each ri = xi ⊕ y. This
operation is comutative i.e., y ⊕X gives the same result

Fn2 A vector space that contains all n-bit binary vectors, each element e of Fn2 is a
binary string of size n (e ∈ {0, 1}n)

List of Abbreviaitons vii

Abbreviations

ALU Arithmetic Logic Unit 23, 173, 196

ASIC Application Specific Integrated Circuit 29, 40, 81, 88, 205

AVR Alf And Vegard’s RISC (Reduced Instruction Set Computer) Processor 30, 59,
153–155, 161–164, 168, 171, 172, 202, 204

CC Confusion Coefficient 55, 62, 104–110, 117, 118

CPA Correlation PowerAnalysis 46, 47, 55, 106, 108–113, 117–120, 122, 125, 142–145,
149, 154, 155, 157, 158, 178, 210, 212, 213, 221–223

CPU Central Processing Unit 25, 172, 176

DoM Difference Of Means 44–46, 182, 183, 185–187, 189, 196

DPA Differential Power Analysis 44, 75, 98, 142, 151, 177

EMA Electro-Magnetic Analysis 23, 24, 28, 177, 194

FPGA Field Programmable Gate Array 29, 30, 40, 88, 160, 205

HD Hamming Distance 41, 43, 58, 70, 89, 92, 93, 99, 151, 155, 173, 175

HDL Hardware Description Language 87, 92, 93

HW HammingWeight 41, 42, 46, 47, 54, 70, 89, 91–93, 99, 105, 106, 112, 117, 127, 142,
151, 155, 157, 158, 173, 175

I/O Input And Output Operations 80, 155, 172

ILA Independant Leakage Assumption 56, 58, 153–159, 161–165, 167–169, 173, 202,
203, 205

IT Information Technology 1, 2, 7, 68

LEMS Low-Entropy Masking Scheme 57, 186, 193, 196, 197, 200, 205

LSB Least Significant Bit 93, 102, 129

MIA Mutual Information Analysis 51

MSB Most Significant Bit 44, 45, 102, 129, 176–178, 180, 185, 186, 189, 194

viii List of Abbreviaitons

MTL Memory Transitions Leak 40, 41, 58, 59, 99, 151, 153, 173

ODL Only Manipulated Data Leak 40, 41, 56, 58, 59, 99, 151, 153, 173

RAM Random Access Memory 25, 80, 81, 114, 149

RNG Random Number Generator 26, 57, 70, 81, 128–130, 132, 133, 141, 146, 165, 167,
168

RP Random Permutation 60, 128, 135, 136, 138, 139, 146, 194

RS Reverse Shuffle 131, 132, 136–141, 147

RSI Random Starting Index 60, 128–131, 136–141, 143, 146, 147

RSM Rotating S-box Masking 57, 175, 178–180, 182, 190, 194, 196, 197

RTL Register Transfer Level 86, 91

SA Stochastic Attack 50, 51, 76

SCARE Side-Channel Analysis Reverse Engineering 75

SNR Signal-To-Noise Ratio 63, 78, 118, 121

SPA Simple Power Analysis 40, 75, 98, 141

SRAM Static RAM 154–157, 160, 162, 173

SSS Sweep Swap Shuffle 132–134, 136–141, 146–148

TA Template Attack 46, 48–50, 53, 76, 117, 118, 121–124, 126, 144, 145, 178, 182, 211,
214, 221, 224

TO Transparency Order 54, 55, 62, 104–110, 117, 118

List of Figures

2.1 Types of ciphers . 10
2.2 Counter mode . 16
2.3 Cipher Block Chaining mode . 16
2.4 Output Feedback mode . 17

3.1 Scope of this work . 28
3.2 Acquisition setup (scheme) . 29
3.3 Acquisition setup (photo) . 31
3.4 Acquisition board . 32
3.5 Trigger and the power trace . 35
3.6 Hamming weight leakage in ATmega328P traces 42
3.7 Hamming distance leakage in ATmega328P traces 43
3.8 Example of DoM on MSB . 45
3.9 Example of CPA using HW . 47
3.10 Trace points for profiling . 49
3.11 Probabilities during the attack phase of TA 49

5.1 Problems with acquisitions for DPA Contest 82

6.1 Correlation for two consecutive intermediate states 101
6.2 Examples of traces produced by Silk 103
6.3 Silk workflow scheme . 103
6.4 Success rate of CPA on 5× 5 S-boxes using simulations 108
6.5 Success rate of CPA on 8× 8 S-boxes using simulations 109
6.6 Success rate of CPA on 4× 4 S-boxes using simulations 111
6.7 Success rate of CPA on S-boxes (real traces) 113
6.8 Success rate of CPA on 4× 4 S-boxes and thier inverses 119
6.9 Success rate of CPA on 5× 5 S-boxes and thier inverses 120
6.10 Success rate of TA on 4× 4 S-boxes and their inverses 123
6.11 Success rate of TA on 5× 5 S-boxes and inverses 124
6.12 Max of success rate on first and last rounds with CPA 125

ix

x List of Figures

6.13 Max of success rate on first and last rounds with TA 126
6.14 Structure of an index for V-RSI . 129
6.15 V-RSI with 2 and 3 random bits . 130
6.16 M-RS 4× 4 with 4 random bits . 132
6.17 SSS 4× 4 visual scheme . 133
6.18 Scheme of the P2-SSS 2× 4 technique 133
6.19 AES-128 state representations . 135
6.20 Heatmaps of permutations generated by shuffling schemes 137
6.21 Heatmap of RP shuffling scheme . 138
6.22 Results of CPA against shuffling . 143
6.23 Results of CPA with integration against shuffling 144
6.24 Results of TA against shuffling . 145

7.1 Register and memory overwrite effects 157
7.2 Memory-based remnant effect . 158
7.3 Neighbour-based leakage effect . 159
7.4 Ascold workflow scheme . 161
7.5 Hardened and naive S-box t-test . 166

8.1 Savrasca workflow scheme . 174
8.2 DoM on each bit of intermediate state 186
8.3 DoM leakage in DPA Contest . 187
8.4 DoM leakage, highest points per bit 187
8.5 Distinguishers on points in gf256mul 188
8.6 Different DoM on MSB in DPA Contest 189

B.1 Zoom on the success rate of CPA on 8× 8 S-boxes 209
B.2 Success rate of CPA on 6× 4 S-boxes using simulations 210

C.1 Success rates of CPA on S-boxes. 213
C.2 Success rates of TA on S-boxes. 214

D.1 SSS and RP Heatmaps . 215
D.2 V-RSI Heatmaps . 216
D.3 M-RSI 4× 4 Heatmaps (1 - 5 bits) . 217
D.4 M-RSI 4× 4 Heatmaps (6 - 10 bits) . 218
D.5 M-RS 4× 4 Heatmaps . 219

E.1 Success rate of CPA on shuffling . 222
E.2 Success rate of CPA with integration on shuffling 223
E.3 Success rate of TA on shuffling . 224

List of Tables

2.1 Block ciphers key length and block length 11
2.2 Properties of S-boxes . 13

3.1 Classification of SCA . 26

5.1 Sizes of datasets of DPA Contests . 81
5.2 Simulators for side-channel analysis 92

6.1 TO and CC metrics on different S-boxes 107
6.2 Properties of S-boxes (CPA, simulated HW leakage model) 117
6.3 Properties of S-boxes (TA, extracted leakage model) 118
6.4 M-RSI 4× 4 on AES-128 . 131
6.5 M-RS 4× 4 use on AES-128 . 132
6.6 P-SSS use on AES-128 . 134
6.7 MD-SSS use on AES-128 . 134
6.8 Properties of shuffling schemes . 140
6.9 Execution time of shuffling schemes 141

7.1 Properties of implementations of Rectangle 165
7.2 RNG costs for Rectangle implementations 167

8.1 Binary representation of DPA Contest 4 masks 179
8.2 Bias of bits in mask of DPA Contest 181
8.3 Bias of bits in mask of DPA Contest (all offsets) 181
8.4 Bias in combination of 4 masks . 182
8.5 Balanced masks (2 and 4 bytes) . 191
8.6 Binary view of balanced masks (2 and 4 bytes) 192
8.7 Balanced masks (2, 3 and 4 bytes) . 193

9.1 Our new simulators for side-channel analysis 204

C.1 Evolved S-boxes (TA, extracted leakage model) 211

xi

xii List of Tables

C.2 Evolved S-boxes (CPA, simulated HW leakage model) 212

F.1 Neighbours-registers in ATmega163 microcontroller 226

List of Listings

6.1 Silk example: generation of 50 simulated traces. 98
6.2 Silk example: generation of simulated noisy traces. 99
7.1 Register overwrite . 156
7.2 Memory overwrite . 156
7.3 Memory remnant . 156
7.4 Clearing remnant . 156
7.5 Neighbour leakage for registers . 159
8.1 Computation of MixColumns . 176
8.2 Code of gf256mul . 176
8.3 Savrasca execution trace of gf256mul when MSB is 1 176
8.4 Savrasca execution trace of gf256mul when MSB is 0 176
A.1 Silk example: setting up the parameters. 207
F.1 XOR example with neighbour leakage 225
F.2 XOR example without neighbour leakage 225

xiii

Chapter 1

Introduction

Security plays a significant role in our society, as it became an important subject in
many domains of our everyday life. Entire industries are created around this idea,
they build, provide and test various security systems. Today you can rent a secure
deposit box in a bank, buy a safe to store valuable items at home, install cameras to
monitor your house, build a panic room and even hire a bodyguard.

Another element of modern society that developed and expanded to almost all
activities of our life is the domain of computer science and Information Technology
(IT). Nowadays, almost all businesses use some form of computers in their activities
e.g., management of a shipments, optimisation of schedules, payment systems or even
control of machines in a factory. Moreover, some of the biggest and most profitable
companies are build entirely around the IT industry. We would like to avoid naming
specific brands; there exist many companies that provide tools for information pro-
cessing (you can buy software and even processing power i.e., rent hardware). There
are many companies that help us communicate through social networks and messen-
gers as well as by building hardware that supports the internet (routers and servers).
It is even possible to buy data-storage e.g., for backups or to extend the capacity of
your mobile devices (cloud storage).

In this work we are going to dive into the subject of IT security which is also re-
ferred to as information security or computer security. More specifically, we will focus
our attention on the security of small devices that have some computing capabilities.
Security of small (often portable) devices that can communicate become more and
more important nowadays due to the growth of the domain called the Internet of
Things (IoT). IoT is a network of small devices often connected to the Internet. More-
over, these small devices can often act on the environment e.g., turn on and off the
lights, activate irrigation systems and even control water distribution and electrical
grids. In addition to that, small devices get more and more computing power: a mod-
ern smartphone is more powerful that the entire computing power that was used to
launch rockets to space in the second part of the 20th century. Moreover, small de-

1

2 Chapter 1. Introduction

vices that did not use to have any computing capabilities and were not connected to
the network are now getting these powers: personal heart rate monitors can help to
exercise and follow your progress while storing all your data to the cloud, pacemak-
ers can be updated using wireless protocols, even cars can be automatically updated
over the network. The rationale is that small pervasive computing devices are getting
more widespread every day and in addition to simply processing data, they can com-
municate over the network and even act on the surrounding physical environment.
Thus, the IT security becomes important for huge amount of systems that we use and
depend on in our day-to-day life.

There are many different aspects related to the notion of IT security. Here are
some examples: data or service availability — the idea that a service or informa-
tion are available, data authenticity — the notion that copes with detection of data
corruption (modification of an original message), privacy — the idea of handling and
storing information in suchways that it cannot be used to reveal the identity (or other
personal information) of people who generate the data, etc. In our work we will be
mostly focusing on the notion of confidentiality — the idea of storing and transmitting
information in such way that only the intended recipient can read it. Here, we use
the word read in the meaning of “being able to make sense of the message”. Indeed,
anyone can get and record and even modify stored data, the confidentiality is usu-
ally provided through a transformation of a message in such way that it is practically
impossible to get the original message without a secret information that was used
during the transformation. A special type of algorithm is used within a secret value
to transform an original message into its scrambled version, the algorithm itself is
known by everyone, thus only the entities that have access to the secret value can
get the original message.

There exist many different types of attacks against algorithms that provide con-
fidentiality. Usually the goal of an attacker is to find out the secret value through the
analysis of available information. Once the attacker gets this secret value they1 can
read all messages, create new ones and send them over the network. Some time ago,
the attacker was merely able to observe messages e.g., while they transited over the
network. However, with the spread of small computing devices to which attacker
have physical access, it opens a door to a new type of attacks that we will discuss
throughout this thesis. This type of physical attacks uses the fact that the attacker
has access to the computing device and can do virtually anything that they want with
the device under attack. In this work we will take a closer look on this type of attacks.

In our case, the attacker wants to extract a secret that is stored in a small portable

1Yes, “they”, we are going to use a neutral personal pronoun (instead of he or she) throughout this
work as in:
“There’s not a man I meet but doth salute me
As if I were their well-acquainted friend..”
Act 4, Scene 3, The Comedy of Errors by W. Shakespeare.

3

device. Devices such as smart cards (e.g., used to access buildings or storing metro
and bus tickets), car keys, etc. store and process secret values which are required
to provide confidentiality. There exist many scenarios when the attacker has unre-
stricted physical access to the device. For example, there is a secret value embedded
in a bank card2, the bank does not want its customers to get this secret value since it
will allow them to copy their bank card (which in its turn gives access to new fraud
scenarios). Our ultimate goal is to prevent these attacks from happening. A very
similar example is the SIM card in your phone.

Usually, before the device is released on the marked it is tested to check that it
behaves as intended. This is also the way that devices are evaluated with respect
to their security. In other words, security oriented devices (that are supposed to
provide e.g., confidentiality) are evaluated with respect to their robustness against
different types of attacks, including the physical attacks that we are interested in.
Unfortunately, evaluation methods that work well (and thus that are used nowadays)
require the final product in order to test it. However, finding out that a device has
a security flaw at the final stage of development is far from ideal: it means that the
developer has to redesign some parts of the system (which also creates additional
costs). Thus, developers want to be able to use some form of continuous evaluation
of their products against physical attacks.

Summing up, in this work we will take a look on small hardware that has to store
and process secret information while focusing on the special type of attacks that take
advantage of the physical access to the attacked device. As a concrete example of
physical properties that can be used to break the security, we will use techniques
based on the analysis of power consumption. Our main goal is to provide tools that
can help designers of secure devices in the process of hunting security flaws during
the process of development. The idea consists in detecting security related issues
at different stages of development in order to reduce the risk of creating an insecure
product and finding out that it has flaws at the very last stage. Themain principle that
we advocate consists in the use of automated tools that can simulate the behaviour
of the device given the information available during the development (such as the
source code of a program). Thus, in this work we will present tools that can simulate
the execution of cryptographic algorithms and produce the simulated data about the
power consumption of the device under evaluation. This information is generally
available only when the device is already built, thus having a tool that can produce
a simulated version while the device is still under construction is beneficial since it
allows to perform same type of security evaluation before having the final version of
the product. As a result, simulations allow to detect security flaws in the code and
correct the implementation on an earlier stage of development. The rationale is that
the use of the presented tools should decrease the production costs of secure devices

2We are not referring to the pin code. The pin code is used to “activate” the card which in its turn
uses the secret value.

4 Chapter 1. Introduction

and improve their overall security against physical attacks based on the analysis of
power consumption.

This document is structured as follows. The first part of the text gives an introduc-
tion to the subject of this work. Chapter 2 presents the main ideas of cryptography
and how it can provide data confidentiality using encryption. Chapter 3 gives an
overview of physical attacks that we focus on and explains how this type of attack
works, it also introduces the idea of power analysis — a specific subtype of physical
attacks that we consider in this work. Chapter 4 presents the problem that secu-
rity evaluators face while testing the final product, it also presents the motivation
for continuous security evaluation during development. The second part of this doc-
ument presents our contributions. Chapter 5 motivates the use of simulators in the
type of analysis we are interested in, it also introduces related works by presenting an
overview of existing simulators and listing their strengths andweaknesses. Chapter 6
presents our first high-level of abstraction simulator of dynamic data-dependant part
of the power consumption, shows how to use it on several different use-cases typi-
cal for this domain and concludes by highlighting the usefulness of simulators due
to their high speed compared to physical experiments. Chapter 7 introduces several
problems related to the implementation of countermeasures against physical attacks.
It presents an automated tool that can help in detecting the discussed implementation
issues during the development of the code. The presented tool can pinpoint the line
of code that causes the information leakage with an explanation of what causes the
leakage, this idea highlights that the analysed implementation issues can be avoided.
Chapter 8 introduces another tool that can be used at one of the final stages of devel-
opment of secure systems. This tool allows to perform simulations of data-dependant
part of the power consumption for subsequent leakage detection. The presented tool
is shown to be useful in tracking implementation flaws that lead to unintentional
leakage of secret information through power consumption. This chapter emphasises
the fact that a lot of security related issues can be detected before actually perform-
ing real experiments on the physical product. Finally, Chapter 9 sums up the whole
work, provides some conclusions and presents a list of open problems and directions
for future works.

Part I

Preliminary notions

5

Chapter 2

Cryptography

Cryptography is the foundation ofmodern IT security. Theword cryptography comes
from Greek κρυπτος [kryptós] which means hidden or secret and γραφειν [gráphein]
that translates as to write. At its birth, cryptography was used in order to hide secret
messages from enemies and opponents, in other words themain goal of cryptography
was to provide confidentiality.

Modern cryptography encompasses more concepts, in addition to confidentiality
it can provide properties such as message integrity, non-repudiation of authorship
and authentication. Nowadays cryptography could be defined as a study of tech-
niques that could be used for secure communications in presence of an adversary.

The goal of cryptography is to create basic building blocks that are called cryp-
tographic primitives or cryptographic algorithms. A cryptographic primitive is an al-
gorithm that can be used in order to provide one or several basic security properties.
For example, encryption algorithms provide message confidentiality, while digital
signature algorithms provide authentication, integrity and non-repudiation. Crypto-
graphic primitives are used together to build cryptographic protocols.

Cryptography has a fellow traveller called cryptanalysis, together they form cryp-
tology. While cryptography is the art of building cryptographic algorithms and pro-
tocols, cryptanalysis is the art of analysing and breaking them. Trying to break a
cryptographic algorithm might seem as a counter-intuitive idea. However, every
result that comes from cryptanalysis can be used to improve existing schemes (al-
gorithms and protocols) as well as to build better cryptographic schemes in future.
Thus, peoplewho build and create cryptographic schemes are also the oneswho break
them. These people are often called cryptographers.

Up until the middle of the twenties century cryptographers mostly based their
developments on the idea of security through obscurity i.e., all cryptographic schemes
were designed in secret and detail about their construction were kept hidden from
public. Nowadays, most of cryptographers rely on the idea called Kerckhoffs’s princi-
ple. Kerckhoffs’s principle states that a cryptographic system (or cryptosystem) has to

7

8 Chapter 2. Cryptography

be secure even if every single detail about its construction, structure and functioning,
except the secret key, is public knowledge. Secret key is the name given to a number
that is used as one of the parameters of a cryptographic algorithm. This number is
a piece of valuable information that determines the output of a cryptographic algo-
rithm. The entire security of a cryptosystem relies on the secrecy of a key. Thus, it is
the only piece of information that has to be kept secret. This principle is very useful in
practice and security experts tend to apply it1, since keys are generally smaller that
an algorithm and thus are easier to protect (keep secret) and also easier to change
in case when a key is compromised. The area of cryptography that studies how to
generate, exchange and keep secret keys is called key management.

Some cryptographic primitives do not use a secret key, for example, this is the
case of hash functions. Nevertheless, most of cryptographic algorithms such as digital
signatures, hash-based message authentication codes and ciphers rely on a secret key in
order to provide security. The results of this work could be applied to cryptosystems
that use a secret key as one of its parameters. However, for the sake of simplicity in
order to better illustrate this work we will focus on ciphers.

2.1 Ciphers

A cipher is a scheme that provides data confidentiality. Thus, ciphers are mainly used
in order to send secret messages. In order to provide confidentiality ciphers rely on
a secret key.

A cipher consists of three algorithms: a key generation algorithm, an encryption
algorithm and a decryption algorithm. A key generation algorithm uses a random
number and produces a key that could be used with the cipher. An encryption al-
gorithm takes a key and a message as its inputs and produces an encrypted message
called a ciphertext. The input message of an encryption algorithm is called plaintext
or cleartext. The decryption is the inverse of the encryption, a decryption algorithm
uses a key and a ciphertext in order to produce the original plaintext.

The ciphertext is usually the message that transits through a network or that
is stored on a disk. Thus, a ciphertext is a publicly known information or in other
words ciphertexts are considered to be in a hostile environment i.e., they are being
observed and handled by a potential attacker. In case of ciphers, an attacker is an
entity (a person or an organisation) that tries to find the secret key which is used in
a cipher.

More formally we will specify a cipher using the notation 〈G, E,D〉, where G, E
and D denote respectively the key generation, the encryption and the decryption

1Nevertheless engineers do not always follow the Kerckhoffs’s principle. Secret algorithms and
protocols developed by companies are often based on bad design. Keeloq [IKD+08] and Mifare smart
card [GdKGM+08, dKGHG08] are among relatively recent examples that were broken shortly after the
discovery of the algorithm.

2.1. Ciphers 9

algorithms:
G : R → K
E : P ×K → C
D : C × K → P

(2.1)

Where R ⊆ {0, 1}∗ is a set of random numbers, K ⊆ {0, 1}∗ is a set of keys,
P ⊆ {0, 1}∗ is a set of plaintexts and C ⊆ {0, 1}∗ is a set of ciphertexts. In other
words, random numbers, keys, plaintexts and ciphertexts are all binary strings.

Wewill use the notation c = Ek(p) to denote that the message p ∈ P is encrypted
using the key k ∈ K, which produces the ciphertext c ∈ C. The decryption of a
ciphertext c using the key k is noted using the notation p = Dk(c). Note that p =
Dk(Ek(p)).

There are two big families of ciphers, these families are referred as symmetric en-
cryption and asymmetric encryption (which is usually called public key encryption).
The main difference between these two families of ciphers is the following. A sym-
metric encryption scheme uses one secret key and both communicating parties have
to know it in order to exchange encrypted messages (and be able to read them), in
other words, the same secret key is used for the encryption and for the decryption.
A public key encryption scheme uses two linked keys: a secret key (called a private
key in public key cryptography) and a public key. The public key is known by ev-
eryone and anyone can use it, while the private key is meant to be kept secret by
its owner. The public key is used in order to encrypt messages and the private key
is used to decrypt them. The public and the private keys are generated together by
the key generation algorithm. A public key encryption algorithm is usually based
on a hard mathematical problem such as e.g., integer factorisation [RSA78] or discrete
logarithm [DH76]. In this case, by hard problem we mean a problem such that today
an efficient algorithm that can solve it (in a general case) is unknown and best known
solutions use exhaustive search.

Due to the way the two families of algorithms behave and due to their proper-
ties, generally public key ciphers require longer keys and they are often slower than
symmetric ciphers for the same offered level of security. However, due to the fact
that they have two separate keys (the public and the private ones), they offer some
advantages (a person can distribute the public key without revealing their secret key)
that cannot be achieved by using only one secret key2.

This work focuses on symmetric encryption. There exist two types of symmetric
ciphers: block ciphers and stream ciphers. A stream cipher uses the secret key to

2One of the latest trends in cryptography, called “white-box cryptography” [CEJvO02], tries to create
a system that allows to distribute an implementation of a symmetric algorithmwith an embedded secret
key (encoded in such way that it is difficult to extract). This promising approach is in development
nowadays [BIT16] and it also pushes cryptographers to invent new types of analysis [BHMT16].

10 Chapter 2. Cryptography

Ciphers

Public-key Symmetric

Block ciphers Stream ciphers

Figure 2.1 – Family tree of types of ciphers and the position of block ciphers in it.

generate a long pseudorandom sequence of bits called keystream. The keystream is
combined with the plaintext bit-by-bit using a binary exclusive-or (xor) operation,
the result of this combination is the ciphertext. Stream ciphers are very interesting
as a research subject, however the main target of this work are block ciphers.

2.1.1 Block ciphers

A block cipher is an encryption scheme from the family of symmetric cryptographic
algorithms, see Figure 2.1. One of the main properties of block ciphers is that a block
cipher deals with short fixed lengthmessages called blocks i.e., a block cipher encrypts
a fixed length plaintext and produces a fixed length ciphertext (same idea also applies
to the decryption). Block ciphers also use fixed length secret keys. Thus, for a block
cipher, we have:

E : {0, 1}m × {0, 1}n → {0, 1}m. (2.2)

Wherem is the size of the block and n is the size of the key. See Table 2.1 for typical
block length and key length of block ciphers. When a block cipher can be used with
different key sizes and one wants to refer to a specific version of the cipher the key
size is noted after the name of the cipher with a dash in-between e.g., AES-128 or
Present-80.

Generally, block ciphers can use any fixed length value as the secret key. How-
ever, some implementations of DES (Data Encryption Standard) block cipher [DES77]
use several key bits for parity check and several block ciphers such as IDEA [LM90]
are known to have weak keys [DGV93b]. A weak key is a key value that decreases
the security of a cipher when such key is used during encryption i.e., it is easier to
break a cipher (for example, to find the encryption key or to find the cleartext) that
was used with a weak key compared to a non-weak key.

2.1. Ciphers 11

Table 2.1 – Typical block ciphers key length and block length (in bits). Notation a/b
means that the algorithm works with values a and b.

Cipher Year Key length Block length Reference

DES* 1977 56 64 [DES77]
IDEA 1990 128 64 [LM90]
RC6 1998 128/192/256 128 [RRSY98]
Serpent 1998 128/192/256 128 [ABK98]
Twofish 1998 128/192/256 128 [SKW+98]
AES 2001 128/192/256 128 [AES01]
Present 2007 80/128 64 [BKL+07]
Joltik 2014 64/80/96/128 64 [JNP15]
SCREAM 2014 128 128 [GLS+15]
* Additional 8 bits are used for parity checks, resulting in a total of 64 bits.

Modern block ciphers are composed of three types of basic operations: permu-
tations, substitutions and key additions. Permutations change the order of bits, they
spread information inside of the block. Substitutions replace one value by another
one, these operations are often implemented using S-boxes (or Substitution-boxes).
Key additions mix the secret key and the plaintext; the most common operation that
is used as a key addition by themajority of block ciphers is an exclusive-or (also called
xor, noted⊕) but some ciphers such as Kalyna [OGK+15, OGDR10] also use modular
addition (�) or even modular multiplications (used by IDEA [LM90], noted �).

We will use the notation S to denote an S-box. Let Fn2 be the vector space that
contains all the n-bit binary vectors, then an S-box is defined as:

S : Fm2 → Fn2 (2.3)

where m and n are the input and the output sizes of the function S, in this case
the S-box is said to be an m × n S-box (usually pronounced “an m by n S-box”)
also called (m,n)-function. An S-box can be seen as a vector of n boolean functions
[S1, S2, ..., Sn] where each function Si is a mapping:

Si : Fm2 → F2. (2.4)

In other words, each function Si represents a function that gives the ith bit of the
output of the S-box S. For a given function F , we are going to use the term coordinate
function to denote each boolean function Fi which specifies the ith bit of the output
of the function F .

Typical input and output sizes of an S-box are on the order of several bits. Most
of the candidates to an ongoing (at the time of writing) cryptographic competition

12 Chapter 2. Cryptography

for authenticated encryption schemes3 use S-boxes of size 4 × 4, 5 × 5 and 8 × 8;
the Data Encryption Standard (DES) block cipher uses 6 × 4 S-boxes and Advanced
Encryption Standard (AES) uses 8× 8 S-boxes.

Permutations and substitutions are often called linear and nonlinear parts (or lay-
ers) of the cipher. This terminology refers the linear and nonlinear functions. The
nonlinearity NF of an (m,n)-function F is equal to the minimum nonlinearity of all
non-zero linear combinations v · F , with v 6= 0, of its coordinate functions Fi, i.e.:

NF = 2n−1 − 1

2
max
a ∈ Fm

2
v ∈ Fn∗

2

|WHF (a, v)|, (2.5)

where | · | is the absolute value and WHF (a, v) represents the Walsh-Hadamard
transform of F that is equal to:

WHF (a, v) =
∑
x∈Fn

2

(−1)v·F (x)+a·x. (2.6)

Intuitively, the nonlinearity of a function is equal to 2n−1 minus its highest lin-
earity (or its best linear approximation) of any of its coordinate functions. High non-
linearity of a function F represents the fact that any linear combination of F and its
input x is more often different (than equal) from the output of F . For example, when
F equals 0 more linear combinations (of all possible combinations) of F and x are
equal to 1, which creates a bias. In other words, a highly nonlinear function will not
match any linear combination of its inputs.

Another important property that is often used in cryptography in order to de-
scribe S-boxes is called differential uniformity. It describes the behaviour of a function
when a specific difference is added to its input, in other words it says what output dif-
ference we can observe if we know the difference between two inputs. More formally,
we define the differential uniformity δF of a function F as follows:

δF = max
a6=0,b

‖D(a, b)‖ (2.7)

where ‖ · ‖ is the cardinality of a set, F is a function that maps Fn2 into Fn2 and
a, b ∈ Fn2 . The set D(a, b) is defined by the equation:

D(a, b) = {x ∈ Fn2 : F (x+ a) + F (x) = b} . (2.8)

Table 2.2 gives values of nonlinearity and differential uniformity for several S-boxes
that we use in this work.

Permutations, substitutions and key additions are applied on the state of the block
cipher. The state of the block cipher, also called internal state, is the intermediate

3Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR),
http://competitions.cr.yp.to/caesar.html

http://competitions.cr.yp.to/caesar.html

2.1. Ciphers 13

Table 2.2 – Nonlinearity and differential uniformity of some S-boxes.

Size Name NF δF Reference

8× 8

AES 112 4 [AES01]
AESCC 112 4 [PPE+14]
SCREAM* 96 8 [GLS+15]
STRIBOB 100 8 [SB15]

6× 4

DES1 18 16

[DES77]

DES2 18 16
DES3 18 16
DES4 22 16
DES5 18 16
DES6 20 16
DES7 14 16
DES8 20 16

5× 5

Ascon 8 8 [DEMS15]
ICEPOLE 8 8 [MGH+15]
Keccak 8 8 [BDPA11]
PRIMATE 12 2 [ABB+14]
SC2000 12 2 [SYY+01]

4× 4

EvolvedTO 4 4 [PMMB15]
EvolvedCC 4 4 [PPE+14]
Joltik 4 4 [JNP15]
Klein 4 4 [GNL11]
Minalpher 4 4 [STA+15]
Present 4 4 [BKL+07]
PRINCE 4 4 [BCG+12]
Prøst 4 4 [KLL+14]
Rectangle 4 4 [ZBL+15]

* The algorithm SCREAM was updates several times, one
of the modifications concerned its S-box, we are only
dealing with the 3rd (latest) version of the algorithm.

14 Chapter 2. Cryptography

value of the encryption algorithm. In case of block ciphers the state usually starts as
the plaintext and the final state at the end of the encryption is the ciphertext. The
described operations are applied repeatedly on the state of the cipher during several
rounds. A round is the name that is used by cryptographers to denote one cycle of a
transformation that is applied to the state of the algorithm.

Just one basic operation (a permutation, a substitution or a key addition) does
not provide any security by itself. However, combined together they provide diffu-
sion and confusion properties [Sha45]. Diffusion refers to the idea that every bit of
the ciphertext should depend on the value of every bit of the key and of the plaintext;
it is often stated that if any single bit of the plaintext is flipped then every bit of the
ciphertext flips with probability 0.5, in other words statistical properties of the plain-
text are dissipated in the ciphertext. Confusion property refers to the idea that the
relationship between the secret key and the ciphertext should be as complex as pos-
sible. It is often said, that permutations help to provide diffusion, while substitutions
provide confusion. Three common ways of combining permutations, substitutions
and key additions are often used in order to construct a round of a block cipher. They
are called Substitution-Permutation Network (SPN), Feistel network [Fei73] and Lai-
Massey [LM90]. We invite the interested reader to consult the book “Introduction to
modern cryptography” for more information on these schemes [KL08].

Another important part of a block cipher is a key schedule also called a key schedul-
ing algorithm. A key schedule uses the secret key as its input and produces several
sub-keys, each of the sub-keys is called a round-key. A round-key is a value that
is used as the key during the key addition operation at each round of a block cipher.
The key scheduling algorithmmixes the bits of the secret key in order to generate dif-
ferent round-keys using substitutions and permutations. The designers often reuse
substitution and permutation operations in the key schedule in order to create an al-
gorithm that could be implemented very efficiently in hardware as well as in software.
One of the main goals of adding many round-keys is to make any cryptanalysis more
difficult. Most of modern block ciphers start and end by a key addition operation i.e.,
the first operation of the majority of modern block ciphers mixes the first round-key
and the plaintext and the last operation of most of block ciphers mixes the interme-
diate state of the cipher with the last round-key which gives the ciphertext. This key
addition is often called a key whitening and it plays an important role against classical
cryptanalysis [Sch07]. The idea behind it is relatively simple, if the first operation of
a block cipher does not involve a secret value then an attacker can execute a part of
the algorithm (till the first use of the secret) without knowing the secret key, same
reasoning applies to the last key addition.

In this document, we will often use the Advanced Encryption Standard (AES, also
known as Rijndael [AES01, DR02]) block cipher as an example and a study-case. AES
is an SPN cipher, it handles blocks of 128 bits, its internal state is represented as a
4× 4 matrix of 16 bytes (4 rows and 4 columns). We will specify more details about

2.1. Ciphers 15

the internals of AES in the text at the moment when we will use them. We will refer
to some of its internal operations that are named as follows:

• AddRoundKey — the key addition that uses an exclusive-or,

• SubBytes — the application of an 8 × 8 S-box on every byte of the state (the
nonlinear layer of AES),

• ShiftRows — permutation of bytes in each row,

• MixColumns — combination of 4 bytes of a column (creates new values for all
the 4 bytes of the column based on its previous values).

Even though a block cipher can encrypt only fixed length messages, there is a
way to deal with plaintexts that are shorter or longer than the block size. If the
plaintext is shorter than one block then a padding is added to it [MVOV96]. If the
plaintext is longer than one block then it is divided into blocks and each block is
encrypted separately (potentially with a padding in the last block). There are several
ways of handling multiple blocks of long messages, a specific way of dealing with
longer messages is called a mode of operation.

There exist many different modes of operation on block cipher, but we would like
to focus our attention to three examples in order to highlight the difference in the way
inputs and outputs are handled andwhat is actually sent through an insecure channel.
These differences will become important later in Section 3.2.2. Let’s take a look at
Counter mode (CTR) [DH79, LWR00], Cipher Block Chaining mode (CBC) [EMST78]
and Output Feedback mode (OFB) [FIP80].

In CTR mode the sender chooses a nonce which is concatenated with a counter
in order to be used as an input in a block cipher. A nonce is a number used once, it is
transmitted with the encrypted message, however an attacker should not be able to
predict this number. The result of the encryption is combined with the secret message
using a bitwise xor. Before encrypting the next block, the counter is incremented and
the whole procedure repeats, see Figure 2.2.

During the CBC mode each block of the secret message is combined with the
ciphertext given by the previous block using a bitwise xor, the result is the input of
the encryption algorithm. In order to bootstrap the encryption for the first block,
the first part of the secret message is combined with an Initialisation Vector (IV).
An initialisation vector is a fixed size random value that an attacker can observe (but
should not be able to predict). The scheme for CBC encryption is shown in Figure 2.3.

The OFB mode also requires an IV in order to start the encryption process with
the first block. However, in the OFB mode the output of the block cipher is combined
with a block of a secret message and it is also used as an input of a block cipher for
the next encryption, see Figure 2.4.

16 Chapter 2. Cryptography

Ek

⊕

Nonce|[00 . . . 00]

Ciphertext

Secret
message

Ek

⊕

Nonce|[00 . . . 01]

Ciphertext

Secret
message

Ek

⊕

Nonce|[00 . . . 02]

Ciphertext

Secret
message

Figure 2.2 – Block cipher used with the Counter mode (CTR).

Ek

⊕

Secret
message

Ciphertext

IV

Ek

⊕

Secret
message

Ciphertext

Ek

⊕

Secret
message

Ciphertext

Figure 2.3 – Block cipher used with the Cipher Block Chaining mode (CBC).

In Figures 2.2, 2.3 and 2.4 the information that is observed by an attacker is high-
lighted in grey and the secret message that a sender wants to transmit is shown in
white. By looking at these schemes we can notice that in CBC mode the attacker has
access to the output of the block cipher algorithm. In CTR mode the attacker knows
the input of the block cipher (but does not know the output). Finally, in case of OFB
mode, the attacker does not know the input nor the output of the block cipher unless
the attacker discovers the plaintext that correspond to the observed ciphertext (the
only exception is the IV i.e., the input of the first encryption which is always known).

Most of the time we are going to focus on the analysis of one block at a time, thus
we will be interested in modes only from the point of view of the knowledge of an
adversary (known input or known output). For the sake of simplicity, through the
rest of the document we are going to use the term plaintext to refer to the input of a
block cipher and ciphertext to denote the output of a block cipher.

2.1. Ciphers 17

Ek

IV

⊕Secret
message

Ciphertext

Ek

⊕Secret
message

Ciphertext

Ek

⊕Secret
message

Ciphertext

Figure 2.4 – Block cipher used with the Output Feedback mode (OFB).

2.1.2 Attacks on block ciphers

Attacks on block ciphers (as well as on other cryptographic primitives) help cryp-
tographers to study block ciphers, it ultimately helps to develop new, better block
ciphers. In cryptography an attacker is often called an adversary. The goal of an ad-
versary is to find out the secret that communicating parties do not want to reveal.
The adversary tries to achieve this goal by analysing publicly available information.
In case of block ciphers, algorithms and all the ciphertexts are publicly available,
while plaintexts and keys are secret. An attacker, might be only interested in find-
ing a plaintext; however, their ultimate (and most desired) goal is to find the secret
key, because a secret key gives an attacker two abilities: (1) decrypting ciphertexts
(i.e., getting plaintexts) and (2) creating new ciphertexts. Thus, most interesting and
powerful attacks are targeting the secret key.

There exist many different types of attacks on block ciphers. These attacks are
often grouped by scenario, which also refers to the capabilities that an adversary can
use to their advantage:

• ciphertext only — the adversary can observe one or several ciphertexts [MS01],

• known plaintext — the adversary can observe a set of pairs: plaintexts and cor-
responding ciphertexts (this type of attacks was used against Enigma during
World War II [Sin00]),

• chosen plaintext (ciphertext) — the adversary can choose the values of plaintexts
(or ciphertexts) and get their encrypted (or decrypted) versions [BK98],

• adaptive chosen-plaintext (ciphertext) — the idea resembles the previous one,
but the attacker can adapt the values of plaintexts (or ciphertexts) during the
attack based on previous results [Ble98],

18 Chapter 2. Cryptography

• related-key — the attacker knows that the device uses several different keys
unknown to the attacker, however the attacker knows a relationship between
those keys e.g., they have a common (identical) part [BE01].

The idea of a known plaintext (and its corresponding ciphertext) might seem a
little bit counter-intuitive, but there are a lot of real-life scenarios where it might be
the case. For example, a document might be secret while it is being prepared and
discussed, but it is supposed to become public knowledge when it is ready. Also,
some secret “classified” documents are declassified (their content becomes publicly
known) after some time, either deliberately (some governments reveal secret docu-
ments decades after their creation [Fri07]) or unintentionally (an agent that handles
confidential information might decide to reveal it or a server containing secret infor-
mation can be compromised [Sch15]).

There is another way of grouping the attacks on block ciphers, this time groups
are based on a particular technique (a type of cryptanalysis) that is used in order to
analyse the algorithm and the outputs that it produces. We would like to mention
tree main types of cryptanalysis4:

• meet in the middle — the idea is to follow the algorithm from the beginning to
the end and from the end towards the beginning at the same time while making
hypotheses on the key and checking if the two parts correspond or “meet” in
the middle of the algorithm (at its intermediate state) [DH77],

• differential cryptanalysis — the goal is to analyse differences (and their frequen-
cies) in ciphertexts depending on differences between plaintexts (the difference
often refers to a bitwise exclusive-or operation) [BS91, BS90],

• linear cryptanalysis — the idea is to try to find a linear part within a nonlinear
part of the cipher and use it in order to “linearise” the cipher (finding linear
function that approximates it) [MY92].

Most of cryptanalysis starts as an analysis of one round of a block cipher or even
as an analysis of one of its operations (e.g., an S-box). After this kind of bootstrap
the attack is extended to more rounds in order to reach the full cipher. If a successful
attack is discovered then the cipher is considered to be broken. More precisely, an at-
tack is considered to be successful if it can be done with less resources than a generic
attack. For a block cipher, a generic attack is an exhaustive key search which is also
called a brute-force attack. The idea behind an exhaustive key search is very simple:
an attacker has to test every single value of the secret key and execute the algorithm

4These families of cryptanalysis are subdivided into more specific techniques, sometimes attacks
also use combinations of ideas, so the frontier between these types of cryptanalysis can sometimes be
fuzzy.

2.1. Ciphers 19

while checking its output. The only way of protecting a block cipher against such
attack is to use a large key i.e., the number of different values of the secret key should
be big enough so it is practically impossible to test every one of them. A potential
attacker could still try to enumerate all the keys, but the idea is to make this task
extremely impractical and to discourage the attacker.

In order to measure the strength of an attack cryptographers use the amount of
resources that the attack requires, this idea is also referred as the complexity of an
attack:

• data — refers to the number of queries that an attacker has to make i.e., it
is the number of messages (ciphertexts or plaintext-ciphertext pairs) that an
adversary has to observe in order to perform the attack,

• memory — is the amount of storage that an adversary needs in order to perform
the attack,

• computational power — refers to the amount of time that an attacker needs in
order to mount the attack, in practice an attacker can trade physical space for
time (use many parallel units in order to perform the attack faster).

In some cases an attacker can trade one part for another (e.g., use less memory
but more computational power), but generally the total complexity does not change
dramatically for a given specific attack. Sometimes, we may also talk about online
and offline complexity of an attack i.e., an attack might allow (or require) to compute
some values before even observing a single encrypted message.

It is interesting to note, that even a small improvement on the exhaustive key
search is considered to break a cipher from the theoretical point of view. However, it
does not mean that any theoretical attack is feasible in practice, it might still require
too much resources.

A lot of general ideas on the attacks on block ciphers can be applied to any block
cipher. However, each new attack on a specific block cipher can use cipher-specific
approach and the ingenuity of an attack is often limited only by the imagination of
an attacker. New people and new ideas are the main sources for new attacks and new
types of cryptanalysis on block ciphers. During this work, we will be interested in a
special type of attacks, called side-channel attacks.

20 Chapter 2. Cryptography

2.2 Summary

Cryptography serves as a foundation of modern security. Basic building blocks of
cryptography provide security properties such as confidentiality and authenticity.
Ciphers are the building blocks that provide confidentiality, their security is based on
a secret value called key. Block cipher is a type of cipher from the family of symmetric
ciphers, it deals with messages of fixed size called blocks. Such cipher encrypts one
block of the message in order to produce a block of the ciphertext.

A block cipher is composed of several basic operations (permutations, substitu-
tions and key additions) that do not provide the security on their own, but can provide
security if they are applied in conjunction. These operations are applied on the plain-
text during several rounds in order to produce the ciphertext. Cryptographers study
these operations one-by-one as well as in conjunction using statistics and properties
such as linearity and nonlinearity.

Cryptanalysis is the art of attacking or breaking block ciphers as well as other
cryptographic primitives. There exist many different attacks on block ciphers. The
main goal of an attacker is to find out the secret key. Cryptographers build block
cipher and also try to break them in order to verify if the cipher is secure and also to
understand how to build better block ciphers in future. A block cipher is considered to
be broken if there is an attack that can break it using less resources than an exhaustive
key search. There exist many types of attacks on block ciphers, they are grouped by
the capabilities of the attackers (ciphertext-based, known plaintext and some others)
as well as by the type of analysis (meet in the middle, differential and linear).

For more information about different types of attacks, about ciphers as well as
about other cryptographic algorithms and protocols we refer interested readers to
the book called “Introduction to modern cryptography” [KL08] and also to “Applied
cryptography” [Sch07].

Chapter 3

Side-channel analysis

A side-channel attack is a type of attack on cryptographic systems. A side-channel at-
tack takes into account the physical properties of a cryptographic device. Side-channel
analysis is relatively new compared to classical cryptanalysis. First references to
frequency analysis (that gave birth to classical cryptanalysis) of Caesar cipher by
Abu al-Kindi date back to the 9th century [Sin00], even more modern cryptanalysis
of Enigma machine was made in 1930s by Marian Rejewski and later his colleagues
from the Polish Cipher Bureau [Koz84]. On the other hand, side-channel analysis was
discovered in Bell Labs in 1943 and was kept secret for a very long time [Fri07] (NSA
secret document published in 1972 was declassified only in 2007), first appearance of
side-channel analysis in scientific papers dates back to 1996 [Koc96].

One of the main hypothesis in classical cryptanalysis states that an attacker can
observe (and sometimes interact with) the input and the output of the algorithm i.e.,
the plaintext and the ciphertext in case of a cipher. Classical cryptanalysis of good
block ciphers is hard because cryptographers take it into account while designing
a block cipher. One of the key components that makes it difficult is a repetition of
a round function. While it may be easy to break one round of a block cipher, it
is increasingly difficult to break every additional round of the block cipher. Even
the knowledge about the value of a single bit of any intermediate state of a block
cipher does lead to an attack that can extract the secret key from the device more
efficiently than classical cryptanalysis [BI15]. Thus, if an adversary were to learn an
intermediate value, lets say the result of the computation of one round, they will be
able to break the encryption and extract the secret key.

In classical cryptanalysis, the goal of the attacker is to find the secret key by
analysing the plaintext, the ciphertext and the algorithm. In this kind of setting the
analysed algorithm is treated as a function that maps a plaintext to a ciphertext. In
other words, a block cipher is modelled as an abstract mathematical object. However,
when a block cipher is implemented in software or in hardware the final product is
more than just a function, it is not an abstraction any more. A physical cryptographic

21

22 Chapter 3. Side-channel analysis

device consumes energy, it takes time to compute the result, it dissipates heat and it
hasmany other physical characteristics that can all bemeasured by an attacker. These
properties are not present in an algorithm modelled “as a function” and these charac-
teristics can unintentionally leak information about the internal state of the algorithm
and ultimately about the secret key. Side-channel attacks try to extract information
about an intermediate state of an algorithm bymeasuring physical characteristics of a
cryptographic device. In other words, a side-channel attack is an attack on the device
and on the implementation of a cryptographic algorithm rather than on the abstract
algorithm itself. During a side-channel attack the secret key is extracted from the
device that uses it.

Side-channel attacks are also referred as physical attacks, since the adversarymea-
sures physical properties of a device under attack and often has the physical access to
the device itself. At the same time, side-channel attacks are often put in the category
of a grey-box scenario of attack. This classification comes from the idea of a black-box
analysis on one hand, where the attacker can only observe and analyse the inputs and
outputs of a function (i.e., classical cryptanalysis) and the white-box cryptography on
the other hand, where the code of a cryptographic algorithm is executed on a device
that is fully controlled by an attacker (the adversary can run, stop and modify the
code as well as record the state of the system at any moment in time).

3.1 Types of side-channel attacks

Side-channel attacks come in different types and flavours and they can be grouped
differently by looking at them from several points of view.

3.1.1 Information channel

During a side-channel attack, the adversary can exploit all kinds of leakages that they
can acquire by measuring various physical characteristics of cryptographic devices.
These characteristics are measured during the execution of the cryptographic algo-
rithm. From this perspective, side-channel attacks differ by the channel or the source
of information that allow the attacker to learn information about the secret key. Side-
channel attacks are often named after the source of information that is measured
during the attack:

• Timing attack — the execution time of an algorithm ismeasured in order to infer
the information about the secret key, this type of side-channel attacks was one
of the first presented to the scientific community in 1996 [Koc96], execution
time of an algorithm may vary due to unbalanced branches in the control flow
of the algorithm or even due to the increase of the speed in data access thanks
to the cache memory, timing attacks are the main reason why cryptographic
algorithms and protocols should always execute in constant time;

3.1. Types of side-channel attacks 23

• Power analysis — the instantaneous power consumption is measured during
the execution of the algorithm (using an oscilloscope) [KJJ99], instantaneous
power consumption changes depending on how many (and which) logic gates
are being switched on and off at each moment in time, among other things
it depends on the instruction that is executed as well as on the data that is
processed;

• Electro-Magnetic Analysis (EMA) — electro-magnetic waves are measured us-
ing a special probe (which acts as an antenna) while the device executes the
cryptographic algorithm [AARR02], this attack is similar to the power analysis
but it allows to take measures on a specific part of the chip e.g., memory, bus,
Arithmetic Logic Unit (ALU);

• Photonic emission — the device is photographed in a dark room while it exe-
cutes a cryptographic algorithm, the idea is based on the fact that there is a
non-negligible chance of a photon being emitted when a transistor changes its
state [SNK+12], the device is usually depackaged in order to reveal the silicon
layer inside of the chip;

• Acoustic cryptanalysis — the sound produced by the device (e.g., its cooling
fans or its spinning disks of the hard-drive) is recorded using a microphone,
depending on the switching activity (intensity of computations) and memory
accesses (their location and frequency) the resulting sound will have different
patterns [GST14], these patterns can be analysed in order to reveal information
about data being processed by the device.

Those are not the only sources that were used to extract the information about
the processed data form the device. More exotic channels could be used e.g., the
orientation of a smartphone and its subtle changes in order to find out what text
is being entered by the user [CC11]. Another slightly more exotic power analysis
technique was tested on smartphones in order to find out their location [MSV+15],
the idea is based on the fact that a smartphone will drain a different amount of energy
from its battery depending on the strength of the cellular signal.

Makingmeasures on different channels of information require special equipment.
Thus, these attacks vary in the setup complexity and in the budget depending on the
type of equipment and its cost. Timing attacks require a computer to measure the
time accurately e.g., between a request and the corresponding response. Power anal-
ysis are also among cheapest attacks, while photonic emission analysis requires a
more expensive equipment: one of the cheapest hardware sets that can be used for
power analysis costs several hundred dollars1, the cheapest setup for simple photonic
emission analysis can be acquired for “approximately the price of a mid-range oscillo-
scope” [SNK+13] (the equipment that this team has in the lab costs about 20 000AC and

1See ChipWhisperer by NewAE Technology Inc. https://newae.com/tools/chipwhisperer/

https://newae.com/tools/chipwhisperer/

24 Chapter 3. Side-channel analysis

the cheapest working demo setup, that they were able to build, costs about 5 000 AC).
This work focuses on power analysis, which is one of the cheapest, powerful and
wide-spread type of side-channel attacks.

It is interesting to note, that power analysis, electro-magnetic2 analysis and acous-
tic cryptanalysis are very similar in terms of the type of data that is produced by the
measurements. All three types of attacks analyse temporal series i.e., ordered lists of
values. Therefore, an attack or analysis technique based onmeasurements of one type
could be often applied as is (or with very small modifications) to the two remaining
ones.

3.1.2 Invasiveness

Side-channel attacks could be grouped by their level of invasiveness, attacks could be
non-invasive, invasive or semi-invasive. During non-invasive attacks (such as one of
the first side-channel analysis described in scientific literature [Koc96]) device is used
and observed as it is i.e., the physical properties are measured on the device and it
is left intact afterwards. Generally, after a non-invasive attack there is no evidence
of the attack being performed (measures being taken). During an invasive attack the
device is extracted out of its box and often depackaged using chemical or physical
treatment e.g., the plastic package of a microcontroller might be destroyed using an
acid in order to get to the silicon chip [KK99]. The device is often modified during
an invasive attack, some parts of it can be intentionally broken or altered. Moreover,
additional components might be added to the circuit in order to change its behaviour.
Since invasive attacks modify the package of the device, they leave evidence of the
attack. However, sometimes an invasive part of the attack can be performed on one
device in order to gain knowledge about its internals and then the final attack is
performed on a different device of the same model. Semi-invasive attacks lie between
the invasive and non-invasive ones. Most of the time the device could be restored
after the modification that was performed during the attack. There is no clear def-
inition of the semi-invasive attacks in literature, they are in the grey area between
invasive and non-invasive attacks. If an attacker has to unscrew several screws and
disassemble the box of a device in order to get to the microcontroller the attack might
be considered as non-invasive by some people, while others will already call it an
invasive attack.

3.1.3 Interference

Another way of looking at side-channel attacks is the interference of the attacker
with the device. From this point of view there is a separation between active and pas-
sive side-channel attacks. During a passive attack, physical properties of the device

2Here we are referring to the system-level EMA as opposed to locally-based EMA which requires to
measure the signal in a close proximity of a specific region of the device.

3.1. Types of side-channel attacks 25

are measured and the attacker is not acting on the device in an abnormal manner i.e.,
the attacker interacts with the cryptographic system as a normal user while the mea-
surements through a side-channel are being collected. Active attacks imply that an
attacker acts on the device in an abnormal manner i.e., in a way that is not expected
by the device and that is not supported by the software and hardware. Often, these
attacks are referred as fault attacks or fault injections. For example, an attacker can
modify the input voltage as well as the clock frequency [AK96] during a carefully
chosen clock cycle while the device is performing cryptographic operations. An at-
tacker can also induce faults by using a laser beam [Hab65] or by simply illuminating
a specific part of the device e.g., with a strong flashgun [SA02].

Note however, that some attacks can be situated in a grey area in between active
and passive attacks (like the semi-invasive attacks in terms of invasiveness). This is
the case of some cache-based timing attacks (also called cache attacks or cache timing
attacks) [OST06]. The idea of a cache timing attack is based around the differences
in the execution time (of an algorithm). If these differences in time are related to
the secret key that is used during the encryption then an attacker can exploit them
to recover the encryption key. In case of cache timing attacks the difference in time
comes from the mechanism called caching, it allows to accelerate memory accesses
when the same memory address is accessed several times. Cache memory is a small
memory situated close to the Central Processing Unit (CPU). Accessing this cache
memory is faster than accessing the Random Access Memory (RAM), thus to speed
up memory accesses it makes sense to place values (within their addresses) that are
accessed often to the cache memory. In case of a block cipher it means that e.g.,
if the same input value of an S-box is used more often during an execution then it
will remain in cache and the total execution time will be slightly shorter compared
to the scenario when the same S-box case is not accessed many times. Knowing
this mechanism an attacker can try to change the contents of the cache memory and
compare whether there is a time difference between two executions depending on
when the attacker does or does not interfere with the device. The scenario when an
attacker can actually change the contents of cachememory can happen if the software
of the attacker is running on the same platform with the software of its target e.g.,
in case of several applications running on the same smartphone or in case when
several virtual machines are sharing the same hardware [ZJRR12]. Nevertheless, not
all cache timing attacks require to interfere with the cache memory as demonstrated
on an OpenSSL implementation of AES [Ber05].

Table 3.1 refers to different types of side-channel attacks from the point of view
of invasiveness as well as from the perspective of the interference. The main scope
of this work is focused on non-invasive passive attacks.

26 Chapter 3. Side-channel analysis

Table 3.1 – Classification of some examples of side channel attacks and analysis on
the level of invasiveness and interference.

Active Passive

Non-invasive Power spikes Power trace
injection acquisition

Semi-invasive Optical fault Optical inspection
injection of a circuit

Invasive Circuit modification Probing

3.1.4 Profiled and unprofiled attacks

Side-channel attacks could also be of two types from the point of view of the prepa-
rations done by the attacker. Side-channel attacks could be unprofiled and profiled.
During an unprofiled side-channel attack the attacker measures physical properties
of a device and then immediately analyses them in order to extract the secret key
from the device. Profiled attacks require an additional step before attacking the tar-
get device. During a profiled attack the attacker starts by analysing a device in order
to build its model, to be more precise the idea is to build a leakage model of a device
in order to attack a similar device afterwards (often it would be the same model of a
hardware device that is produced by the same manufacturer).

The attack phase of profiled attacks generally requires less measurements than
unprofiled attacks. Profiled attacks are usually more powerful than unprofiled at-
tacks thanks to the profiling which is done during a learning phase. This learning
phase allows the attacker to find out more information about internals of the device
which ultimately allows to build a goodmodel that describes how the device leaks the
information about the secret key. We will define profiling as the process of extracting
a device-specific leakage model.

Profiled attacks require the attacker to have a control over the device. Often it
means that the attacker should be able to set the secret key to a known value in order
to perform measurements for the model, sometimes the attacker is also required to
control the Random Number Generator (RNG) that is used by the device. In order to
build a model the attacker should be able to control the device over a longer period
of time (compared to the time that is necessary for the attack phase). Some scenarios
of attacks do not offer a full control to the attacker, thus it is not always possible to
perform a profiled attack (the attacker cannot build the model). So, an unprofiled at-
tack could be the only choice in some circumstances and therefore they are also very
interesting in practice.

3.1. Types of side-channel attacks 27

3.1.5 Simple and differential analysis

There is yet another way of looking at side-channel attacks, they can differ from the
point of view of the number of measurements and the kind of analysis techniques
that are used by the attacker, those types of attacks are simple analysis and differential
analysis.

During a simple side-channel analysis usually, the attacker measures physical
characteristics of a cryptographic device while it is handling one input e.g., the at-
tacker measures the power consumption of a device while it encrypts a single plain-
text [KJJ99]. In these types of attacks the attacker can often infer all the necessary
information about the secret key from the one measurement. These attacks present
an interesting advantage of requiring a very small amount of measurements which
implies a short data acquisition phase of the attack i.e., the attacker has enough time
to get all the necessary data if the device is available for a very short period of time.

A differential side-channel analysis requires to collect measurements correspond-
ing to different inputs (e.g., several plaintexts or several ciphertexts) while the device
is performing cryptographic operations. In this type of scenario the attacker then
uses statistical tools in order to extract the information from the set of measurements.

In other words, on one hand simple analysis mostly focuses on the sequence of
instructions i.e., studies how the control flow of the program differ depending on the
manipulated value. On the other hand, attackers use differential analysis to study
how variations in the manipulated values influence physical properties of the de-
vice during the executions of the same instruction (when the control flow does not
change).

28 Chapter 3. Side-channel analysis

This
work

Semi-invasive

Invasive

Non-invasive

Profiled
Unprofiled

Differential

Simple

Passive

Active

Power

Sound

Light

Time

EM

Figure 3.1 – Types of side-channel attacks and the main scope of this work.

3.1.6 Summary of types of side-channel attacks

Side-channel attacks can be categorised in several different ways. All these categories
are orthogonal i.e., they do not interfere with each other and do not depend one on
the other. However, some types of attacks are used more often in practice (mostly due
to their efficiency, complexity and the cost of the equipment). A representation of the
types of side-channel attacks and the main focus of this work is shown in Figure 3.1.
In order to narrow the scope of this work, we mostly focus on passive non-invasive
differential profiled and unprofiled power analysis.

Nevertheless, most of the results of this work can be applied to other types of
attacks. Our results can be easily transferred and applied onto two other sources of
information, and thus can be useful for EMA and acoustic cryptanalysis (which also
handle time series). Moreover, they can also be used in case of simple (as opposed to
differential) analysis. Several of such applications are going to be highlighted in the
text.

3.2 Power analysis

Power analysis side-channel attacks are among the most commonly used attacks due
to their high efficiency compared to the cost of equipment and computational com-

3.2. Power analysis 29

Trace Trigger

Computer
Synchronisation

Target
device

VS

R

Trigger

Trace

Ground

Encrypt

Ready?

Acquire

Figure 3.2 – Scheme of the acquisition setup for power analysis.

plexity. A side channel attack has two major phases: data acquisition and data anal-
ysis. We will take a closer look at these stages through the following sections.

3.2.1 Acquisition setup

In case of power analysis we are interested in the instantaneous power consumption
of the device (while it executes a cryptographic algorithm). A typical acquisition
setup that is used during a power analysis is shown on Figure 3.2, it consists of the
device under attack, the measurement circuit, an oscilloscope and a computer which
synchronises the acquisitions and often stores the acquired data.

This work focuses on microcontrollers as target devices, however, side-channel
attacks can also be applied to other types of hardware such as a Field Programmable
Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). An oscillo-
scope is an instrument that allows to measure the change of voltage across a part

30 Chapter 3. Side-channel analysis

of a circuit over a period of time. The measurement circuit could be as simple as
resistor connected in series between the power supply and the power input of the
target device, as shown in Figure 3.2. However, it can also contain filters and am-
plifiers that allow to reduce the noise and amplify the measured signal. There are
several ways of mounting the whole system together in order to acquire a dataset of
power traces [Mor15, Chapter 2], our setup is shown in Figure 3.3. A more detailed
view of the acquisition board (created during this work) which hosts the analysed
microcontroller is shown in Figure 3.4. This acquisition board hosts a popular AVR
microcontroller ATmega328 i.e., the microcontroller under analysis. This board also
contains a resistor that we use to measure the voltage, a clock used by the micro-
controller, several capacitors for filtering and connectors to make the setup process
easier. In our setup, the oscilloscope has an operating system and it was used to
make measurements as well as to synchronise the system and to store the results, in
other words the oscilloscope played its own role and the role of the computer which
synchronises the acquisitions.

We have build our own acquisition board and acquisition setup (shown on Fig-
ures 3.4a and Figures 3.3), which we used for our experiments. However, we would
like to point out that there exist a ready-to-use acquisition setups and acquisition
boards. Among the most known examples in the side-channel analysis domain we
can name the ChipWhisperer hardware by NewAE3 which can be used with several
target devices including microcontrollers and FPGAs. This hardware was used for
the CHES 2016 Capture The Flag (CTF) challenges4. Another notable platform is the
lineage of SASEBO acquisition boards5. SASEBO boards were used for the DPA Con-
tests6: SASEBO-GII with an FPGA for the 2nd edition of DPAContest and SASEBO-W
which allows to analyse smart cards was used for the 4th edition of the contest.

In the domain of side-channel attacks based on power analysis, one measurement
acquired by an oscilloscope is called a power trace7. A power trace is a vector of values
that we are going to denote T , we will also use the notation T [i] to denote the value at
the position i in the trace T . Wewill use the notation T to denote a set of power traces
and T [i] to refer to the ith power trace in the set. In addition to the power traces the
acquisition setup usually saves the values (usually plaintexts or ciphertexts or even
both) that were used during the acquisition. We will use the notation P to denote a
set of plaintexts and P[i] to denote the ith plaintext of the set (the notation C will be
used in the same way for ciphertexts).

Note, that generally in domains of mathematics and computer science a set is
an unordered collection of elements while a vector is an ordered collection (with a

3http://store.newae.com/
4https://wiki.newae.com/CHES2016_CTF
5https://www.risec.aist.go.jp/project/sasebo/
6http://www.dpacontest.org
7Some papers also use the term leakage to refer to power traces.

http://store.newae.com/
https://wiki.newae.com/CHES2016_CTF
https://www.risec.aist.go.jp/project/sasebo/
http://www.dpacontest.org

3.2. Power analysis 31

Figure 3.3 – Acquisition setup at DPA Lab at ULB.

notion of an index of an element). The word set is usually used in the domain of
side-channel analysis to refer to a collection of traces or plaintexts, thus we will also
use the word set. However, we will use an index to denote a specific element of a set
to explain how every element of the set is handled during an attack. Side-channel
attacks based on power analysis do not need to use traces in a specific order8 same
idea is applicable to the plaintexts and ciphertexts. The only thing that is required
is the relationship between a plaintext, a ciphertext and a trace: during side-channel
analysis an attacker or an evaluator usually needs to knowwhich plaintext-ciphertext
pair is related to the acquired trace. So, in this document wewill refer to sets of traces,
plaintexts and ciphertexts, where the order of elements in the set is not important,
but the relationship between them is. Thus, we will suppose that the recordings of
plaintexts and traces are done at the same time and that they are synchronised i.e.,
the ith power trace T is recorded while the ith plaintext p was used, in this case we
will say that a trace T and the plaintext p are associated to each other. We will use
the notation T (p) to specify the trace T which is associated with the plaintext p (and
the notation p(T) to specify the plaintext p associated to the power trace T).

8Exceptions to this rule are rare and come up e.g., in case of t-tests where we have to acquire (but
not analyse!) power traces while caring about the order of plaintexts that are used during the acquisi-
tion [SM15].

32 Chapter 3. Side-channel analysis

(a) A photo of the acquisition board.

MEGA8-P
GND

10
k

1k

1k

+5
V

+5V

10

GND

G
N
D

G
N
D

GND GND

22
pF

22
pF

100nF

G
N
D

G
N
D

+5
V

AG
N
D

V+

10

+5
V

AG
N
D

100µF

+5
V

AG
N
D

GND

BU-SMA-V

BU-SMA-V

G
N
D

G
N
D

IC1
PB5(SCK) 19

PB7(XTAL2/TOSC2)10

PB6(XTAL1/TOSC1)9

GND8

VCC7

GND22
AREF21
AVCC20

PB4(MISO) 18PB3(MOSI/OC2) 17PB2(SS/OC1B) 16PB1(OC1A) 15PB0(ICP) 14

PD7(AIN1) 13PD6(AIN0) 12PD5(T1) 11PD4(XCK/T0) 6PD3(INT1) 5PD2(INT0) 4PD1(TXD) 3PD0(RXD) 2

PC5(ADC5/SCL) 28PC4(ADC4/SDA) 27PC3(ADC3) 26PC2(ADC2) 25PC1(ADC1) 24PC0(ADC0) 23PC6(/RESET)1

J1
3
2
1

R
5

R3

R4

S1

3
1 2

4

Q
1

R1

SV1

1
2
3
4
5

C
1

C
2

C3
R2

JP
2

12

JP
112

SV2

1
2
3

SV
3

1 2 3

C4

X1
-1

X1
-2

X3
-1

X3
-2

X4
-1

X4
-2

X5
-1

X5
-2

X2

X6

+

(b) The scheme of the acquisition board.

Figure 3.4 – The acquisition board which contains the target microcontroller.

3.2. Power analysis 33

It is important to know that an oscilloscope does not measure the instantaneous
power consumption, but the voltage across the resistor9. In order to get the instan-
taneous power consumption we need to use the Ohm’s law:

V = I ×R (3.1)

and the equation:
P = V × I (3.2)

where V is the voltage, I is the current, R is the resistance and P is the power con-
sumption. The total voltage across the target device (Vdev) and the resistor (VR) is the
voltage VS given by the power supply:

VS = VR + Vdev (3.3)

In our case, Vdev changes due to the switching activity of logic gates, the oscil-
loscope measures changes in VR, while VS stays constant10. Putting together Equa-
tions 3.1, 3.2 and 3.3 allows us to transform the measurements of the oscilloscope
VR (using already known values R and VS) to the power consumption of the target
device:

P = Vdev × I = (VS − VR)×
VR
R

(3.4)

which gives us the instantaneous power consumption at a chosen moment in time
(corresponding to a point of a trace recorded by the oscilloscope), this computation
can be repeated to get a vector of instantaneous power consumptions from the trace
given by the oscilloscope.

The resistor R has a constant value, the supply voltage VS of the circuit also
does not change in our setting. Thus, most of the side-channel attacks that use power
consumption do not actually analyse the power consumption, but a physical property
directly related to it (in our case, VR). Nevertheless, a transformation from measured
values to the actual power consumption can be used as a preprocessing technique
before the actual data analysis. For the sake of simplicity, we are going to use terms
power traces and power consumption of a device during the whole document, even
though in practice an attacker does not necessarily measures and uses the real power
consumption of the analysed device.

The acquisition setup that is used to acquire power traces has many different
parameters. We would like to highlight several of those parameters that are impor-
tant in order to get a good setup and in order to allow other researchers to repeat a

9Some attackers directly measure the current using a different type of setup.
10Note, that VS does fluctuate on a small scale, these fluctuations mostly depend on the quality of

the power supply (better power supplies can produce a more stable voltage signal). These changes in
VS can be seen as a part of the noise component and can be disregarded, moreover averaging of several
measurements can be used to reduce these effects. During our experiments we used a cheap standard
off-the-shelf power supply.

34 Chapter 3. Side-channel analysis

described experiment. In addition to noting the model of the target device and the
attacked algorithm as well as the clock frequency and the voltage of the power supply
one has to choose and record the following parameters:

• the value of the resistor — different values are used in the experiments, its
value generally varies in between several Ohms [LMV+13] and several hundred
Ohms [DMO16], if this value is too high then the voltage drop between the
power supply and the target device would be too big and the device will not be
operational, however if its value is too low then the voltage drop across it will
be too small for the oscilloscope to measure;

• bandwidth of the oscilloscope — it defines which frequencies will be present in
the signal, a bandwidth of 1 GHz is typically enough for side-channel attacks
based on power analysis [MOP07, §3.4.3];

• the sampling rate (the acquisition frequency) — the number of single measure-
ments that is recorded by the oscilloscope every second, according to Shan-
non [Sha49] this rate has to be at least two times bigger than the frequency of
the signal that we want to measure, usually one would record several measure-
ments per clock cycle, many analysis techniques use several points of a power
traces in order to improve the accuracy of the attack (however if this value is
too high, one will have to deal with huge amount of data during the analysis
phase), nevertheless, some setups can lead to a successful attack even with one
measurement per clock cycle11;

• the resolution — is the parameter that defines how many different values are
represented by the oscilloscope after the analog-to-digital conversion (digital-
isation), most oscilloscopes use 8-bit values but some higher end oscilloscopes
can use up to 12 bits for each value, higher number means that an attacker
would be able to differentiate between very small variations of power con-
sumption and thus will be able to extract secret from the device easier;

During a differential power analysis an attacker analyses a chosen offset in power
traces, this offset corresponds to a specific point of power traces which leaks infor-
mation about the internal state at a carefully chosen point in the algorithm. This type
of analysis requires to align power traces i.e., a point T [i] in any power trace of the
dataset should correspond to the same operation (moment in time) of the executed
algorithm. A trigger is used to acquire aligned power traces. Usually, the trigger sig-
nal changes its state just before the beginning of the encryption, see Figure 3.2. In
this way, the trigger signals the oscilloscope that an encryption has started and in its
turn the oscilloscope starts to record the measurements. Figure 3.5 shows a trigger

11https://wiki.newae.com/CHES2016_CTF

https://wiki.newae.com/CHES2016_CTF

3.2. Power analysis 35

Figure 3.5 – Trigger signal (green) and the power trace (yellow) on the screen of an
oscilloscope.

signal (green) that changes its state from low to high at the beginning of an encryp-
tion and switches back to low state at the end of the encryption. In this figure we can
see the recorded signal (yellow) with a distinctive repetitive pattern, it corresponds
to the rounds of AES, a different pattern at the beginning of the trace corresponds to
the key schedule (computation of round keys).

3.2.2 Target operation

The idea behind a side-channel attack is to extract the key from an implementation
by starting by extracting information about an intermediate state of the algorithm.
During power analysis, attackers can choose an intermediate state that they want to
target. Many choices are indeed available in case if power traces contain the infor-
mation about the entire encryption algorithm (all its rounds), most of the time it is
indeed the case since the attacker is the person who also performs the acquisition of
these power traces. In order to mount an efficient attack it is important to carefully
choose a target intermediate state that will “help” the attack.

Proximity to the known value Sometimes the attacker knows the output of the
block cipher and in sometimes the input is the known part (recall modes of operation

36 Chapter 3. Side-channel analysis

in Section 2.1.1). An encryption algorithm can be executed in its forward or backward
direction which respectively correspond to the encryption and to the decryption.
If the target intermediate is “close” to the known value then the attacker will have
to execute and analyse less steps of the algorithm between the known value and
the target intermediate state. In case of a known input the attacker often targets an
intermediate state which occurs during the first round of the encryption algorithm,
such an attack is often called an attack on the first round. Similarly, attacks on the
last round target an intermediate state that occurs in between operations of the last
round, this method is usually used when the output of the encryption algorithm is
known.

Thesize of the targeted part of the state Guessing or brute-forcing the entire key
or the entire state of a block cipher is impractical due to their size. Thus, most of side-
channel attacks use the “divide and conquer” approach. The idea is to extract a small
part of the state that helps to recover a part of the key and then repeat this procedure
several times until the entire key is extracted. The state undergoes several operations
during each round and each of them operates on a part of the state at a time due to the
hardware limitations (e.g., having only 16-bit registers) as well as designer’s choices
(e.g., use of functions that operate on 32 bits of the state). Depending on these choices
and limitations, the attacker would often target a part of an intermediate state which
corresponds to the output of a specific operation of a block cipher. When an attacker
targets an intermediate state that corresponds to the output of an operation A it is
often referred as an attack on (the operation) A and we say the attacker targets A.

The type of the target operation One of the main parts of a side-channel attack
on a small part of the key consists in guessing the value of this small part of the key
and using it (e.g., with the known input) to execute a part of the algorithm (e.g., a
part of the first round) until the desired intermediate state. Attackers can choose any
intermediate state of the encryption algorithm for the attack. Any intermediate state
is a result of a simple operation (key addition, permutation or substitution) performed
on a previous state by the algorithm. In other words, the attacker can focus on any
type of operation of the encryption algorithm. Key additions and permutations are
mostly linear operations, while a substitution (an S-box) is often the only nonlinear
part of the algorithm. For the purpose of choice of the target operation for an attack
we are interested in the result of linear and nonlinear operations in case of a wrong
input which corresponds to an incorrect hypothesis on the value of the secret key.
In case of linear operations such as a permutation of bits in a register or a boolean
operation like an exclusive-or a small input error (difference such as e.g., a single bit
modification) will result in a small output error. At the same time, in case of nonlinear
operations a single bit modification of the input will affect many bits of the output.
Given this property of linear and nonlinear operations and the fact that power traces

3.2. Power analysis 37

are noisy (i.e., do not immediately give the attacker the value of an intermediate state,
but rather some noisy information on it), the attacker will often choose to attack a
nonlinear operation of the encryption algorithm. This choice can be influenced by
the type of statistical tools (and their capabilities to represent complex models) that
are chosen for the analysis of power traces, see Section 3.2.4.

To sum up, one of the best targets of a side-channel attack is the part of inter-
mediate state that is obtained by applying a single S-box during the first round of
encryption in case if the input of the block cipher is known (e.g., the plaintext is
known or the encryption scheme uses the counter mode). Same idea applies in case
of an attack on the last round of the encryption (when the output of the block cipher
is available to the attacker), the attacker will often target the state that is used as an
input of the S-box while going backwards in the algorithm. In both cases the target
intermediate state is situated “behind” the S-box from the point of view of the known
value. An S-box is also a good target since it promotes the divide and conquer ap-
proach, typically S-boxes are quite small from the point of view of exhaustive search
and an attacker can easily test every single input. Even though most of the papers
focus their attention on the S-boxes, these are not the only targets that are explored
in literature, other examples include operations such as MixColumns operation of
AES [WO15].

The attack on the last round has a couple of small differences compared to the
attack on the first round. However, as we will see, these differences are mostly small
technical tweaks that do not change the complexity of the attack, its general shape
nor the main difficulties that an attacker has to face. The first difference between
these two scenarios is that the attacker will have to go backwards in the key schedul-
ing algorithm in order to extract the secret key from the round-key of the last round.
This task is relatively straight forward, since a lot of the key schedules of modern
block ciphers are easily reversible i.e., it is easy to compute a previous round-key
from a given round-key (or to compute the main secret key from a round-key). For
example, this is the case of AES-128, given any round-key it is possible to compute
a previous round-key and the first round-key is the main secret key. A lot of the
modern block ciphers use the secret key (or a part of it) as it is for the first round-
key [AES01, BKL+07]. Exceptions to these rules are relatively rare (because cryptog-
raphers try to make efficient key scheduling algorithms by making them small and
fast), however, several AES candidates [CDN99] use key-scheduling algorithms that
are built in such way that their round keys do not reveal information on the main
secret key. Kalyna [OGK+15, MGV+16] is among more recent examples that also
has a key scheduling algorithm that cannot be easily reversed. The second difference
between attacks on the first and on the last round lies in the actual operation that is
being attacked. While an attack on the first round targets an S-box, the attack on the
last round often has to target the inverse of the S-box. An inverse of an S-box is just
another S-box of the same size, this inverse is still a nonlinear operation and it is still

38 Chapter 3. Side-channel analysis

a good target for a side-channel attack. Overall, both scenarios are very similar from
the point of view of an attacker and an attack on the first round gives a good idea
about the complexity of the attack on the last round. As a result, the vast majority
of researchers focus on attacks on the first round of block ciphers. However, it is
important to note that in practice one of the two attacks might be impossible because
the attacker knows only the inputs (or only the outputs) of the block cipher. At the
same time, even if the attacker knows both values (inputs and outputs of the block
cipher), one of the attacks might be easier than the other due to many factors such
as the details of the key scheduling algorithm, properties of the S-box as well as the
details of the hardware architecture.

In order to simplify the explanations and for sake of clarity, we will focus on the
attacks on the first round and we will assume that the attacker knows the plaintext
while targeting the intermediate state given by the following equation:

z = fk(p) (3.5)

where fk(·) is the function that is applied to the input plaintext p and gives an inter-
mediate result which is computed by the algorithm after application of S-boxes.

While using different S-boxes from various algorithms most of the time we will
target the result of the following computation:

zi = S(ki ⊕ pi) (3.6)

where ki is a part of the key, pi is a part of the plaintext, zi is the intermediate targeted
value and S is the application of an S-box. We can use such simplification because
almost all modern block ciphers start by performing the key addition operation12 just
before applying the S-box e.g., it is the case of AES [AES01] and Present [BKL+07].
This idea still holds in case of an attack on the last round, since almost all mod-
ern block ciphers have a key addition as the last operation (key whitening, see Sec-
tion 2.1.1).

An encryption algorithm can be constructed in such way that it performs linear
operations such as permutations (on the key, on the plaintext or on their combination)
before applying the S-box. However, we can disregard all linear operations since they
do not affect the general complexity of the attack. These linear operations do not af-
fect the ability of an attacker to distinguish two intermediate states (by observing
side-channel information). Nevertheless, in practice an attacker will have to perform
all the operations in order to mount a successful attack. During an attack on the
DES block cipher an attacker will have to perform the linear operation called initial
permutation in order to get the attack going, but this permutation just affects the

12Most ciphers use exclusive-or, other key addition operations such as modular addition or modular
multiplications are more rare and this modification does not affect the general algorithm of a side-
channel attack.

3.2. Power analysis 39

order in which the attacker will extract secret bits of the key rather than the general
algorithm of the attack. As a simple example, let’s say that a permutation used in an
imaginary encryption algorithm is a swap between the first and the seventh bytes of
the state and it is applied after the key addition, in this example an attack on the first
byte of the state (after the S-box) will give the attacker the seventh byte of the key
instead of the first one and vice versa. Same reasoning can be applied when single
bits of the key (or plaintext) are used in a permutation.

It is important to note, that sometimes an attacker has to attack more than one
round of an algorithm. The main reason lies in the key scheduling algorithm and
the size of the key. A lot of block ciphers use only a part of a secret key in order
to create a round-key e.g., AES-256 or Present. It means that even if an attacker
extracts the entire target intermediate state of the first round, it will be impossible to
get the entire secret key. In this case the attacker has to execute the entire first round
(and a part of the key schedule) of the algorithm using the already found parts of the
secret key and start the attack once again on the second round of the algorithm in
order to extract the missing parts of the key. The algorithm of the attack does not
change at all since the input to the second round is already known an we can treat
the second round as if it is the first one. Since the attack does not change at its core
in a multi-round scenario and extraction of every additional part of the key requires
to execute the same piece of code (perform the same attack) researchers mostly focus
on the first round of an algorithm and on a single part of the key during the analysis.
In case of an attack on an S-box, the size of a part of the key that is being targeted is
equal to the size of an input of the S-box.

3.2.3 Leakage model

Power analysis attacks allow the attacker to extract information about the interme-
diate state of an algorithm during its execution and ultimately extract the secret key.
It is possible because the instantaneous power consumption of the device at a given
moment in time depends on the value that is being manipulated at that moment.
The relationship between the value of a point of a power trace and the value that is
manipulated by the device is called a leakage function. The leakage function, noted
L∗, describes what information is leaked by the device while it handles a value. In
practice the attacker does not know the leakage function of the device. It is prac-
tically impossible to compute (or extract) the leakage function from a given device
because it depends on too many factors and parameters; basically it depends on the
position and size of every single component (such as transistors and buses) in the
device. However, in practice it is possible to mount a successful attack by using an
approximation of L∗. An approximation of a leakage function that is used during a
side-channel attack is called a leakage model, we will useL to denote a leakage model.

Generally, during power analysis the attacker considers that at each moment in

40 Chapter 3. Side-channel analysis

time during the execution of an algorithm the instantaneous power consumption P
could be decomposed in the following way:

P = Pop + Pval + ε (3.7)

where Pop is the part related to the operation that is being computed by the device
(the executed instruction), Pval is the part related to the value that is handled by the
device and ε is the noise. In case of Simple Power Analysis (SPA) [KJJ99] the at-
tacker is mostly interested in Pop which is considered to be a constant for a given
instruction13. In differential power analysis attackers are interested in modelling the
part Pval which allows to recover an intermediate state of a block cipher. The noise
is usually considered to be an independent random variable following a Gaussian
distribution with zero mean:

ε ∼ N (0, σ2) (3.8)

where σ2 is the noise variance which depends on the acquisition setup (that includes
the ambient noise present in the laboratory).

There are two families of leakage models that are often used in power analysis
side-channel attacks: Only manipulated Data Leak (ODL) and Memory Transitions
Leak (MTL) [CGP+12]. The ODL model considers that only the manipulated value
influences the instantaneous power consumption of the device, this model is often
used during attacks on microcontrollers (it works well in case when buses are set to
a default value before being set to the manipulated value). The MTL model considers
that two values (the previous one and the new one) of a memory unit (e.g., a regis-
ter) influence the power consumption and that the device leaks some combination
of the two consecutively manipulated values, this model is often used during attacks
on hardware implementations such as FPGAs and ASICs. However, it also makes
sense to use MTL during attacks on microcontrollers (see more in Chapter 7). The
ODL and MTL models are often referred as value-based and distance-based models
respectively, the leakage is also referred as being value-based or distance-based.

In case of ODL model the function L(·) takes one argument that is the target in-
termediate state. If the MTL model is used then the argument of L(·) is the result
of a combination of two intermediate states such as the new and the old value of a
register, the most common choice for the combination is an exclusive-or but it can
be another function e.g., concatenation. Sometimes for the sake of simplicity in MTL
it makes more sense to say that the function describing the leakage model uses two
arguments which are the two intermediate states, for example in case of an imple-
mentation of an attack (a function in the code will actually have two arguments and
the combination happens inside of it). It can also help in case when the attacker does
not know how exactly two intermediate states are involved in the combination, the

13This value changes during the execution of one instruction, but for the same time offset from the
beginning of the clock cycle the value is the same for a given instruction.

3.2. Power analysis 41

attacker can be using a machine learning technique to extract this function without
knowing it in advance. Thus, from this point of view the model uses two parameters.
For the sake of clarity and simplicity we will suppose that the leakage model L(·)
uses only one argument through this document.

Depending on the type of attack, the attacker will use different approaches while
choosing the leakage model. During profiled power analysis the attacker has the
ability to extract a very good leakage model from the target device by feeding it with
different plaintexts and keys while measuring device’s power consumption. During
the learning phase of a power analysis side-channel attack an attacker has two major
goals: finding points of interest and extracting a profile from power traces. Points of
interest are the points of power traces that are influenced by the target intermediate
value and a profile is a leakage model of a device under attack. In other words, dur-
ing the learning phase of power analysis the attacker has to find how the device leaks
the information and where the leakage happens. In literature on side-channel analy-
sis, profiling usually refers to the method and action of creating an accurate leakage
model of the target device. We are going to use the notation Tl and Ta to denote sets
of power traces that are used for the learning phase and for the attack respectively,
these sets are called the learning (or profiling) set and the attack set. In a similar way
we will use symbols Tl and Ta to denote one trace from the profiling and from the
attack set.

During an unprofiled attack the attacker does not have the possibility of extract-
ing an accurate leakage model, thus most of the time the leakage model is chosen
using an educated guess that is based on previous experiments, the knowledge about
the target device and tests (the attacker might try to attack the same device using
several leakage models). There are two simple leakage models that are commonly
used during analysis of attacks and countermeasures. The most common and simple
examples of the ODL and MTL leakage models are the Hamming weight (HW) and
the Hamming distance (HD) respectively. Hamming weight of a binary word is the
number of bits equal to 1 in this word and the Hamming distance between two binary
words is the number of single bit differences between the two words. The Hamming
distance between two values a and b can also be seen as Hamming weight of the
exclusive-or between them (the Hamming weight of a⊕ b). Figures 3.6 and 3.7 show
the HW and HD leakage of an ATmega328P microcontroller.

3.2.4 Distinguishers

After the acquisition of power traces and the choice of the target intermediate state
the attacker can start the analysis. For the sake of simplicity and in order to have a
concrete example we will assume that the attacker targets one byte of the interme-
diate state that is given by doing the key addition followed by the application of an
8 × 8 S-box (as in the Equation 3.6), however same techniques and ideas could be

42 Chapter 3. Side-channel analysis

0 5 10 15 20 25 30

−0.05

0.00

0.05

0.10

Time (points of the trace)

V
a
lu

e
Hamming weight

0
1
2
3
4
5
6
7
8

Figure 3.6 – Zoom on the average traces from ATmega328P. Values of different Ham-
ming weights are manipulated by the same instruction. Each average trace corre-
sponds to all values of the same Hamming weight.

applied to any number of bits.
During the analysis phase, the attacker has to go through all possible values of

the part of the key that is targeted and run the partial algorithm until the target in-
termediate state. In other words, for each key hypothesis h the attacker computes
the target intermediate state and applies the leakage model in order to get the hypo-
thetical leakage l:

l = L(S(h⊕ pb)) (3.9)

where pb is the byte of the plaintext. Finally, in order to find which of the key hy-
pothesis is the correct one, the attacker can apply a distinguisher. A distinguisher is
a statistical tool or an algorithm that allows to associate a weight to each hypothesis
in order to sort them by likelihood of being the correct hypothesis (from the most
probable to the least probable). A weight is assigned to each hypothesis by compar-
ing real measurements and the value inferred from a model that was used with the
analysed hypothesis. In other words, the distinguisher is a tool that allows to com-
pare real measurements (from power traces) and the hypothetical values computed
using a key hypothesis and the leakage model.

Once all the hypotheses are sorted by their weight, each hypothesis gets a rank.

3.2. Power analysis 43

0 5 10 15 20 25 30

−0.05

0.00

0.05

0.10

Time (points of the trace)

V
a
lu

e
Hamming distance

1
2
3
4
5
6
7
8

Figure 3.7 – Zoom on the average traces from ATmega328P. Input and output of dif-
ferent Hamming distances resulting from the execution of the same instruction. Each
average trace corresponds to all values of the same Hamming distance.

The rank of a hypothesis is its position in the list of sorted hypotheses. We will say
that a hypothesis has a high rank (or that it is highly ranked) if it is at the top of
the list of hypotheses, in other words it means that the hypothesis is likely to be the
correct one. We will use the term low rank to refer to the hypotheses that are at the
bottom of the sorted list of hypotheses. We will use the notation k̂ to specify the key
hypothesis that has the highest rank (which is equal to the secret key in case of a
successful attack). Note, that a distinguisher can potentially assign exactly the same
weight to more than one hypothesis, and thus an attacker will have to test which
one is correct. However, this scenario does not happen very often in practice, mostly
because each point of a power trace is a floating point number and traces are noisy,
in addition most of distinguishers also assign floating point weights to hypotheses.
Thus, we are going to assume that all weights assigned by a distinguisher to different
hypotheses are different and that there is only one k̂.

Many different distinguishers were discussed in literature over the years, through
the history of side-channel analysis newer distinguishers usually use more advanced
statistical tools. We would like to focus on four of the commonly used distinguishers.
Two of them are associated with unprofiled attacks and the two others are usually

44 Chapter 3. Side-channel analysis

used during profiled side-channel analysis.

Difference of means

Difference of Means (DoM) [KJJ99] is one of the first distinguishers that was sug-
gested in the literature14. The idea behind this unprofiled approach is relatively
straight forward: the attacker has to divide all traces into two groups or clusters g0
and g1, compute the average value of traces in each group and finally compute the
difference between the two averages. If the hypothesis on the value of the key is
correct then this difference should be the highest.

Since the attacker has to separate traces into two clusters, the leakage model is
often chosen so that it can only output two different values. One of the most common
choices is one of the bits of the output, e.g., the Most Significant Bit (MSB):

l =MSB(S(h⊕ pi)) (3.10)

in other words, the attacker supposes that the power consumption of the crypto-
graphic device depends on the MSB of the result. In case when l is equal to 0, the
power trace T (p) will be put into the group g0 (it will be added to the group g1 oth-
erwise):

∀T ∈ T : T ∈ gi →
(
i =MSB(S(h⊕ p

(T)
b))

)
(3.11)

The value k̂ returned by this distinguisher is the hypothesis h such that:

k̂ = argmax
h

(
max
t

(|µ0[t]− µ1[t]|)
)

(3.12)

where µi is the mean vector of the traces from the group gi calculated as follows:

µi[t] =
1

Ni

∑
T∈gi

T [t] (3.13)

where t denotes the index of the tth point of the power trace (and of µi) andNi is the
size of gi. Informally, µi is an average power trace where each point t is the average
of the same points in all trace from the same group.

Note, that in case of an unprofiled scenario the attacker does not know which
points of the acquired power traces are related to the chosen target intermediate
value. Thus, the attacker chooses the maximum difference for each hypothesis (the
second max in the Equation 3.12). Also, the attacker does not necessarily know if
the power consumption associated to the group g0 is higher or lower then the one
associated to the group g1. This is the reason of using the absolute value (| · |) in the

14The Difference of Means attack is often referred as Differential Power Analysis (DPA) attack, but
we will reserve the term Differential Power Analysis (DPA) to the general idea of “differential” analysis
as opposed to “simple” power analysis.

3.2. Power analysis 45

0 50 100 150 200 250

−0.05

0.00

0.05

0.10

Time (points of the trace)

V
a
lu

e
MSB

0
1

(a) Zoom on average traces with different MSB.

0 200 400 600 800 1000

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

Time (points of the trace)

D
if

fe
re

n
ce

(b) DoM with the correct hypothesis.

0 200 400 600 800 1000

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

Time (points of the trace)

D
if

fe
re

n
ce

(c) DoM with a wrong hypothesis.

Figure 3.8 – Example of DoM using MSB of the output of an S-box.

Equation 3.12. However, an attacker can learn this information about the device (e.g.,
by doing preliminary analysis) and use it in order to improve the accuracy and the
efficiency of the attack i.e., the attacker will not need to compute the absolute value
of the difference. This type of preliminary analysis of the target cryptosystem could
be seen as a basic form of profiling.

Figure 3.8a shows a zoom on two average traces with different values of the MSB
when the hypothesis is correct (equals the value of the key). Figure 3.8b shows the
difference of means for the correct hypothesis and Figure 3.8c the same difference
with an incorrect key hypothesis, you can see that the difference is higher for the
correct one.

46 Chapter 3. Side-channel analysis

Correlation power analysis

Correlation Power Analysis (CPA) [CNK04, BCO04] is a kind of distinguisher that is
often used in an unprofiled scenario. This technique relies on the correlation coef-
ficient such as simple Pearson correlation coefficient that associates two sets (of size
N) X = {x1, x2, . . . xN} and Y = {y1, y2, . . . yN} to the following value:

ρ = cor(X ,Y) =

∑N
i=1(xi − µX)× (yi − µY)√∑N

i=1(xi − µX)2 ×
√∑N

i=1(yi − µY)2
(3.14)

where µX and µY are the mean values of X and Y .
The analysis phase of the attack when the attacker applies the distinguisher re-

sembles the one of the DoM. The attacker does not necessarily know which points of
each power trace are associated to the target intermediate value. Thus, the attacker
computes the correlation coefficient between the hypothetical power consumption
and the real one at each point t of power traces for each hypothesis h. The key given
by this distinguisher is the following:

k̂ = argmax
h

(
max
t

(rt(h))
)

(3.15)

where each coefficient rt(h) is the absolute value of the correlation coefficient be-
tween hypothetical power consumption and real power consumption at the point t
of power traces (of size Nt):

rt(h) =
∣∣∣cor(L(S(h⊕ P[·]b)), T [·][t]

)∣∣∣ (3.16)

where b denotes the byte that is being analysed and the notation [·] represents the
fact that the same part (byte or point) is selected in all objects (plaintexts or power
traces) of a set.

Figure 3.9 illustrates a CPA, Figure 3.9a shows all correlation traces with different
hypotheses (the correct one is shown in red). Figures 3.9b and 3.9c show traces points
from different traces (at the best offset with the highest correlation for the correct
guess) with the corresponding HWs for the wrong and the correct guesses.

Template attack

Template Attack (TA) [CRR02, CK13] is a profiled attack that has a learning phase
and an attack phase. We denote T z a set of traces associated to the intermediate
value z (all traces that were recorded while the target intermediate value is equal to
z = fk(p)). Lets assume that Nl is the number of traces in each profiling set T z

l and
that each trace has t points. For the sake of simplicity, we are going to assume that
traces contain only the points of interest for the attack. To create traces that contain

3.2. Power analysis 47

0 200 400 600 800 1000

−1.0

−0.5

0.0

0.5

1.0

Time

C
o
rr

e
la

ti
o
n

Hypotheses

Correct
Wrong

(a) All correlation traces for all points and all 256 hypotheses (for one byte).

●

●

●
●

●
●

●●●

●
●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●●

●

●
●●

●●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●
●●

●

●
●●

●●

●

●

●

●

●

●

●

● ●

●

●●
●

●
●●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●
●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●
●●

●●

●
●

●

●● ●
●

●
●

●

●

●

●

●●●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●
●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●
● ●

●

●
●

●

●

●

●

●

●
●

●
●●
●●

●
●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●●

●

●
●

●●

●
●

●
●

●

●

●●●

●

●

●

●● ●
●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●●

●

●

●
●
●

●

●

●●

●
●

●

●●

●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●●
●

●

●
●●●

●●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●
●

●

●

●
●
●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●●

●

●

●

●
●

●

●

●●

● ●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

● ●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●
●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●
●

●●

●

●●
●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●●●

●●

●

● ●

●

●
●

●

●

●

●
●●

●
●
●

●

●

●

●

●

●
●

●

●
●

●
●●●

●

●

●

● ●
●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●
●
●●

●

●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●● ●

●

●

●
● ●

●●
●●

● ●

● ●●

●
●●
●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●
●

●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●
●

●

●

●

●
●
●●
●

●

●●

●
●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●
●
●●●

●●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●●●●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

●●●

● ●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●●
●
●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●
●

●●
● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●
●●

●

●

●

●
●

●
●
●

●
●●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●
●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●
●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●●

●●

●●

●●

●●

●

●

●
●

●

●●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●● ●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●
●●

●
●

●
●

●

●

●●
●
●
●

●
●

●

●

●

●●

●

●

●

●

● ●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●
●
●

●
●
●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●
●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●●

● ●
●

●
●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●● ●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●
●●

●

●
●
●

●

●

●

●●

●

●●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●
●

●●

●

●●

●●
●

●

●

●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

● ● ●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●
●●
●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●

●●
●
●

●
●
●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●●
●

●

●

●

●

● ●

●

●●

● ●●
●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●●

●

● ●
●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

● ●

●

●

●

●●
●●●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●
● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●

●●
●

●

●●●

●

●

● ●

●
●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●● ●

●●

●

●
●

●

●

●

●

●
●●

●

●●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●●●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●
●
● ●

●

●
●●●

●

●
●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●
●

●
●

●

●

●● ●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●
●
●
●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●●

●

●
●

●
●

●●

●
●

●

●

●

●

●
●

●

●
●

●●●
●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●●

●

●

●

● ●

●

●

●●

●

●

●
●
●

●●

●
●

●●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●●
●

●●

●

●
●

●●

●

●

●

●

●
●

●

●

● ●
● ●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●● ●

●

●

●
●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●
●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●● ●

●●

●
●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●●
●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●
●

●●

●

●● ●
●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●
●

●
●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●
●
●

●
●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●
●

●
●●●

●

●

●
●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●
●

●●

●●
●

●●

●●●●

●●●●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

0 2 4 6 8

0.05

0.06

0.07

0.08

0.09

0.10

Hamming weight

T
ra

ce
 v

a
lu

e

(b) Values of the trace at the best point. Dis-
tribution with the correct hypothesis.

●

●

●
●
●
●

●●●

●
●

●

●

●
●

●

● ●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●●

●

●
● ●

● ●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●●

●
●●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●●
●
●

●●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●
●

●
●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●●

●
●

●

● ●●
●

●
●

●

●

●

●

●● ●
●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●
●●
● ●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●
●●

●

●
●

●●

●
●

●
●

●

●

●●●

●

●

●

●●●
●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

● ●

●

●

●
●

●
●

●

● ●

●
●

●

●●

●●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

● ●
●

●

●
● ●●

●●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●
●
●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

● ●
●

●

●

●

● ●

●

●

●
●
●●

●

●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●●

●

●

●

●
●

●

●

● ●

●●
●
●

●

●

●

●
●

●●

●

●●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●●

●

●●
● ●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●
●

●● ●

● ●

●

●●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
● ●●

●

●

●

● ●
●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

● ●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●● ●

●

●

●
● ●
●●
●●

● ●

● ●●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●
● ●●

●

●

●
●

●
●

●

●

●●

●

● ●

●●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●
●●

●

●

●●

●
●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●
●

● ● ●
●●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●

●

●●● ●
●●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●●●

●●

●

●
●
●

●

●
●●

●
●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●
●

●●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●
● ●

●

●

●

●
●
●

●
●

●
●●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●● ●●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

● ●

● ●

●●

● ●

●●

●

●

●
●

●

● ●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●
●● ●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●●

●
●

●
●

●

●

● ●●●
●

●
●

●

●

●

● ●

●

●

●

●

● ●

● ●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●● ●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

● ●

●●
●

●
●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●● ●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●

● ●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

● ●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
● ●

●

●

●
●

●●

●

● ●

●●
●

●

●

●

●
●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●●●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●
●●
●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●
●
●

●

●

● ●
●

●

●
●

●●
●

●
●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

● ●
●

●

●

●

●

●●

●

● ●

●● ●
●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
● ●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●●

●

●●
●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

● ●
● ●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
● ●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●

● ●
●

●

●●●

●

●

● ●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

● ●

●

●
●

●

●

●

●

●
● ●

●

●●●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●●
●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
● ●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●
●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●● ●

●
●

●
●

●

●

● ●●

●

●

●

●

●
● ●

●

●

●

●
●

●●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●
●

●

● ● ●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●● ●

●

●
●
●

●

●●

●
●

●

●

●

●

●
●

●

●
●

● ●●
●

●

●
●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●

●

●

● ●

●

●

●●

●

●

●
●

●
●●

●
●

●●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

● ●

●

●
●

● ●

●

●

●

●

●
●

●

●

●●
● ●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●● ●●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●●
●

●●

●
●

●

●
●● ●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●●
●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●
●

●●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●
●

●
●●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●●
●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●
●
●

●
●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●
●

●
●●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●

● ●

●●
●

● ●

●● ●
●

● ●●●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

0 2 4 6 8

0.05

0.06

0.07

0.08

0.09

0.10

Hamming weight

T
ra

ce
 v

a
lu

e

(c) Values of the trace at the best point. Dis-
tribution with a wrong hypothesis.

Figure 3.9 – Example of CPA using HW model.

48 Chapter 3. Side-channel analysis

only points of interest the attacker can simply discard all other points in each power
trace. Here, when we say that the attacker is looking for the points of interest, we are
referring to the idea of feature selection i.e., choosing the informative variables (useful
for us) among the set of all available variables (points of power traces, in our case).
However, in addition to selecting interesting points from power traces an attacker
can also combine them before applying a distinguisher, some people may include
this combination step into the whole concept of finding the points of interest.

Finding points of interest for profiled attacks can be done using methods e.g.,
based on correlation or mutual information; selecting good points of interest is actu-
ally a very interesting and separate research topic [RO04].

During the profiling step of a Template Attack for each possible value z the at-
tacker estimates a mean vector µz :

µz =
1

Nl

Nl∑
i=1

T z
l [i] (3.17)

and the covariance matrix Σz :

Σz =
1

Nl − 1

Nl∑
i=1

(T z
l [i]− µz)

T(T z
l [i]− µz) (3.18)

where T is the operator that transposes the matrix.
The idea is to model the dependency between the power consumption and the

value z as a multivariate normal conditional dependency:

P(T z|z;µz,Σz) =
1√

(2π)t × det(Σz)
e−

1
2
(T z−µz)TΣ−1

z (T z−µz) (3.19)

which can be used with the extracted profile in the attack step that gives the key
which maximises the likelihood:

k̂ = argmax
h

P(Ta|z) = argmax
h

∏
Ta∈Ta

P(Ta|z;µz,Σz)× P(z) (3.20)

where z = fh(p). Intuitively, we choose the hypothesis which gives the highest
probability of being the correct one according to the probability density function
given the observed value of points in a power trace.

Figure 3.10 illustrates the profiling phase of a TA, each point represents one
recording of a power trace at the moment in time when the S-box is processed. The
attack phase is illustrated in Figure 3.11, it illustrates how the probability of each
hypothesis being the correct one evolves. Before observing measurements this prob-
ability is the same for every hypothesis (P = 1

256), it evolves after observing more
power traces depending on the observed value.

3.2. Power analysis 49

●

●

●
●

●●●

●
●
●

●●

●

●●

●
●●
●●
●

●●

●

●

●

●●

●

●

●

●●
●
●●
●●
●●

●

0 32 64 96 128 160 192 224 256
0.04

0.05

0.06

0.07

0.08

0.09

0.10

●

●●

●
●
●●

●

●●

●

●
●●
●●●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●●

●
●
●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●
●

●
●
●

●

●
●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●
●
●
●
●

●

●
●●●
●

●

●

●

●●

●

●

●
●●
●
●

●
●

●●

●
●
●

●

●
●

●

●●
●
●

●

●
●●●

●

●

●

●

●

●
●

●●
●●

●

●
●
●

●
●

●

●

●
●
●
●

●
●

●

●

●

●●
●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●●

●
●

●●

●
●●●●

●

●

●

●

●

●
●●●●
●●●
●

●●

●

●

●

●

●
●

●
●●

●
●

●

●
●

●

●
●●
●●●●
●

●

●
●

●●
●
●
●

●

●●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●
●
●

●●

●
●●●
●

●
●●●

●

●

●
●
●

●

●
●
●
●
●

●●
●
●

●

●
●
●

●
●

●●

●
●●

●●
●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●

●
●

●

●

●
●
●●

●●

●
●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●
●
●

●
●

●

●●●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●●

●●●
●

●
●
●
●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●●

●
●
●

●

●

●

●●●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●●●
●●
●
●●

●

●
●

●

●

●

●

●

●

●●●●●●

●

●

●●●
●

●

●●

●

●●●

●
●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●
●●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●
●●
●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●●●●●

●

●
●

●●
●●

●

●

●
●
●

●

●

●
●

●
●

●

●
●
●
●

●

●
●●

●

●

●●

●

●

●

●●

●

●●

●●●
●
●●
●
●
●

●

●

●

●

●
●

●

●

●

●
●●●
●

●

●

●

●

●
●
●

●●
●●

●●●
●●
●

●
●
●
●
●
●

●

●●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●●

●

●

●

●●
●

●●

●

●

●
●
●
●

●

●●
●

●

●
●●
●
●

●

●●

●
●

●

●
●

●

●

●●●

●●

●

●

●

●●●
●

●
●●
●

●

●●

●

●
●
●
●
●

●

●

●
●

●

●
●
●●

●

●
●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●
●

●●

●

●

●
●
●
●●
●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●
●

●

●

●●●●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●●●

●

●

●

●

●●
●
●
●
●
●
●

●

●
●

●
●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●●●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●
●●
●

●

●

●●
●

●

●
●●

●

●

●

●●

●
●

●

●
●

●●

●
●

●
●

●

●●

●
●
●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●●●●
●
●
●
●

●

●

●

●

●

●
●
●

●
●
●

●
●
●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●
●●
●
●

●

●●

●●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●
●

●●●●

●
●

●

●

●
●
●●

●

●●●

●

●
●

●●

●

●
●

●
●

●
●●
●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●●

●

●
●
●

●●

●

●
●

●●●
●

●

●
●●
●
●

●

●

●
●
●
●●●

●

●

●

●
●

●

●
●

●

●

●

●●
●
●
●
●
●

●
●

●

●

●●

●

●

●

●●●●●●
●●●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●●
●●●

●

●

●●

●
●●

●

●

●●

●

●
●
●

●
●
●
●

●●●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●
●
●●
●

●

●

●●
●●

●

●
●
●●●●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●
●
●●●
●

●
●

●

●

●

●
●●
●
●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●●●●●●●

●

●

●

●

●
●●
●
●
●

●

●●
●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●●
●
●
●
●●●

●

●
●

●

●

●●●

●

●
●

●
●

●

●

●●●

●
●

●●

●

●

●

●

●●
●●●

●

●●

●

●

●

●●
●
●

●

●●

●

●●●

●●

●

●●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●●

●
●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●●●●●

●

●

●

●

●

●●

●
●

●
●●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●●●

●
●

●
●

●

●●

●
●

●

●
●
●

●

●●

●
●

●

●

●●
●

●●

●

●
●

●

●
●●

●

●

●
●●

●

●●

●

●
●

●●●
●

●

●

●

●●

●

●
●

●

●

●●

●
●

●
●
●

●

●
●●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●

●
●
●
●●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●
●

●●

●
●
●

●

●

●

●●

●

●
●
●

●●
●

●

●●

●

●●
●

●
●

●

●

●
●
●

●
●
●

●
●

●●

●

●●

●

●

●

●

●
●

●

●
●
●
●●
●

●●

●
●●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●
●
●
●

●

●●

●
●

●●
●
●

●

●
●

●
●
●

●●
●

●
●

●

●

●

●●
●
●

●

●●

●
●

●

●

●●
●

●●

●●●
●

●
●
●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●●●●●

●●●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●●
●

●
●
●●

●
●
●●●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●
●

●●
●
●

●

●

●
●
●●

●

●
●
●

●
●
●

●

●
●
●
●●
●
●

●

●

●

●

●

●

●
●
●
●●●

●

●●
●

●

●
●

●

●

●

●

●

●

●●●
●●

●

●
●●●●

●
●●

●
●●

●

●
●
●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●
●
●
●●
●
●
●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●

●

●

●

●

●

●

●

●

●
●●●●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●●
●

●

●

●

●

●

●

●●
●
●

●
●

●●

●●
●

●

●●

●

●

●

●

●●
●●●
●
●

●
●

●●●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●●
●
●

●●

●

●

●

●●●

●

●●

●

●

●

●

●●
●
●●●

●
●
●
●●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●●

●

●

●●

●●

●

●

●
●
●
●●
●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●
●

●
●
●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●●●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●●●

●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●●

●●
●●●
●●

●

●
●●●

●

●●
●
●

●

●●

●

●
●

●
●

●●

●
●●●

●
●

●
●

●
●
●●

●
●
●

●
●
●●

●
●

●
●

●
●
●

●●
●

●
●●
●
●●

●

●●●
●●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●●

●

●

●
●
●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●●
●

●
●
●

●
●●

●●●
●

●

●

●

●
●●
●
●
●
●

●
●

●●

●

●●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●●●●
●●

●

●
●

●

●
●

●

●

●

●

●
●●●

●

●●
●

●●●

●

●
●

●
●
●

●

●●●

●

●●
●

●
●

●
●
●

●

●

●●

●

●

●

●●

●
●●

●

●

●
●
●

●

●
●●●

●●

●
●

●

●
●
●

●

●

●●
●

●

●

●
●

●●

●

●●●

●●
●
●

●●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●
●
●

●
●●

●

●

●

●●●

●

●

●

●●●

●
●●

●
●●

●

●●●

●

●
●
●

●●
●

●

●

●
●
●●●

●

●

●
●

●
●
●●

●
●

●

●
●
●
●
●

●
●

●
●●●

●

●

●●
●●

●

●

●
●
●
●●●
●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●
●
●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●●●
●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●●●●●
●

●
●●

●●

●

●

●

●●

●

●

●

●
●
●
●

●

●
●

●

●

●
●

●

●●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●●●

●

●
●
●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●
●
●●

●

●●

●●●

●●

●

●
●
●
●
●

●

●

●
●

●●
●

●
●
●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●●●

●
●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●
●

●

●

●●

●

●●
●

●

●●●●

●

●

●
●

●
●

●
●

●
●
●

●

●●

●
●
●

●

●●
●
●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●●

●●●●

●

●
●

●

●●

●●

●

●
●
●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●
●
●
●
●

●
●

●●●

●

●●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●●

●●●
●

●
●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●
●

●●

●●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●
●●

●
●
●

●

●

●

●
●

●●●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●
●

●

●●

●●

●

●

●
●

●

●
●

●

●
●

●

●●
●
●●
●●●

●

●●

●

●
●

●

●●●●

●

●

●●●

●
●
●●●
●
●

●

●

●
●●
●

●
●

●
●

●
●
●

●●

●
●
●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●
●
●
●

●

●

●
●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●
●●
●●●

●

●

●●

●

●●
●●
●

●

●

●

●

●●
●
●
●
●
●

●

●

●
●
●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●●

●
●●

●

●

●●●
●

●

●

●●

●

●

●

●●
●

●●●

●

●●

●

●
●
●●

●
●●

●

●

●

●●

●
●

●

●
●
●

●

●●●
●●
●

●

●

●

●

●

●●●●

●

●

●

●

●
●●

●

●

●

●●

●

●

●
●●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●
●●
●

●

●
●

●

●
●
●●

●

●●●

●

●

●

●

●●
●
●
●●
●●
●

●

●
●
●

●

●

●●●

●

●

●●

●

●

●

●●

●
●
●
●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●●
●
●

●

●
●

●

●

●
●
●
●

●
●

●

●●

●

●
●

●

●●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●●
●
●●

●

●

●

●

●
●●

●

●●
●

●

●

●●

●
●

●
●
●
●●

●

●
●
●

●●●

●

●●

●

●●●●

●●

●●

●
●

●●

●

●
●

●
●

●
●
●●●

●

●

●

●●●
●
●

●

●

●
●

●

●

●
●
●
●●●●

●
●

●

●

●
●●
●●

●

●

●

●●●

●

●

●●
●

●

●

●●
●●

●

●

●

●
●

●

●

●●●
●●●

●

●

●

●●

●

●

●
●
●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●
●●●

●

●

●

●

●

●

●

●
●●●
●
●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●●

●
●●●
●

●

●

●●●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●
●

●
●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●●
●

●

●

●
●

●●
●●●
●

●
●

●
●●
●
●

●
●

●

●●●●●
●

●●

●

●
●
●●

●●●
●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●●

●●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●
●
●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●
●

●●

●

●

●

●

●

●

●

●
●●●

●●
●

●

●
●
●●●

●

●

●

●

●

●
●
●

●

●
●
●
●
●

●

●
●

●

●

●

●
●●

●
●
●●
●
●
●

●●
●
●

●

●

●

●●●

●
●

●

●

●
●

●

●●
●

●

●●

●

●

●

●
●●
●
●
●

●

●
●
●

●

●

●
●●

●
●●

●

●

●

●

●●●
●

●

●

●
●
●
●
●

●
●●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●●

●●
●

●
●
●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●●
●
●

●

●●
●
●
●

●●

●●●●
●

●

●

●

●

●
●●
●●●
●●

●

●

●

●●

●
●

●

●

●●●●
●

●●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●●
●
●●●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●●

●

●●
●

●

●
●
●

●

●

●●

●

●
●
●

●
●●

●

●

●
●●

●●●

●

●
●

●

●

●

●
●
●●

●●
●

●

●

●

●●●

●●●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●
●

●

●
●
●
●

●

●

●

●●

●

●
●●●●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●●
●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●
●

●

●●
●

●

●
●●
●
●
●●●
●●

●

●

●
●
●

●

●

●
●
●

●

●

●●●

●

●
●

●

●●

●
●
●
●
●
●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●
●

●●

●
●
●●
●
●

●●
●

●●
●●
●

●

●

●

●

●

●

●
●

●

●
●

●
●●
●

●
●

●●
●●

●●

●●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●
●

●
●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●●
●
●●●

●

●

●
●

●

●●

●

●●

●

●
●

●

●
●

●

●

●
●

●●●

●
●

●

●

●
●

●●

●

●●
●

●

●

●

●
●●
●
●●
●

●●●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●
●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●●
●
●
●
●●
●

●
●●●

●

●

●●

●

●

●●

●
●
●●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●●
●
●
●

●●

●●●

●

●

●

●●
●

●
●
●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●●

●

●
●

●●

●

●

●●●●

●●

●●
●●
●

●

●

●

●

●
●
●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●●
●●
●

●
●

●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●●

●
●

●●

●
●

●

●

●●

●
●●

●

●●●
●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●●

●

●

●
●

●

●
●●

●

●
●●
●

●●●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●
●
●●
●

●

●

●

●

●
●

●●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●
●
●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●●
●

●
●

●
●
●●●●

●
●
●
●
●
●

●

●

●

●
●

●

●

●
●
●

●
●●

●
●

●

●

●

●

●

●

●

●
●●●
●●●●

●

●

●
●

●

●
●●

●

●

●

●●●

●
●

●
●
●
●

●
●●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●
●
●

●●

●

●
●●●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●
●

●

●

●

●
●

●

●●
●

●
●

●

●

●
●●

●

●

●

●

●

●●
●●

●

●

●

●
●
●
●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●●
●
●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●
●●
●

●
●

●

●

●

●
●●
●
●
●
●●●●
●

●
●

●

●

●

●●

●

●
●
●
●

●●

●●
●
●
●

●
●

●●●
●

●●

●
●

●

●
●

●
●

●

●

●
●
●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●●●

●

●

●●

●

●
●
●

●

●
●
●●
●

●

●●
●●

●

●

●
●●
●

●
●

●●
●
●
●

●

●

●●●
●
●

●

●

●●●●

●

●

●

●●●
●
●
●

●●
●
●●●
●
●
●
●

●

●

●
●●

●
●

●

●

●●

●
●
●
●●●

●

●

●

●

●
●
●

●

●

●●

●

●
●●
●

●●

●

●

●

●
●●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●●

●

●●

●●
●
●

●

●
●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●
●●
●

●

●

●

●

●

●●●
●

●
●
●

●

●

●

●
●●
●●

●
●

●

●●
●
●●●

●

●

●

●●

●

●
●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●
●
●

●
●

●

●●

●

●
●

●

●
●
●
●●●●●

●

●

●
●
●

●
●

●

●●

●●

●
●

●

●●●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●●

●

●

●●
●

●
●

●
●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●
●●

●●
●

●

●

●●●●

●

●
●

●

●●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●
●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●●
●

●

●
●●
●
●
●

●●

●

●

●

●

●

●●

●
●

●
●●●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●
●
●

●

●●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●
●

●

●
●
●●●●
●

●
●
●

●
●

●●●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●
●

●
●

●●
●

●

●
●

●

●
●

●●

●

●

●●

●

●
●●

●

●

●

●
●●
●

●
●

●
●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●
●●

●
●

●

●
●
●●

●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●●●

●

●
●

●

●
●
●
●●

●

●●
●
●
●
●

●●

●●
●

●

●

●

●

●
●

●

●

●●
●●

●●
●
●

●

●

●

●●●

●●

●●
●

●

●
●●

●

●

●●

●
●

●

●●
●
●●

●

●

●●●●●

●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●●
●●

●

●●
●

●

●

●

●
●
●

●●
●●

●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●
●
●

●●

●●

●
●●
●
●

●

●●●
●

●

●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●
●
●

●
●
●

●

●

●●
●
●

●

●●●

●●

●
●

●

●●

●
●

●

●

●

●

●●

●●
●
●

●

●

●
●

●

●●

●
●

●

●
●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●●

●

●●

●

●

●

●
●
●
●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●
●●
●

●

●●
●
●
●●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●●

●●
●●●●

●

●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●●

●
●

●●●

●

●●

●

●
●

●
●

●

●

●
●
●

●
●

●●

●

●

●

●

●
●
●
●

●●
●

●

●

●
●

●●

●

●

●
●
●●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●●

●
●●
●
●

●

●

●
●●

●

●

●●
●

●

●

●
●●●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●●
●
●

●●

●

●●

●

●
●

●●
●

●●●

●
●

●●
●

●

●

●
●●

●●●

●
●

●
●●●
●●

●

●

●
●●
●

●

●

●
●

●

●●●
●

●

●

●

●
●

●
●

●

●
●●●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●●
●
●●
●●●

●●

●

●

●●●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●●

●

●
●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●
●
●
●

●

●
●

●

●
●
●
●●
●

●●

●

●

●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●●

●
●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●
●
●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●●

●
●●●

●

●

●

●

●
●●

●

●

●
●

●

●●
●●
●●
●

●

●●
●
●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●●●

●

●●●●
●
●
●●
●
●
●

●
●

●

●

●

●

●

●
●●●●●●●●

●●

●
●

●

●
●

●

●
●
●●

●●

●
●

●

●

●
●
●●

●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●
●
●
●

●

●●

●
●

●

●

●

●
●●

●
●

●

●

●
●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●
●●

●
●

●●

●

●
●

●

●
●
●

●

●

●●●

●

●

●

●
●

●

●

●
●●
●

●
●
●

●●

●
●

●

●

●●

●
●

●
●●●

●

●

●
●
●

●

●

●

●

●

●

●

●●●●

●

●●
●

●

●●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●●
●
●
●

●
●

●

●

●●

●●
●
●

●

●●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●●
●●●●
●
●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●
●
●

●

●●●

●

●
●
●●●
●●
●
●

●

●
●●

●

●

●

●●

●

●●
●●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●
●
●
●●●
●

●●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●
●

●

●

●●
●

●
●●

●●●

●

●

●●
●

●
●

●

●●

●

●
●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●
●
●
●

●●●

●
●
●
●

●●

●
●
●●●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●●
●

●

●
●

●
●

●

●●

●

●
●

●

●●

●●

●●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●
●

●●●

●

●
●

●

●

●
●
●

●
●

●

●

●
●●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●
●
●

●

●

●

●

●
●

●

●
●
●
●●
●

●●
●●

●

●

●
●
●●

●

●

●

●●
●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●●

●

●

●
●●
●

●
●
●

●

●
●

●●●

●

●●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●●

●
●●
●
●●
●
●

●

●

●

●

●●●●
●

●

●
●●

●
●

●
●

●

●

●

●
●
●

●
●

●

●●
●●
●
●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●
●●

●●

●
●

●

●
●

●●

●

●

●

●●●

●

●

●

●

●●
●●
●●

●
●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●
●●●
●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●
●
●

●
●

●●

●

●

●

●●
●
●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●

●
●

●

●
●●●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●
●
●●●
●
●
●
●●

●
●●

●●

●
●

●
●
●

●

●●●

●●

●

●
●

●

●

●

●

●●●

●
●

●
●

●

●
●
●●●●
●●

●

●
●

●

●

●
●
●
●●
●●

●

●

●

●

●

●
●

●

●

●
●

●
●●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●●

●

●
●

●

●
●
●

●
●
●

●●
●●
●

●

●●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●●

●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●●

●
●
●

●

●

●●

●

●●

●

●●●

●

●
●
●

●
●
●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●
●●

●

●

●

●●●
●
●●

●

●●●

●

●

●●●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●
●

●●

●

●

●

●
●
●

●

●
●
●●

●

●

●

●

●

●●●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●
●●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●●
●
●
●

●●

●

●

●●●
●
●
●

●●

●●
●

●
●
●

●●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●●

●

●●●

●

●
●
●
●
●●●

●
●

●
●

●

●
●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●●●

●

●
●●●

●

●

●●

●

●●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●
●
●

●●●

●

●

●
●
●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●●●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●
●●

●●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●
●
●

●
●

●

●
●●

●●

●●

●

●

●●
●●

●

●●●
●
●●●

●

●●●

●●

●●

●●
●

●

●●

●

●

●

●

●

●

●

●
●●

●
●
●
●

●

●

●
●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●

●
●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●●

●

●
●●
●●●●●
●

●

●

●

●

●

●

●

●
●
●

●

●●●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●
●

●

●

●

●

●●
●

●

●●●●

●●●
●●

●

●
●

●

●

●●
●

●
●

●

●

●

●
●

●

●●
●

●

●

●
●
●
●

●

●
●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●●●
●

●●●
●●

●
●

●●

●

●
●

●

●

●

●
●
●

●

●

●●●
●●
●

●●
●

●

●

●

●
●
●●
●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●●●

●
●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●

●●

●
●

●

●

●

●
●
●●
●
●
●●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●
●

●

●

●

●

●

●●

●
●

●
●●

●
●
●

●

●
●

●
●
●●●
●

●

●

●

●●●
●
●
●

●

●

●

●●

●

●
●
●
●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●●●●

●

●●

●

●

●
●

●●●
●
●
●

●

●
●
●

●

●

●●
●

Intermediate value

T
ra

ce
 v

a
lu

e

Figure 3.10 – Values from the point of interest of power traces corresponding to the
computation of an S-box.

0 50 100 150 200 250

0.0

0.1

0.2

0.3

Key hypotheses

P
ro

b
a
b

il
it

y

(a) Before observing power traces.

0 50 100 150 200 250

0.0

0.1

0.2

0.3

Key hypotheses

P
ro

b
a
b

il
it

y

(b) After observing one trace.

0 50 100 150 200 250

0.0

0.1

0.2

0.3

Key hypotheses

P
ro

b
a
b

il
it

y

(c) After observing two trace.

0 50 100 150 200 250

0.0

0.1

0.2

0.3

Key hypotheses

P
ro

b
a
b

il
it

y

(d) After observing three traces.

Figure 3.11 – Attack phase of the TA. Probability of each hypothesis being the correct
one. The correct value of the key in this example is 48 (the one that actually stands
out).

50 Chapter 3. Side-channel analysis

It is important to note, that this approach makes the assumption that the dis-
tribution of values in traces associated to each target value z follows a parametric
Gaussian distribution with (t2 +3t)/2 parameters per target value (the values in the
mean vector µz and in the covariance t×tmatrixΣz)15. Also, while the equation 3.19
refers to the real mean vector and covariance matrix, the attacker only estimates their
values using the profiling set. Thus, this method works well only if the attacker has
enough power traces in order to estimate all the parameters. In the case when the
attacker knows the exact values of the mean vector and covariance matrix, as well
as when there is no assumption error then TA provides the optimal distinguisher.
Another interesting property of template attacks is the fact that these attacks require
some noise in power traces in order to work properly, otherwise it will be impossible
to invert the covariance matrix Σz (Equation 3.19). If the amount of noise present
in power traces is very small, the attack can fail due to computational errors in Σ−1

z

(rounding errors because of the limitations related to the representations of real num-
bers in computers). If traces do not have any noise the attacker can consider only the
mean values µz (to test the attack set for perfect matches against the model), in this
case probabilities (Equations 3.19 and 3.20) will be either 0 or 1.

Stochastic attack

Stochastic Attack (SA) [SLP05, CK14] is based on the idea of polynomial regression16.
It is used to model the relationship between the power consumption and the value
that is manipulated at a given moment in time. Stochastic attacks model the power
consumption P (at a point t of a power trace T) depending on the intermediate value
z as a sum ofW functions θi(·) :

P = α0 +

W∑
i=1

(αi × θi(z)) + ε (3.21)

whereα0 is a constant, ε represents noise andαi are coefficients that are related to the
importance of each θi(·) (the higher the absolute value of αi, the higher the impact
of θi(·) on the power consumption). Each function θi(·) is a monomial given by the
following equation:

θi(z) =
∏
β∈G

Bβ(z) (3.22)

15Efficient template attack [CK13] needs to estimate less parameters, it does so by supposing that the
covariance matrix is the same for all target values. Thus it needs 256 × t parameters for mean values
(in case of one byte) and (t2 + t)/2 for the single covariance matrix.

16The term linear regression is often used in the literature, however it can only be used to describe a
subset of stochastic attacks i.e., stochastic attacks of the first degree, see more in further paragraphs.

3.2. Power analysis 51

whereBβ is the function that outputs the bit β of the word z, which could be written
as follows:

Bβ(z) =
⌊z (mod 2β+1)

2β

⌋
(3.23)

and G is a non-empty set G ⊆ Z8 in case of an attack on one byte. Note, thatW equals
2dlog2(z)e−1 i.e., sum of

(
n
k

)
for all k except 0, where n is the number of bits in z; the

coefficient that corresponds to 0 is the constant α0 (corresponds to the monomial
where no bits are in the product).

One can choose the degree of a stochastic attack in order to fine-tune an attack by
choosing the complexity of the model. The degree of a stochastic attack is the highest
number of variables in a monomial θi(·) with non-zero coefficient αi. The notation
SAi represents a stochastic attack of degree i. For example, SA1 is the stochastic at-
tack of degree 1 which only considers monomials that are composed of a single bit
(in other words it uses a simple linear regression), while SA2 considers a model where
monomials can be composed of single bits and of products of two bits.

Themodel is created during the profiling phase using the set Tl through themech-
anism of polynomial regression in order to estimate coefficients αi. The attack phase
uses the set Ta in a way that is similar to the template attack, i.e., the equation 3.20
is used while assuming that P(Ta|z) follows a Gaussian distribution with the mean
given by the model extracted using SA and covariance matrixΣ given by the residual
terms ε.

The SA that we present here is the “classical” version of the distinguisher. Several
modifications and improvements were suggested in the literature e.g., the use of an
orthogonal basis [GHM+17] that allows to detect and pinpointmore complex (higher-
order) leakages.

Other distinguishers

The distinguishers presented in previous sections constitute a representative group of
all distinguishers that we will focus on. Among other commonly used unprofiled dis-
tinguishers we would like to highlight Mutual Information Analysis (MIA) [GBTP08,
BGP+11]. As for the distinguishers that are used for profiled attacks there are also
many techniques based on machine learning e.g., Support Vector Machine (SVM) and
Random Forest (RF) [LBM11, LMBM13] as well as Neural Networks (NN) [MPP16]
and methods based on clustering algorithms [LMV+13]. New distinguishers or im-
provements (e.g., efficient algorithms) on existing ones are suggested in literature
relatively frequently.

3.2.5 Key enumeration

After running a complete attack on a part of the key the attacker gets a list of hy-
potheses sorted by the decreasing likelihood of being the correct hypothesis. In the

52 Chapter 3. Side-channel analysis

best case scenario for the attacker, once the attack is performed on every part of the
key, the hypothesis that was ranked first (for every part of the key) is the correct
one. Thus, combining (usually simply concatenating) all hypotheses of highest rank
immediately gives the secret key. The attacker can usually check if this is the case by
running the encryption algorithm using a known plaintext-ciphertext pair.

Sometimes the correct hypothesis is not ranked as the first one e.g., due to the
high amount of noise in power traces or because the leakage model was not good
enough. Nevertheless, it does not necessarily mean that the attack failed, the at-
tacker can still use a key enumeration algorithm. The key enumeration algorithm is
similar to the brute-force exhaustive key search and in the worst case scenario both
algorithms are equivalent. However, in case of a last step of a side-channel attack a
key enumeration algorithm uses the information obtained during previous steps i.e.,
the ranks of hypotheses given by the distinguisher. Since hypotheses are sorted by
the decreasing order of likelihood the key enumeration starts by considering highly
ranked hypotheses of each part of the key. There exist an optimal key enumeration
strategy (with respect to the order of the generated full key-hypotheses) that can
be applied after any distinguisher that assigns probabilities to hypotheses [VGRS12].
This algorithm was modified to greatly improve its memory efficiency by rendering
it suboptimal but still very efficient [BKM+15]. Different strategies can be applied in
case of a distinguisher that does not output probabilities (such as correlation). One
strategy consists in converting the outputs of the distinguisher to probabilities and
then applying the optimal key enumeration algorithm. Another strategy consists in
taking into account weights “as they are” (instead of probabilities) that were assigned
to different hypothesis, however it does not necessarily result in an optimal strategy.

The idea of final key enumeration in side-channel attacks is strongly related to
the concept of the key ranking [PSG16]. While the goal of the key enumeration is to
find the correct secret key, the goal of the key ranking is to find the rank of the entire
secret key knowing its value i.e., an algorithm of key ranking gives the position at
which the correct key is considered during the key enumeration process. The key
enumeration is used during an attack, while the key ranking is usually used during
the evaluation of a cryptographic product in a laboratory. The goal of an evaluation
lab (that might be involved in a certification process) is to find how difficult it is to
find the secret key. Thus, an evaluation lab just wants to know how many values an
attacker will have to consider before finding the correct key after getting the results
from a distinguisher.

3.3 Analysis of side-channel attacks

Analysis of cryptographic systems from the point of view of side-channel attacks al-
low us to describe how cryptographic devices respond to them. In order to analyse
an attack (or an implementation of a cryptographic algorithm) we need to define a

3.3. Analysis of side-channel attacks 53

way of measuring its performance. It allows us to measure the performance of an
attack while varying its parameters e.g., different measurement setups or leakage
models. Which finally gives a way of comparing two attacks against an implementa-
tion (or two different implementations challenged with the same attack). Ultimately,
this analysis can help in finding weak and strong parts of an implementation which
gives researchers a chance on improving existing implementations and create new,
better ones.

3.3.1 Performance of an attack

Several ways of measuring the performance of a side-channel attack were developed
by the community. The ideas behind them moved towards using more advanced sta-
tistical tools and towards encompassing more information about the results of a side-
channel attack.

The most straight forward way of measuring the performance of a side-channel
attack is to report the number of power traces (also referred as the number of queries
in this context) that is used during the experiment that lead to the successful key ex-
traction. This method was the first one that was used in the domain [Koc96, CCD00].
Generally researchers report the average number of traces necessary for the key ex-
traction. This method is still used by researchers [Gag13], mostly in order to show
the order of magnitude of the amount of data necessary for a successful attack. The
number of traces is also used by the evaluators of the DPA Contest as one of the
measures of the strength of a given side-channel attack17. This metric is basically a
measure of average. It does not give us all the information about the behaviour of an
attack i.e., in practice the attack can actually work with fewer traces and it can also
fail with more traces.

The success probability used in the paper on the Template Attack [CRR02] later
called success rate [SGV08, SMY09] of an attack is a metric that estimates the prob-
ability of a successful key extraction in a given setup (fixed number of traces, fixed
noise, etc.). We define the success rate Sr of an attack A that outputs the key k̂ as the
probability P(k̂ = k). Sometimes researchers use a metric that is equivalent to the
success rate which is called the error rate, it is defined as Er = 1 − Sr. The success
rate (compared to the average number of queries) is a measure of a variability of the
attack, it shows us how often an attack will succeed in a given scenario rather than
the fact that “it is possible to extract the key in the given scenario”. The idea of the
success rate of an attack could be extended to encompass more information about the
results of the attack, we can define the success rate of order o, noted Sro. The success
rate of order o is the probability that the correct key k is ranked among the o highly
ranked hypotheses [SMY09], thus the success rate Sr is actually the success rate of
order 1.

17http://www.dpacontest.org/v4/rsm_hall_of_fame.php

http://www.dpacontest.org/v4/rsm_hall_of_fame.php

54 Chapter 3. Side-channel analysis

A relatively low success rate of order o does not mean that the attack has a low
success rate of higher order o+ 1, which means that an attack can be very powerful
while still having a relatively low success rate of the first order. Thus, sometimes it
is more convenient to use another metric that characterises the attack, this metric is
called the guessing entropy [KB07] which is also referred as the average rank. In the
context of side-channel attacks guessing entropy is the average rank of the correct
key in the ranking returned by the analysed attack18.

The success rate metric has an interesting property compared to the guessing
entropy. Given the success rate of an attack on a part of the key we can infer the
success rate of extracting the entire key in the same scenario (because of independent
probabilities), while the guessing entropy of an attack on a part of the key does not
necessarily give us the rank of the entire key. Thus both metrics are often used by
the researchers nowadays.

Theoretical metrics

Researchers as well as designers want to predict the behaviour of cryptographic sys-
tems (from the perspective of side-channel analysis) in early stages of development
and even during the design of the algorithms. This desire pushes researchers to create
theoretical tools that allow to estimate the resistance of an algorithm or an imple-
mentation without collecting real power traces. A theoretical metric generally tries
to evaluate the robustness of a given function (e.g. an S-box) against a side-channel
attack under several assumptions such as the leakage model.

Transparency Order (TO) was suggested as a theoretical metric that can be used
to evaluate the resiliency of an S-boxes from the point of view of side-channel at-
tacks [Pro05]. Later on, this metric was improved by Chakraborty et al. [CSM+17].
The transparency order of anm× n S-box S is defined as follows:

TO = max
ψ∈Fn

2

(
n− 1

22m − 2m

∑
w∈Fm∗

2

n∑
j=1

∥∥∥∥ n∑
i=1

(−1)ψi⊕ψjCSi,Sj(w)

∥∥∥∥) (3.24)

where ψi represents the value of the ith bit of ψ, and

CSi,Sj(w) =
∑
x∈Fm

2

(−1)Si(x)⊕Sj(x⊕w) (3.25)

in both formulae variables with lower indices i and j represent the corresponding ith
and jth bit of the value.

The resiliency of S against side-channel attacks should be higher for lower values
of the transparency order. Thismetric is based on the Hammingweight leakage andψ

18Sometimes there can be a difference of 1 between the two metrics since some researchers like to
start counting ranks from 0 and others from 1. However, it does not change the idea of this metric.

3.4. Countermeasures 55

represents an initial value of a register that leaks the information, to be more precise,
TO supposes that the device leaks HW (ψ ⊕ S(a)). The use of max in the Equa-
tion 3.24 allows to dissociate the metric from a specific device. Transparency order
equation represent the best case scenario for the attacker (worst for the developer).

Another theoretical metric, called Confusion Coefficient (CC), that tries to give an
evaluation of the resiliency of an S-box was proposed by Fei et al. [FLD12, FDLZ15].
The confusion coefficient is defined as follows:

CC = σ2 [κ (ki, kj) | ∀i < j] (3.26)

where each term κ is given by the following formula:

κ(ki, kj) = Ep
[
(L (S(ki ⊕ p))− L (S(kj ⊕ p)))2

]
(3.27)

where ki and kj are possible values of the secret key, p is a value of a plaintext and
L is the leakage model. Thus, the confusion coefficient is a measure of variance of
κ. In its turn, κ(ki, kj) gives the measure of similarity between two keys (over all
plaintexts), given an assumption on the leakage function.

The original paper [FDLZ15] on CC states: “..for CPA on AES, the deviation of con-
fusion coefficients is about 25% while that for CPA on DES is about 40%. This means the
key candidates behave more similarly and randomly in AES than in DES, and therefore
AES is harder to attack”. Whichmeans that lower CC should result in higher resiliency
against side-channel attacks. Similar statement is given in the following work by the
same authors [FLD12]: “..the one [S-box] with larger confusion coefficients leaks more
information, leading to higher success rates..”. However, later works [PPE+14, Sto15]
show that larger CC leads to lower success rate i.e., lower confusion coefficient is
better for the attacker, which is contrary to the original work.

Both theoretical metrics, the improved TO as well as the CC were used in order
to create new S-boxes using evolutionary algorithms [PMMB15, PPE+14].

3.4 Countermeasures

Each time a new attack appears on the scene, cryptographers suggest ways that can be
used to protect cryptosystems against them, side-channel analysis is not an exception.
Several types of countermeasures were suggested as a remedy against side-channel
attacks. Most of these countermeasures fall into one of the two main groups called
masking and hiding, however some of them stand apart and cannot be easily classified
into one of these groups.

3.4.1 Masking

Masking is one of the first countermeasures that was suggested in the scientific liter-
ature [CJRR99, GP99, RPD09]. The main principle consists in randomizing the value

56 Chapter 3. Side-channel analysis

that is being manipulated by the device. The idea behind this randomization is the
following, if the power consumption of a device depends on the manipulated value
(which creates a leakage) the designer could try to use a different random value dur-
ing each execution. As a result the information leakage will vary at each execution
and thus the attacker should not be able to extract the secret value manipulated by
the device. In other words, masking technique tries to remove information leakage
by acting on the vertical axis of power traces i.e., the value at the point of interest on
a power trace will be different at each new execution.

Generally, the same key is used for the encryption of multiple blocks (key agree-
ment protocols are relatively costly compared to the encryption itself). Thus, instead
of changing the key for every single encryption the key is combined with a random
value. This random value is called a mask and the combination is done is such a
way that it does not affect the result of the encryption i.e., encrypting a given plain-
text with the same key gives the same result with and without masking. In order to
achieve this effect, some parts of the encryption algorithm have to be altered to take
masks into account.

There are two types of masking: arithmetic masking and boolean masking. The
arithmetic masking schemes are build on operations such as modular additions and
modular multiplications, this type of masking is generally used with public key cryp-
tography19. Symmetric key algorithms, such as block ciphers generally use boolean
masking schemes which are based on boolean operations, usually the exclusive-or
(xor). This idea is based on secret sharing [Sha79, Bla79], where a secret value is split
into several shares and each individual share does not provide information about the
whole secret.

There exist several boolean masking schemes that describe how to apply them,
however the main principle remains the same. First, a random value is generated
in order to create a mask (most of the time the random value is the mask, but it is
not always the case [NSGD12]), next the mask is mixed with the internal state of the
algorithm, then the algorithm is performed and finally the state of the algorithm is un-
masked (i.e., the effect of masking is removed) to get the ciphertext. Thus, the internal
state is masked during the execution of the algorithm, but the output is not affected
by the masking. Secret-sharing provides theoretical security under ODL model. In
other words, masking secures implementations against an attacker who can extract
information about only one value that is processed at a given time and values are
manipulated separately. This assumption is usually referred as Independant Leakage
Assumption (ILA) [RSV+11].

When the mask is mixed with the intermediate state of the algorithm using an
exclusive-or, linear operations (e.g., permutations) are affected differently than non-
linear operations such as applications of an S-box. In case of linear operations, it
is possible to unmask the state by applying the same linear operation on the mask.

19The term blinding is often used in public key cryptography to referrer to this type of randomization.

3.4. Countermeasures 57

However, a nonlinear operation requires a special treatment (change in one bit of the
input will affect multiple output bits). For example, an S-box S has to be replaced by
a masked S-box Sm in a following way:

Sm(z ⊕min) = S(z)⊕mout (3.28)

where z is the intermediate value that is masked andmin andmout are the input and
the output masks that are used. The input mask is the mask that is initially mixed
with the internal state of the algorithm. The output mask is necessary in order to
keep the internal state masked after the application of the S-box. If we do not use
an output mask then the masked S-box (using a masked input) will produce a result
which is the same as produced by the original S-box with an unmasked input. In this
case the intermediate value after the application of the S-box will not be masked, thus
it will not be randomized. Therefore, attackers can target it in order to extract the key
as if they were targeting the original unmasked S-box.

Creation of a masked S-box Sm has to be done for every possible value of the
mask, which requires additional resources: ether all masked S-boxes are precom-
puted (increase in memory use) or masked S-boxes are computed on the fly (each
execution requires more time)20. Also, it is important to know that masking requires
randomness, which is a valuable resource in cryptographic systems. Due to these
requirements, designers of masking schemes try to minimise the amount of nec-
essary resources while still providing an increase in security against side-channel
attacks. It is done ether by reusing some masks more than one time [MOP07, Ex-
ample for Masked AES, page 228] or by limiting the total number of masks that can
be used [NSGD12]. In addition to these measures, implementations usually apply
masking only on the first and the last round of the block cipher, it is done because
attackers usually target intermediate values in the first or the last round.

Masking schemes can sometimes be considered to be too expensive to imple-
ment in practice due to the constraints imposed on the final product (execution time,
available memory and costs related to the RNG). Therefore, several lightweight (i.e.,
low-cost or low-footprint) schemes have been developed. Oneway ofmaking amask-
ing scheme more lightweight is to reduce the entropy of the masks, in other words
it means that we try to reduce the costs related to the generation of random num-
bers. Examples are masking schemes with two masks [LR11, BDGN13], or in general
with reduced mask space [NGD11]. Rotating S-box masking (RSM) [NSGD12] is one
of such Low-Entropy Masking Scheme (LEMS), it uses only 16 out of 256 possible
masks, according to the condition that those masks form a linear code of high dual
distance. Some variants can be derived from the basic RSM scheme for example, Ya-

20Note, that we cannot compute just the necessary values in order to speed up the process, since the
attacker will be able to target the pre-computation. Thus, we have to compute the entire masked S-box
even if we do not need all values.

58 Chapter 3. Side-channel analysis

mashita et al. [YMOT14]) also uses 16 masks, but with different ways to generate
them.

Researchers have tried to create masking schemes that are provably secure, how-
ever, generally these schemes are secure under certain assumptions on the leakage
function which are not necessarily true in different scenarios. For example, several
schemes [PGA06, SP06, RP10, BFGV12] that were presented with security proofs
under some leakage model, were later found to be insecure under another leakage
model [CGPR08, CPR07, CPRR13, PRR14] (e.g., ODL vs. MTL models [CGP+12]) or
due to some assumptions that are not necessarily true in real implementations (e.g.,
related to new or unknown type of leakage). In other words, the ILA does not al-
ways hold in practice. The exact values that are being manipulated are not always
“visible” at the level of abstraction that the developer has to work with e.g., at the
high-level source code or even at the assembly code. In addition to the fact that
devices often leak distance-based values (MTL model such as Hamming distance),
coupling effects [RSV+11] also break the ILA. The coupling is an interaction between
two values that are used or stored seemingly independently of each other, in such
scenario the power consumption of the device (at some point in time) will depend
on the combination of the two values. Moreover, glitches [MS06] can also unmask a
masked value and diminish the security of the scheme. In case of side-channel anal-
ysis a glitch is a short unintentional modification of a value (e.g., on a wire) that can
be caused by the differences of arrival times of several signals to a logic gate which
causes the logic gate to change its output value multiple times.

Masking can be applied in software as well as in hardware [MPO05], includ-
ing lower levels of abstraction such as masked logic gates e.g., Masked Dual-Rail
Precharge Logic [PM05].

Masking does not give a perfect protection against side-channel attacks. Com-
mon attacks against masking include high-order attacks and higher dimensional at-
tacks. Higher-order side-channel attack is an attack that analyses and exploits sta-
tistical moments of higher order such as variance, skewness, kurtosis, etc. Higher
dimensional attacks exploit several points of interest in each power trace, a common
technique consists in using several points related to different secret shares and com-
bining them in order to analyse the result and to extract the secret key. In addition
to these relatively generic techniques, attackers can also try to find vulnerabilities
in the masking scheme, in its implementations (instances), or even take advantage
of glitches that may unmask some parts of the internal state of the device. It is also
possible to attack the random number generator [LMBM13, LBM15b] in order to ex-
tract the values that were used to generate masks and effectively remove the masking
countermeasure.

In order to protect an implementation against these counter-attacks it is possible
to use higher-order masking. In these high-order schemes a value is split into more
than 2 secret shares. In this case, a masking scheme is called a masking of order d

3.4. Countermeasures 59

and the secret is split into d+1 secret shares. For example, first ideas about threshold
implementations [NRR06] suggest to use 3 shares as a way of protecting against at-
tacks that exploit glitches.

Since we have to deal with two types of leakage models: value-based as well as
distance-based (ODL and MTL) and some schemes secure under ODL are not secure
under MTL, researchers came up with the notion of order-reduction. It states that a
dth-order secure masking scheme under value-based leakages is bd2cth-order secure
under distance-based leakages. Its applicability has been verified experimentally by
Balasch et al. [BGG+14] for orders 1 and 2 in AVR-based and 8051-based devices. De
Groot et al. [dGPdlP+16] have also verified the order-reduction experimentally for
orders 1 and 2 in the ARM Cortex-M4.

While talking about leakage in masked implementations researchers often use
the term ith order leakage to describe how a particular leakage can be exploited.
This term is related to the difficulty of exploiting the leakage (to extract the key)
in terms of the algorithm of the attack and not in terms of the number of traces
or known inputs. An unprotected implementation produces a first order leakage, it
means that there exists at least one point of a power trace which contains all the
necessary information about the intermediate state and that this information can be
exploited by analysing the first statistical moment (average value). In other words,
this type of leakage can be exploited using a first order attack i.e., it can be exploited
directly using any of distinguishers presented in Section 3.2.4. Note, that even if an
attack can be carried out using one point of a trace (when an implementation results
in a first order leakage) attackers would usually choose to use several points for their
attack (use higher dimensional attack), it allows to reduce the effects of noise and thus
cut down the number of traces required for a successful attack. An implementation
protected using a first order masking scheme should only result in a second order
leakage, if the masking scheme is secure and it is implemented correctly. A second
order leakage cannot be exploited using first order attacks and an attacker cannot
obtain any information about the secret key by analysing only one point of a power
trace. Thus, implementations that produce second order leakage force the attack to
use second order statistical moments (variance) or to combine at least two points of
a power trace to mount a successful attack. As a result, if someone finds a first order
leakage in a masked implementation then we can say that the masking failed (either
because the scheme is insecure or because it was not properly implemented). We
can say that ith order leakage can be exploited only using ith statistical moment or
through a combination of i points of a power trace. Thus, exploiting higher order
leakage is more difficult.

60 Chapter 3. Side-channel analysis

3.4.2 Hiding

Hiding countermeasures against side-channel attacks act in the horizontal (tempo-
ral) domain of power traces. Main idea behind hiding countermeasures consists in
changing the location of the point (in the power trace) that leaks the information. In
other words, when a hiding countermeasure is applied the moment in time (from the
beginning of the execution) when the leakage occurs is different for several different
executions. Thus, the power traces are not aligned which means that a chosen offset
in all traces will no longer correspond to the same operation and same intermediate
value. Even if some traces are aligned (at the point of interest), it will likely not be
the case for all traces of the dataset, as a result the misaligned traces will contribute
to the noise, increasing it and making the attacker’s life more difficult.

One of the most common hiding techniques (in software) is the rearrangement of
independent operations, this technique is called shuffling. For example, the applica-
tion of an S-box on the state is usually done in this way. Since an S-box is typically
smaller than the internal state of a block cipher, the S-box is applied on every part
of the state separately. Usually these parts stay independent (during this operation),
thus the order in which the S-box is applied to different parts of the state does not
influence the result. Therefore, shuffling can be easily applied to these operations.

Several shuffling techniques were presented in literature, the main differences
between them consist in two features: (1) which operations are shuffled and (2) how
a new arrangement is generated. These two features of the shuffling schemes give
rise to their properties such as the required number of random bits and the number
of possible permutations which influence the increase in the resistance against side-
channel attacks.

Random Permutation (RP) [VMKS12] rearranges the execution of one operation
(e.g., the application of an S-box). It consists in generating a random permutation
of numbers between 0 and Nq − 1, where Nq is the number of operations to be re-
arranged. The generated permutation is used as the new order of operations. This
technique requires additional memory (same size as the state) and up to several bytes
of randomness, which can be an expensive resource in some lightweight devices. A
technique called Random Starting Index (RSI) was introduced as a lightweight solu-
tion to the problem i.e., it requires less randomness and it has less memory overhead.
The idea of RSI consists in generating a random index between 0 and Nq − 1 and
executing the shuffled operation starting from this random index (going through all
numbers (mod Nq) to loop around fromNq−1 to 0). RSI was applied on AES block
cipher by Herbst et al. [HOM06] and by Tillich et al. [THM07]. RP as well as RSI
propose solutions that rearrange the same operations applied to different parts of the
state. Sometimes it is possible to rearrange different operations, a technique called
scheduling (SchedAES [Med12], applied on AES) was suggested as a way of mak-
ing it possible. The main difficulty of this technique consists in the fact that some

3.4. Countermeasures 61

permutations are no longer possible (because some of the rearranged operations are
dependant). The idea of SchedAES consists in creating a dependency graph that tells
which operations are dependant and cannot be rearranged (this part can be done of-
fline). A list of possible following (next) operations is kept up to date after executing
every operation during the online execution of the algorithm. This technique allows
to create more different permutations, but requires much more randomness and is
much slower than other shuffling schemes.

A designer of a cryptographic system can use other techniques which will result
inmisalignment of power traces. In addition to shuffling, it is possible to use introduc-
tion of random delays and dummy operations to misalign traces21. However, these
techniques were found to be less effective as a countermeasure against side-channel
attacks, since counter-attacks can relatively easily (compared to other countermea-
sures) deal with random delays and with dummy operations because they only move
the informative points across the time domain while keeping their order, one possible
counter-attack is based on elastic alignment (dynamic time warping) [vWWB11] or
special profiling techniques that are less sensitive to such problems [LMM17, WO15].
It is also possible to use hardware based hiding techniques e.g., dynamically modi-
fying the clock frequency during cryptographic operations or using irregular clocks
will also result in misalignment of power traces [MOP07, §7.2.2, page 173].

Even though hiding techniques prevent some side-channel attacks, attackers have
found several ways of counter-attacking cryptographic systems protected with hid-
ing. One way of attacking these implementations consists in going to the frequency
domain [SDB+10] where the alignment is no longer required, it is also possible to try
to alignmisaligned power traces using patternmatching or to use preprocessing tech-
niques called integration [CCD00] (several points of the power trace are summed to-
gether). Another, way of attacking a hiding technique that uses randomness consists
in attacking the random number generator ether by influencing it or by retrieving the
randomness that was used during hiding in order to effectively remove its effects (as
it was already demonstrated against masking countermeasures [LMBM13, LBM15b]).

3.4.3 Other countermeasures

There are several types of countermeasures against side-channel attacks that cannot
be classified as nether masking nor hiding or in some cases they can be considered
as grey area.

Leakage resilience is the idea that was suggested in order to protect cryptographic
devices against side-channel attacks [SPY+10]. Leakage resilience is based on the idea
that usually a power trace does not contain all information about the internal state of
the device. Thus, the main assumption of leakage resilience states that it is impossible
to extract the secret key using a very limited number of measurements. This tech-

21See implementations used for CHES Challenge in 2016. https://ctf.newae.com/flags/

https://ctf.newae.com/flags/

62 Chapter 3. Side-channel analysis

nique consists in measuring and characterising the leakage of the device and comput-
ing how many encryptions (with corresponding power traces) are necessary in order
to break the system. The advice given by the advocates of this technique consists
in using rekeying before a given number of encryptions (which allows to break the
system) was performed. Rekeying is a generation of a new secret key that is used for
encryption (which can be e.g., based on some main secret). If an attacker cannot ex-
tract the secret key using a limited number of traces and the key is updated evenmore
often then the attacker should not be able to extract the key at all. One of the ideas
of generating a new key consists in using an update procedure which can be easily
(compared to an entire block cipher) protected using e.g., masking. However, imple-
menting leakage resilience appears to be difficult in practice, among other things the
main hypothesis is challenged by some results of the attacks on the DPA Contest:
several profiled attacks against an implementation protected against side-channel at-
tacks with masking and shuffling can reliably break it using only one trace22.

Several countermeasures against side-channel attacks can be labelled as “resis-
tant by design”. This category includes the design of S-boxes that are harder to at-
tack (e.g., designed using CC [PPE+14] and TO [PMMB15]), creation of algorithms
that were thought in such way that they could be easily protected using common
techniques such as masking [GLS+15]. It can also include the design of key schedul-
ing algorithms that are constructed in such way that it is practically impossible to
compute the master key from a round key or to compute one round key from an-
other round key (next or previous). A classification of ciphers based on whether
the knowledge of a round key gives out information on the master key or on other
round keys was introduced as a cryptographic property of ciphers (for the purpose
of analysing the immunity of ciphers against some attacks) without the side-channel
analysis component inmind [CDN98]. This kind of key schedules was not specifically
designed to be a countermeasure against side-channel attacks. Nevertheless, such
constructions force the attacker to analyse all rounds of a block cipher in order to
get all round keys [MGV+16]. Several AES candidates including RC6 [RRSY98], Ser-
pent [ABK98, ABKT98] and Twofish [SKW+98] use key scheduling algorithms that
have this property (their round keys do not reveal information on other round keys
nor themaster key) [CDN99]. It is interesting to note, that somemodern block ciphers
often use a trick that allows to optimise their implementations by using the secret key
or a part of it as the first round key (which means that a side-channel attack on one
round will reveal bits of the master key) e.g., in AES-128 (Rijnael) [AES01, DR02] the
first round-key is the secret key, while in Present-80 [BKL+07] the first round-key
is equal to the first 64 bits of the entire secret key.

Some hardware (non-algorithmic) countermeasures can try to limit the leakage
itself, it can be achieved by using special logic styles such as Sense Amplifier Based
Logic [TAV02] and Wave Dynamic Differential Logic [TV04]. Other hardware coun-

22See Hall Of Fame at http://www.dpacontest.org/v4/42_hall_of_fame.php

http://www.dpacontest.org/v4/42_hall_of_fame.php

3.4. Countermeasures 63

termeasures can limit the ability of an attacker to measure the power consumption
or to study the device e.g., by using light sensors that can detect when the device is
depackaged (which is required by some attacks [FH08]), when the light is detected
then the sensor can activate a component which will erase the key before the attacker
can extract it. Another hardware countermeasure consists in using an on-chip noise
generator or in increasing the level of noise by performing several operations in par-
allel [MOP07, §7.1.2, page 170]23. Hardware countermeasures can also include very
low-tech ways of making the attacker’s life more difficult e.g., by using screws with
special heads that make it harder to get to the valuable (for the attacker) electronic
components inside of the product.

3.4.4 Summary on countermeasures

There are many different kinds of countermeasures that try to act on different parts
of the side-channel analysis issue. Some of them try to prevent the attacker from
acquiring traces (screws, packaging, shielding, sensors and detectors), others try to
limit the Signal-To-Noise Ratio (SNR) (noise generators, special logic styles) or to
quantify the leakage (leakage resilience), moreover, countermeasures try to obscure
the leakage by acting on the vertical (masking) or the horizontal (hiding) domains of
the power traces (which ultimately also decreases the SNR) and finally algorithmic
countermeasures (resilient S-boxes, specific key schedules) can also be applied at a
design stage of ciphers.

All these countermeasuresmake side-channel attacksmore difficult, inmost cases
an attacker can overcome these difficulties by acquiring more power traces, using
more sophisticated attacks and learning more about the target device before actually
attacking it. Nevertheless, each additional countermeasure cuts out another fraction
of all the potential attackers who cannot overcome it.

Unfortunately a perfect countermeasure that can prevent side-channel analysis
and stop all attackers does not exist. Therefore, applying several different counter-
measures can at least greatly reduce the number of peoplewho are potentially capable
of overcoming all of them and perform a successful attack. Thus, usually designers
use a solution that involves several countermeasures. For example, a combination of
masking and shuffling is often suggested as a good countermeasure [THM07] since
masking works better in presence of noise [SVO+10] and shuffling helps to increase
the amount of noise. This combination was used in the DPA Contest 4.2 [BBD+14]24.

Overall, creation of new countermeasures that prevent side-channel attacks as
well as development of ways that can overcome these countermeasures is a very
typical example of an arms race.

23Some researchers put noise generators in the domain of hiding countermeasures, but we prefer to
reserve hiding to the idea of spreading the leakage in the temporal domain.

24http://www.dpacontest.org/v4/42_doc.php

http://www.dpacontest.org/v4/42_doc.php

64 Chapter 3. Side-channel analysis

3.5 Summary

Classical cryptanalysis looks at cryptographic primitives from the point of view of
statistics and mathematics, while side-channel analysis takes into account the im-
plementation of the analysed algorithm. Side-channel attacks are the attacks on the
cryptographic hardware, they take advantage of the physical characteristics of a sys-
tem in order to attack it, it is possible because a cryptographic system can leak the
information about its internal state through the physical properties such as power
consumption, execution time, sound and many others.

There are many different ways of grouping side-channel attacks: based on the
source of information, invasiveness (method of acquiring the measurements), inter-
ference (way of interacting with the device), leakage model (profiled or unprofiled) as
well as the type of analysis (simple or differential). All these types are independent
between each other. Every type of attack comes with its benefits and drawbacks that
are related to their costs (equipment, complexity and computational resources).

This work focuses on passive non-invasive differential power analysis of both
profiled and unprofiled types. Any side-channel attack based on power analysis has
five major points that has to be addressed: (1) the acquisition of power traces, (2)
selecting a target intermediate value (of the algorithm) for the attack, (3) choosing
(unprofiled) or extracting (profiled) a leakage model, (4) choosing and applying a
distinguisher or in other words using the statistical tools for the data analysis (which
is also strongly related to the choice of the leakage model) and finally (5) performing
the final key enumeration in order to get the full secret key.

Since there is a large variety of different side-channel attacks and each attack has
many different phases and steps, evaluation of side-channel attacks is not a trivial
task. Many different performance evaluation techniques were developed over the
years including properties that can be computed experimentally (average number of
queries, success rate and guessing entropy) as well as theoretical properties that do
not require experiments (transparency order and confusion coefficient).

Numerous countermeasures were suggested as a remedy against side-channel
analysis. Many of the countermeasures try to prevent the attacker from acquiring
the data (measuring the physical properties), other countermeasures try to make the
analysis difficult by spreading the leakage over the temporal domain, by random-
izing it in the vertical domain and by increasing the amount of noise in the system.
Countermeasures are applied in software and in hardware as well as on several layers
of abstraction. Each new countermeasure makes the attack more difficult, but since
a perfect countermeasure does not exist several different techniques are generally
applied to protect the cryptosystem and to discourage more potential attackers.

For more information about side-channel attacks based on power analysis as well
as countermeasures against such attacks we suggest the book called “Power analysis
attacks — revealing the secrets of smart cards” [MOP07].

Chapter 4

The problem of leakage detection

Performing a full side-channel attack against a given device goes throughmany steps:
mounting the physical setup, power trace acquisition, preliminary analysis of the de-
vice and the statistical analysis of the dataset. This process requires to choose a lot
of different parameters: target intermediate values, leakage model, type of attack,
distinguishers, etc. Therefore, a full side-channel analysis of a given implementation
often requires (and can greatly benefit) from expertise in physics and electrical engi-
neering, cryptography and cryptanalysis, applied statistics and mathematics as well
as from software and hardware engineering. Thus, side-channel attacks require a lot
of knowledge in different domains due to the multidisciplinary nature of the tasks
associated with the analysis. This idea is applicable both in terms of designing a new
implementation and evaluating its security (trying to break it), since the knowledge
about attacks does help to design stronger countermeasures.

Unfortunately, the complexity associated with side-channel analysis results in the
fact that it is actually very difficult to evaluate the security of a given device from the
perspective of side-channel attacks. Moreover, when a cryptographic implementa-
tion is evaluated, ideally we do not want to find a flaw or one attack, but to either
find all flaws (to fix them) or to show that a given implementation does not have
any information leakages exploitable by an adversary of a given strength (related to
the amount of resources that they have). In addition to that, usually evaluation labs
have to perform the analysis in a very short period of time often measured in weeks.
What makes the whole campaign of evaluation of side-channel leakage even more
challenging is the fact that it is much easier to find one working side-channel attack
against an implementation than to find all of them and it is often impossible to prove
that there are no attacks against the implementation (i.e., the device does not leak
exploitable information). After all, the security of modern block ciphers (and other
cryptographic algorithms) is not based on a proof that a given algorithm cannot be
attacked, but on the fact that, as it is often stated: a lot of really smart people tried

65

66 Chapter 4. The problem of leakage detection

very hard to break the algorithm for a very long time and nobody was successful1.

4.1 Leakage detection

Real world devices need security evaluation before going on the market. Even if
attackers come up with new ideas all the time, a security evaluation will at least
ensure that there are no obvious flaws that anyone can exploit. Evaluators face a
limited attack scope (computational power and time available for the evaluation) and
thus cannot “simply” run all known side-channel attacks. Evaluation in general is
an open problem, to address this problem researchers developed methods of leak-
age detection [CDG+13]. In leakage detection an evaluator prioritizes the detection
over exploitation which allows to speed up certain evaluation aspects. Even though
leakage detection does not necessarily tell us why and where the leakage occurs and
how to exploit this leakage, it is often the preferred method due to its rapidity and
simplicity. In other words, these methods do not reveal the information about the
difficulty of an attack, nor which intermediate values should be targeted, nor about
the appropriate leakage model; they just try to detect the presence of leakage.

One of the most commonly used methods is based on the Welch’s t-tests, the
goal of using such tests is to relax the dependency between the evaluation and the
nature of the device (leakage functions, architecture). The main idea of a t-test is
to compare the averages of two sets S0 and S1 and conclude if they are different
(distinguishable) or not. The null hypothesis is that samples (values) were drawn
from the same population or in other words that the two sets are indistinguishable:

Hnull : µ0 = µ1

Halt : µ0 6= µ1
(4.1)

where µ0 and µ1 are the mean values of sets S0 and S1 respectively. The t-test value
t is computed using the formula:

t =
µ0 − µ1√
σ2
0

N0
+

σ2
1

N1

(4.2)

and the degree of freedom υ is computed using:

υ =

(
σ2
0

N0
+

σ2
1

N1

)2
σ4
0

N2
0 (N0−1)

+
σ4
1

N2
1 (N1−1)

(4.3)

where N0 and N1 denote the number of elements in sets S0 and S1, while σ20 and
σ21 denote the variances of the sets with corresponding indexes. Then, normally the

1At least no one who succeeded announced it publicly.

4.1. Leakage detection 67

degree of freedom υ is used in the Students’s t distribution which in its turn can be
used to estimate the probability of rejecting the null hypothesis within a chosen con-
fidence interval. However, due to the nature of the data under analysis these steps
are usually skipped. Indeed, the evaluator can choose the number of samples (i.e., the
number of traces in each set) and since we are comparing points of power traces with
same points (offsets from the beginning of the trace) related to traces acquired with
different inputs we know that σ20 ≈ σ21 (both variances actually depend on the ac-
quisition setup and on the hardware that performs cryptographic operations). These
simplifications allow evaluators to use the t value directly in their tests [SM15]. Usu-
ally this value is compared to the constant 4.5, more specifically |t| > 4.5 allows
to reject the null hypothesis. The absolute value of t being greater than 4.5 corre-
sponds to the confidence of 0.99999 to reject the null hypothesis for υ > 1000. By
looking at the Equation 4.3 we can see that the value of υ grows when the number
of samples Ni increases (while the variance σ2i stays fixed). Once again, since the
evaluator can choose the number of samples, they can acquire enough power traces
to get υ > 1000; for example: with σ2 = 0.1 and 502 traces in each set already give
υ > 1000. In the evaluation context, rejecting the null hypothesis implies potential
evidence of side-channel leakage.

In case of power analysis, the same t-test is applied on all points of power traces
i.e., points from the same offset from the beginning of the trace are used in one t-test
which is repeated for all offsets. More specifically, evaluators usually perform a non-
specific t-test which does not rely on a chosen leakagemodel (because we do not know
the best leakagemodel). Most commonly, the fixed vs. random non-specific t-tests are
performed. In such tests, the evaluator fixes the secret key and then acquires two sets
(of the same size) of traces related to either a chosen fixed plaintext or to a randomly
generated plaintext. The t-test is then performed on these two sets of traces.

Note, that the same t-test is repeated with many sets which correspond to differ-
ent points of power traces. It means that the confidence of rejecting the null hypoth-
esis for the full dataset (i.e., having a potential leakage somewhere in a trace) is not
equal to the confidence of one t-test (potential leakage at one point). Since we are
essentially repeating the experiment (t-test) many times, the probability of getting at
least one false positive increases. Thus, in order to get a chosen confidence of e.g.,
0.999999 we need to either adapt the t value or to change (increase) the number of
traces in both sets [ZDD+17].

It is important to understand, that results produced by a t-test are limited. A
t-test does not give us a final proof that an attack on the analysed implementation
does (or does not) exist. The t-test tells us about the possibility of distinguishing
two sets, which can lead to an attack. However, if a t-test rejects the null hypothesis
(|t| > 4.5) it does not mean that the implementation is easy to attack because we still
do not know which intermediate value should be targeted and what leakage model
should be used; the found leakage can be very hard to exploit in practice because it

68 Chapter 4. The problem of leakage detection

can potentially require to guess a very large part of the key during the attack (leading
to an exhaustive search in a large space). Thus a rejection of a null hypothesis should
be ideally backed up with an attack to demonstrate the exploitability. Moreover, if
a t-test does not reject the null hypothesis (|t| < 4.5) then we cannot imply that
the implementation is completely secure, it is mostly due to the fact that the t-test
analyses one point (offset from the beginning of power traces) at a time. A higher
order attack (which takes into account higher order statistical moments) or a higher
dimensional attack (that combines several points of a trace) can lead to a successful
key extraction on a device that passed the t-test. A t-test can also fail due to the lack of
traces (the dataset is too small), however the evaluator is in control of this particular
parameter, thus it is a smaller issue. Higher order t-tests try to deal with this issue,
but they are less attractive in practice, since they are relatively slow (e.g., require to
combine points which lead to a combinatorial explosion), even though there were
some works that try to limit the number of tests that have to be performed in such
settings [MO17]. Nevertheless, a t-test that does not reject the null hypothesis at
least gives the evaluator the confidence that an attacker should not be able to mount
a successful attack using only one point per trace, we can say that it does not prove
that there is no attacks on the analysed implementation but that it excludes a small
subset of (rather simple) attacks. Thus, results of t-tests have to be taken with a grain
of salt in both cases whether the null hypothesis was rejected or not.

Other techniques that try to solve the problem of evaluation of cryptographic im-
plementations are generic side-channel distinguishers and extensive profiling tech-
niques [BGP+11, WOM11, SMY09].

4.2 Analysis during early stages

Regardless of the exact evaluation technique they all require a set of power traces,
in other words the evaluator actually needs the product in order to analyse it. This
very down-to-earth idea has one undesirable property: the developer has to finish the
product before getting its security evaluation. As a result, if an issue is discovered
at the final stage of development (i.e., on the final product) than the development of
some parts of the product has to be restarted; it actually concerns the part at fault
(that caused a security flaw, a side-channel leakage) as well as, potentially, parts that
depended on it. The rationale is that if a flaw in a product is discovered at its last
stage of development, the development has to roll back and restart from some previ-
ous stage. This issue results in additional costs (related to engineering and to the new
security evaluation) and ultimately slows the whole process of development. There-
fore, developers (and especially businesses) are very interested in ways that allow to
detect any security-related issues, including side-channel analysis, in early stages of
development. This issue relates to the idea of testing and bug hunting in the IT in-
dustry: a continuous unit-testing of software under development does help to reduce

4.2. Analysis during early stages 69

the number of errors in the final program.
The main point is that continuous security-evaluation in terms of side-channel

analysis in all stages of development can be beneficial and can reduce costs related to
the development of secure products. However, normally in case of side-channel anal-
ysis, the evaluator does not have an object that they can evaluate while the product
is not ready. Moreover, the product changes all the time during its development and
it is important to understand that a new line of code in software or a couple of new
transistors in hardware can potentially break the security of a previously sound sys-
tem. Overall, it makes the problem of side-channel analysis of an unfinished product
even more challenging.

The same principles and ideas can be applied both in hardware and software im-
plementations of cryptographic algorithms, however wewould like to focus our work
on the software implementations. A typical process of the implementation of a cryp-
tographic algorithm (in a broad sense) goes through many phases that are not neces-
sarily performed by the same person (or team). We would like to focus our attention
on the following stages:

• design of algorithms, which includes both the block ciphers as well as algorith-
mic countermeasures;

• choice of hardware (microcontroller) and of the implementation details for the
block cipher and algorithmic countermeasures (which algorithms to implement
and how to implement them);

• writing the source code i.e., implementing the block cipher with all the chosen
countermeasures;

• building the binary or in other words compiling the code for the chosen hard-
ware;

the final step consists in loading the binary executable into themicrocontroller, at this
stage we consider that the product is finished and a final evaluation can be done using
real power traces. In practice some of these steps are done in parallel and indepen-
dently of each other e.g., different cryptographers can develop generic algorithmic
countermeasures while another team develops a block cipher. Even though the eval-
uation of an algorithm (a cipher or a countermeasure) at the design stage might seem
to be far fetched, researches are already trying to design encryption schemes that are
easier to protect with masking [GLS+15] and even S-boxes that are more resistant
against side-channel analysis by design [PMMB15, PPE+14].

Different devices have different leakage functions and the real leakage evaluation
can be done by actually measuring its power consumption. Nevertheless, evaluation
during the very early stages (design of an algorithm) could still make sense because
a lot of devices are similar (same structure and architecture, same technology and

70 Chapter 4. The problem of leakage detection

manufacturer) and therefore they leak in similar ways (value-based leakage or dis-
tance based leakage), this is the reason why Hamming weight and Hamming distance
leakage models work well (are good enough) to break some implementations using
non-profiled attacks.

If we look closer on the implementation stages that we are dealing with, we can
notice that the evaluator (or designer) does not deal with the same type of issue dur-
ing the whole process. On one hand, during the design of an algorithm and during
the choice of implementation details we deal with the choice problem i.e., we want
to compare several designs or implementation options e.g., we want to know which
countermeasure to implement given its costs and benefits (time and memory over-
head, RNG requirements and increase in the resistance against side-channel attacks
compared to a non-protected implementation). On the other hand, during the ac-
tual implementation we are dealing with the flaw detection problem. This separation
of steps actually helps us: at the beginning we do not know how the device leaks
(because we do not know which device will be chosen) thus we can only perform
comparative analyses but this is exactly what the designer wants (to choose the bet-
ter option among several ones); while at the end of the process the implementation
is already tight to a device and the evaluator can already use their knowledge of the
e.g., microcontroller specifications to try to detect side-channel leakages in the im-
plementation.

Since during the design and implementation process power traces are not avail-
able yet, the evaluator can only work with the information on their hands — the
output of each stage. At the end of each of the considered steps we get a partial spec-
ification of the final product: either a high level source code (e.g., for the prototype or
a reference implementation of the algorithm), low-level assembly code (usual choice
for the actual implementation of cryptographic algorithms) or the compiled binary.
Note that the program gets more precise and device specific at each step: while the
high level source code is very generic, the assembly implementation is already tight
to a specific architecture (instruction set) and the compiled code is device specific
(chosen model of a microcontroller). In other words, we are dealing with the code on
different levels of abstractions during the whole process.

Intermediate stages of design and development of cryptographic systems provide
us with design specifications (in form of the source code in case of software) means
that any security evaluation can be done through static or dynamic analysis of the
code. A very interesting leakage detection procedure can be based on simulations.
A simulation can produce simulated power traces that we can normally record using
an oscilloscope (in case of a real experiment). These simulations can be based on the
code and specifications available at the current stage of development. Finally, any of
already existing leakage detection techniques, analysis and attacks can be applied to
these simulated power traces. Moreover, any new leakage detection techniques and
new attacks that use power traces as their source of information that are developed

4.3. Goals 71

in future can also be applied on the simulated data.
Some ideas going in this general directionwere suggested in thework on the Side-

Channel Resistant Design Flow (SCARD) [AMM+06]. However, most of the results
related to simulations for side-channel analysis is not available to scientists whowork
on the subject of side-channel analysis, as it will be explained in Section 5.3.

4.3 Goals

The aim of our work is to provide simulation tools for the analysis of implementations
of cryptographic algorithms in early stages of their development. To be more specific
the first goal is to provide a series of tools that can:

• help designers to compare cryptographic algorithms from the point of view of
side-channel attacks,

• allow to compare the impact of a counter-measure applied on an algorithm,

• guide developers in the process of implementing countermeasures and

• assist evaluators in detecting side-channel leakage before deploying the code
in the physical device.

Providing away of comparing designs and implementations should also lead to design
improvements, since a comparison technique usually leads to the way of improving
or optimising the design criteria. Creating a series of automated tools should also
increase the evaluation speed and thus reduce costs related to the security evaluation
and development.

Our second goal is to show how these simulation tools can be used during the
analysis and evaluation of cryptographic algorithms. This will allow us to evaluate
the usefulness of our tools as well as show their strength and limitations.

Overall, we would like to answer the following question: is it possible to evaluate
the security of a device from the point of view of side-channel attackswhile the device
is still under development? If it is possible then how can we do it?

72 Chapter 4. The problem of leakage detection

Part II

Contributions

73

Chapter 5

Simulation tools for side-channel
analysis

Parts of this chapter are based on the paper “Use of simulators for side-channel analysis” presented in Paris (France)
at the Workshop on Security for Embedded and Mobile Systems (SEMS) in 2017 [VG17b].

A simulator is a tool that provides test conditions which approximate the real-
ity, such tool reproduces the behaviour, on some specific aspects, of another object
and provides operational conditions under which the tested (or analysed) subject is
normally used or will be used once its development is finished.

In case of side-channel attacks based on power analysis we are interested in
simulating the instantaneous power consumption of a device over some period of
time. As we explained in Section 3.2.3, we assume that the total power consump-
tion is composed of three parts: the instruction (operation) dependent part Pop, the
data dependent part Pval and the noise ε, see Equation 3.7. We can simulate one,
two or all the three parts of the total power consumption depending on our inter-
ests. For example, if we are interested in distinguishing different instructions for
the purpose of SPA [KJJ99, May00] or for Side-Channel Analysis Reverse Engineer-
ing (SCARE)1 [Nov03, Cla04, CIMW15] we need to simulate the operation dependent
part of the power consumption, while in case of DPA [KJJ99] we are mostly interested
in the data dependent part (small variations in energy consumption that depend on
the value that is being handled, see Section 3.2.3). The noise part of the data could be
interesting for any type of analysis, thus it is often used in all kinds of simulations.

1The main goal of this type of investigations through side-channel analysis is the discovery of how
a system works and how it was designed. One of the main techniques that is used in SCARE is the
discovery of the code that is executed by the analysed device through the analysis of its power con-
sumption. It is possible because different instructions result in different patterns in power traces (same
idea is used in SPA).

75

76 Chapter 5. Simulation tools for side-channel analysis

Any simulator uses a model to represent the underlying reality of the simulated
phenomenon. This model is a set of rules that simplifies the reality to a more ab-
stract idea. Depending on the complexity of the model (the number and the type of
its parameters as well as their relations and interactions) that is used by a simulator
we could refer to the model as being more or less abstract. Thus, simulators could be
classified based on their level of abstraction. Generally, simulators of a higher level of
abstraction tend to require less parameters (less information about the simulated tar-
get) and less computational power to process these parameters, they are more generic
and they are often less accurate and less precise than their lower level of abstraction
counterparts. There are many different levels of abstraction that go gradually from
the most to the least abstract. For example, when we talk about simulating the power
consumption of amicrocontroller, a very high level of abstraction simulatormight use
the general architecture of the device. In order to go deeper we can use more infor-
mation and include details on the microarchitecture (microinstructions), description
of circuits at the level of logic gates, positions of transistors and connections between
them in the device to get to one of the lowest levels of abstraction. Using a lower level
of abstraction will generally yield better, more accurate results, but since they require
more knowledge about the target device we cannot always use them, manufacturers
of microcontrollers and processors tent to hide most of the information about their
device (such as e.g., the full logic gate circuits that constitute their product). The ra-
tionale is that depending on the available information about the target device we can
turn to the appropriate simulator. It is interesting to note that we can still build a
very accurate simulator without huge amount of knowledge about the internals of
a target device, in order to do so one can use profiling. The profiling can be done
in the same way as the profiling step of a profiled side-channel attack (such as TA
or SA, recall Sections 3.2.4, 3.2.4 and 3.1.4). In case of profiled simulators we do not
need to perform the attack step. Only the learning step is required to extract a profile,
such profile can be created for each instruction from the instruction set of e.g., a mic-
rocontroller. In other words, the idea is to extract a leakage model from the target
device in order to build simulated traces by e.g., concatenating simulated traces of
the instructions that constitute a program (while executing it in order to know which
values have to be used with the model) [DMO16]. A resulting profiled simulator will
be very accurate, but in order to be able to simulate several devices one would need
to profile every single one of them separately.

In case of side-channel attacks based on power analysis we will distinguish two
types of simulators: data generators and verifiers (or checkers).

Data generators produce simulated traces that are in some sense equivalent to real
power traces measured using an oscilloscope. A data generator requires two types
of inputs: a description of the cryptosystem and a leakage model (or a power model)
that allows to produce a simulated trace. The leakage model parameter is the same
type of function that an attacker can use with distinguishers during side-channel at-

77

tacks (thus we use the term leakage model for both of them), see Section 3.2.3. The
description of a cryptosystem is either a program or a circuit depending if the system
is implemented in software or hardware. In case of a program it could be a source
code (even pseudo code) or a compiled executable file; in case of a circuit it could be
e.g., a gate-level netlist, hardware specifications ranging from the architecture-level
down to the transistor level, including masks used by (semiconductor) foundries or
even a piece of program written in a hardware description language (such as VHDL
or Verilog). In other words, the description of a cryptosystem in our case is any
formal description that allows you to create the final product i.e., something that a
designer of the system uses at any stage of the development process.

Checkers, the other type of simulators, do not produce simulated traces, but
rather verify the implementation for a specific property related to side-channel anal-
ysis e.g., the absence of execution time differences that depend on the processed data
(which could lead to a timing attack). A checker would also use a description of a
cryptosystem as an input and it would output a (possibly empty) list of issues related
to the property that it is checking. Thus, a checker can often point out the existence
of a specific issue, while a data generator produces a dataset that has to be analysed
with any tools chosen by an evaluator (for example, one can simply perform an attack
on the simulated traces).

Some simulating tools include statistical analysis functionalities (e.g., t-tests, cor-
relation analysis) and can output a “yes or no” type of answer with respect to whether
a leakage was detected. Nevertheless, we will put these tools in the category of gen-
erators rather than checkers since they start their analysis by producing a set of sim-
ulated traces.

It is important to note that both types of simulators are useful in practice. Even
though a verifier can immediately point out the existence of a problemwithout gener-
ating simulated traces, some issues cannot be detected using a verifier without using
a set of traces. For example, it is easy to check whether a piece of code contains con-
ditional branches that depend on the (secret) intermediate state, but it is not always
possible to say if such conditional branch generates a leakage that can actually be
exploited by an attacker.

In the scope of this work we are interested in data generators as well as in check-
ers of relatively high level of abstraction. In terms of data generator simulations we
will focus on the data dependent part of the power consumption (Pval). Note, that
some properties of a program can be verified using static code analysis that does not
require to simulate the code. We will take a closer look at the tools that use dynamic
analysis of the code either by executing it several times with different inputs (in case
of data generators) or by executing it while tracking how values are being transferred,
combined and modified during an execution without using a concrete specific value
for the execution itself (in case of checkers). It is worth mentioning that checkers can
sometimes use algorithms that cannot be easily put into a category of static or dy-

78 Chapter 5. Simulation tools for side-channel analysis

namic analysis and the frontier between the two can change a little bit depending on
their definitions. We will say that a checker is a simulator if it has to go through the
code in the order of instructions (from the beginning to the end) while keeping track
of values that are being manipulated by the instructions. Thus, we will put tools that
can perform code analysis in an order that does not necessarily correspond to the or-
der of instructions (e.g., that “jumps” around the code or goes through several cycles
of analysis) into the category of static analysis. For example, QMS [EWTS14] uses
static analysis of C code to estimate the amount of information leakage in masked
implementations.

5.1 Motivation

Simulators have several advantages over real “physical” experiments. These advan-
tages are common to most of simulators that are used in different domains but we are
going to focus our attention on side-channel analysis.

First of all, a simulator provides a full control over the environment where every
single parameter is under control of the experimentalist. This type of fine-grained
control is practically impossible in a real experiment. For example, one can set a
specific SNR in a simulated environment and change it in fixed steps in order to study
how an algorithm behaves under different SNR. In lab conditions, the level of noise
could be reduced by using filters, by putting the setup into a Faraday cage2 (to get rid
of electro-magnetic interferences) and even by lowering the temperature in the lab
(to reduce the thermal noise), but it is extremely difficult to create a setup that reliably
gives a specifically chosen level of physical noise3. Moreover, a simulator allows to
set the level of noise to zero which is impossible in a real experiment. Thus, it can
be used to get a “clean” signal, which allows to test the quality of signal processing
algorithms e.g., we can compare a clean signal with a result of a filtering algorithm
applied on a noisy signal. Furthermore, a simulator allows to set a specific, known
leakage function, which is unknown in a real scenario. It allows to test whether an
algorithm can successfully and reliably extract a good leakage model from a noisy
dataset i.e., since we know the leakage function we can compare it with the extracted
leakage model.

The full control over the simulated environment also allows us to ignore some
aspects of a real experiment by choice. For example, a simulator can output perfectly
aligned traces. During a real experiment, traces can be misaligned due to the clock
jitter, imperfections in the measurement equipment and even because of some coun-
termeasures (recall Section 3.4.2). It is possible to build a simulator that is in some

2An enclosure (a box or a mesh) that is built from a conductive material, it is used to block electro-
magnetic fields.

3The algorithmic noise being fixed by the executed code can be controlled by the developer and thus
can be easily reproduced.

5.1. Motivation 79

sense unaware of timing i.e., it produces the same number of points regardless of the
number of clock cycles used by an instruction. Ultimately it allows to detect differ-
ences in the control flow of an execution if it somehow depends on the input data.
Some popular microcontrollers and processors have instructions that do not execute
using the same number of cycles depending on the processed data e.g., Cortex-M4
processor has instructions (e.g., ADD) that can be executed in different number of
clock cycles depending on the context (such as the content of registers and the state
of its pipeline) [ARMb, §3.3.1]. It can also be influenced by the dual-instruction is-
sue restrictions (related to pipelining) such as in Cortex-A8 [ARMa, §16.3]. Another
example is the BRCC (branch if carry cleared) instruction of the ATmega-16 microcon-
troller, it can be executed in 1 or 2 clock cycles depending on the value of the carry
flag; we explore this particular issue in detail on a concrete example in Section 8.2.
The rationale is that a simulator can help to find and highlight problems that are not
very easy to detect in real experiments.

Another advantage provided by simulators is their speed. The acquisition of real
power traces can be automated and it usually is done automatically to some extent.
However, the setup is generally done manually4 and it is a task that can be quite
time-consuming. It could take up to several hours for relatively complex setups. For
example, the time spent on simply putting together and testing the setup (no trace
acquisition!) for CHES 2016 “Capture the Flag” challenge5 required about 60 man-
hours according to Colin O’Flynn (who managed the challenge). However, we would
like to emphasise that it is indeed a complex setup compared to setups of most labs.
Once it was finished, the acquisition time for 1 000 traces (without averaging) cap-
tured using their setup was relatively short (around 5-10 minutes)6, mostly due to
the fact that their equipment captured only 1 point per clock cycle during 10 000 cy-
cles7. For comparison, in our lab we can capture 10 000 traces with averaging over 16
traces and 30 000 points per traces (200 MSamples/s) in about 4.5 hours (it includes
the time for mounting the setup, the acquisition and the data transfer to a computer
for further analysis). The setup time also includes the time that is needed to check
that the setup and the implementation are running correctly, which is not obvious
at all since even experienced people make errors, see Figure 5.1. In addition to the
short setup time of simulators, if many experiments that require some changes in
the setup have to be done, several simulator instances can be launched in parallel to
speed up the process; in order to do several real acquisitions in parallel one would
have to buy more hardware (oscilloscopes, probes, target devices and measurement
circuits). Moreover, time that is spent on transferring the data from the acquisition

4All side-channel analysis labs that we have visited do not have any robotic equipment that is able
to automate the setup.

5https://ctf.newae.com/
6https://wiki.newae.com/CHES2016_CTF#Getting_Help
7https://wiki.newae.com/CHES2016_CTF

https://ctf.newae.com/
https://wiki.newae.com/CHES2016_CTF#Getting_Help
https://wiki.newae.com/CHES2016_CTF

80 Chapter 5. Simulation tools for side-channel analysis

environment to the analysis environment (if it is not done in the same place) also
slows down the whole process. When a simulator is used, traces can be generated
and analysed inside of the same program i.e., it is not necessary to read traces from
a file (which can also slow down the analysis in case of a big dataset). Even though
modern computers are fast and data can be transferred quickly, a dataset of traces
that is used in a side-channel analysis can still be described as cumbersome, see Ta-
ble 5.1 (note that each dataset is compressed), thus time that is spent on reading and
transferring data is not negligible.

We cannot claim that our setup is very efficient in terms of the acquisition speed.
However, for comparison, the DPA Contest 4 setup takes a little bit more than 2
hours and 50 minutes to acquire 10 000 traces8. Note that this time does not include
the time spent on the physical setup and on the data compression and transfer from
the acquisition platform to the analysis platform. This time is also comparable with
the time required by the setup used during CHES 2016 Challenge: 5-10 minutes for
1 000 traces which gives approximately between 1 and 2 hours for 10 000 traces (for
short traces with only one point per clock cycle). Thus, our acquisition speed seems
to be representative of other side-channel analysis labs.

Note that running one simulation is slower than performing one real encryption
(especially if both are performed on the same hardware). However, simulators do
offer a speed gain thanks to the following points:

• the setup — a real experiment requires a time-consuming manual hardware
setup, which is not the case in a simulated experiment;

• the speed of the execution unit — a microcontroller executing the code in a real
experiment is typically running at a frequency of megahertz (e.g., 3.57MHz in
DPA Contest 4 and 16 MHz in our experiments), while a simulation is usually
done on a modern computer that uses a several gigahertz clock (resulting in
speed increase up to 1 000 times);

• the ease of parallelism — several simulations can be done in parallel using sev-
eral processing units (e.g., during one of our experiments we were running
64 parallel simulated experiments using a cluster available at the university’s
computing center), performing several real experiments in parallel requires to
copy the hardware setup perfectly which takes additional time, money and is
much harder to do than to lunch several copies of software (for a simulation);

• the memory bottleneck — in a real experiment, traces are recorded on the disk
(in order to be used later), disk Input and Output operations (I/O) are slower
than the same operations in e.g., RAM, an oscilloscope has to record a trace dur-
ing an encryption and then transfer it to the disk which means that it cannot

8Information based on the meta-data from the reference traces from http://www.dpacontest.
org/v4/traces/rsm/DPA_contestv4_rsm_00000.zip

http://www.dpacontest.org/v4/traces/rsm/DPA_contestv4_rsm_00000.zip
http://www.dpacontest.org/v4/traces/rsm/DPA_contestv4_rsm_00000.zip

5.1. Motivation 81

Table 5.1 – Sizes of compressed datasets of DPA Contests. The third version of the
contest had a different format, thus it did not provide any datasets. More information
is available on the official website of the contest http://www.dpacontest.org/.

Version Year Size Compression
Launched Gbytes Format

1 2008 11.0 .zip
2 2010 8.9 .tar.bz2
4.1 2013 20.0 .zip
4.2 2014 58.5 .zip

record a new trace during this time, moreover all the data has to be transferred
from the acquisition platform to the analysis platform which also takes time,
meanwhile a simulation can be performed immediately on the analysis plat-
form and in the same piece of code thus creating and keeping simulated traces
in RAM the whole time.

All these factors together contribute to the speed-up in simulated experiments com-
pared to the experiments based on real power traces acquired using an oscilloscope.

Additional advantage provided by simulators is the fact that they could be used
to test an unfinished product while it is being developed. Since a simulator uses an
abstraction of a real system, the device does not have to be produced or to be fully
functional. It allows to test a system that is being developed before actually making
the final product. Tests and problem detection in early stages of development can
save a huge amount of resources (both time and money), especially in case of an ASIC
system (once the hardware chip is manufactured it cannot be updated as a piece of
software). Moreover, a more advanced slightly lower level of abstraction simulator
(that requires more inputs and can take into account more phenomena) can be used at
each new stage of development while product specifications become more and more
precise.

Finally, a simulated trace produced by a simulator is more “reliable” than an ac-
quired trace from the point of view of repeatability of the results such as e.g., the
success rate of an attack. This property is extremely valuable from the scientific point
of view. Compared to a real experiment, a simulator can reliably reproduce exactly
the same dataset assuming that same parameters are used (it also includes noisy sim-
ulated traces, since one can use a pseudo-RNG with a known seed). In case of a real
experiment, if two experimentalists use identical setups (same model of microcon-
trollers, models of oscilloscopes, etc.) in their labs theywill not get same sets of power
traces. The environmental noise in their lab will be different and small imperfections
in the target device aswell as in the setupwill also play their role in the final result: ac-
quired traces will be different, which means that the two experimentalists will likely

http://www.dpacontest.org/

82 Chapter 5. Simulation tools for side-channel analysis

(a) October 2014. A problem is discovered.

(b) July 2015. Correction is announced.

(c) August 2015. A new problem comes up.

Figure 5.1 – Messages from the official Twitter feed of DPA Contest (https://
twitter.com/DPAContest) announce problems discovered after the data acquisi-
tion.

https://twitter.com/DPAContest
https://twitter.com/DPAContest

5.2. Levels of abstraction 83

end up with slightly different results. This difference can be partially overcome by
analysing very large datasets which takes a lot of time, but will allow to reduce the
effect of noise. However, even tests made in the same lab with the same equipment
on different target devices (same model from the same manufacturer) give rise to dif-
ferent results [RSV+11]. Moreover, certain physical properties of devices can change
over time [RFFT14] which can be reflected in the leakage function of the device and
thus modify the outcome of a side-channel attack. Nevertheless, it is important to
note that these changes over time and variations among several devices of the same
model result in relatively small but noticeable changes in e.g., the success rate of a
side-channel attack; they do not give rise to changes of orders of magnitude in terms
of side-channel analysis. In addition to repeatability, results produced by simulators
take less space (bytes) that a dataset of a real experiment (several megabytes of code
and initial parameters vs. several gigabytes of traces, see Table 5.1), this idea can also
be used to the advantage of scientific collaborations: parameters that were used for
a simulation can be easily sent by e-mail to a colleague and put in a paper within the
results of experiments, which is not the case of real power traces9.

We have mostly focused on the advantages of simulations over real experiments
in order to motivate our research and the advocated strategy of side-channel analysis.
However, it is important to note, that there are some disadvantages associated with
the simulatedmethods. First of all a simulation can never replace the real experiment,
because they are not identical. Therefore, even after performing many simulations
for side-channel analysis, a real physical experiment should be done to evaluate the
security of the final product. Another disadvantage of simulators is associated with
their creation and development. It is actually faster to perform one real experiment
than to build a simulator and perform one simulated experiment, mostly because a
good simulator is a complex piece of software (which can also contain bugs). How-
ever, the development costs (of the simulator) can be quickly amortised if it is used
for multiple simulated experiments.

5.2 Levels of abstraction

One of the main reasons for using simulations is their ability to discover issues re-
lated to side-channel analysis during the process of development of cryptographic
systems. The development process goes through different stages, these stages vary
in their level of abstraction. Each next step in the development process brings the im-
plementation to a lower level of abstraction (e.g., from the pseudocode of an algorithm

9Public datasets of the DPAContest (http://www.dpacontest.org/) and CHES 2016 “Capture the
Flag” (https://ctf.newae.com/) partially deal with this problem. Cryptographers can use exactly
the same dataset (which should give same results with the same analysis techniques) and can reference
the dataset in their papers. However, use of such datasets is limited to the implemented algorithms and
devices that were used during the acquisition.

http://www.dpacontest.org/
https://ctf.newae.com/

84 Chapter 5. Simulation tools for side-channel analysis

to its source code in C++). Each lower level of abstraction brings in more details and
specifies the structure of the system, in other words it gets the representation of the
cryptosystem closer towards the concrete final product. Thus, each next step results
in a description that contains more information about the final implementation.

A simulator is usually operating at its own level of abstraction while running a
simulation. Its level of abstraction is mainly determined by the type of inputs that it
receives. Thus, we will be classifying simulators by their level of abstraction based on
the level of abstraction of their inputs. Note however, that a simulator can use only a
part of information that is available on the level of abstraction which it is operating
on (for example it can be useful to run a simulation faster). Lower levels of abstraction
representations of the final product contain more information. From the perspective
of side-channel analysis it means that we will be able to detect more implementation
specific issues further down the line during the development process.

To be able to classify the existing simulators we would like to suggest the follow-
ing classification of the intermediate states of an implementation. This work mainly
focuses on microcontrollers and on the software implementation of cryptographic
algorithms, thus we will mostly detail the stages of software development. Here are
the intermediate stages of development of a software implementation that we will
use to specify the level of abstraction of a simulator:

A0 Algorithm — a mathematical description of the functionalities,

S1 High-level source code — all variables are assigned, datastructures are described
and the global order of operations is given10,

S2 Intermediate representation — the intermediate representation used by compil-
ers, at this stage all registers are described as a Static Single Assignment (SSA),

S2 Assembly — all registers are allocated and the exact order of instruction is
known,

S3 Compiled binary — the code is distributed into sections, alignment is performed,
the file is ready to be executed by the chosen model of a device.

Note, that these levels of abstraction are related to the implementation of an en-
cryption algorithm as well as to algorithms of countermeasures such as masking and
shuffling. Each intermediate state allows us to detect more issues related to the side-
channel analysis. Use of automated tools at each step allows to detect problems early
in the development process. Thus we can use a methodology that consists in produc-
ing the next representation of a lower level of abstraction and proceed by running

10By the global order of operations we mean the following on the example of AES: we may choose to
apply all AddRoundKey operations on the state followed by all SubBytes operations or we may choose
to apply an AddRoundKey immediately followed by SubBytes on the same byte before processing the
next one (∀i : state[i] = p[i]⊕ k[i];∀i : state[i] = S[state[i]] vs. ∀i : state[i] = S[p[i]⊕ k[i]]).

5.2. Levels of abstraction 85

a simulation at this level, if a problem is detected at this stage the developer can go
back one step and make changes in the design. Note, that if we can somehow guar-
antee that some issues related to side-channel leakage can be detected at some point
in this process and cannot arise again on a lower level of abstraction then we do not
have to deal with it later in the process (i.e., we do not have to try to detect it). It
means that developers and evaluators can save time by reducing the number of tests
that they run on the system. However, it is very hard to give such guarantees e.g.,
proofs on masking schemes were later broken by by advances in the research (recall
Section 3.4.1).

It is possible to refine our classification by adding more stages and by making it
more complex e.g., by including a stage where the type (architecture) of a microcon-
troller is chosen, as well as a stage of the choice of a specific model of a microcon-
troller. Moreover, if the final binary can be executed by several models of a microcon-
troller we can add another stage — the specification of microcontroller, it can be done
e.g., through its architecture, or even using a gate-level netlist if this information is
available. However, for the sake of simplicity we will suppose that the exact model
of microcontroller is known in advance at the moment when the developer starts
working on a project. Also, note that depending on the choice of the programming
language the stages S1 and 2 can be skipped e.g., because the software is developed
in assembly language. Another interesting point that we want to highlight is that a
designer of a cryptographic algorithm who creates the A0 representation can often
implement the algorithm or a part of it to test it and tune its parameters e.g., for the
choice of an S-box (see examples in Section 6.3).

The algorithm level (A0) allows to build proofs e.g., for masking schemes under
a chosen leakage model, thus it allows to detect if a scheme works on a theoretical
level (we can test if masking is biased due to bad design). The high-level source
code stage S1 allows to specify which parts of the state will produce the leakage
together (bit-sliced vs. classical implementation) and allows us to note the global
order in which values will leak information. At this stage we can also detect if a
countermeasurewas not applied correctly e.g., some variables are notmasked or some
parts of the state are not shuffled due to an implementation error. The intermediate
representation level of abstraction S2 allows us to detect whether the processing order
of variables is incorrect which may cause a problem in masking schemes (several
masks and random values have to be applied in a specific order to make sure that
the intermediate value stays masked). The assembly stage S3 already allows to detect
distance leakage when a value in a register is overwritten by another one, this action
can also unmask a masked value (see more details and examples in Section 7.2.1). In
other words, at this stage in the development process it is possible to detect insecure
register allocation. The final stage S4 where we get the compiled binary file allows
the evaluator to test the implementation for timing attacks that can be caused by the
misalignment of the code (the S-box table stored in two sections causing time dif-

86 Chapter 5. Simulation tools for side-channel analysis

ferences depending on the location that was accessed). Moreover, if the model of a
microcontroller is specified the evaluator can test the code for effects caused by the
pipelining and caching mechanisms. Note, that here we presented some examples
of side-channel attacks that can be discovered at each stage and this list is not an
exhaustive one.

For the sake of completeness we would also like to suggest a hardware classifi-
cations. Moreover, some of the existing simulators can deal with both hardware and
software implementation. However, since we mainly focus on software implementa-
tions, we will not give details over the type of side-channel related issues that could
be detected at each stage. So, here is the list of levels of abstractions for a hardware
perspective:

A0 Algorithm — same as in the software counterpart,

H1 Register Transfer Level (RTL) — general design and connections between dif-
ferent blocks are specified including the level of parallelism and pipelining,

H2 Gate-level netlist — the full representation in terms of logic gates is specified,

H3 Layout — size and geometry (physical location and proximity) are specified.

The rationale is that developers of cryptosystems should use a toolchain of sim-
ulators (rather than only one), each of them being specific to the level of abstraction
of the current stage of development of the product. Such approach should allow to
detect issues early on and thus reduce the overall time spent on the evaluation and
development of secure cryptosystems.

5.3 Survey of existing simulators

There exist many simulators that can be used for code debugging e.g., Valgrind11 and
SimulAVR12. Unfortunately, these simulators do not include information about the
power consumption of devices. Thus they cannot be useful for studding security is-
sues related to power analysis of implementations of cryptographic algorithms. At
the same time, there are a lot of simulators that were built to estimate power con-
sumption of devices. These simulators can help manufacturers during the process
of chip development as well as during software development. A big portion of such
simulators are built with the intention of helping engineers for e.g., choosing the best
power supply and analysing average or peak power consumption of a device. Among
such simulators we can find ChipPower [TAV+04] and Nano-Sim [SPW07]. However,
such tools are not suitable for purposes of early analysis from the perspective of side-
channel attacks based on power analysis. The main reason is that these simulators do

11http://valgrind.org/
12http://www.nongnu.org/simulavr/

http://valgrind.org/
http://www.nongnu.org/simulavr/

5.3. Survey of existing simulators 87

not output information useful for side-channel analysis. In order to do side-channel
analysis using simulators we need simulators that can output information related to
the power consumption of a device over a period of time, this information should
take into account the data that is being processed by the device. A simulator such as
SPICE13 can be used for side-channel analysis, however this simulator requires pre-
cise knowledge about the internal structure of the analysed device, often researchers
do not have this information since manufacturers of microchips tend to keep it se-
cret. Moreover, modern microcontrollers are composed of tenth of thousands of logic
gates which results in a rather huge circuit, it means that SPICE will not be able to
compute the full scheme in a reasonable amount of time. Here we present simulators
that were created for the purpose of studying side-channel attacks based on power
analysis.

Pinpas (Program Inferred Power Analysis Simulator) [dHVdV+03] tool that was
created in 2003 is the first simulator (for side-channel analysis) that was presented to
the scientific community. The Pinpas tool is written in Java, it could be used to test
smart cards during the design and implementation of cryptosystems. Pinpas is com-
posed of two parts: a simulator and analyser. Developers can choose a type of micro-
controller (smart card) that they want to simulate with the written code [HBdH04].
Pinpas provides a virtual environment that can simulate the execution of a program
under analysis. Nowadays this tool is not available to the general public since Pinpas
was adapted by industry in order to build analysis tools based on it [dHdV04].

SCARD (Side Channel Analysis Resistant Design flow) project resulted in a pro-
posal of another simulator for side-channel analysis in 2006 [AMM+06], we will refer
to it as SCARD. SCARD is a tool which aims to simulate side channel effects on several
abstraction levels. This simulator was created using SystemC and tested on ARM7 us-
ing cryptographic algorithms implemented both in software and in hardware (using
a crypto-peripheral). Thus, this simulator can work during the development of hard-
ware using Hardware Description Language (HDL). SCARD uses SPICE models with
information gained from real measurements or obtained through accurate modelling
of physical structures. SCARD was used to create a robust implementation based on
8051 IP open Core (by Oregano Systems). This idea can greatly improve the process
of development of integrated circuits. However, it is more difficult to use with ex-
isting microcontrollers and processors since manufacturers do not provide enough
information (details of chip design) to create accurate models of their products.

A simulator based on Cadence NCSim was proposed in 2007 by Kirschbaum et
al. [KP07]. This simulator uses gate-level netlist and cell descriptions in Verilog
(as well as information on propagation delays) in order to create simulated traces.
The simulator uses transition counting model (number of single-bit modifications) in
order to create simulated traces. It was used to analyse the chip that was designed
during SCARD project (based on 8051). This simulator is shown to create accurate

13http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/

http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/

88 Chapter 5. Simulation tools for side-channel analysis

leakage traces in the original paper, however it requires a lot of information about
the details of hardware implementation of the device (which are not always available
to all evaluators in case of real devices).

Thuillet et al. [TAL09] presented another side-channel analysis simulator in 2009,
it uses some ideas from Pinpas and is designed for the analysis of smart cards. More
details on this simulator are presented in the PhD thesis by P. Andouard [And09,
section 4.5], where it is referred as Oscar. Oscar is capable of focusing the simulation
of side-channel measurements on some parts of the circuit. This simulator is writ-
ten in OCaml programming language, one of the reasons that guided this choice is
the idea of developing a version that can be used in Coq14 proof assistant in order to
get formal proofs (regarding side-channel analysis) on the implementations. It can
simulate several 8-bit Atmel microcontrollers and it requires compiled binary files
as an input in order to do so. This simulator focuses on fault injections in addition
to power analysis. The main drawback of Oscar is that the binary file has to be
recompiled in order to get simulated traces for different plaintexts (or different keys).
This fact slows down the whole process of data acquisition (of simulated traces), since
one generally needs a set of traces with different plaintexts and possibly with dif-
ferent keys for the analysis and the recompilation will inevitably consume a lot of
time compared to the actual simulation. In this scenario each binary is executed only
once to create a simulated trace, which is not very efficient. Unfortunately the source
code of this tool is not available because it was developed in collaborationwith private
enterprises.

A way of creating a simulator based on profiling was presented by Debande et
al. in 2012 [DBBL12]. Their simulator can be used to generate simulated traces of
any specific, previously profiled, device. The profiling uses stochastic models (linear
regression, recall Section 3.2.4) and the successive values of the internal state (regis-
ters) of the device. Thus, it can be used with microcontrollers as well as FPGAs and
ASICs. This type of simulators allows to construct simulated traces that are close to
the real measurements. This approach allows to test implementations during the de-
velopment phase without acquiring real measurements, which significantly speeds
up the whole process. The main advantages of this simulator are precision and the
fact that the user does not need to have a lot of information about the simulated de-
vice i.e., one does not need to know the specifics of the internal structure of the device
(that are usually unknown for most of commercial products). The biggest inconve-
nience related to the use of this simulator (and other profiled simulators) is the fact
that one has to do the profiling step for every new device (such as a new model of a
microcontroller).

In 2013, Gagnerot presented another simulator in his PhD thesis [Gag13, chap-
ter 10]. This simulator uses compiled binary files in order to create simulated traces,
it can be used to simulate power traces as well as to simulate fault injections. The

14https://coq.inria.fr/

https://coq.inria.fr/

5.3. Survey of existing simulators 89

simulations include information from several peripherals (UART, as well as crypto
co-processors). The simulator uses HW and HDmodels and works with a specific 16-
bit RISC microprocessor15. However, later some additional architectures were added
to the design. The simulator was created during a collaboration with a private enter-
prise, thus its code is unavailable.

Another simulator was proposed in 2015 by Barthe et al. [BBD+15]. This tool
uses formal methods in order to find weaknesses in masking schemes. Contrary to
some other tools (that can just output a simulated trace) it outputs the results of the
verification on the analysed scheme. The most attractive property of this simulator
is the fact that it uses formal verification, which can be used as a proof that a scheme
is secure under the chosen assumptions (such as the leakage model). This method
also allows to test an attack against a flaw that was found by the tool. This tool
requires to write the algorithm in a specific language called EasyCrypt [BDG+13]),
which might be problematic due to errors that might occur while translating from
one programming language to another. In addition, even if the code is translated
from the original (e.g., Assembly or C) language, there is no guaranty that the new
EasyCrypt version of the program will be equivalent to the original in all its aspects.
To the best of our knowledge automated tools that can transform a program into
EasyCrypt do not exist nowadays. Moreover, EasyCrypt is a relatively high level
of abstraction language and, a compiler can (and often does) make changes to the code
by rearranging independent instructions during the optimization phase of compiling.
Such changes can influence the robustness of the device against side-channel analysis,
thus there is no guarantee that such analysis remains valid for the final compiled code.
Nevertheless, it allows to validate the general idea of the masking scheme.

Reparaz [Rep16a] presented a simulator in 2016 (first appeared on e-print archive
in 2015). It works using the high level description of an implementation (e.g., C++
code) in order to detect flaws in masking schemes. It can detect flaws in first and
higher order masking schemes. The main idea is based on leakage simulation (using
the analysis of intermediate values) followed by leakage detection tests (t-tests). This
simulator can pinpoint the variables that are causing the leakage. The presented tool
could detect design flaws in masking schemes, however it cannot detect issues related
to the implementation of these schemes which is stated by the author, since e.g., “an
unfortunate choice of register allocation may cause distance leakage between [mask]
shares”.

Elmo (Emulator of Power Leakages for Cortex-M0) [DMO16] simulator was pre-
sented in 2016 (paper updated in 2017 on e-print). Elmo is a profiled simulator that
was tailored for ARM Cortex-M0. Elmo could be used to analyse implementations
from the point of view of side-channel attacks. The analysis done during the cre-
ation of Elmo showed how to improve the profiling of a device for creation of such
simulators. Among others, authors could speed up profiling by clustering different

15This is the only information available in the text due to the non-disclosure agreement.

90 Chapter 5. Simulation tools for side-channel analysis

instructions into 5 groups and do the actual profiling for only one instruction from
each group. Elmo also uses profiles that depend on triplets of instructions i.e., infor-
mation on previous and subsequent instructions are included into the profile which
allows to improve the accuracy of simulated traces e.g., it allows to take into account
effects produced by pipelining. The fact that Elmo is a profiled tool makes it very pre-
cise, however, its accuracy can be improved using more profiling (e.g., profiling all
instructions). The authors also showed that their method can be used for simulations
of Cortex-M4 processor (see the updated version from 2017). This simulator was later
upgraded with leakage detection capabilities using t-tests [MO17], however this up-
date does not change the underlying simulationmodels. Themain difference between
Elmo and the tool by Reparaz is that Elmo is built using profiling and it operates on
the assembly code, while the tool by Reparaz is using a higher-level of abstraction
language as an input and it uses predefined rather than extracted (profiled) models.

In 2016 Bos et al. [BHMT16] proposed a tool that can be successfully used in
order to breakwhite-box implementations using Differential Computational Analysis
(DCA)16. Their idea is based on applying side-channel analysis on simulated traces
that were obtained by running a simulator on the target white-box implementation.
Use of a simulator that generates traces is one of the best options in such scenario
since the code is available to the attacker. At the same time the attacker can choose to
generate traces without noise and can also use any leakagemodel. The tools proposed
in this paper are based on existing simulators Pin and Valgrind. All the tools are
actually extensions (plugins) for these simulators. Thus, these tools allow to simulate
x86, x86-64 as well as ARM devices. Moreover, these tools allow to trace and analyse
the execution from different perspectives: intermediate values, values written on the
stack as well as their address ranges. All the tools that were used during this study
are opensource17. These tools can probably be used for analysis of cryptographic
implementations other than white-box from the perspective of side-channel attacks,
however such approach has not been investigated yet.

Allibert et al. presented a simulation framework DBI [AFG+15] that can be used
to analyse binary files from embedded devices (authors refer to Android platform
on ARM processor as an example, but their tool-chain also supports other architec-
tures such as x86 and SPARC). This tool is based on the simulator presented by Gag-
nerot [Gag13, chapter 10] (who is also one of the co-authors with Allibert). The ideas
presented in this paper are also close to the idea of DCA [BHMT16]. However, the
approach that Allibert et al. suggest is based on the analysis of registers (while Bos et
al. mostly focus on address ranges), their tool also uses different leakage models.
Moreover, this tool can also simulate fault injections during the execution. Unfor-
tunately most of details about this study are not revealed publicly (the source code

16First appearance on the e-print archive of the International Association for Cryptographic Research
(IACR) in 2015.

17https://github.com/SideChannelMarvels

https://github.com/SideChannelMarvels

5.3. Survey of existing simulators 91

is not available, the names of cryptographic libraries that implement AES are not
mentioned).

A tool called Inspector-SCA that was developed by Riscure18 can also be used in
order to run simulations and use them for side-channel analysis. The simulator fea-
ture was integrated in the Riscure’s software suite between 2007 and 2008 (according
to an employee) and the last update (at the time of writing) appeared in 2016. This
commercially available tool allows to simulate traces and immediately analyse them
in the same environment. The user has to supply the source code and to instrument it
by specifying interesting intermediate variables that are used during the execution in
order to create simulated traces. This tool has some commonly used leakage models
such as HW. However, it is possible to create new leakage models, this option also
allows to create several leakage points with different leakage models related to the
same intermediate value. The Inspector software is not opensource, however, it can
be extended via user-defined modules and plugins.

Virtualyzr is another commercially available simulation tool by Secure-IC19. Vir-
tualyzr can be used for passive side-channel analysis (such as based on power con-
sumption) as well as for active attacks (fault injections), in this regard it is similar to
the simulator described by Gagnerot. Virtualyzr can produce simulated traces based
on the source code describing the RTL, while performing analysis on several levels
of abstraction: the netlist (created during the synthesis) and the floorplanned cir-
cuit (created during the place-and-route procedure). Thus it can be used to detect
the issues caused by optimization performed by synthesis tools such as removal of
checking procedures used to counter fault injections as well as information leakages
created by glitches [DGN+17]. Thus, Virtualyzr mostly focuses on the early stages
during the development of hardware implementations. However, its simulation can
be coupled with the software counterpart by using a comportmental model of the
simulated processor using Verilog, VHDL and SystemC source code as an input.

Table 5.2 provides a summary of existing simulators that were built for side-
channel analysis. We can see, that these simulators vary greatly in terms of the types
of inputs that they require (source code, assembly, binary files) as well as in the pur-
poses that were intended while these tools were built. These simulators present such
a diversity, that it is very difficult to compare them. Moreover, the main issue that
we can notice lies in the fact that the vast majority of these tools are not available
for free or even commercially. This fact challenges the possibility of reproducing the
results that were obtained using most of those tools.

18https://www.riscure.com/security-tools/inspector-sca
19http://www.secure-ic.com/solutions/virtualyzr/

https://www.riscure.com/security-tools/inspector-sca
http://www.secure-ic.com/solutions/virtualyzr/

92 Chapter 5. Simulation tools for side-channel analysis

Ta
bl
e
5.
2
–
Si
m
ul
at
or

sd
ev

el
op

ed
fo
rs

id
e-
ch

an
ne

la
na

ly
si
s.

N
am

e
Ye

ar
In
pu

t
Ty

pe
M
ai
n
pu

rp
os

e
Le

ak
ag

e
m
od

el
s

St
ag

e
Av

ai
la
bi
lit
y

Pi
np

as
20

03

A
ss
em

bl
y

co
de

,
m
ic
-

ro
co

nt
ro
lle

r
ty
pe

G
A
na

ly
si
s

du
rin

g
de

ve
lo
pm

en
t

of
so

ftw
ar
e

H
W

,H
D
-li

ke
,

de
vi
ce

pr
ofi

lin
g

S2
7

SC
A
RD

20
06

H
D
L
co

de
G

Le
ak

ag
e

de
te
ct
io
n

on
ea

rly
st
ag

es
of

de
ve

lo
pm

en
to

fI
C

H
W

,
H
D
-li

ke
,

SP
IC

E
on

se
ve

ra
l

ab
st
ra
ct
io
n
la
ye

rs
H
1

7

Ca
de

nc
e-
N
CS

im
20

07

G
at
e-
le
ve

l
ne

tli
st
,

ce
ll

de
sc
rip

tio
n,

pr
op

ag
at
io
n

de
la
ys

G
Ev

al
ua

tio
n
of

D
PA

-r
es
is
ta
nc

e
Tr

an
si
tio

n
co

un
tin

g
H
2

7

O
sc

ar
20

09
Co

m
pi
le
d

bi
na

ry
G

Fa
ul
ti

nj
ec

tio
n
an

d
po

w
er

an
al
ys

is
H
W

,H
D

S3
7

D
eb

an
de

et
al
.

20
12

Su
cc
es
si
ve

va
lu
es

of
re
gi
st
er
s

G
Fa

st
ev

al
ua

tio
n

du
rin

g
de

ve
lo
p-

m
en

t

Re
al

tr
ac

es
(p
ro
fil
in
g)

S2
,S
3

7

G
ag

ne
ro
t

20
13

Co
m
pi
le
d

bi
na

ry
G

Fa
ul
ti

nj
ec

tio
n
an

d
po

w
er

an
al
ys

is

H
W

,H
D
,s

ev
er
al

po
in
ts

w
ith

di
ffe

r-
en

tm
od

el
s

S3
7

C
on

tin
ue

d
on

ne
xt

pa
ge

5.3. Survey of existing simulators 93

Ta
bl
e
5.
2
–
C
on

tin
ue

d
fr
om

pr
ev

io
us

pa
ge

N
am

e
Ye

ar
In
pu

t
Ty

pe
M
ai
n
pu

rp
os

e
Le

ak
ag

e
m
od

el
s

St
ag

e
Av

ai
la
bi
lit
y

Ba
rt
he

et
al
.

20
15

Ea
sy

Cr
yp

t
co

de
V

Fo
rm

al
pr

oo
fs

on
m
as
ki
ng

sc
he

m
es

t-
th
re
sh

ol
d

pr
ob

-
in
g
m
od

el
A
0
,S
1

7

Bo
se

ta
l.

20
15

-1
6

Co
m
pi
le
d

bi
na

ry
G

A
na

ly
si
s
of

w
hi
te
-

bo
x
cr
yp

to

Va
lu
es

an
d

ad
dr
es
se
s,

si
ng

le
bi
ts

S3
3

D
BI

20
15

Co
m
pi
le
d

bi
na

ry
G

A
na

ly
si
s
of

w
hi
te
-

bo
x

cr
yp

to
an

d
fa
ul
ti
nj
ec

tio
ns

H
W

,H
D

S3
7

El
m
o

20
16

-1
7

A
ss
em

bl
y

co
de

G
Ev

al
ua

tio
n
of

D
PA

-r
es
is
ta
nc

e
Re

al
tr
ac

es
(p
ro
fil
in
g)

S2
7
*

Re
pa

ra
z

20
15

-1
6

H
ig
h

le
ve

l
so

ur
ce

co
de

G
D
et
ec

tio
n

of
fla

w
s

in
m
as
ki
ng

sc
he

m
es

H
W

,
LS

B,
ze

ro
-

va
lu
e,

id
en

tit
y

S1
,

H
1

7
*

In
sp

ec
to
r-
SC

A
20

08
-1
6

So
ur

ce
co

de
G

Ev
al
ua

tio
n
of

D
PA

-r
es
is
ta
nc

e
U
se
r-
de

fin
ed

S1
3
AC

V
irt

ua
ly
zr

20
17

H
D
L
co

de
G

Fa
ul
ti

nj
ec

tio
n
an

d
po

w
er

an
al
ys

is

Va
lu
e

&
di
st
an

ce
le
ak

ag
e,

lo
ca

l
&

gl
ob

al
m
od

el
in
g

H
1,
2,
3

3
AC

G
—

ge
ne

ra
to
r,
V

—
ve

rifi
er

(c
he

ck
er
).

*
A
ut
ho

rs
ar
e
pl
an

in
g
on

re
le
as
in
g
th
ei
rc

od
e,

bu
ta

tt
he

tim
e
of

w
rit

in
g
it
is

st
ill

no
ti
n
th
e
pu

bl
ic

do
m
ai
n.

AC
Av

ai
la
bl
e
co

m
m
er
ci
al
ly
.

94 Chapter 5. Simulation tools for side-channel analysis

5.3.1 Other works related to simulations

Many analysis that were done in the field of side-channel attacks use simulations
to study how attacks and countermeasures behave depending on noise [SVO+10] or
other parameters [LPB+15, SKS09]. There exist studies that show how simulations of
different levels of abstraction (in hardware) influence the results of the attacks [TV05]
i.e., how taking into account more information (for a simulation) changes the amount
of traces required to break the system, which ultimately tells us about the accuracy
of simulated traces compared to real power traces. Some researchers use simulations
along with real traces to compare different distinguishers [SBG+12].

Due to the absence of publicly available simulators which can be explained by
results from Table 5.2, most authors build their simulations from scratch every time.
Some papers do not give detailed descriptions of how exactly their simulations were
created [SVO+10] others provide more details on this matter [LBM15a] (but still do
not provide their source code). To the best of our knowledge every team uses some
flavour of “home brewed” piece of code that generates a set of leakage points (that
represent power traces) in order to analyse them; generally researchers would only
simulate points related to the operation that is analysed (e.g., an S-box), however
sometimes non-informative points are also added to the set due to the nature of the
study [LPB+15]. Another way of creating simulated traces that is used by some re-
searchers consists in taking real power traces and modifying them e.g., by adding
random numbers to each point to simulate a noisy setup or by shifting them and
removing some points to simulate clock jitter and misalignment [WO15].

We mostly focus our attention on power analysis but there exist simulators that
were built for analysis of other types of physical attacks. For example, ctgrind20 tool
for timing analysis can check if a function executes in constant time (using Valgrind).
The work by Rothbart et al. [RNS+05] focus on fault injections and show how a se-
curity analysis on high-level of abstraction can detect issues related to these attacks
using the tool [NRS+04] that they created for energy estimation based on hierarchical
bus models in smart cards.

20Available on https://github.com/agl/ctgrind

https://github.com/agl/ctgrind

5.4. Summary 95

5.4 Summary

There are two types of simulators that can be useful for side-channel analysis: data
generators and checkers. The first type allows to generate data that is equivalent to
power traces while the second type can verify properties related to the robustness
of an implementation against side-channel attacks. We saw that there are 4 main
motivations for use of simulators in side-channel analysis: (1) they are faster than
real experiments, (2) they provide full control over the environment (i.e., allow us to
choose and set all parameters related to the experiment), (3) simulators also allow to
publish and communicate the data that was used for the simulation easier (compared
to real power traces), and finally (4) simulators can be used during the development of
implementations as opposed to real experiments (that require the finished product).
Thus, simulators provide a set of features that are simply not available in datasets
from real experiments.

In many research papers scientists use simulations to go through a lot of experi-
ments (e.g., vary a parameter through a range of values) which shows us that the de-
mand for available simulators exists in this domain. Moreover, several works showed
that simulators can be useful for detection of security issues related to side-channel
information leakages. However, most of the simulators that were presented to the
scientific community are not actually available (even commercially) with only a cou-
ple of exceptions. Moreover, we can find a huge variety of types of simulators even
among the unavailable ones, they come in many flavours in term of the models they
use, way they are implemented, their capabilities and the type of inputs that they
require. Ultimately it makes them very different and thus almost impossible to com-
pare and therefore, it is hard to judge of the quality of these tools (basically we need
compare an object to another one in order to judge of its quality). The rationale is
that there is a need for available simulation tools for side-channel analysis and many
different types of simulators can be used for such analysis, but only a few of them
are actually available which ultimately makes this domain relatively poorly-studied.
Therefore, we designate that one of the main goals of this work is to provide software
simulation tools and show how they can be used in case studies.

96 Chapter 5. Simulation tools for side-channel analysis

Chapter 6

Silk: high level of abstraction
simulations

The simulator presented in this section is based on the paper “Silk : high level of abstraction leakage simulator for
side channel analysis” presented in New Orleans (United States of America) at the 4th Program Protection and
Reverse Engineering Workshop (PPREW-4) in 2014 [Ves14]. The analysis of shuffling schemes is based on the
paper “Variety of scalable shuffling countermeasures against side channel attacks” published in the Journal of Cyber
Security and Mobility [VML17]. All studies related to S-boxes are based on two papers, first one “Comparing S-
boxes of Ciphers from the Perspective of Side-Channel Attacks” presented in Yilan (Taiwan) at IEEE Asian Hardware
Oriented Security and Trust Symposium (AsianHOST) in 2016 [LMV16] and the second one “On the Construc-
tion of Side-Channel Attack Resilient S-boxes” presented in Paris (France) at the 8th International Workshop on
Constructive Side-Channel Analysis and Secure Design (COSADE) in 2017 [LVPM17].

Scientists use simple simulations to run tests of their attacks and countermea-
sures. Having an automated tool that can generate simulated power traces instead of
building a “one-shot” piece of software for one test every single time can greatly im-
prove the efficiency and the reliability of such tests. Moreover, if everyone can have
access to the same tool the comparison abilities between different analysis methods
as well as their repeatability will improve.

Themain goals of the studies described in this chapter are (1) building a high level
of abstraction simulator that can generate simulated traces from the source code with
several parameters that describe the leakage and (2) showing how such simulator can
be used for the analysis of side-channel attacks as well as countermeasures against
them.

We start by explaining how our simulator works. Next, we show how it can be
used to compare algorithms or their parts on the example of S-boxes, we then use our
comparison technique to build S-boxes that are optimised with respect to the desired
properties. Finally, we show how our tool can be used to compare countermeasures
on the example of shuffling schemes.

97

98 Chapter 6. SILK

6.1 Description of the tool

Silk stands for Simple Leakage Simulator. The main idea behind this simulator is
having a very simple tool that can produce simulated traces based on a piece of the
source code and several parameters that describe the leakage function. Here below
we describe general principles and ideas used in our power trace simulator. Our
simulator could be used in order to simulate traces of such devices as microprocessors
or microcontrollers (e.g., embedded in a smart card or another portable device). This
simulator is written in C++ and its code is available in our git repository1.

Silk creates simulated traces, thus it is a generator tool according to our termi-
nology. This tool simulates the data dependant part Pval and can also add noise ε to
the result of the simulation, but it does not simulate the operation dependant part
Pop (from the Equation 3.7, Section 3.2.3). Thus, Silk can be used for DPA, but not
for SPA. Nevertheless, information on the operation dependant part can be included
in the simulator through some additional engineering efforts.

The main idea behind the implementation of this simulator is the overloading of
operators (=, +=, /=, &=, etc.). Each operator returns the value that it would return
normally (without the overloading) and writes a leakage value to the trace. In other
words, the simulator creates traces on the fly while executing the code. Points of the
simulated trace are created based on values that are manipulated each time when a
result of a computation is assigned to a variable.

In order to use Silk one needs to do following modifications to their code: first
of all, they have to import our library and change basic types such as int, char and
unsigned to types defined in our simulator (e.g., U8, U16 or S8, S16)2. Before using
Silk one should also setup its parameters (see example in Listing 6.1, more details are
available in Section 6.1.1).

1 / / s e tup Silk paramete r s
2 U8 : : s e t L eakageFunc t i on (hammingWeightOut) ;
3 T r a c e r : : s e t LeakagePo in t sNb r (1 0) ;
4 T r a c e r : : s e tLeakageOve r l ap (2) ;
5 / / c r e a t e t r a c e s
6 for (i = 0 ; i < 5 0 ; ++ i) {
7 T r a c e r : : c l e a r T r a c e () ;
8 setRandom (p l a i n t e x t) ;
9 enc ryp t (key , p l a i n t e x t , c i p h e r t e x t) ;

10 T r a c e r : : t r a c e T o F i l e (t r a ceF i l eName + t o _ s t r i n g (i)) ;
11 }

Listing 6.1 – Silk example: generation of 50 simulated traces.

1https://github.com/nikita-veshchikov/silk
2we used the same naming conventions for types as Cryptosat [LJH14]. It uses SAT solvers for the

analysis of cryptographic algorithms [SNC09]., so algorithms that were once modified could be used
with both cryptographic tools.

https://github.com/nikita-veshchikov/silk

6.1. Description of the tool 99

Once the execution of a cryptographic algorithm is complete, Silk allows to fetch
the resulting simulated trace. The simulated power trace might be retrieved as a
data structure (std::vector<double>) for immediate use in the code, thus the same
program can actually generate simulated traces and perform side-channel analysis on
them. Another option is to save the simulated trace in a file. A user can also add noise
to the simulated trace as many times as needed (i.e., generate many noisy traces using
the same data) without reiterating the code execution, see Listing 6.2. Code examples
are also included with Silk in its git repository.

1 setRandom (p l a i n t e x t) ;
2 enc ryp t (key , p l a i n t e x t , c i p h e r t e x t) ;
3 / / g en e r a t i n g 10 no i sy t r a c e s a f t e r a s i n g l e e x e cu t i o n
4 T r a c e r : : s e tNo i s eVa r i a n c e (0 . 0 3) ;
5 for (i = 0 ; i < 1 0 ; ++ i) {
6 T r a c e r : : n o i s y T r a c e T o F i l e (t r a ceF i l eName + t o _ s t r i n g (i)) ;
7 }

Listing 6.2 – Silk example: generation of simulated noisy traces.

6.1.1 Parameters

Our simulator has four main parameters. Two of these parameters are mandatory
and must be defined in order to obtain a simulated trace. The remaining optional
parameters might be set independently of one another. Parameters are explained
here below, Figure 6.2 shows a simulation that uses the same data and same code
with different combinations of parameters.

Leakage function

The first mandatory parameter is the leakage function L∗(vold, vnew), its parame-
ters vold and vnew are the old and the new values of a variable (of the program un-
der simulation). In a simulated environment we know the actual leakage function
that we want to simulate, thus it makes more sense to talk about a leakage function
rather than a leakage model (the difference between the two terms is discussed in
Section 3.2.3). We need to use both the new and the old values in a leakage function
in order to be able to simulate leakages that correspond to the ODL and MTL models.

The leakage function L∗ might be easily set to a function widely used in power
analysis (e.g., Hammingweight, Hamming distance) or any other function thatmatches
the following definition:

L∗ : Z× Z → R (6.1)

We will use li to denote the value leaked by the ith instruction of an algorithm,
0 ≤ i < Nop, where Nop is the number of instructions (operations) that we want to
simulate:

100 Chapter 6. SILK

li = L∗(valold,i, valnew,i) (6.2)

where valold,i and valnew,i are the old and the new values manipulated during the
ith instruction.

Leakage points

The second mandatory parameter is the number NP , which denotes the number of
points that is produced by one operation, NP ∈ N. This number might be seen as a
representation of the sampling rate of an oscilloscope.

With both mandatory parameters, values of a simulated trace T might be written
as follows:

T [t] = li ∀t ∈ [NP × i;NP × (i+ 1)− 1] (6.3)

where t is an offset in a trace and i is the current instruction that is being simulated
(as in the Equation 6.2). An example of the resulting simulated trace is shown in
Figure 6.2a.

Overlapping

The first optional parameter is a number O. See example of a trace with overlap-
ping in Figure 6.2b. The number O ∈ N, denotes the overlap in leakages between
two consecutive operations. It might be used to simulate the fact that at some point
in time several operations leak simultaneously. For example, we might use overlap-
ping to simulate the leakage of a microcontroller that uses a pipeline e.g., while the
result of one operation is written into the memory the next one is executed. Mc-
Cann et al. [DMO16] showed that including information from several consecutive
instructions results in better profiles, their experiments were performed on a Cortex-
M0 that has a 3-stage pipeline. This effect can also be observed on simpler devices
such as a ATmega328P microcontroller that only has a 2-stage pipeline i.e., while one
instruction is executed the next one is fetched which means that data from two in-
structions is not processed in parallel, see Figure 6.1. However, we can see that some
points are related to the values that are manipulated independently by consecutive
instructions (see more details in Chapter 7). Sometimes we may also observe that
one point of a power trace is related to two consecutive values due to imperfections
of the measuring equipment e.g., a probe of an oscilloscope is not fully discharged
before the next measurement is recorded.

If the overlapping parameter is set, last O leakage points of one operation are
added with first O leakage points of the next one, more formally:

6.1. Description of the tool 101

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

Time (trace points)

a
b

s.
 C

o
rr

e
la

ti
o
n

k xor p
S(k xor p)

Figure 6.1 – Correlation for two consecutive intermediate states of a byte. States
correspond to the input and output of an S-box.

T [t] =

l0 t ≤ NP −O
lNop−1 t ≥ (NP −O)n
li (NP −O)i+O ≤ t ≤ (NP −O)(i+ 1)− 1
li + li+1 otherwise

(6.4)

where n is the number of simulated instructions and other notations are the same as
in previous sections on parameters.

Note, that in the overlapping section of a simulated trace, where leakages from
two consecutive values are combined, the combination is a simple addition. This ad-
dition can be replaced by a parameter (combination function) in order to make this
simulator more flexible (but it would require to set more parameters at its initialisa-
tion). However, using a simple addition of leakages already provides a lot of agility
and expressiveness.

Leakage distribution function

Second optional parameter is a couple (D, I), whereD is a leakage distribution func-
tion:

D : R× R → R

and I is a number that is used to define the interval [0, I] (on whichD is used in the
simulation). An example that uses this parameter is shown in Figure 6.2c. This op-
tional parameter can be used to represent the fact that the modelled device does not

102 Chapter 6. SILK

leak the same amount of information (or not the same information) during the execu-
tion of one operation. For example, a device might leak some information during the
computation and a different amount of information when the result of a computation
is written back into the memory. Another example when this parameter would be
useful consists in the following idea: during an addition, a device might leak infor-
mation on the Least Significant Bit (LSB) at the beginning and information on the
Most Significant Bit (MSB) at the end of the operation.

Parameters of the function D are the leakage l and a moment in time t. If the
couple (D, I) is defined, the simulated trace is computed in the following way:

T [t] = D
(
li,

((t mod NP) + 1)× I

NP

)
(6.5)

in other words, the functionD spreads the leakage l overNP points equally spaced in
the interval [0, I] while potentially modifying it at every single point of the interval
that corresponds to the simulated instruction.

We can also define both optional parameters, in this case we will apply the func-
tion D on the leakage li and then use overlapping, see example in Figure 6.2d.

6.1.2 Discussion

The simulator Silk is the first opensource simulator for side-channel analysis that
was presented to the scientific community. It is not attached to a specific hardware,
which makes it very generic. These facts together with all the parameters that Silk
can use make it very flexible and malleable. However, since it uses a very high-
level of abstraction models it cannot be used to detect hardware specific issues or to
find issues related to low-level instructions (mostly because a compiler can rearrange
operations for optimisation purposes). Nevertheless, Silk allows to generate traces
based on a software implementation of an algorithm in automated manner, without
writing a new “disposable” piece of code for each new simulation. Moreover, the
resulting traces contain points related to all main intermediate states (except of the
temporary values used during computations in registers) that are present in the al-
gorithm. The main advantage of Silk is its flexibility (through use of parameters).
Since Silk cannot be used to detect specific hardware issues, it should only be used
for preliminary analysis and comparisons between different side-channel attacks and
countermeasures against them.

Figure 6.3 presents a diagram that shows the general scheme of Silk with its
parameters and a typical workflow that uses this simulator.

6.1. Description of the tool 103

0 10 20 30 40 50 60

0
2
4
6
8

10
12

Time

L
e
a
k
a
g

e

(a) Constant leakage.

0 10 20 30 40 50

0
2
4
6
8

10
12

Time

L
e
a
k
a
g

e

(b) Constant leakage with overlap.

0 10 20 30 40 50 60

0
2
4
6
8

10
12

Time

L
e
a
k
a
g

e

(c) Leakage distribution function.

0 10 20 30 40 50

0
2
4
6
8

10
12

Time

L
e
a
k
a
g

e

(d) Leakage distribution with overlap.

Figure 6.2 – Examples of simulated traces with and without optional parameters.
Values used: L(valold, valnew) = HW (valnew), NP = 10, O = 2, I = π, D(l, t) =
l × sin(t). The code is availabe in the appendix A.

Figure 6.3 – Scheme of the workflow using Silk simulator.

104 Chapter 6. SILK

6.2 Evaluation of S-boxes

Simulators can help in analysis of cryptographic algorithms or in the analysis of some
parts of block ciphers. Since one of the most targeted part of a block cipher is an S-
box, we think that it is a suitable candidate for the demonstration of how simulators
can be useful in such analysis. In 2013, the open cryptographic “Competition for
Authenticated Encryption: Security, Applicability, and Robustness” (CAESAR) was
launched in order to find a suitable portfolio of primitives for authenticated encryp-
tion with associated data3. Our first goal is to evaluate S-boxes used by CAESAR
candidates as well as several additional well-known S-boxes. Our second goal is to
compare the approach based on simulations and results given by theoretical metrics
(TO and CC). More precisely, we focus on side-channel analysis of the following 23
S-boxes:

• 4× 4 S-boxes of Joltik, Prøst, Minalpher, Present, EvolvedCC and EvolvedTO;

• 5 × 5 S-boxes of Ascon, ICEPOLE, Keccak (Ketje, Keyak), PRIMATE and
SC20004;

• 6× 4 S-boxes of DES (labelled DESi, i ∈ N and 1 ≤ i ≤ 8);

• 8× 8 S-boxes of SCREAM5, STRIBOB, AES and AESCC.

Picek et al. obtained the S-box EvolvedCC by using genetic algorithms optimis-
ing the CC [PPE+14], they also created AESCC by applying an affine transformation
on the S-box of AES and choosing the one that gave the best CC. Later, Picek et
al. built the S-box EvolvedTO using genetic algorithms optimising the (improved)
TO [PMMB15].

In addition to the previously listed S-boxes, we also used a special implementation
trick applied on 4 × 4 S-boxes to create 8 × 8 meta-S-boxes. More specifically, we
take into account the fact that an engineer can apply two 4× 4 S-boxes of the same
primitive (which is equivalent to an 8 × 8 S-box) when the device applies the same
4 × 4 S-box on two 4-bit words of the same byte at once in order to substitute a
byte. To be more precise, these are not new S-boxes, but rather a different way of
implementing a 4 × 4 S-box. In a software implementation this idea allows to trade
memory (by encoding a bigger S-box) in order to gain some speed. Since almost all
modern integrated circuits use byte-oriented architecture, engineers who implement
ciphers (and also attackers) take the architecture into account. For example, an at-
tacker would often target one byte of the secret key at a time. Thus, we also add 3

3https://competitions.cr.yp.to/caesar.html
4The SC2000 also uses 6× 6 and 4× 4 S-boxes while we analysed the 5× 5 S-box.
5SCREAM algorithm was modified during the competition, one of the modifications concerned its

S-box, we are focusing on the 3rd (latest at the time of analysis) version of the algorithm.

https://competitions.cr.yp.to/caesar.html

6.2. Evaluation of S-boxes 105

meta-S-boxes in our analysis. We call them Prøst×2, Minalpher×2 and Present×2.
For the sake of simplicity we will refer to these meta-S-boxes just as S-boxes.

We focus our analysis on microcontrollers, thus we defined a special version of
the Transparency Order that fits our scenario better. The TO metric assumes that
the leakage depends on HW (ψ ⊕ S(a)) where HW is the Hamming weight and ψ
denotes the initial content of the register before updating it with S(a). Equation 3.24
iterates over all values of ψ ∈ Fn2 in order to dissociate the transparency order metric
from a specific device. The value of ψ maximising Equation 3.24 represents the worst
case context for the designer and best case for the attacker when implementing the
S-box (independently of the considered device). However, in practice, the strategy of
the adversary depends on the target device. As a result, in our experiment, we also
calculate the TO with ψ equal to zero. It corresponds better to our context in which
the (analysed) microcontroller leaks the Hamming weight of the manipulated value.
In the following, we denote TOmax when we go through all values of ψ, and TO0

when we fix ψ to 0.

6.2.1 Results based on theoretical metrics

Table 6.1 reports the theoretical metrics CC and TO for each of the S-boxes6. The
first observation on the TO metric is that big S-boxes lead to high coefficient and, as
a result, should lead to higher success probability of side-channel attacks. This result
is expected since (1) larger S-boxes have higher nonlinearity, and (2) higher nonlin-
earity results in higher success rate as shown by Prouff [Pro05]. Higher nonlinearity
does help to distinguish key hypothesis using linear distinguisher since a small in-
put error will be amplified more by a highly nonlinear function compared to a linear
one. Note, that Heuser et al. showed that the robustness of a function against side-
channel attacks is not simply related to its nonlinearity, but to its resistance against
differential cryptanalysis [HRG14]. High resistance against differential attacksmakes
an S-box weaker against side-channel analysis and vice versa. During a side-channel
attack we start by guessing the key and applying the same exclusive-or operation to
it with all the known plaintexts before passing them through the S-box, thus creating
a hypothetical output that will be more likely different from the real output (with the
correct key) because of the difference between the tested hypothesis and the correct
key and the high resistance of an S-box against differential cryptanalysis. Interest-
ingly, CC (as defined by its authors) metric does not show exactly the same result,
leading to a first contradiction between the two metrics.

Another observation is related to the order provided by the two metrics when
sorting the S-boxes of the same size from the most resistive S-boxes to the least resis-
tive one. For example, in case of DES S-boxes, we have the following order according

6Numbers for CC differ from the numbers by Stoffelen [Sto15] since he assumed a fixed correct key
while we computed CC for the entire range using the same algorithm as Picek et al. [PPE+14].

106 Chapter 6. SILK

to (1) CC sorted according to Fei et al. [FLD12] (denoted CCFei), (2) CC sorted accord-
ing to Picek et al. [PPE+14] and Stoffelen [Sto15] (denoted CCPicek), (3) TO0, and (4)
TOmax:

• CCFei: DES7, DES2, DES8, DES4, DES3, DES5, DES1, DES6;

• CCPicek: DES6, DES1, DES5, DES3, DES4, DES8, DES2, DES7;

• TO0: DES6, DES1, DES3, DES8, DES5, DES2, DES4, DES7;

• TOmax: DES3, DES2, DES4, DES7, DES6, DES5, DES1, DES8.

We can notice that all metrics provide different ordering of S-boxes based on their
resistance against side-channel attacks, meaning that the metrics are not equivalent.
We can notice that results given by TOmax and by CCFeidiffer from the results from
TO0 and CCPicek. If we compare TO0 and CCPicekcloser we can notice that their results
are similar when the difference between values of a metric is high. For example, the
results are similar when we compare 4× 4 meta-S-boxes with 8× 8 S-boxes and all
metrics also show that the two evolved 4× 4 S-boxes are harder to attack than other
4× 4 S-boxes.

Since all metrics disagree with each other on the order of S-boxes according to
their resistance against side-channel attacks, and there should be a definitive order
between them under a given leakage function (which we fixed to be the same in this
case), we can conclude that most of these metrics do not reflect the reality of a real
attack (even if assuming that at least one of them is correct in its prediction).

6.2.2 Experimental results on simulations

In order to have a fair comparison of all S-boxes, we implement them in the same
way by using look-up tables7. Thus, the only thing that changes between different
S-boxes of the same size is the order of values in the look-up table. As a result, each
simulated trace contains points that relate to the following operation:

z = S(k ⊕ p). (6.6)

We calculate the success rate of CPA by repeating the attack 50 000 times with dif-
ferent simulated traces and different random plaintexts. Note that this huge number
of repetitions is necessary to get smooth curves of the success rate.

We use Silk tool in order to generate simulated traces. In our experiments we use
the Hamming weight as the leakage function and we set the simulator to produce 1
point per instruction. Thuswe have 4 points per simulated trace: one related to p, one

7We implemented each of the three 8 × 8 meta-S-boxes (that were build from 4 × 4 S-boxes) with
a single look-up table of 256 values.

6.2. Evaluation of S-boxes 107

Table 6.1 – Modified Transparency Order (TO) and Confusion Coefficient (CC) met-
rics applied on S-boxes.

Size S-box TO CC

TOmax TO0 σ2[κ̄] σ[κ̄]

8× 8

AES 6.916 6.869 0.111 0.334
AESCC 6.916 6.828 0.149 0.386
SCREAM 6.854 6.792 0.122 0.349
STRIBOB 6.877 6.815 0.098 0.313
Minalpher×2 4.329 3.827 1.710 1.308
Present×2 4.643 3.765 1.710 1.308
Prøst×2 4.643 4.580 1.051 1.025

6× 4

DES1 3.097 2.853 0.247 0.497
DES2 2.960 2.960 0.136 0.369
DES3 2.919 2.867 0.209 0.457
DES4 2.984 2.984 0.172 0.414
DES5 3.018 2.938 0.234 0.484
DES6 3.004 2.665 0.363 0.602
DES7 2.986 2.986 0.123 0.350
DES8 3.115 2.927 0.164 0.405

5× 5

Ascon 2.839 2.839 0.502 0.709
ICEPOLE 3.548 3.548 0.190 0.436
Keccak 3.871 3.871 0.115 0.338
PRIMATE 3.613 3.581 0.308 0.555
SC2000 3.548 3.363 0.260 0.510

4× 4

EvolvedCC 2.500 1.533 1.388 1.178
EvolvedTO 1.900 1.700 1.262 1.124
Joltik 2.567 2.567 0.158 0.397
Minalpher 2.300 2.033 0.660 0.812
Present 2.467 2.000 0.660 0.812
Prøst 2.467 2.433 0.309 0.555

related to k, one related to their combination k⊕p and one related to the application
of the S-box on this combination (giving z). We vary the noise variance from 0.5 to
20, but for the sake of space we report here only the case when the noise variance
equals to 3. All other scenarios result in the same type of outcome with faster (for
lower noise variance) or slower (when we have more noise) rise of the success rate.

We can notice a strong discordance between theoretical metrics and simulations

108 Chapter 6. SILK

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

ASCON
ICEPOLE
KECCAK

PRIMATE
SC2000

Figure 6.4 – Success rate of CPA on 5× 5 S-boxes using simulations.

for other S-boxes. For example, here is the ranking for 5× 5 S-boxes (see Figure 6.4):

• CCPicek: Ascon, PRIMATE, SC2000, ICEPOLE, Keccak;

• TO0: Ascon, SC2000, ICEPOLE, PRIMATE, Keccak;

• TOmax: Ascon, ICEPOLE & SC2000, PRIMATE, Keccak;

• SR of CPA: SC2000, Keccak, PRIMATE, Ascon, ICEPOLE.

All theoretical metrics highlight the S-box of Ascon as the best against side-
channel attacks, and the S-box of Keccak as the worst from the same perspective.
However, this order differs from the results reported by CPA in which SC2000 is the
most resistant S-box while ICEPOLE provides the worst result.

Figure 6.5 shows the success rate of the CPA on simulated traces against 8 × 8
S-boxes (Figure B.1 in the Appendix B provides a closer look on the success rate).
According to this results, all 8 × 8 meta-S-boxes are more difficult to attack than
other 8× 8 S-boxes as expected since these meta-S-boxes created from 4× 4 S-boxes
are more linear. This particular result agrees with the outcome of the theoretical
metrics.

6.2. Evaluation of S-boxes 109

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

AES
AESCC

SCREAM
STRIBOB

MINALPHERx2
PRESENTx2
PROSTx2

Figure 6.5 – Success rate of CPA on 8× 8 S-boxes using simulations.

Figure 6.5 also reports that the difficulty of attacking an S-box differs from the
outcome of the theoretical metrics. For example, the classification of 8 × 8 S-boxes
from the most difficult to attack to the least difficult are the following:

• CCPicek: AESCC, SCREAM, AES, STRIBOB;

• TO0: SCREAM, STRIBOB, AESCC, AES;

• TOmax: AES & AESCC, STRIBOB, SCREAM;

• SR of CPA: AES, SCREAM, STRIBOB, AESCC.

Note that the S-box AESCC, which takes the CC metric into account in order to im-
prove its resistance against side-channel attacks, leads to the worst resistance against
CPA, which is surprising.

In addition to the discordances described here, Figure 6.6 shows that the curves
of success rate of some 4 × 4 S-boxes cross each other. More precisely, the success
rate curve related to Prøst crosses the success rate curves of Minalpher, Present and
Joltik. Furthermore, the curve of EvolvedCC crosses the curve of EvolvedTO. In other
words, for example, Joltik is harder to attack than Prøst with a small set of traces
while the results are inverted with a larger number of traces. It is worth to note that

110 Chapter 6. SILK

these results cannot be represented using any theoretical metric based on a single
scalar value. In brief, all these results highlight that theoretical metrics (such as TO
and CC) do not match actual attacks when the leakage model matches the leakage
function (representing the worst case scenario for the developer) i.e., when the ad-
versary knows how the device leaks information and does not make any assumption
errors on the choice of a leakage model.

Results of our simulations (Figure 6.5) and results from theoretical metrics (Ta-
ble 6.1 8× 8 S-boxes) suggest the CC and TO metrics can provide useful information
only when the difference between the S-boxes is large: notice the success rate (in case
of simulations) and the values provided by metrics (in the table) for 8× 8 S-boxes vs.
8× 8 meta-S-boxes constructed from 4× 4 S-boxes.

The success rates of the CPA on the 6 × 4 S-boxes of DES are available in the
Appendix B.

6.2. Evaluation of S-boxes 111

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

EVOLVEDCC
EVOLVEDTO
JOLTIK

MINALPHER
PRESENT
PROST

(a) Success rate of all 4× 4 S-boxes.

20 25 30 35 40 45 50

0.5

0.6

0.7

Number of traces

S
u

cc
e
ss

 r
a
te

JOLTIK
PRESENT

PROST

(b) Zoom on intersections.

Figure 6.6 – Success rate of CPA on 4× 4 S-boxes using simulations.

112 Chapter 6. SILK

6.2.3 Experimental results on a real device

In order to confirm our simulated results, we acquired real power traces on a popular
8-bit microcontroller ATmega328P. The acquisition was done using a digital oscillo-
scope that acquires 250×106 samples per second. Themeasurements were performed
on a small 10 Ω resistor that was inserted between the ground pin of the microcon-
troller and the power supply of 5 V (the acquisition setup described in Section 3.2.1).
We already know that ATmega328P leakage function is strongly related to the HW of
themanipulated value (recall Figure 3.6). We implemented and attacked the following
S-boxes:

• 8× 8 S-boxes of AES, SCREAM and STRIBOB;

• 4× 4 S-boxes of Minalpher, Present and Prøst.

For these real experiments, we used the same code of the implemented S-boxes that
were used by Silk (analysed in the previous section). Furthermore, we applied the
same physical attack (CPA). We estimate the success rate by repeating the physical
attack 10 000 times with different sets of simulated traces.

Figures 6.7a and 6.7b show the success rate of our attack on real implementations.
We can note that experimental results that use simulations fit well the results that use
real measurements (mostly because ATmega328P leakage function is very close to
the HW). Figure 6.7b shows that S-boxes of AES, SCREAM and STRIBOB are indeed
similar, as shown by results that use simulations (see Figure 6.5). Figures 6.7a and 6.6
report the same order between 4 × 4 S-boxes of Minalpher, Present and Prøst and
also show that curve of the success rate of Prøst indeed crosses the curve related to
Present. However, the experimental results on real traces differ from the outcome
of the theoretical metrics (as already reported in the previous section using simulated
leakage scenarios).

Note that due to time constraints that we had during this work, we were not able
to build setups and acquire power traces on all the 26 S-boxes (which was very easy
and fast in a simulated environment). However, our results suggest that even simple
and high level of abstraction simulation gives a good approximation of what happens
in real experiments. Overall, if we were to make all the 26 acquisitions on all the S-
boxes we would need much more time, our analyses that used simulated traces were
running in parallel (in a computing center), while our lab (and most of other labs that
we know of) have only one or two oscilloscopes8.

Simulated traces are generated on the fly, during the experiment, thus it takes a
very small overhead to generate them (several minutes on our hardware). They are

8To be more precise we only have one oscilloscope of a specific model, which is also the case of other
labs that we visited. Sometimes labs have several oscilloscopes of different qualities (e.g., bandwidth,
acquisition speed, precision), but in order to be able to compare datasets one must use same type of
equipment (same acquisition setup).

6.2. Evaluation of S-boxes 113

5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

MINALPHER
PRESENT
PROST

(a) 4× 4

5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

AES
SCREAM
STRIBOB

(b) 8× 8

Figure 6.7 –The success rate of CPA on S-boxes implemented in on a microcontroller.

114 Chapter 6. SILK

actually generated by the same executable file that later analyses them, the simulated
traces are stored directly in RAM, which also increases the total execution speed (no
need to read them from a relatively slower main memory i.e., disk). Acquiring 10 000
traces in our lab takes about 4.5 hours, we used more than 50 000 simulated traces
per experiment and performed 156 experiments (26 S-boxes and 6 levels of noise
variance). Thus performing real experiments would have taken us more than 3500
hours (almost five months of non-stop data acquisition in case if we were to work
24 hours a day). Thus, using a simulator helped us to significantly speed up our
experiments. The fact that the simulation tool Silk that we used is already described
in an earlier work also helps in at least two ways: (1) we can benefit from the existing
code and (2) there is no longer need in describing it in our analysis, we can simply
reference it and list the values of all parameters that we used.

6.3 Improvement of S-boxes

Our method based on simulations helps to compare S-boxes from the point of view
of side-channel analysis. Thus, it provides us a tool of discriminating “better” and
“worse” S-boxes which ultimately gives us a metric that can be taken into account
during the design of a new S-box. We used this idea to create new S-boxes using
evolutionary computing by tacking into account properties used in classical crypt-
analysis (nonlinearity and differential uniformity, see Equations 2.5 and 2.7) and the
success rate of side-channel attacks. Use of simulators enables us to perform this type
of analysis since evolutionary computations require to evaluate a function multiple
times, simulations being much faster than real experiment allow to perform all these
evaluations in a reasonable amount of time.

6.3.1 Genetic algorithms and search strategy

Genetic algorithms is a family of strategies that can be used to search an object (in
the search space) that has some desired properties. To be more precise, genetic al-
gorithms provide a heuristic for searching a maximum (or a minimum) of a function,
they are search strategies that can be used to optimise a chosen criteria. A heuristic is
an approach of problem solving that is not guaranteed to be optimal (but is often good
enough in practice). Thus, genetic algorithms do not provide a guarantee on finding
the global maximum (or minimum). However if a problem does not have an optimal
theoretical solution that can be computed using a deterministic algorithm (e.g., an al-
gorithm that can compute the global maximum of a function does not exist) a genetic
algorithm is a good choice. It is the case for problems that have high dimensionality
(a number of parameters) in other words, genetic algorithms are well fitted for multi-
criteria optimisation. Genetic algorithms were already used in cryptography [Pic16]
and among others they were used to create S-boxes [PPE+14, PMMB15], thus it is

6.3. Improvement of S-boxes 115

an excellent choice for creating S-boxes that fit our criteria (high resistance against
side-channel attacks).

The idea of genetic algorithms comes from biology, more precisely genetic algo-
rithms try tomimic evolution through natural selection. Main principles stay the same:
a population of individuals evolve by means of reproduction (and inheritance of char-
acteristics) and random mutations under the pressure of natural selection. However,
instead of a population organisms we are interested in a set of objects that are often
called solutions in the domain of genetic algorithms (in our particular case it is a set
of S-boxes).

We encode solutions as lists of values between 0 and 2n − 1 where n is the size
of the S-box. Note that this representation (permutation encoding) is highly effi-
cient since it ensures that S-boxes are bijections (which is a condition we enforce on
our S-boxes). The process of evolution in case of a genetic algorithm has 3 main
steps: reproduction, mutation and selection (of the fittest). We worked with the
3-tournament selection mechanism which is the option that offers the fastest con-
vergence [ES03]. This mechanism selects three solutions randomly and discards the
worst solution. Afterwards, we create an offspring (a new S-box) from the remaining
two solutions by using a crossover operator. Crossover operator is a procedure that
specifies a way to create a new solution (an S-box) from two parents by combining
them. We used a technique called order crossover, which works by first randomly se-
lecting two crossover points and copying everything between those two points from
the first parent to the offspring. Then, starting from the second crossover point in
the second parent, the unused numbers are copied in the order they appear in that
parent [ES03]. To be more specific to the case of S-boxes, a new offspring S-box is cre-
ated from two parent S-boxes by copying a (randomly chosen) part of the first parent
(order of values in the S-box) and filling-in the rest of the S-box by values from the
second parent, where the order of values is the same as the order in this second par-
ent. Thus, the new S-box inherits the order of values from its two parents. Mutations
are used in order to introduce perturbations and more novelty into the population
(set of S-boxes), we used a technique called toggle mutation which randomly selects
two values and swaps them in the S-box. In order to bootstrap the whole process we
use an initial population of 100 randomly generated S-boxes.

In order to compare individuals in the population (S-boxes in the set), genetic
algorithms define a fitness function (that we want to maximise). In our experiments,
we maximise the nonlinearity while minimising the differential uniformity as well as
the Success Rate (SR), hence the subtraction from 2n value and 1, respectively:

fitness = NF + (2n − δF) + (1− SR). (6.7)

We stop the whole process when 100 generations go by without improvement of the
fitness function. We give equal weights to NF and δF since our experiments show

116 Chapter 6. SILK

there is no statistically significant difference in those two cases9.
We would like to point out that although we work with genetic algorithms, our

methodology is not exclusive for these techniques, it could work with any other
heuristics that support the permutation encoding. Naturally, it is to be expected that
in such case (a different heuristic method) onewill probably have to change the fitness
function and the termination criterion. For further details about genetic algorithms
we would like to refer interested readers to the work of Eiben and Smith [ES03].

In Section 3.2.2 we already talked about the fact that sometimes an attacker will
choose to focus on the first or the last round of the encryption and thus attack the
S-box or the inverse of the S-box (which is basically “just another S-box”). We have
also showed that different S-boxes of the same size can behave differently under side-
channel attacks (they have different success rate, see Section 6.2). Thus, since adver-
saries often have a choice between the first and the last round (i.e., attacking an S-box
or its inverse), attackers can choose to focus on the easiest of the two targets! Therefore,
we actually used 3 slightly different fitness functions in our experiments, we refer
to them as different evaluation strategies. The core of the fitness function stays the
same in all the 3 strategies, but the success rate part of the fitness function was used
in the 3 following ways:

• Forward strategy (F) — the success rate of the attack on the S-box is computed
(i.e., adversary targets the S-box),

• Forward & Inverse strategy (F + I) — we compute the average between the
success rate of the attack on the S-box and the success rate of the same attack
on the inverse of the same S-box (i.e., adversary can choose to target the first
of the last round),

• Kleptographic10 strategy (K) — instead of minimizing the success rate wemax-
imize it by using SR instead of (1 − SR) in Equation 6.7 (the adversary is the
creator of the block cipher).

While F and F + I strategies allow us to create new strong S-boxes that can be
more resistant against the side-channel attacks, the K strategy is meant to empha-
size the fact that is it possible to create a seemingly strong cryptographic primitive
with a backdoor. In security, a backdoor is a secret weakness that is introduced in a
scheme or its implementation during the design phase, these weaknesses can then be

9Note that in general case of a fitness function it is possible to sacrifice one parameter in order to
boost another. However, in our case it is impossible to sacrifice the nonlinearityNF in order to improve
the success rate due to the fact that NF ∈ N and SR ∈ R and 0 < SR < 1. In other words the minimal
step in values of NF is 1, while 1 is the maximum increase that the SR can get, thus, the whole fitness
will decrease if NF decreases while boosting the SR.

10Kleptography is the concept of creating seemingly strong cryptographic algorithms and protocols
with hidden backdoors (weaknesses). These backdoors allow their creators to break cryptographic al-
gorithms easily.

6.3. Improvement of S-boxes 117

Table 6.2 – Properties of evolved S-boxes when considering CPA.

Size Name NF δF Strategy

4× 4
EvolvedSR1 4 4 F
EvolvedSR2 4 4 F + I
EvolvedK 4 4 K

5× 5

EvolvedSR1 8 6 F
EvolvedSR2 8 6 F + I
EvolvedSR3 10 6 F + I
EvolvedSR4 10 4 F + I
EvolvedSR5 8 6 F
EvolvedSR6 8 4 F
EvolvedSR7 10 4 F
EvolvedSR8 12 2 F
EvolvedSR9 12 2 F + I
EvolvedK 8 4 K

exploited by the designer once the product is on the market. In our case the strong
primitive is an S-box with good cryptographic properties (nonlinearity and differen-
tial uniformity) and the backdoor is its weakness against side-channel attacks.

In order to compare our generated S-boxes we used the following existing S-boxes
that we name according to the algorithm which uses them:

• 4× 4 S-boxes: EvolvedCC, EvolvedTO, Klein, Present and PRINCE;

• 5× 5 S-boxes: Ascon, Keccak (Ketje, Keyak) and PRIMATE.

Where the S-boxes EvolvedCC and EvolvedTO were also generated using genetic
algorithms while taking into account theoretical metrics (CC and TO) in order to
estimate their resistance against side-channel attacks.

To test our method, we use two distinguishers: Correlation Power Analysis (CPA)
and Template Attack (TA). Table 6.2 and Table 6.3 display all the generated 4× 4 and
5×5 S-boxes taking into account respectively the CPA and TA. S-boxes are provided
in the Appendix C. Note that our new 5 × 5 S-boxes have better nonlinearity and
differential uniformity values than Keccak or Ascon, but we can easily adapt our
strategy to output S-boxes with any combinations of values.

6.3.2 Results for Correlation Power Analysis

We generated simulated traces by considering that the leakage function is the Ham-
ming weight and the leakage model of the adversary is the same (i.e., the adversary

118 Chapter 6. SILK

Table 6.3 – Properties of S-boxes Evolved for ATmega328P microcontroller using TA.

Size Name NF δF Strategy

4× 4

EvolvedTASR1 4 4 F
EvolvedTASR2 4 4 F + I
EvolvedTASR3 4 4 F
EvolvedTASR4 4 4 F + I

5× 5

EvolvedTASR1 8 6 F
EvolvedTASR2 10 6 F + I
EvolvedTASR3 12 2 F
EvolvedTASR4 12 2 F + I
EvolvedTASR5 10 4 F
EvolvedTASR6 8 4 F + I

has a perfect knowledge on how the device leaks information). We use the same level
of noise of 0.5 variance representing a signal-to-noise ratio (1) of 2.13 when consid-
ering 4×4 S-boxes, and (2) of 2.58when considering 5×5 S-boxes. It is worth to note
that the order of the (generated) S-boxes sorted by the resistance against side-channel
analysis is not influenced by the SNR.

Figures 6.8 and 6.9 provide the success rate of CPA on the newly generated S-
boxes as well as their inverses compared to the existing S-boxes11. The first observa-
tion is that the nonlinearity of an S-box and its differential uniformity are not the only
metrics impacting side-channel attacks (e.g., all the 4×4 S-boxes have the same non-
linearity and differential uniformity but differ from the point of view of side-channel
analysis). Furthermore, the S-boxes generated using F strategy (attack on the first
round, forward direction) as well as the already known S-boxes are weak against
side-channel attacks when considering an adversary who targets the last round of
the cipher (i.e., attacking the inverse of the S-boxes). The generated S-boxes taking
into account such adversary (F +I strategy) provide good side-channel resistance in
forward and in inverse direction. The new 4× 4 S-box EvolvedSR2 happens to be the
best generated S-box among all of the considered S-boxes. From the point of view
of kleptography, the generated 4 × 4 EvolvedK turns out to be the best: it has good
cryptographic properties and it is the easiest S-box to attack using side-channel infor-
mation. Note that the S-boxes EvolvedCC and EvolvedTO differ from a side-channel
point of view. The rationale is that the Confusion Coefficient and the Transparency
Order are not equivalent, as we already reported in the previous section. Moreover,
they both turn out to be very bad (with respect to side-channel analysis) in the inverse

11Please, note the vertical scales of these figures, they are not identical for S-boxes of different sizes
and do not start at 0 for a better visual representation. Same scale figures can be found in the Ap-
pendix C.1

6.3. Improvement of S-boxes 119

0 10 20 30 40 50 60

0.7

0.8

0.9

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

EvolvedCC
EvolvedTO

PRESENT
PRINCE

KLEIN
EvolvedSR1
EvolvedSR2
EvolvedK

(a) 4× 4 S-boxes

0 10 20 30 40 50 60

0.7

0.8

0.9

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

EvolvedCC
EvolvedTO

PRESENT
PRINCE

KLEIN
EvolvedSR1
EvolvedSR2
EvolvedK

(b) Inverses of 4× 4 S-boxes

Figure 6.8 – Success rate of CPA on 4× 4 S-boxes.

120 Chapter 6. SILK

0 10 20 30 40 50 60

0.5

0.6

0.7

0.8

0.9

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

ASCON
KECCAK
PRIMATE
EvolvedSR1
EvolvedSR2
EvolvedSR3
EvolvedSR4

EvolvedSR5
EvolvedSR6
EvolvedSR7
EvolvedSR8
EvolvedSR9
EvolvedK

(a) 5× 5 S-boxes

0 10 20 30 40 50 60

0.5

0.6

0.7

0.8

0.9

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

ASCON
KECCAK
PRIMATE
EvolvedSR1
EvolvedSR2
EvolvedSR3
EvolvedSR4

EvolvedSR5
EvolvedSR6
EvolvedSR7
EvolvedSR8
EvolvedSR9
EvolvedK

(b) Inverses of 5× 5 S-boxes

Figure 6.9 – Success rate of CPA on 5× 5 S-boxes.

6.3. Improvement of S-boxes 121

direction.
Regarding the 5×5 S-boxes, we generated several S-boxes having different cryp-

tographic properties (by varying the value of the differential uniformity and the non-
linearity metrics). This palette of S-boxes gives rise to 9 S-boxes having different
levels of resistance against side-channel attacks. All the generated S-boxes provide
a higher resistance compared to the existing (considered) S-boxes while having good
cryptographic properties. This allows the designer to choose S-boxes among several
options with cryptographic properties that fit their requirements.

6.3.3 Results for Template Attacks

We repeated the same experiments using a different leakage model and another dis-
tinguisher. This time we extracted a leakage model from a real device (a microcon-
troller) and then used the extracted model as a leakage function during our simula-
tions.

In order to extract a leakage model from the target device we used the profiling
step of the TA and the following setup for the data acquisition. A set of 80 000 power
traces was collected on an 8-bit Atmel (ATmega328P) microcontroller at a 16 MHz
clock frequency. The power consumption of the device was measured using an Ag-
illent Infiniium 9000 Series oscilloscope that was set up to acquire 200 MSamples/s.
Otherwise the hardware setup was the one that we described in Section 3.2.1 (Fig-
ure 3.4). In order to reduce noise in traces we used averaging, thus each power trace
represents an average of 64 single acquisitions. Our target device was using a random
data (processing plaintexts with AES S-box to get different target values for profil-
ing). We target the first round of the cipher and focus on the first byte of the key. We
extracted the leakage model L of the device by averaging all traces associated to the
same target value and by selecting the 8 instants that are the most (linearly) corre-
lated with the target value. During the attack phase of our experiments we used one
trace in the attack set. We used the extracted leakage model during our simulations
as a leakage function in the simulator with a small additional Gaussian noise12 having
a standard deviation of 5 × 10−6. This leads to a SNR of 0.40 and 0.37 for the best
point when considering respectively an 4 × 4 S-box and an 5 × 5 S-box. It is worth
to note that we do not claim that this profiled attack represents the optimal physi-
cal attack against the analysed implementation. Other profiled attacks could provide
higher success rates [LPB+15]. In other words, our purpose here is to provide S-boxes
resilient against a chosen profiled attack as a proof of concept.

Figures 6.10 and 6.11 show the success rate of TA on the considered S-boxes.
We can notice that Figure 6.10a and Figure 6.10b show results similar to the results
that we obtain in the previous section: when we consider well-known S-boxes or
newly generated S-boxes (while considering only the forward strategy) the corre-

12A small amount of noise is necessary in order to avoid numerical issues during TA.

122 Chapter 6. SILK

sponding inverse S-boxes show them weaker against side-channel attacks. The 4× 4
EvolvedTASR2 S-box that was generated by taking into account the S-box and its in-
verse gives the best result: it is as good as Present S-box in terms of its inverse and
it is one of the best among well known 4× 4 S-boxes (in the forward direction) with
the exception of 4 × 4 EvolvedTASR1 that was designed to be good in the forward
direction (but not as an inverse). In terms of 5 × 5 S-boxes, 5 × 5 EvolvedTASR5
provides the best result in forward direction. In the inverse direction, EvolvedTASR6
outperforms all the known S-boxes. Note that it is still difficult to create resilient
S-boxes while having good cryptographic properties and being better than existing
S-boxes in both forward and inverse directions. However, we deem that we can still
create a more resilient 5× 5 S-box against TA since 5× 5 S-boxes provide a large set
of possible solutions.

6.3.4 Discussion

The previous sections report the improvement of the success probability of physical
attacks on 4 × 4 and 5 × 5 S-boxes. Our results highlight that the improvement is
more significant for the 5 × 5 S-boxes than for the 4 × 4 S-boxes. The reason relies
on the fact that 5×5 S-boxes have a wider range of obtainable values (more different
permutations) when compared with 4× 4 S-boxes.

Figures 6.12 and 6.12 provide the success rate on each S-box targeted by an adver-
sary exploiting the plaintext (by attacking the forward S-box used in the first round
of the cryptographic primitive) and the ciphertext (by attacking the inverse S-box
used in the the last round of the primitive). Plots on these figure correspond to the
maximum of the two attacks. These results highlight the usefulness of our approach
by providing new S-boxes outperforming well known S-boxes in several contexts.
More precisely, the 4 × 4 EvolvedSR2 and the 5 × 5 EvolvedSR2 S-boxes provide the
best results against CPA while the 4 × 4 EvolvedTASR4 and the 5 × 5 EvolvedTASR6
S-box provide the best results against TA.

Note also that all our results report the success rate of adversaries targeting one
part of the key. It is worth to note that, in practice, adversaries extract the full secret
key. As a result, a small-scale decrease of the first order success rate of an attack on
one part of the key leads to a significant reduction of the success probability of the
attack on the full key. Therefore, designers of cryptographic primitives should con-
sider optimisation methods minimising the success rate of physical attacks against
S-boxes. As an example, let us take two 4 × 4 S-boxes with similarly close success
rates: EvolvedK and the S-box of Present. During a CPA using 15 attack traces,
EvolvedK results in success rate of 0.9820 while the S-box of Present gives the suc-
cess rate of 0.9605 (difference of about 0.02). However, it is important to note that
this success rate corresponds to an attack on one 4-bit nibble. During an attack on
a full cipher with 80-bit key, the adversary repeats the attack on each nibble (i.e., 20

6.3. Improvement of S-boxes 123

0 50 100 150 200 250

0.7

0.8

0.9

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

EvolvedCC
EvolvedTO

PRESENT
PRINCE
KLEIN

EvolvedTASR1
EvolvedTASR2
EvolvedTASR3
EvolvedTASR4

(a) 4× 4 S-boxes

0 50 100 150 200 250

0.7

0.8

0.9

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

EvolvedCC
EvolvedTO

PRESENT
PRINCE
KLEIN

EvolvedTASR1
EvolvedTASR2
EvolvedTASR3
EvolvedTASR4

(b) Inverses of 4× 4 S-boxes

Figure 6.10 – Success rate of TA on 4× 4 S-boxes.

124 Chapter 6. SILK

0 50 100 150 200 250

0.6

0.7

0.8

0.9

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

ASCON
KECCAK
PRIMATE
EvolvedTASR1
EvolvedTASR2

EvolvedTASR3
EvolvedTASR4
EvolvedTASR5
EvolvedTASR6

(a) 5× 5 S-boxes

0 50 100 150 200 250

0.6

0.7

0.8

0.9

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

ASCON
KECCAK
PRIMATE
EvolvedTASR1
EvolvedTASR2

EvolvedTASR3
EvolvedTASR4
EvolvedTASR5
EvolvedTASR6

(b) Inverses of 5× 5 S-boxes

Figure 6.11 – Success rate of TA on 5× 5 S-boxes.

6.3. Improvement of S-boxes 125

0 10 20 30 40 50 60

0.7

0.8

0.9

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

EvolvedCC
EvolvedTO

PRESENT
PRINCE

KLEIN
EvolvedSR1
EvolvedSR2
EvolvedK

(a) Correlation power analysis on 4× 4 S-boxes

0 10 20 30 40 50 60

0.5

0.6

0.7

0.8

0.9

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

ASCON
KECCAK
PRIMATE
EvolvedSR1
EvolvedSR2
EvolvedSR3
EvolvedSR4

EvolvedSR5
EvolvedSR6
EvolvedSR7
EvolvedSR8
EvolvedSR9
EvolvedK

(b) Correlation power analysis on 5× 5 S-boxes

Figure 6.12 – Maximum success rate between CPA attacks on the first round (S-box)
and last round (inverse of the S-box) of an algorithm.

126 Chapter 6. SILK

0 50 100 150 200 250

0.7

0.8

0.9

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

EvolvedCC
EvolvedTO

PRESENT
PRINCE
KLEIN

EvolvedTASR1
EvolvedTASR2
EvolvedTASR3
EvolvedTASR4

(a) Template attacks on 4× 4 S-boxes

0 50 100 150 200 250

0.6

0.7

0.8

0.9

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

ASCON
KECCAK
PRIMATE
EvolvedTASR1
EvolvedTASR2

EvolvedTASR3
EvolvedTASR4
EvolvedTASR5
EvolvedTASR6

(b) Template attacks on 5× 5 S-boxes

Figure 6.13 – Maximum success rate between TA on the first round (S-box) and last
round (inverse of the S-box) of an algorithm.

6.4. Scalable shuffling schemes 127

times). Thus, the success rate of a complete attack results in the success rate of 0.4466
on the Present S-box and 0.6954 in case of EvolvedK which is a significant increase
even though the success rates of attacks on one nibble are very close. Nevertheless,
it is still not the “full story”, indeed here we only consider the success rate of order 1
i.e., we are only looking at the top candidate after the sorting process performed by
a distinguisher. Thus, it is possible that the correct candidate (real secret key) is still
easily attainable using a final key enumeration (recall Section 3.2.5). An interesting
direction for the future research could be using genetic algorithms with more crite-
ria and with the success rate of a higher order or using the guessing entropy in the
fitness function (which would allow to effectively block the key enumeration).

We would like to emphasise that the method we are using is a passive approach
towards the resistance of implementations against side-channel attacks. It does not
actively change the behaviour of the device through algorithmic means such as mask-
ing or shuffling. Nevertheless, this idea comes with no costs for the final product (no
randomness or extra memory requirements and no time overheads), the costs are
only related to the development of the cipher. Cautionary note consists in the fact
that creation of such S-boxes (or other operations involved in a block cipher) does not
give any guarantees on the leakage reduction in the final product: first of all, a differ-
ent device probably have a different leakage function (and thus the HW results would
not apply) and secondly, the attacker can also target a different operation. Moreover,
the success rate of a specific attack (with a chosen leakage model) is only ametric — it
does not give a guarantee that the final product will not be attackable. A very similar
idea can be applied to the design of block ciphers, properties such as nonlinearity and
differential uniformity are also only metrics; if an S-box has good properties does not
imply that a cipher that uses it will be “unbeatable”, the problem of composability
is actually a big issue in the whole area of cryptography. Combining several secure
elements does not necessarily result a secure product. The rationale is that the final
implementation of a cipher has to be tested in all its aspects even if each single step
relies on good design.

6.4 Scalable shuffling schemes

The goal of this section is to show how Silk can be used in order to compare a large
number of different countermeasures using the example of shuffling schemes. One
of the difficulties that evaluators can encounter if they try to compare many dif-
ferent shuffling schemes in practice (using physical experiments) is the amount of
time that they have to spend on the data acquisition. We were able to perform a lot
of experiments in parallel because we used a simulated environment.

A shuffling algorithm is the countermeasure against side-channel analysis, the
idea of this countermeasure is based around changing the order of independent op-
erations that manipulate the internal state at every execution (recall Section 3.4.2).

128 Chapter 6. SILK

Only several different shuffling schemes were presented in literature: Random Per-
mutation (RP), Random Starting Index (RSI) and scheduling (recall Section 3.4.2). The
later one cannot be easily and fairly compared with the first two from all points of
view, since they do not shuffle same type of operations. In order to have more differ-
ent shuffling schemes for the comparison we invented new shuffling techniques some
of which are extensions of the RSI scheme. Here we are going to describe 3 families
of scalable shuffling techniques. We start by describing the shuffling algorithms and
then proceed with their comparisons from different points of view including side-
channel analysis.

For the sake of simplicity all examples presented in this section are given for
the SubBytes operation (application of the S-box) on the state of 128-bit version of
the AES block cipher. This section presents shuffling techniques on the example of
the first round of AES, but same shuffling techniques can be applied to any number
of rounds depending on system’s requirements and amount of available resources
(time, memory, amount of random bits, etc.). All presented shuffling algorithms can
be easily adapted for other operations of AES as well as for other algorithms.

The constraints on the RNG of the cryptographic system can be specified in dif-
ferent ways, most importantly we can say that we have a fixed amount of random
bits available per unit of time, the unit of time can be one clock cycle, one round of
a cipher or even a full encryption of one block. For the sake of simplicity we will be
always be referring to generic units of time instead of a more specific choice such as
e.g., a clock cycle.

Most of the shuffling techniques suggested in this section are based on the fact
that the internal state might be seen as a vector or as a matrix. Indeed, in the memory
of a computer, a vector of size 16, a 4 × 4 matrix or even a 2 × 8 matrix are all just
arrays of 16 memory units (in our case bytes).

6.4.1 Extensions of random start index

Basic version of Random Starting Index (RSI) shuffling for AES-128 represents the
AES state as a vector of 16 elements. S-box is applied on all 16 bytes one by one
starting from a randomly chosen index (between 0 and 15). This shuffling technique
requires 4 random bits and it gives us 16 possible starting indexes (and 16 different
shuffles in total).

Two different variations of the basic RSI technique might be implemented, those
techniques generalize RSI and might be applied with less or more random bits (be-
tween 1 and 11 bits in our AES-128 examples).

Vector-RSI

Vector RSI (V-RSI) extension, uses the same representation of the AES-128 state as the
basic RSI, the state is used as a vector and a random starting index might be chosen

6.4. Scalable shuffling schemes 129

with less than 4 bits of randomness. It might be done by giving a fixed value to all
missing bits, by reusing some of the available random bits (eventually by combining
them) or even by combining these two approaches, see Figure 6.14.

RNG

Random part

Starting Index

Combined part

Function

Fixed part

Figure 6.14 – Structure of V-RSI index generation. The order of bits coming from
different parts might be chosen arbitrarily.

For example, if we have only 3 available random bits for the V-RSI (due to the
constraints on the RNG), we can fix the position of the missing one as the LSB of the
starting index and always assign its value to 0. In this case we will have 8 possible
shuffles with only even numbers as starting indexes, see Figure 6.15a.

Here is another example, lets say we have only 2 random bits per unit of time
and we would like to use V-RSI shuffling. We can fix those random bits as two LSBs
of the index, fix the value of the MSB of the index to 1 and assign the value of the
second MSB to the exclusive-or (xor) of the two available random bits. If we use this
algorithm to generate the starting index we will be able to generate 4 different shuf-
fles that might start with indexes 8, 11, 13 or 14, see Figure 6.15b. This last example
is not practical, especially in software implementations since it requires additional
computations. Nevertheless, this example is meant to illustrate that we can actually
choose a set of any starting indexes for an implementation by choosing how to assign
values to missing bits that are needed in order to have a random index.

An idea of using a 3-part computation (fixed part, random part and combined
part) in order to generate a random index might be used in a scenario when the
shuffling scheme used by the device is the same for all devices, but each instance is
different thanks to different combination functions and different fixed parts. In such
scenario each device will use a different shuffling, thus an attacker will have less
chances of being able to profile one device in order to attack another one.

Matrix-RSI

The second extension, that we call Matrix RSI (M-RSI), of the RSI technique handles
the internal state of AES as a matrix and treats it row by row. Since the state is
handled row by row, we can just apply the V-RSI on each row. Since all rows are

130 Chapter 6. SILK

RNG

R0 R1 R2 0

⊕

(a) Using 3 random bits and 1 fixed bit, giv-
ing all even numbers.

RNG

R0 R11 Rx

⊕

(b) Using 2 random bits, 1 fixed bit and 1
combined. Giving 8, 11, 13 and 14.

Figure 6.15 – Examples of V-RSI use with 2 and 3 available random bits.

handled separately, we can also start with any row i.e., we can reuse V-RSI technique
in order to choose the starting row. This technique allows us to shuffle SubBytes
operation with 1 to 10 random bits and can give us from 2 to 1024 possible shuffles
in case we handle the state in a classical 4× 4 configuration. Same approach can go
up to 11 random bits while generating 2048 possible shuffles if we handle the state
for the sake of shuffling as a 8× 2 matrix (8 rows and 2 columns).

Table 6.4 shows howM-RSI might be applied on AES-128 state (handled as a 4×4
matrix) depending on the number of available random bits per unit of time. This table
is structured as follows,All rows part shows howwe can go through all rows and Cells
in a row part shows how we may handle all cells in one row. Following notations are
used: Fixed — normal, non-random algorithm is used (e.g., 0, 1, 2, 3); Rand(n) —
starting index is chosen using n random bits; S — same random numbers are used to
get the starting index in each row, D — different random bits are used to generate the
starting index in different rows. For example, if we have 6 available random bits and
we want to use M-RSI, according to the table we might use 2 bits in order to choose
a random row to start with and we can also use 1 bit per row in order to choose a
random starting index in each row (using V-RSI with 1 bit on a vector of 4 bytes).

Notice that this table only gives some examples of how to use M-RSI per number
of available bits, multiple combinations might be implemented for some numbers e.g.,
for 4 bits we might also use 2 bits in order to choose a starting row and then use 2
random bits in order to choose a random start cell (same in each row). Some of these
choices might be more efficient and/or more secure than others. This dependency is
also influenced by the hardware (i.e., available instructions).

Unfortunately, we were not able to find a “nice” combination that could be im-
plemented efficiently (that does not need special cases, when implemented) for 7
available random bits.

6.4. Scalable shuffling schemes 131

Table 6.4 – Examples of M-RSI use on 4× 4 AES-128 state using different number on
random bits.

Available All rows Cells in a row Number of

Random bits Bits Handling Bits Handling Shuffles

1 1 Rand(1) 0 Fixed 2
2 2 Rand(2) 0 Fixed 4
3 2 Rand(2) 1 Rand(1), S 8
4 0 Fixed 4 Rand(1), D 16
4* 2 Rand(2) 2 Rand(2), S 16
5 1 Rand(1) 4 Rand(1), D 32
6 2 Rand(2) 4 Rand(1), D 64
8 0 Fixed 8 Rand(2), D 256
9 1 Rand(1) 8 Rand(2), D 512
10 2 Rand(2) 8 Rand(2), D 1024
* The second version with 4 bits offers more security, see Section 6.5 and
Table 6.8.

6.4.2 Reverse shuffle

The idea behind the simplest version of Reverse Shuffle (RS) technique is the follow-
ing: AES-128 state is used as a vector of 16 bytes, S-box is applied to all bytes of the
state following forward or reversed order (depending on the value of 1 random bit).
For example, if the value of the random bit is 0 we may go through the state from
byte 0 to byte 15 and if the value of the random bit is 1 we can go through bytes in
the reversed order (from 15 to 0).

Matrix-RS

RS might be extended by using the state of AES-128 as a m × n matrix instead of a
vector (where m × n is the size of the original vector, 16 in our case), we are going
to call this extension Matrix-RS (M-RS). We will specify the exact M-RS version by
using the notation M-RSm× n. Note that M-RS 1× 16 gives us the original simple
RS.

The idea behind M-RS 4 × 4 is the following: we can use RS on each row (of 4
bytes) as well as for all rows (start from row 0 or row 3 in the matrix). It allows us to
use from 1 up to 5 random bits for shuffling. For example, if we have 4 random bits
we can go through all rows in forward order (no randomness required), we can also
go through all cells in each row in forward or reversed order (different order for all
rows, 4 bits of randomness), see example in Figure 6.16, also see Table 6.5.

Table 6.5 shows how M-RS 4× 4 might be applied on AES-128 depending on the

132 Chapter 6. SILK

RNG

0

0

1

0

Cells
sweep order AES-128 State

Rows
sweep
order

Figure 6.16 – Example of M-RS 4× 4 with 4 available random bits.

Table 6.5 – Examples of M-RS use on 4× 4 AES-128 state using different number on
random bits.

Available All rows Cells in a row Number of

Random bits Bits Handling Bits Handling Shuffles

1 1 Rand 0 Fixed 2
2 1 Rand 1 Rand, S 4
3 1 Rand 2 Rand, 2S 8
4 0 Fixed 4 Rand, D 16
5 1 Rand 4 Rand, D 32

number of available random bits. This table uses following notations: Rand means
that indexes are handled in forward or reversed order randomly, Fixed means that
same fixed order is used to go through cells in a row (or rows in the matrix); S means
that same random bits are used on several rows13, D means that different random bits
are used for all rows.

Since a 16 byte AES-128 state might be represented as a matrix in several dif-
ferent ways (matrix of different size), we may use it to our advantage while using
more or less random bits for shuffling. If we want to use more than 5 random bits
and generate more shuffles we can use M-RS 8× 2 shuffle, it will allow us to use up
to 9 random bits (1 bit per row and 1 bit for all rows) and generate 512 shuffles.

6.4.3 Sweep swap shuffle

The idea of Sweep Swap Shuffle (SSS) is based on the fact that the state of AES-128
might be represented as a m × n matrix (e.g., a 4 × 4 or a 2 × 8 matrix). A matrix

132S in line 3 means that same bits are reused 2 times on 2 different rows and then different random
bits are used on 2 other rows

6.4. Scalable shuffling schemes 133

AES-128 State AES-128 State

R0

R0 = 1R0 = 0

RNG

Figure 6.17 – Going through bytes of AES-128 state matrix with SSS 4× 4.

B
B

B
B

B
B

B
B

A
A

A
A

A
A

A
A

B
B

B
B

B
B

B
B

A
A

A
A

A
A

A
A

B
B

B
B

B
B

B
B

A
A

A
A

A
A

A
A

B
B

B
B

B
B

B
B

A
A

A
A

A
A

A
A

Figure 6.18 – Four possible shuffles of AES-128 state with P2-SSS 2 × 4 technique
using 2 random bits.

might be handled row-by-row or column-by-column. SSS might also be implemented
e.g., by swapping pieces of code that go through row and column indexes. In order to
specify how a vector is represented as a matrix we will use the notation SSSm× n.
Figure 6.17 shows two possible orders of SSS 4× 4.

Part SSS

The idea behind Part-SSS (P-SSS) extension of SSS technique is the following: a state
of AES-128 might be broken into several equal parts e.g., 2 parts of 8 bytes. An SSS
technique could be then applied to each part separately, it would allow us to create
more different shuffles (by using more than 1 random bit). We will use the notation
P∂-SSSm×n in order to specify the number ∂ of identical parts that we want to use.
Note that P1-SSS 4× 4 gives us the original SSS 4× 4. See example of P2-SSS 2× 4
in Figure 6.18

By using P-SSS on AES-128 we can generate up to 16 shuffles by using 1 to 4
random bits, see Table 6.6.

134 Chapter 6. SILK

Table 6.6 – Examples of P-SSS use onAES-128 state using different number on random
bits.

Random bits (and ∂) Technique Shuffles

1 P1-SSS 4× 4 2
2 P2-SSS 2× 4 4
4 P4-SSS 2× 2 16

Table 6.7 – Examples of MD-SSS use on AES-128 state with different number on ran-
dom bits.

N∆
Random State Shufflesbits representation

2 1 2× 8 2
3 3 2× 4× 2 6
4 5 2× 2× 2× 2 24

Multidimensional SSS

The idea behind Multidimensional SSS (MD-SSS) extension of SSS technique is based
on the fact that a vector might be seen as a multidimensional matrix14. For example
the state of AES-128might be seen as 2×4×2matrix, also see examples on Figure 6.19.
It allows us to go through all dimensions in any order, e.g., in 2 dimensions the state
might be handled row by row or column by column (go through the first dimension
then through the second one or the other way around).

To specify a version of SSS we are going to use the notation MD-SSS ∆1 ×∆2 ×
· · · ×∆N∆

, where N∆ is the number of dimensions and ∆i is the size of the state in
the dimension i. The number of shuffles that can be generated with MD-SSS depends
on the number of dimensions that is used to represent the state for the shuffling.
Since we can choose any ordering of dimensions to handle the state, the number of
different shuffles that might be generated is given by N∆! and thus the number of
necessary random bits is given by dlog2N∆!e. Table 6.7 gives several examples of
MD-SSS used with AES-128 state using different number of available random bits.

14It is important to note, that we can think about the state as if it was a three dimensional matrix for
the purpose of shuffling, but it does not mean that the state has to be represented and manipulated as
such during the entire algorithm.

6.5. Analysis of shuffling schemes 135

AES-128 state as a vector

0 1 2 3 4 5 6 7 8 9 A B C D E F

2 dimensions

0 1 2 3
4 5 6 7
8 9 A B
C D E F

3 dimensions

8 9 A B
C D E F1 2 3 4

5 6 7 8

Figure 6.19 – Examples of representations of AES-128 state as multidimensional ma-
trices.

6.5 Analysis of shuffling schemes

In order to study our shuffling algorithms as well as to compare them to the exist-
ing schemes from the theoretical point of view, we introduce a couple of new terms
and definitions. For the efficiency analysis we implement some of them in an AT-
mega382P microcontroller and also perform a range of side-channel analysis based
on simulations provided by our Silk tool.

6.5.1 Randomization

A Randomization range or randomization interval of a shuffling technique is the biggest
interval where the shuffling algorithm operates and where the shuffled operations
might be reordered.

A randomization range of a shuffling technique might be one operation (e.g., Ad-
dRoundKey), one round (or several operations of one round), several rounds or the
entire algorithm. If the same shuffling technique is applied on SubBytes operation of
all rounds of AES, then the randomization interval of this technique is still one oper-
ation (SubBytes) since instructions in between different SubBytes are not reordered
among them.

The randomization range of all our shuffling techniques is one operation (Sub-
Bytes, as presented at the beginning of Section 6.4). RP also has a randomization
range of one operation. SchedAES has a very wide randomization range and it al-
lows to generate many different shuffles but requires a huge amount of randomness
(up to 3 000 bits per encryption) and memory.

A fully randomized instruction (or operation) is an instruction that might be re-

136 Chapter 6. SILK

ordered and executed at any instant in time by a given shuffling technique inside
of its randomization range without changing the final result of the algorithm that is
being shuffled. A partially randomized instruction is an instruction that is not fully
randomized, but that might be reordered and executed during at least 2 different in-
stants in time by a given shuffling technique inside of its randomization range. An
unrandomized instruction is an instruction that is always executed at the same mo-
ment in time inside of the randomization range using a shuffling technique.

We will say that shuffling algorithm is fully randomized if all instructions in-
side of its randomization range are fully randomized. If at least one instruction is
unrandomized or only partially randomized, then the shuffling technique is partially
randomized. Note that there cannot be only unrandomized instructions in a shuffling
algorithm, since in this case there would be no shuffling at all.

RSI applied to SubBytes is fully randomized in its basic version, but if we use less
random bits (as in V-RSI) it becomes only partially randomized. Different versions
of M-RSI might be fully randomized or partially randomized depending on choices
made during the implementation (different number of random bits used to choose
the start index for rows and inside of each row). RS and its extensions are always
partially randomized and it does not have unrandomized instructions if used with
AES. RP is also fully randomized.

Unfortunately, SSS is partially randomized and have unrandomized instructions
since some bytes are always used at the same moment in time, indeed the S-box is
always applied on the first byte at the beginning and on the last byte at the end of the
SubBytes operation. Moreover, if we use e.g., SSS 4×4 on AES-128 S-box on bytes 0,
5, 10 and 15 are unrandomized since these bytes are situated on the diagonal of the
4× 4 matrix. In general, handling a square matrix row by row or column by column
does not change the moment in time when the elements on the diagonal are used.
Thus, SSS n× n will have n unrandomized instructions.

In order to analyse all of the proposed shuffling schemes, we executed each one of
them through the entire range of possible random inputs that each algorithm could
receive as a parameter. For every algorithm we generated a heatmap of all possible
positions (moments in time) where a SubBytes operation can take place on every
single byte id. See examples of such plots in Figure 6.20, other figures are available
in the Appendix D. We can see that, for each scheme, available positions for each
byte are uniformly randomly distributed, with the exception of 4 bytes of SSS (the
bytes that are situated on the diagonal of the matrix). The exact patterns that we can
observe on the heatmaps depend on the way the schemewas implemented (i.e. which
bits were chosen to be fixed and which are random, recall Figures 6.14 and 6.15).

We also generated same type of heatmap for the RP shuffling scheme, see Fig-
ure 6.21. We used the implementation of RP shuffling scheme from DPA Contest
4.215 [BBD+14]. It is currently impossible to enumerate all possible inputs (ran-

15http://www.dpacontest.org/v4/data/v4_2/smart_v42_2.zip

http://www.dpacontest.org/v4/data/v4_2/smart_v42_2.zip

6.5. Analysis of shuffling schemes 137

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.2

0.4

0.6

0.8

1.0

(a) M-RSI 4× 4 with 2 random bits.

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.2

0.4

0.6

0.8

1.0

(b) M-RS 4× 4 with 2 random bits.

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.2

0.4

0.6

0.8

1.0

(c) V-RSI with 2 random bits.

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.5

1.0

1.5

2.0

(d) SSS 4× 4 with 1 random bit

Figure 6.20 – Examples of heatmaps of positions when the SubBytes operation takes
place for every byte.

domness) required by this shuffling scheme in a reasonable amount of time, so the
heatmap from Figure 6.21 is generated using 235 randomly chosen permutations. Us-
ing this approximation we can see that the ratio between the highest number of oc-
currences of a byte at a given position to the lowest number is equal to 1.000116,
which is less than 0.01% of difference which approximately equals to 2−13.

6.5.2 Number of shuffles

We will say that a shuffling algorithm is optimal if it is able to generate 2n different
shuffles using n random bits. If we have n random bits of information we will be

138 Chapter 6. SILK

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

2147350000

2147400000

2147450000

2147500000

2147550000

2147600000

Figure 6.21 – Heatmap of RP shuffling scheme. Implementation from DPA Contest
4.2 [BBD+14]

able to generate at most 2n different values. If a shuffling algorithm uses n bits of
randomness and generates less than 2n different shuffles, then it is not an optimal
shuffling algorithm (from the point of view of information theory).

RS, RSI and all of their extensions use n bits in order to generate 2n shuffles, see
Tables 6.4 and 6.5, thus these schemes are optimal, however it is not always the case
of SSS.The simple version of SSS is optimal as well as P-SSS, but not theMD-SSS since
for aMD-SSSwe can obtain (N∆)! shuffles and ∀{a, b} ∈ N2, (a > 2) =⇒ (a! 6= 2b).

RP is able to generate all Nb! possible permutations of the state (Nb is the num-
ber of bytes that have to be shuffled), but it is not optimal since it requires more
than log2((Nb)!) random bits, the implementation proposed by Veyrat-Charvillon et
al. [VMKS12] requires 64 bits of randomness.

Number of possible shuffles that can be generated by a scheme influences the
security that it offers against side-channel analysis. Doubling the number of instants
when an operation could be executed increases the amount of traces required for a
successful attack roughly by a factor of four [MOP07]. Thus, in a perfect scenario, a
shuffling algorithm that generates more different permutations offers more security
(because there should be more possibilities of different operations being performed
at a given moment in time), however it is not always true. It is very important to
notice, that some particular cases of RSI and RS extensions do not always improve
the strength of the countermeasure when more random bits are used. For example,
in the simplest version of RS it can generate only two permutations (forward and
reversed), thus we know that we have only two possible indexes at each moment
in time. If one would use 4 × 4 M-RS with 4 random bits as suggested in Table 6.5
when rows are always handled in forward order while each row might be handled in

6.5. Analysis of shuffling schemes 139

the forward or the reversed order, we still have only two possible indexes that might
be used at each moment in time. Same reasoning applies in some other cases, thus
not all versions of each scheme give a security increase when more random bits are
used, for more details see Table 6.8. Nevertheless, when we increase the number of
random bits in a scheme we always increase the number of different shuffles that
could be generated. Thus, from this perspective, the security of a scheme increases
i.e., when an attacker learns the position of one byte it gives him less information
about positions of all other bytes. The rationale is that there are two slightly different
ways of looking at a difficulty of an attack on a shuffling scheme: (1) attacking one
byte or (2) attacking the entire state (all the bytes). The number of shuffles influences
the second type of difficulty, but not necessarily the first one.

6.5.3 Resources

In addition to randomness, shuffling algorithms also require a certain additionalmem-
ory and time. In order to support RP one needs to use an additional data structure
(of the same size as the internal state of the algorithm, so its memory overhead is
O(Nb), where Nb is the size of the state in bytes). Depending on the algorithm and
exact details of the implementation, RP might also require additional time overhead
of O(Nb) up to O((Nb)

3) [BBD+14]. Scheduling (SchedAES) requires an additional
datastructure that allows to track which operations are already performed on each
part of the internal state, this datastructure effectively doubles the size of the AES
implementation, the countermeasure slows down AES by the factor of 7 in case of
AES-128 [Med12]. Our extensions of RS, RSI and SSS do not require as much mem-
ory, their memory overhead is limited to a couple of variables (generally to recompute
and hold new indexes), in other words their memory overhead is O(1). The only ex-
ception might beMD-SSS, where we need to store a small table of the size equal to the
number of dimensions, which is always smaller than the size of the original internal
state; in this case the memory overhead is O(N∆).

Shuffling countermeasure also results in a time overhead compared to a normal
unprotected implementation. The exact time overhead might vary depending on the
implementation and on the available hardware. We did several experiments on a AT-
mega328P 8-bit microcontroller, all our code was written in C++. The microcontroller
used an external 16 MHz clock. We implemented some of the variations of shuffling
techniques that were described in Section 6.4. We applied several techniques on the
SubBytes operations of the first and the last round of AES-128. The only detail that
changed between different implementations were the two calls to functions that im-
plemented different versions of SubBytes. In order to measure the time we encrypted
10 000 random plaintexts with different random bits as inputs to our shuffling tech-
niques. Table 6.9 presents our results including and excluding the time needed for
the generation of random bits (for shuffling). The first and the last rounds used same

140 Chapter 6. SILK

Table 6.8 – Min and max number of different SubBytes operations that might occur
at a fixed moment in time i.e. the number of different bytes of the state that might be
handled at a given moment in time during shuffling.

Technique Random Bits Operations Total

Min Max Shuffles

RP [VMKS12] 64 16 16 16!
RP• 45 16 16 16!

RSI 4 16 16 16

V-RSI

1 2 2 2
2 4 4 4
3 8 8 8
4 16 16 16

M-RSI 4× 4

1 2 2 2
2 4 4 4
3 8 8 8
4 2 2 16
4* 16 16 16
5 4 4 32
6 8 8 64
8 4 4 256
9 8 8 512
10 16 16 1024

RS 1 2 2 2

M-RS 4× 4

1 2 2 2
2 4 4 4
3 4 4 8
4 2 2 16
5 4 4 32

P1-SSS 4× 4 1 1 2 2
P2-SSS 2× 4 2 1 2 4
P4-SSS 2× 2 4 1 2 16

MD-SSS
1 1 2 2
3 1 3 6
5 1 4 24

* Second version, recall Table 6.4.
•Theoretical lower bound on the number of necessary random
bits, dlog2 16!e = 45.

6.5. Analysis of shuffling schemes 141

Table 6.9 – Execution time of 10 000 AES-128 encryptions with different shuffling
techniques applied to the SubBytes operation of the first and the last rounds. Columns
“Including RNG” and “Excluding RNG” give information including and excluding
time for the generation of random numbers required for shuffling.

Algorithm Random Including RNG Excluding RNG

bits Time (ms) Overhead (%) Time (ms) Overhead (%)

No shuffling 0 13197 0.0 13197 0.0

RS 1 14500 9.9 13547 2.7

M-RS 4× 4

1 14201 7.6 13246 0.3
2 14438 9.4 13486 2.1
3 14480 9.7 13528 2.5
4 14362 8.8 13412 1.6
5 14465 9.6 13514 2.4

SSS 4× 4 1 14394 9.0 13441 1.8

V-RSI

1 14426 9.3 13473 2.1
2 14426 9.3 13473 2.1
3 14424 9.3 13473 2.1
4 14423 9.3 13472 2.1

M-RSI 4× 4

1 14186 7.5 13232 0.3
2 14185 7.5 13232 0.3
3 14322 8.5 13369 1.3
4 14323 8.5 13372 1.3
5 14425 9.3 13474 1.3
6 14423 9.3 13475 1.3
8 14319 8.5 13373 1.3
9 14397 9.1 13452 1.9
10 14398 9.1 13452 1.9

random bits for shuffling. We can see that most of the overhead comes from the RNG.
All calculations (of indexes for memory accesses during shuffling) did not use condi-
tional branching in any way dependent on the random bits used for the shuffling in
order to prevent possible SPA and timing attacks (recall Sections 3.1.1 and 3.1.5).

We can see that the overhead is relatively small and reasonable, but not negligible.
Different techniques give slightly different time overheads which give the ability to
choose depending on timing constraints that are imposed on a system. These results
might probably be improved by implementing other variants of our shuffling tech-

142 Chapter 6. SILK

niques or by implementing them in the assembly code (while taking into account the
architecture of the microcontroller).

6.5.4 Resistance against side-channel attacks

To analyse how the proposed countermeasures can resist against side-channel at-
tacks compared to an unprotected device we implemented 17 variants of the proposed
shuffling schemes and also an unprotected version of the algorithm. We analyse 3 dif-
ferent scenarios which represent 3 attackers of different strength in order to show the
differences between presented shuffling schemes.

Unprofiled attack

Correlation Power Analysis (CPA) [CNK04, BCO04] is one of the most popular non-
profiledDPA attacks. We have tested several versions of our shuffling schemes against
CPA attacks. The CPA was conducted using the Hamming weight (HW) leakage
model on simulated power traces (the attacker knows how the device leaks). We
have implemented the following algorithm:

∀i ∈ [0, 15] , zi = S(ki ⊕ pi) (6.8)

where lower index i gives one byte of a variable while z is the resulting 4×4 interme-
diate state, k is a 16 bytes fixed key and p is a 16 bytes plaintext. The application of
the AES S-box S was shuffled using different shuffling schemes. In order to simulate
power traces we used Silk tool with the following parameters: Hamming weight as
the leakage function and the noise variance was set to 2. Same parameters were used
for all simulations with different shuffling schemes.

Figure 6.22 shows the estimated number of traces that is necessary in order to
extract the key with various shuffling techniques used as countermeasures. As ex-
pected, the number of traces increases with the number of different bytes that might
be handled at a fix moment in time (due to shuffling). The success rate of this attack
on each scheme is shown in Figure E.1 (Appendix E).

The same CPA was applied to all shuffling techniques. Among the presented
shuffling schemes, there are several techniques that give the same advantage (resis-
tance) against a classic versions of DPA-like attacks, but some of them may generate
more different permutations in total (see Table 6.8) and should make implementation
specific attacks more difficult (in the sense of attacking the entire state).

Implementation specific unprofiled attack

We used same simulation parameters and same algorithms in a more complex setting.
We applied a CPA attack in a scenario when the attacker is aware of the shuffling
scheme and knows the details of its implementation. We applied a preprocessing

6.5. Analysis of shuffling schemes 143

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

2 4 6 8 10 12 14 16

0

900

1800

2700

3600

4500

5400

6300

7200

Number of possible bytes used at fixed moment in time

T
ra

ce
s

to
 a

tt
a
ck

No Shuffling

M−RSI3, 6, V−RSI3

M−RSI2, M−RS2, 3, 5
M−RSI1, 4, V−RSI1, M−RS1, 4

M−RSI5, 8, V−RSI2

M−RSI*4, V−RSI4

Figure 6.22 – Number of traces needed to extract the key using CPA on different
implementations. Note the vertical scale.

technique called integration [MOP07, §8.2.3] to the simulated traces before applying
the correlation power attack. In this scenariowe sum all points which could be related
to the attacked byte according to the shuffling scheme that is used, recall Figure 6.20
and Figures of the Appendix D. Thus, for a scheme where a byte can be handled in
v different positions we integrate v points, for example we sum 4 points while at-
tacking M-RSI 4× 4 with 2 random bits, those points correspond to positions where
byte 0 can potentially be handled (i.e., points that correspond to bytes 0, 1, 2 and 3
in a scenario without shuffling, see Figure 6.20a). To sum up, we suppose that the
attacker knows exactly where a given byte can be handled in a power traces and thus
the attacker analyses (preprocesses) only these points. In other words, this scenario
corresponds to a more powerful attacker with more knowledge about the attacked
cryptosystem.

Figure 6.23 shows the number of traces needed to successfully extract the se-
cret (lowest number of traces where the success rate of the attack reaches the value
1). More details on some attacks are shown in Figure E.2 (Appendix E). We can see,
that this technique is more powerful than a “simple” CPA (from the previous sec-
tion) against all shuffling schemes (note that the vertical scale between Figures 6.22
and 6.23 is not the same). Nevertheless, our results show that when more bytes can

144 Chapter 6. SILK

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14 16

0

200

400

600

800

1000

1200

1400

Number of possible bytes used at fixed moment in time

T
ra

ce
s

to
 a

tt
a
ck

No Shuffling

M−RSI2, 5, V−RSI2, M−RS2, 5

V−RSI3

M−RSI1, 4, V−RSI1, M−RS1, 4

M−RSI6

M−RSI8, M−RS3

V−RSI4

M−RSI3

M−RSI*4

Figure 6.23 – Number of traces needed to extract the key using CPA with integration
as a preprocessing technique. Note the vertical scale.

be found in a particular position (fixed moment in time during the execution of an
algorithm), then the difficulty of this attack increases.

Profiled attack

We used a Template Attack (TA) [CRR02] in a scenario when an attacker has pro-
filing capabilities and has the knowledge of the shuffling scheme (i.e., the adversary
knows all points in time when a byte can be handled in the same way as in the unpro-
filed CPA with integration). However, in this scenario the attacker does not control
the randomness during the profiling, which corresponds to a real case scenario (the
randomness for cryptographic operations is generated inside of the device), thus an
attacker does not know the full permutation (order of bytes during a single execu-
tion)16.

For each target value (attacked byte) the template corresponds to an average and
a covariance matrix. The complexity of the parameters’ estimation for each of these
templates depends on the number of points that have to be considered during an at-
tack. The number of points in each attack depends on the number of points in time

16Even in a case when an attacker knows all random values, he might choose not to use them in order
to speed up the profiling phase of the attack by building less templates.

6.5. Analysis of shuffling schemes 145

● ●
●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

2 4 6 8 10 12 14 16

0

1000

2000

3000

4000

5000

6000

Number of possible bytes used at fixed moment in time

T
ra

ce
s

to
 a

tt
a
ck

No Shuffling M−RSI2, 5, 8, V−RSI2, M−RS2, 3, 5

M−RSI6, V−RSI3

M−RSI3

M−RSI1, 4, V−RSI1, M−RS1, 4

M−RSI*4, V−RSI4

Figure 6.24 – Number of traces needed to extract the key using TA on different im-
plementations. Note the vertical scale.

when a bytemight be handled and thus the number of points depends on the shuffling
scheme. We used 5 000 traces per target value in order to build all profiles.

The number of traces needed to extract the key with high probability is shown in
Figure 6.24 (the success rate of each attack can be found in Figure E.3 in Appendix E).
These results confirm that the success of an attack depends on the number of possible
bytes that could be handled at the same moment in time (due to shuffling), which is
also the case for two other CPA attacks. We can also note that the TA is better than
the CPAwith integrationwhen the number of points used for the TA is low (i.e., when
the number of positions where a given byte can be handled by the shuffling scheme
is low or in other words when the number of possible bytes used at a fixed moment
in time is low) e.g., see Figures 6.23 and 6.24 for 2 possible positions. However, the
TA is less effective than the CPA with integration of points for schemes that result
in permutations where a byte could be in many different positions (many points to
consider in the TA), compare Figures 6.23 and 6.24 for 16 possible bytes used at a fixed
moment. The advantage of the TA compared to the CPA with integration decreases
when more points have to be taken into account due to the fact the TA suffers from
the estimation error in high dimensionality contexts [LBM15a].

146 Chapter 6. SILK

Targeting the RNG

Another implementation specific technique that an attacker might be using in or-
der to attack these schemes could also be implemented. An attacker that knows
the exact implementation of the shuffling countermeasure that was used can try to
recover random bits used to shuffle the bytes and then extract the key using this
knowledge (by finding the positions of shuffled operations using known random
numbers). This technique was used to attack a masking scheme of a DPA Con-
test [LBM15b, LMBM13]. The idea of this attack it to target the random number
generator which allows to effectively remove the security mechanism that uses ran-
domness. Thus, all masking and shuffling schemes are vulnerable to attacks that can
successfully target the random number generator.

Attacks on other shuffling schemes

Our results with all three attacks suggest that the difficulty of attacking a given shuf-
fling scheme mostly comes from the number of positions where a given byte can be
handled during an execution of the cryptographic algorithm. To be more precise, all
schemes that can put a given byte at v positions require the same number of traces
to extract the key for a given attack, see Figures 6.22, 6.23 and 6.24 where all points
of the same column overlap or lie close to each other. Moreover, we can observe that
the success rate of each attack on all schemes that result in putting a given byte to the
same number of positions also closely follow each other, see Figures E.1, E.2 and E.3
in Appendix E.

Using these observations, we conclude that a given attack on any shuffling al-
gorithm As will give the same performance that this same attack on a scheme A′

s

that can shuffle a byte into the same number of positions as the scheme As. Thus, an
attack on the first byte of the SSS is identical to attacking an unprotected implemen-
tation, while an attack on the second byte will perform as an attack on a byte of e.g.,
V-RSI with 1 random bit (see Table 6.8 and Figures 6.20d and D.2a). Same reasoning
can be applied to P-SSS, MD-SSS as well as any other shuffling schemes. Thus, the
RP scheme is as difficult to attack as M-RSI 4×4with 10 bits or V-RSI with 4 random
bits (see Table 6.8).

Nevertheless, it is important to note, that this reasoning holds if the RNG is not
biased and if the implementation under attack does not have additional flaws that an
attacker can exploit nor additional sources of information available to the attacker.
This result can also vary in case if additional countermeasures are applied with a shuf-
fling scheme. Another important thing to note is that these attacks are attacks on one
byte, difficulty of extending an attack on one part of the key to the attack on the full
state increases with the number of shuffles, as already discussed in Section 6.5.2.

6.5. Analysis of shuffling schemes 147

6.5.5 Applications & modifications

It is easy to apply RSI, RS, SSS and their extensions to SubBytes or AddRoundKey
operations of AES-128 since each of them operates only on one byte of the state at
a time and does not have any precedence requirements inside of the operation. In
order to apply these techniques to ShiftRows or MixColumns operations we may
simply consider a row or a column as a memory unit (instead of a byte).

Same techniques might be adapted for 192-bit and 256-bit versions as well as
for other operations of AES cipher by using more random bits to handle additional
rows (for performing the shuffling during the round key derivation). RSI, RS, SSS and
their extensions might be also applied to other algorithms. These techniques should
be applicable if parts of the state are used independently from each other during
some computations e.g., the application of the S-box in ciphers like DES [DES77] or
Present [BKL+07].

We can also combine RS, RSI, SSS and their extensions in order to obtain more
different shuffles, e.g., RS might be used with 10-bit version of M-RSI on the AES-128
in order to get 2048 different shuffles by using 11 random bits.

Finally, it is worth noting that not all techniques presented here as well as their
extensions are equally practical and are equally secure with a given number of ran-
dom bits. Nevertheless, we considered that all versions with their extensions should
be presented for the sake of completeness of this work. For example, SSS is not as
practical as RSI extensions for security, optimality as well as penalty reasons; how-
ever, we think that SSS is a nice case study from the theoretical point of view.

6.5.6 Discussion

All of the shuffling schemes that we propose and describe are similar i.e., each one
suggests a way of going through all indexes of the state in a particular order that
could be easily implemented with a small overhead. Most of these techniques could
be seen as extensions and generalizations of the RSI shuffling scheme.

Our scalable shuffling schemes can offer different number of shuffles and different
number of positions (moments in time) where a particular byte is handled, overall
it results in different levels of security. In order to choose which shuffling scheme
to implement we advise the designers of a cryptosystem to consider the following
criteria in given order:

• Number of available random bits

• Timing constraints

• Number of different operations that could be handled at a given moment in
time

148 Chapter 6. SILK

• Number of shuffles

The first criterion is related to the basic constraints of the system, so the designer
should use as much randomness as possible in order to increase the security. The sec-
ond criterion changes depending on the given hardware and implementation details,
so it has to be tested for each platform individually, however, our results show that all
shuffling schemes that we present result in very similar timing overheads. Results of
all our attacks suggest that a scheme which generates shuffles such that higher num-
ber of different bytes that could potentially be handled at a fixed moment in time
(from the beginning of the execution) increases the difficulty of an attack. Thus a
designer of a cryptosystem should choose a shuffling algorithm that maximizes this
number. Finally, the number of different shuffles that a given shuffling scheme can
produce does not influence the number of traces that is needed in order to mount
a successful attack. However, mounting some profiled attacks becomes increasingly
difficult when the number of shuffles grows since an attacker would have to create a
model per shuffle [BGH+16]. This parameter can also help in case if the attacker can
find out a position of one byte in order to reduce the remaining uncertainty on the
positions of other bytes.

Our results based on side-channel analysis using 3 different types of attackers
(of increasing strength and capabilities) show that the number of different opera-
tions that might occur at a given moment in time produces the biggest effect on the
success rate of an attack. This result hold even for attacks that take into account the
implemented scheme. From this perspective, the SSS scheme presents a disadvantage
because it does not shuffle all bytes, some of the bytes always remain at a fixed po-
sition in a trace. However, SSS could still be interesting in practice, because it could
be implemented using only a couple of additional instructions on many hardware
platforms (without taking into account the random number generator) e.g., condi-
tional swap instruction (MSWAPF) available on TMS320x2803x or using compare-
and-exchange (CMPXCHG) that is available on many Intel and AMD processors. SSS
could also be easily combined with other shuffling schemes thus giving a boost to the
security of the system.

A specific type of attack could also be mounted against all of the presented shuf-
fling schemes. If an attacker targets the random number generator in order to find out
the ordering that is generated by the shuffling scheme, they can effectively remove
the protection given by the countermeasure. This type of attack could be mounted
on any shuffling or masking countermeasures [LBM15b]. Thus, algorithmic counter-
measures that rely on randomness require a secure random number generator that
could not be easily targeted through side-channel analysis.

Most importantly, from the point of view of side-channel analysis, we were able
to study 18 different implementations (including the unprotected version) using 3
different attacks. In case of a real experiment, we would have to create 18 setups and

6.5. Analysis of shuffling schemes 149

perform 18 acquisitions. Using a simulator we were able to run all these experiments
in parallel (at the same time, using a cluster of a computing center), which allowed us
to substantially reduce the amount of time necessary for these experiments. More-
over, we were able to generate all the data on the fly (stored in RAM), without using
disk space for storage and cut all the timing costs related to the data transfer (from
the lab to the servers that were running the analysis). Based on previous experiments
that wewere running in our lab, we know that acquiring 10 000 traces takes about 4.5
hours using our setup (it includes the time needed for the setup, data transfer, verifi-
cations of the dataset and the actual acquisition). We used 200 repetitions to compute
the success rate of CPA attacks and computed their success rates up to 8 000 traces
(while using a different set of traces in each repetition). It means that analysis of one
shuffling scheme requires at least 1 600 000 traces. Every acquisition would have to
be performed 18 times in case of real experiments, thus we would have to acquire
28 800 000 traces in total. Even if we assume that we need 3 hours for the acquisition
of 10 000 traces (recall the DPA Contest setup mentioned in Section 5.1) and neglect
the time spent on the physical setup, the data compression and transfer, the acquisi-
tions would still require 8 640 hours (360 days!). In other words, if we were to acquire
these traces using a real setup instead of a simulation we would need almost a year
of non-stop (24 hours a day!) acquisitions just to get the power traces. If we assume
that our setup can be improved in terms of speed using better software, though the
choice of parameters of the oscilloscope or by using several hardware setups in par-
allel. Then, even if a team from another lab could manage to do all the acquisitions 10
times faster, they still can save more than a month worth of time by using a simulator.
The rationale is that using a simulator does save a lot of time and it is reasonably the
only way of performing massive comparative studies.

150 Chapter 6. SILK

6.6 Summary

We showed that a generic high-level of abstraction simulator that can generate traces
for side-channel analysis can be built by overloading operators in a language like C++.
The described tool, called Silk, uses a very simple way of simulating the data depen-
dant part of the power consumption and can also add some noise to the simulation.
Since Silk does not simulate the operation dependant part of power consumption it
cannot suite for accurate estimation of power consumption of a specific hardware.
Moreover, at first stages of development of new algorithms (whether it is a novel idea
for an attack, a countermeasure or another algorithm related to side-channel analy-
sis) the hardware specifications are usually unknown. As the result, Silk is not suited
for detecting implementation specific issues and flaws in a final product. This tool
should only be used for preliminary analysis and comparative studies.

We would like to emphasise, that many studies already used same general meth-
ods for their simulations, however they did not use the same tool across all analysis:
disposable home-brewed pieces of code for one-time analysis tend to be used by labs.
Moreover, some details about simulations cannot be found in the published papers
and each lab might implement the actual simulation slightly differently, even though
main principles of generating values that represent points of power traces stay the
same. Up until Silk was presented all simulation tools for side-channel analysis were
not publicly available and free, which is the reason why researchers did not use the
same tool for their analysis (thus comparing two studies that use simulations can be
tricky since simulations are not done in exactly the same way).

This part of our work merely tries to suggest an opensource automated tool that
can be used for simulations that can be done using very high-level of abstraction tech-
niques. From this point of view, Silk is similar to another high-level of abstraction
simulator presented by Reparaz [Rep16b]. We showed that it can be used to compare
different algorithms and parts of algorithms which ultimately lead us towards a way
that can be used to improve S-boxes. We also showed that Silk can be used to com-
pare countermeasures on the example of shuffling schemes. We stress out, that in
both cases we were able to compare many algorithms which is very difficult to do us-
ing real power traces due to time constraints, simulating the traces allowed us to save
several months worth of data acquisition time. On the example of several S-boxes we
were able to show that our simulations fit real experiments relatively well. However,
we stress out that one simulation performed for one particular algorithm is not per-
fect, this type of simulations fit the reality in terms of relationships between several
simulations i.e., the same attack can require a different number of traces between
real and simulated experiment, but several attacks on real and simulated traces will
behave similarly with respect to each other in both situations. Thus, the suggested
approach works well for comparative studies and allows to estimate an increase in
performance of one algorithm compared to another one e.g., algorithm implemented

6.6. Summary 151

with and without a countermeasure.
Even with respect to high-level of abstraction simulations Silk has its limitations.

Silk cannot easily simulate glitches and some other effects that are present in real de-
vices and measurements setups. Using some additional engineering efforts, Silk can
be modified and improved. For example, it can be upgraded by adding effects related
to the clock jitter: a clock is not perfectly stable in terms of its frequency, it means that
some clock cycles can be slightly longer than others. Thus, an oscilloscope, recording
measurements at a much higher frequency than the device operates will record more
points corresponding to longer clock cycles. As a result recorded traces will not be
aligned at all points which does make the side-channel analysis harder17. Another
way to improve Silk could be done by adding an equivalent of an analog-to-digital
conversion of simulated traces which also happens with real measurements in a dig-
ital oscilloscope. The voltage measured by an oscilloscope is a real number, however
a digital oscilloscope can only record a measurement in binary using a finite amount
of memory, thus it can not record measurement with infinite precision. Therefore, a
measurement is rounded to the nearest number that the oscilloscope can represent.
Generally, the error (difference between the real voltage and the recorded voltage) is
small compared to the value that is recorded. However, in Differential Power Analy-
sis we are specifically interested in small variations that are present in power traces.
Silk uses a double precision 64-bit to represent real number (IEEE 754 standard) for
each point of a trace, which has a higher precision than representations used by mod-
ern oscilloscopes. Moreover, the precision varies in between different scopes. These
differences in the precision of measurements can have a small but measurable influ-
ence on the outcome of side-channel attacks. Thus, preprocessing simulated results
to make them reflect the reality of analog-to-digital conversion with loss of precision
can be beneficial for the accuracy of subsequent side-channel analysis.

One of the main questions that remain open for high-level of abstraction simula-
tions is the method of choosing best parameters for a simulation. On one hand, since
it is a very abstract model that is not tight to a specific device, use of generic ODL and
MTL models (such as HW and HD) could be sufficient. On the other hand, using pro-
filing of real devices might be beneficial to create improved simulations that reflect
the reality better. Since Silk is the first opensource simulator of this kind we cannot
compare it to another one, thus right now it is impossible to say whether there is a
better way of simulating power traces for side-channel analysis.

17Irregular clocks are actually used as a countermeasure against side-channel analysis, recall Sec-
tion 3.4.2

152 Chapter 6. SILK

Chapter 7

Ascold: masking
implementation checker

The simulator and the analysis presented in this section are based on the paper “Mind the Gap: Towards Secure
1st order Masking in Software” presented in Paris (France) at the 8th International Workshop on Constructive
Side-Channel Analysis and Secure Design (COSADE) in 2017 [PV17].

Masking is one of themost commonly used countermeasures against side-channel
attacks. However, implementing a masking in a real device is far from being a trivial
task even in case of a sound masking schemes. It is mainly due to the violations
of the ILA and differences between value-based and distance-based leakage models
that are also related to the notion of order-reduction (ODL vs. MTL models, recall
Sections 3.2.3 and 3.4.1).

This part of our work has two main goals: (1) bridging the gap between theory
and practical use of masking through the analysis of ILA-breaching effects and (2)
providing a tool that can detect hazardous instructions that lead to a decrease in
security of masking implementations due to ILA-breaching.

Through our analysis we focus on an Alf and Vegard’s RISC (Reduced Instruction
Set Computer) processor (AVR) microcontroller ATmega163 in order to analyse how
and under which conditions an implementation can violate the ILA. Subsequently we
establish solutions that mitigate these issues. Then we build an assembly-oriented
tool that can detect ILA violations in AVR-based masked implementations. And fi-
nally, we use all our findings and analysis to create a 1st order masking implementa-
tion which enforces the ILA.

153

154 Chapter 7. ASCOLD

7.1 Acquisition setup and evaluation

For all our experiments we use a smart card equipped with an 8-bit AVR microcon-
troller ATmega1631. The device uses a 4.4 MHz clock, 1024 bytes of Static RAM
(SRAM) and 17Kbytes of Flashmemory. The acquisition of power traces is performed
using the Riscure PowerTracer2 and the Picoscope 5203 oscilloscope. The sampling
rate of the oscilloscope is set to 31.5MSamples/s, the only post-processing applied is
the alignment of power traces (using the software by Riscure).

We use two statistical analysis techniques for the evaluations of our sets of traces.
We use the t-test as a detection tool with respect to the ILA-breaching effects and also
to test solutions proposed to enforce the ILA. In addition to t-tests, we also employ
the 1st order CPA methods [BCO04] to show the exploitability of the found ILA-
breaching effects. In order to reduce the computational cost of the evaluation we
use the memoryless formulas suggested by Schneider et al. [SM15] for t-tests and the
incremental approach for CPA by Botinelli et al. [BB15].

7.2 ILA-Breaching Effects

Here below we present three ILA-breaching effects that were identified in the AT-
mega163 microcontroller all these effects are hazardous to the security of any mask-
ing scheme. These findings demonstrate that independent computations do not nec-
essarily lead to independent leakages and thus, the ILA does not hold and the order-
reduction (recall Section 3.4.1) can become applicable.

We assume that an intermediate 4-bit key-dependant value z is masked using a
first order masking scheme and the two shares x0 and x1 combined give the value z
in the following way:

z = x0 ⊕ x1. (7.1)

In our experiments the shares x0 and x1 are always manipulated in a theoretically
sound manner, adhering to the masking scheme’s requirements i.e., we never com-
bine the shares directly using an exclusive-or instruction in the following way: EOR
x0, x1. Basically, shares x0 and x1 are never used together as operands of an in-
struction in our experiments. Since a good way of ensuring that a microcontroller
will not accidentally combine secret shares is to use a lower level programming lan-
guage we focus on an assembly-based scenario when the developer fully specifies
the control flow of a program (compiler is not allowed to rearrange instructions for
optimizations).

For all the described theoretically sound scenarios we show experimentally that
ILA is not fulfilled by employing 1st order univariate analysis. More specifically, we

1http://www.atmel.com/images/doc1142.pdf
2https://www.riscure.com/security-tools/hardware/power-tracer

http://www.atmel.com/images/doc1142.pdf
https://www.riscure.com/security-tools/hardware/power-tracer

7.2. ILA-Breaching Effects 155

perform correlation-based analysis [BCO04], computing the correlation coefficient ρ
between the Hamming weight of the sensitive value and the experimentally acquired
set of traces. Moreover, to maintain a wide attack scope (and not limit ourself to
CPA), we also use the leakage detection methodology [CDG+13, SM15] and compute
the 1st order random vs. fixed t-test (Equation 4.2)3. We conclude every scenario by
suggesting possible solutions that enforce ILA and checking that this solution does
help.

The ILA-breaching effects can manifest in several data storage units such as regis-
ters, SRAM cells, I/O buffers, etc. These effects may be related to different instructions
of the AVR ISA4 leading to a very large number of potential scenarios. In order to
maintain a feasible scope, we limit our analysis and discussion to storage units and
instructions that are often encountered in the context of cryptographic implementa-
tions. More specifically we analyse registers and SRAM memory accesses as well as
the use of logical instructions (e.g., exclusive-or).

7.2.1 Overwrite effect

The overwrite effect is observable when a share gets overwritten by a different share
of the same secret value. For instance, if share x0 in a data storage unit (e.g., register
or memory cell) is overwritten by share x1, then the power consumption correlates
with the number of flipped bits (i.e., x0 ⊕ x1) or in other words it correlated with
the Hamming distance between x0 and x1. Even though this effect was observed by
Daemen et al. [BDPA09] and later revisited by Coron et al. [CGP+12] we include it
in our experiments for the sake of completeness and in order to show all the effects
on the same platform.

Here we address the most common situations in which overwriting happens.
We perform two experiments: a register-based overwrite via the register-to-register
move instruction MOV, and a memory-based overwrite via the memory-to-register
store instruction ST. The assembly source code that we used in our experiments are
given in Listings 7.1 and 7.25.

3Note that we perform both the t-test and the attack to show that the leakage detected by the t-test
can be exploited.

4http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf
5Register X is a pointer register that is used for memory addressing, it is composed of registers R26

(lower part) and R27 (high part).

http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf

156 Chapter 7. ASCOLD

1 ; x0 i n R17
2 ; x1 i n R23
3 MOV R17 , R23
4 ;
5 ;

Listing 7.1 – Register overwrite exper-
iment.

1 ; x0 i n SRAM at adr 0 x0080
2 ; x1 i n R17
3 LDI R27 , 0 x00
4 LDI R26 , 0 x80
5 ST X , R17

Listing 7.2 –Memory overwrite exper-
iment.

Figure 7.1 shows the results of our correlation analysis and of the t-test for both
overwriting experiments. Our experiments confirm that overwriting indeed produces
an ILA-breaching effect and that it manifests in registers as well as in SRAM. Looking
at our figures we can notice that the exploitability of the effect varies depending on
to the data storage unit. More specifically, there is an order of magnitude in between
the amount of traces required to exploit the overwrite effect in SRAM compared to
the same effect in registers.

Preventing register and memory-based overwrites is relatively straightforward:
the corresponding register (or memory cell) needs to be cleared before proceeding
with the next value; another way of preventing this effect would be simply not using
the same memory unit to handle different secret shares.

7.2.2 Memory remnant effect

Thememory remnant effect is a leakage originating from consecutive SRAM accesses
to different shares of the same secret value. Assume that sharesx0 andx1 are stored in
SRAM cells and that they are accessed sequentially. Naturally, the first access leaks
share x0 (value-based leakage), yet it also creates a remnant of x0. A remnant is
the information about a previously used (transferred, stored or handled) value, it can
remain e.g., in values of wires of a bus or in a hidden register which is not documented
by a manufacturer. The second access will leak the transition of the share x1 and the
remnant x0, therefore reducing the security.

1 ; sha re x0 a t adr 0 x0080
2 ; sha re x1 a t adr 0 x0090
3 LDI R27 , 0 x00
4 LDI R26 , 0 x80
5 LD R17 , X
6 LDI R27 , 0 x00
7 LDI R26 , 0 x90
8 LD R20 , X
9 ;

10 ;

Listing 7.3 – Memory remnant exper-
iment.

1 ; sha re x0 a t adr 0 x0080
2 ; sha re x1 a t adr 0 x0090
3 LDI R27 , 0 x00
4 LDI R26 , 0 x80
5 LD R17 , X
6 LDI R17 , 0 x00
7 LDI R26 , 0 x85
8 LD R17 , X
9 LDI R26 , 0 x90

10 LD R20 , X

Listing 7.4 – Clearing remnant exper-
iment.

We perform two experiments in order to analyse the memory remnant effect and

7.2. ILA-Breaching Effects 157

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Time (trace points)

C
o
rr

e
la

ti
o
n

Hypotheses

Correct
Wrong

(a) Register overwrite, 1st order CPA, HW model,
500 traces.

0 100 200 300 400 500

0

10

20

30

Time (trace points)

a
b

s.
 t

 −
va

lu
e

(b) Register overwrite, 1st order t-test, 5 000 ran-
dom vs. 5 000 fixed.

0 20000 40000 60000

0.0

0.1

0.2

Time (trace points)

C
o
rr

e
la

ti
o
n

Hypotheses

Correct
Wrong

(c) Memory overwrite, 1st order CPA, HW model,
65 000 traces.

0 500 1000 1500 2000

0

2

4

6

8

Time (trace points)

a
b

s.
 t

 −
va

lu
e

(d)Memory overwrite, 1st order t-test, 50 000 ran-
dom vs. 50 000 fixed.

Figure 7.1 – Analysis of register and memory-based overwrite effects.

its impact on security. The code of two scenarios from our experiments is shown in
Listings 7.3 and 7.4. The first scenario accesses two secret shares one after another
(lines 5 and 8 of Listing 7.3). In the second scenario, presented in Listing 7.4 we load
an unrelated address of SRAM into the pointer register (line 7) and access it (line 8)
in order to clear the register and remove the remnant of the previous secret share.

Figure 7.2 shows the results of our analysis in both scenarios. In Figures 7.2a
and 7.2b we can see that consecutive SRAM accesses can potentially lead to ILA vi-
olations, in other words consecutive memory accesses leak a combination of values
that were accessed. Exploiting the memory remnant effect in a univariate manner in
ATmega163 requires less than 500 traces with our setup. Preventing an attacker from
exploiting the effect can be achieved by insertion of a dummy SRAM access. Alter-
natively, the software developer can ensure that different shares of the same secret
value are not accessed sequentially. Note that the memory store instruction ST also
produces a similar effect (shown here with load instruction LD).

We speculate that the memory remnant effect is probably caused by the structure

158 Chapter 7. ASCOLD

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Time (trace points)

C
o
rr

e
la

ti
o
n

Hypotheses

Correct
Wrong

(a) Memory remnant effect,1st order CPA, HW
model, 500 traces.

0 200 400 600 800

0

20

40

60

Time (trace points)

a
b

s.
 t

 −
va

lu
e

(b) Memory remnant effect, 1st order t-test, 5 000
random vs. 5 000 fixed.

0e+00 4e+04 8e+04

0.0

0.1

0.2

Time (trace points)

C
o
rr

e
la

ti
o
n

Hypotheses

Correct
Wrong

(c) Clearing remnant effect,1st order CPA, HW
model, 100 000 traces.

0 100 200 300 400 500

0

20

40

60

Time (trace points)

a
b

s.
 t

 −
va

lu
e

(d) Clearing remnant effect, 1st order t-test,
100 000 random vs. 100 000 fixed.

Figure 7.2 – Analysis of memory-based remnant effect.

of the the memory access mechanism. Potentially it can be caused by the pipelining
stages (because several values being processed at the same time). Interestingly, the
authors of the Elmo simulator [DMO16] found that profiling triplets of sequential
instructions gives better (more accurate) profiles compared to profiles of single in-
structions. However, we must note that ARM Cortex-M0 that they have profiled uses
a pipeline with 3 stages, while ATmega163 used in our experiments has only 2 stages
of pipelining. However, since in our experiments the load instructions are 2 instruc-
tions apart (Listing 7.3, lines 5 and 8), we can safely assume that pipeline is not what
causing ILA violation in our experiments. Therefore, in our case the ILA violations
likely happen because of the architecture of the memory access mechanisms.

7.2.3 Neighbour leakage effect

The neighbour leakage effect implies that accessing or processing the contents of
a data storage unit will produce a leakage that is also related to another unit. For
example, let us assume that share x0 is stored in register Ra and share x1 is being

7.2. ILA-Breaching Effects 159

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

Time (trace points)

C
o
rr

e
la

ti
o
n

(a) Correlation ρ(HW (x0), traceset), R2-R3,
5 000 traces.

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

Time (trace points)

C
o
rr

e
la

ti
o
n

(b) Correlation ρ(HW (x0), traceset), R3-R2,
5 000 traces.

Figure 7.3 – Analysis of neighbour-based leakage effect.

processed in register Rb. Assume also that the registers Ra and Rb are subject to the
neighbour leakage effect. Processing Ra will produce a value-based leakage of x0. At
the same time, the neighbouring leakage effect will cause Rb to leak the value of x1
producing a combined leakage of both shares which happens at the same moment in
time (related to the same point of a power trace). As a result, the ILA does not hold
and the attacker will likely be able to recover the sensitive intermediate value z by
analysing only one point of power traces.

Listing 7.5 shows the assembly code that we use in our experiments related to the
neighbouring effect between the registers. During each experiment all registers were
cleared (set to 0) with the exception of one register that was analysed, this studied
register contained a sensitive value. We have performed such experiments on the
neighbouring effects using all 32 registers but for the sake of space and without loss
of generality we present the results related to registers R2 and R3 here below. Results
on all register are presented in the table of “neighbours” in the Appendix F (Table F.1).

1 ; c l e a r a l l r e g i s t e r s
2 ; put s e n s i t i v e va l u e i s i n the s e l e c t e d r e g i s t e r
3 MOV R0 , R0
4 NOP ; 5 nops in the a c t u a l code
5 MOV R1 , R1
6 NOP ; 5 t imes
7 MOV R2 , R2
8 NOP ; 5 t imes
9 MOV R3 , R3

10 NOP ; 5 t imes
11 . . .
12 MOV R31 , R31

Listing 7.5 – Neighbour leakage experiment for registers.

160 Chapter 7. ASCOLD

Figure 7.3a shows the results of our experiments with registers R2. Only R2 con-
tains a sensitive value, thus only the line 7 of Listing 7.5 should leak. However we
can observe a second peak at the moment in time when R3 is manipulated. Note,
that this effect is symmetrical in ATmega163: when the sensitive value is stored in
R3 (only line 9 should leak) we can also observe two peaks corresponding to mo-
ments when R2 and R3 are used (Figure 7.3b). As a result, we have identified a pair of
data storage units (R2 and R3) that exhibit the neighbour leakage effect. During our
experiments we observed that this issue mostly affects consecutive registers (with
consecutive indexes such as 2 and 3, 4 and 5, etc.). However, we also identified that
there are exceptions to this rule e.g., register R0 (see Table F.1).

We also observed that the neighbouring leakage effect is persistent, i.e. the MOV
instructions will trigger the same behaviour even if performed in a different order
(not necessarily as presented in Listing 7.5). We did not identify a similar effect in
the SRAM, but our experiments were limited to a small region of cells (testing all cells
would require a huge amount of time since there are much more addresses in SRAM
than the number of registers).

Neighbour-like effects have been observed in consecutive registers, but the ques-
tion whether they are caused by physical proximity or they stem from other ef-
fects remains open. Neighbouring leakage effects were observed by De Cnudde et
al. [CBG+17]6 in case of FPGAs, since they could change the physical configuration
of the implementation (i.e., assign functionalities to different cells in the FPGA) they
were able to show that the effect comes from the physical proximity in their case.
Since we worked on a microcontroller (the structure and configuration is fixed) we
cannot perform the same experiment to check this hypothesis. However, given the
pairwise manifestation of the neighbouring effect (the whole neighbouring seems to
have a pair-based configuration) we speculate that they relate to the structure of the
register file and likely involve the storage and multiplexing mechanisms related to
the activation of registers. This hypothesis can be tested by looking at the structure
of the microcontroller. Unfortunately manufacturers do not make this data avail-
able. However, it can be done using optical inspection and other reverse-engineering
techniques, nevertheless this approach remains rather expensive (for small labs in
academia) nowadays. Note that it is hard to link architectural options at the hard-
ware layer directly to side-channel effects. As a solution to the neighbour effect the
developer can opt to avoid storing shares in hazardous registers. Alternatively, they
can store all shares in SRAM, except for the ones currently in use.

6Their findings were actually presented at the same COSADE workshop where we presented our
original paper upon which this chapter is based on.

7.3. Description of the tool 161

Figure 7.4 – Scheme of the workflow using Ascold.

7.3 Description of the tool

The ILA-breaching effects that we identify can be noticed by observing the assembly
source code, but it can be only done with the knowledge resulting from an experi-
mental evaluation i.e., after the analysis that we have already performed. Thus, in
order to assess the security of implementations at the assembly level, we developed
a tool called Ascold, standing for Assembly Code Leakage Detection tool. Ascold
integrates the rules related to undesirable ILA-beaching effects and allows to detect
these issues by analysing the assembly source code. The tool is written in python and
the source code is available in our git repository7. Ascold uses assembly code as its
input in order to run a simulation while checking for potential issues that can cause
side-channel information leakage (due to the architecture dependent ILA-breaching
effects). Figure 7.4 shows the general workflow using Ascold tool. The tool is com-
patible with assembly code used by AVR, the assembly code can be used directly (if it
is used for the development) or extracted from the compiled binary file (using a dis-
assembler). Thus, it is possible to be sure that the executed code will be exactly the
same as the code which is analysed by Ascold. Otherwise, it becomes impossible to
provide any guarantees on the quality of the analysis i.e., be sure that no additional
issues are introduced during compilation. Note that differences between the anal-
ysed code and the final (executed) code is exactly the issue that is present in some
tools e.g., the ones created by Barthe et al. [BBD+15] (analysis is based on EasyCrypt
code) and by Reparaz [Rep16a] (uses high level source code that is transformed by a
compiler).

In addition to the assembly source code, Ascold requires a configuration file
which is a YAML8 text file. This configuration file basically specifies the nature of

7https://github.com/nikita-veshchikov/ascold
8A human-readable data serialization language often used for configuration files.

https://github.com/nikita-veshchikov/ascold

162 Chapter 7. ASCOLD

the state at the beginning of the program. More specifically, one has to provide the
list of variables (and possibly addresses and registers) that correspond to random val-
ues, to secret shares (used during masking) and to constants. This type of information
carries the “intent” or a purpose of a variable, which is impossible to find reliably in
an automated manner, therefore the developer (who actually knows what they are
doing) has to provide this information in addition to the developed code. A toy ex-
ample of code and corresponding configuration file are shown in the Appendix F.The
simulation run by the tool does not use an instance of an execution i.e., we do not use
specific values such as a fixed key or plaintext in order to run the program. Ascold
starts a program in an initial state and propagates all changes such as combinations
of values, their modifications and replacements of one value by another. More pre-
cisely, it keeps track of which shares or combinations of shares (and possibly random
values) are stored in each register or SRAM.

During any arithmetic or logical operation, shares stored in different operands
are verified. Specifically we check whether we combine different shares of the same
secret value without randomizing beforehand. In the same way, we verify the imple-
mentation for the device-specific distance-based leakages for every arithmetic and
logical operation as well as for SRAM store and load instructions that are executed.
Analytically, we verify whether the previously stored value and the new value cause
the overwrite effect (recall Section 7.2.1). Similarly, our tool checks the load and store
instructions for remnant effects discussed in Section 7.2.2. Ascold also uses the ma-
trix of neighbours (see Table F.1) which allows us to check whether secret shares of
the same value are stored in registers that were found to be neighbours. Ultimately
it allows Ascold to detect neighbour leakage effect (recall Section 7.2.3).

As the result of the simulation, Ascold prints out a line number and the rule
that was violated by the program. The exact instruction and the line number allow
the developer to easily spot the problem. It also specifies which secret shares were
combined. Note that not all combinations are hazardous, yet we opt for a “safety”
approach in order to speed-up the verification process. Therefore, some messages
are labelled as errors while other messages are labelled as warnings.

Ascold works with the AVR family of microcontrollers, it implements the most
common memory instructions such as load and store as well as a set of commonly
used (in cryptography) instructions such as arithmetic operations (ADD, MUL, . . .) and
logical operations (AND, EOR, OR, . . .). The same core principles can be applied in order
to build a similar tool for a different instruction set or to add new AVR instructions
supported by newer microcontrollers.

The scope of Ascold tool is limited to the results of our findings. The current ver-
sion of our tool incorporates our findings which are based on the ATmega163, other
models of microcontrollers might have slightly different (even additional) issues that
cause unintentional information leakagewhich result in violations of the ILA. Among
other things, the main difference between different models of microcontrollers can

7.4. 1st order masked S-box for Rectangle cipher 163

be visible in the structure of the matrix of neighbours (especially if a microcontroller
has a different number of registers than ATmega163). Ascold does not take into ac-
count the effects of pipelining which might be an issue in case of a microcontroller
which can potentially handle two different shares of the same sensitive value (at dif-
ferent stages of the pipeline) during the same clock cycle. This issue does not affect
ATmega163 since it has two stages of pipeline: while one instruction is executed the
next one is fetched. Thus, two secret shares cannot be manipulated at the same time
in the pipeline. Ascold does not implement all AVR instructions, most importantly
the current version of Ascold does not support branching instructions (which still
allows to check one round of a block cipher or any implementation with unrolled
loops). However, we implemented a set of the most commonly used instructions
which includes load and store instructions as well as logical and arithmetic instruc-
tions. New instructions and rules (checking ILA-breaching effects) can be added with
some additional software-engineering efforts which we would like to encourage and
simplify by providing the full source code of Ascold in our git repository.

7.4 1st order masked S-box for Rectangle cipher

We have discussed the ILA-breaching effects in Section 7.2 and integrated these ob-
servations in the Ascold tool. It allowed us to build a masked implementation that
takes into account the ILA-breaching effects and avoids leakage related to these is-
sues. As a proof of concept we choose to implement a 1st order masked S-box of
Rectangle by using the Ishai-Sahai-Wagner (ISW) [ISW03] scheme. Our aim is to
produce an assembly-based, lightweight S-box implementation that is secure against
1st order univariate attacks. It will force the attacker to resort to a 2nd order approach
or to multivariate techniques.

We implemented Rectangle in the AVR assembly language to be executed on
ATmega163 which we used for all our tests. During the implementation we were
already aware of all the ILA-breaching issues, in other words we knew what should
be done in order to develop a secure piece of software the enforces the ILA. Never-
theless, the number of different focal points that has to be kept in mind during the
implementation is too big to be sure that we are not forgetting about a leakage sce-
nario. Note, that every issue that we described earlier has to be dealt with for every
instruction. Thus, keeping in mind the entire implementation including assignments
of mask shares to registers and all potential leakages is very challenging. Therefore
even knowing about ILA-breaching does not prevent developers from errors. Thus,
developers should definitely resort to the use of automated tools like Ascold to test
their code while it is being developed. The process of using Ascold resembles the use
of a compiler: once the code is written the developer can launch our tool which in
its turn outputs line numbers with comments on the ILA-breaching if it is detected.
Finally, when Ascold does not output any more errors the developer can compile the

164 Chapter 7. ASCOLD

code to get the executable file.
In the following text we will say that a masking implementation is naive if it does

not take precautions against ILA-breaching effects and we will say that the imple-
mentation is hardened otherwise.

Our implementation uses a bit-sliced [DGV93a, Bih97] representation, due to both
the bit-sliced structure of Rectangle and due to the GF (2)-oriented nature of the
ISW countermeasure. A bit-sliced implementation is a software implementation tech-
nique often used in cryptography. It uses an n-bit processor as a set of n 1-bit execu-
tion units operating in Same Instruction Multiple Data (SIMD) mode. We employ a
bit-slicing factor of 2 i.e., we exploit the 8-bit AVR architecture in order to process two
4×4 S-boxes in parallel (nibble-slicing). In other words, the S-box is decomposed into
GF (2) operations that can be accelerated by via SIMD instructions, which are in our
case 8-bit assembly instructions. We use the decomposition suggested by Zhang et
al. [ZBL+15] which is optimal with respect toGF (2)multiplicative complexity, since
Grosso et al. [GLSV14] established that the minimum number of nonlinear operations
required by 4× 4 S-boxes is 4.

In order to create hardened implementations we use the solutions that we sug-
gest in Section 7.2. We create two hardened implementations that we call efficient
and conservative. In the efficient approach, after processing any share we clear the
registers using an on-demand technique (only when the register is needed) and insert
dummy load instructions (LD) to avoid overwrite and remnant effects. We avoid the
neighbouring leakage effects by always storing the shares in SRAM i.e., the registers
contain only the shares used by the current instruction. In the conservative approach
we perform all the mentioned clearing techniques but in addition, we insert dummy
store instructions (ST) and perform thorough register and memory clearing. Both
efficient and conservative approaches are applied to every single instruction of the
implementation i.e., the cost (number of cycles) is linear with respect to the number
of instructions that manipulate masked shares.

In addition to the two hardened implementations we created three non-hardened
implementations. One of them is an unprotected implementation (no masking). The
two others are naive implementations that use the same masking technique. The
first naive implementation uses a 1st order masking and the second uses a 2nd order
masking.

Table 7.1 shows a summary of the costs for all 5 implementations: the time over-
head as well as the requirements in the amount of random numbers. We can immedi-
ately notice that the resulting computational overhead of hardened implementations
is quite significant, they are about 12 (efficient) and 15 (conservative) times slower
than the naive 1st order masking implementation. Also, both hardened 1st order
masking implementations are between 1.3 (efficient) and 1.7 (conservative) times
slower than the 2nd order naive implementation. However, the 2nd order masked
implementation requires 3 times more randomness (which is also an expensive and

7.4. 1st order masked S-box for Rectangle cipher 165

Table 7.1 – Comparison of bit-sliced implementations of the S-box of Rectangle in
ATmega163.

Masking Implementation Latency Throughput RNG
cycles bits/cycle ×10−3 bytes

Unprotected Naive 32 250 0

1st order
Naive 87 91 4

Hardened (eff.) 993 8 4

Hardened (cons.) 1319 6 4

2nd order Naive 775 10 12

valuable resource in cryptography) than the 1st order masking.
We evaluate our hardened and naive 1st order masked implementations using

the random vs. fixed t-test. Figure 7.5 shows the results of our analysis. As ex-
pected due to the ILA-breaching effects, the naive 1st order masking implementation
quickly rejects the null hypothesis using only 1 000 traces, see Figure 7.5a. The ef-
ficient hardened implementation does not yield any statistically significant leakage
even with 25 000 traces (Figure 7.5b). However, we note that a 50 000 random vs.
50 000 fixed t-test is able to detect leakage. In other words, trying to reduce the cost
of enforcing ILA can have a detrimental effect on security. The conservative hardened
implementation does not detect any leakage even up to 100 000 traces (Figure 7.5c).
Note, that a 2nd order t-test with 25 000 traces on a chosen sample window is able to
detect the leakage (Figure 7.5d), which is expected since 1st order masking does not
protect against 2nd order attacks. Therefore, we conclude that for the given device
the informativeness of 1st order attacks is substantially limited and a 2nd order attack
is the preferable adversarial strategy. Thus, we can achieve the goal of forcing the at-
tacker to use a 2nd order attack by using our techniques that harden the masking
implementation against ILA-breaching effects.

So far, the only way to guarantee the actual security order of a real-world imple-
mentation was to increase the scheme’s theoretical order d, in order to ensure that
the implementation attains an actual order of bd2c [BGG+14, dGPdlP+16] due to the
order-reduction. Clearing the ILA-breaching effects results in a significant overhead
and it is device-dependent, yet it is the only technique known to us that can enforce
1st order univariate security. However, hardening does not increase the order d of the
scheme thus, the costs related to the RNG are not increased. The previous suggestions
require a higher order schemes resulting in significant RNG overheads since both the
implementation cost (memory and time) and the RNG cost are quadratic with respect
to the order d. By comparing our implementations we can observe that hardening a
1st order results in a slower implementation than increasing the order of the mask-

166 Chapter 7. ASCOLD

0 500 1000 1500 2000

0

5

10

15

20

Time (trace points)

a
b

s.
 t

 −
va

lu
e

(a) Naive S-box, 1st order t-test, 1 000 random vs.
1 000 fixed.

0 2000 4000 6000

0

5

10

15

20

Time (trace points)

a
b

s.
 t

 −
va

lu
e

(b) Efficient hardened S-box, 1st order t-test,
25 000 random vs. 25 000 fixed.

0 2000 6000 10000

0

5

10

15

20

Time (trace points)

a
b

s.
 t

 −
va

lu
e

(c) Conservative hardened S-box, 1st order t-test,
100 000 random vs. 100 000 fixed.

0 20 40 60 80 100

0

5

10

15

20

Time (trace points)

a
b

s.
 t

 −
va

lu
e

(d) Conservative hardened S-box, 2nd order t-test,
25 000 random vs. 25 000 fixed.

Figure 7.5 – Hardened and naive S-box t-test evaluations.

7.4. 1st order masked S-box for Rectangle cipher 167

Table 7.2 – RNG costs for 1st and 2nd order masked implementations of Rectangle
with an AES-based RNG.

Order d 16-bit random RNG cycles using

numbers per AND 2-round AES 10-round AES

1st 1 6 000 31 000
2nd 3 18 000 93 000

ing scheme to 2. Still, the hardened solution does not require extra random numbers.
We maintain that removing these effects can also be beneficial to higher-order im-
plementations i.e., it is complimentary to masking. The extent to which higher-order
implementations can benefit from removing ILA effects remains an open question.

The exact cost and quality of RNG is unclear in many applications. In case of an
AES-based pseudo-RNG one can imply the optimistic cost of a 2-round AES execu-
tion per 16 random bytes or the pessimistic cost of a 10-round AES execution per 16
random bytes [GSF14]. If we were to use such pseudo-RNG in a masked implemen-
tation of Rectangle, the cost of the random number generation will prevail on the
cost in terms of the number of clock cycles9. Indeed, Rectangle has 25 rounds and
uses 4 16-bit AND instructions per round, see RNG costs in Table 7.2. In the case of
a true-RNG, structures that combine physical generators with deterministic random
bit generators can face similar performance issues [BK].

9http://point-at-infinity.org/avraes/

http://point-at-infinity.org/avraes/

168 Chapter 7. ASCOLD

7.5 Summary

The main points of our findings consist in following statements: (1) independent ma-
nipulation of shares in software does not necessarily result in independent leakage
(which breaks the ILA), (2) it is possible to enforce ILA in software implementations
however, it comes with a relatively significant time overheads but no RNG-related
overheads, and finally (3) it is possible to detect ILA-breaching using automated anal-
ysis of the assembly code.

Summing up, we highlight the following focal points regarding the ILA-breaching
effects and solutions that can be used to avoid their negative effects:

• All identified effects are device-dependent, we observed them only in the AT-
mega163 microcontroller i.e., there is no hard guarantee that they are observ-
able, reproducible and identical in other AVR-based microcontrollers: it is pos-
sible that another model of an AVR microcontroller will only have a subset of
these effects or even another ILA-breaching effect that we did not observe (e.g.,
related to pipelines). In addition to other AVR devices these effects should also
be studied in different architectures such as ARM, PIC, etc. Both intra-AVR
and inter-architectural observability of the effects as well as whether there are
more ILA-breaching effects remains an open question. However, if we were
to find out what exactly (i.e., which architectural choices in the design of mi-
crocontrollers) causes the ILA-breaching effects then we may predict them in
other devices as well as try to avoid them during the construction of new ones.

• The effects are often counter-intuitive when viewed from the assembly-code
level of abstraction. They originate from the hardware (structure) and the phys-
ical layer (geometrical configuration), thus they can only be detected via exper-
imental evaluation since manufacturers of such devices do not reveal their full
specifications down to transistor level. Linking the assembly ILA-breaching
effects to a particular hardware component or physical phenomenon is a non-
trivial task [RSV+11, Stö12] especially without knowledge of the underlying
chip architecture and properties.

• Since the detection of such issues requires experimental evaluation, different
instructions, code arrangements and choices of memory units can potentially
lead to additional, unidentified ILA-breaching effects. Nevertheless, we claim
that it is possible to construct a hardened masked operations in ATmega163
by removing the identified ILA-breaching effects. The question of whether
the suggested solutions are computationally optimal or more efficient clearing
techniques can be identified remains open.

However, it is very important to note that our findings and analysis are not a
definitive proof that the first order leakage is completely removed by themethods that

7.5. Summary 169

we use to deal with ILA violations. As already mentioned by Balasch et al. [BGG+14],
we are always limited by the traces at hand, thereforewe cannot rule out the existence
of first order leakages. Nevertheless, we establish that their informativeness is limited
compared to 2nd order leakages in the target device. Note that extra care is taken in
order to assess all effects independently, i.e. we use the suggested solutions so as
to isolate the effect under discussion from the rest. The rationale is that by using
our suggestions in an implementation we effectively force the attacker to use more
complex attacks (even if the complexity of these attacks do not grow exponentially).

The main message of these analyses is that due to the nature of the breaching
effects the assembly-level soundness cannot enforce ILA and hence the 1st order se-
curity. However, it is possible to acquire sufficient knowledge about effects and so-
lutions for a particular device. These non-intuitive checks discussed above can be
subsequently integrated into a code-checking tool which can identify such effects in
assembly code. Therefore entire families of leakages resulting from ILA-breaching
effects can be automatically tracked and effectively removed during the development
of a cryptographic device before the code is even loaded into the microcontroller.

Use of tools such as Ascold for detection of ILA violations is significantly faster
than tests done using real experiments. Indeed, our method can detect a problem
by going through the assembly code once while other leakage detection techniques
based on the analysis of power traces do require long acquisition and analysis phases
which need many traces (more computations and time than in our case). Moreover,
our tool Ascold analyses the code that actually runs in the final product and there-
fore does not suffer from modifications that can occur during the translation of the
program from one language to another (as the tool by Barthe et al. [BBD+15]) nor
does it suffer from rearrangements and modifications that can be done by a compiler
(as the tool by Reparaz [Rep16a]).

Ascold was build specifically for the analysis of the first order masking imple-
mentations, but it can be used for the analysis of higher order masking. However, it
is important to keep in mind that Ascold will complain in an overprotective manner
i.e., it will print error and warning messages as soon as at least two shares of the same
secret value are combined, even though it is not necessarily problematic for higher
order masking schemes.

The next step and the most interesting direction for future research would be in-
tegrating our findings into a compiler. Compiler-assisted masking was already sug-
gested in literature on side-channel analysis [MOPT12], however it does not deal with
the effects that we described. Since we can detect the discussed ILA violations using
analysis of assembly code, it should be possible to integrate them into a compiler.
Another direction for future research that should be investigated is the way of reduc-
ing the number of dummy operations that we used in our hardened implementation,
right now this implementation is not efficient (in terms of speed) compared to the
2nd order masking or compared to the naive approach due to the size of code and

170 Chapter 7. ASCOLD

the amount of dummy read instructions. The possibility of reducing the number of
dummy operation through the rearrangement of independent instructions is an in-
teresting project that can greatly improve our results. Finally, it would be interesting
to test Ascold on the 4th edition of the DPA Contest.

Chapter 8

Savrasca: architecture specific
simulator

The simulator presented in this chapter is based on the paper “Use of simulators for side-channel analysis” pre-
sented in Paris (France) at the Workshop on Security for Embedded and Mobile Systems (SEMS) in 2017 [VG17b].
The analysis performed using this simulator is based on the paper “Flaws in masking scheme of DPA Contest 4”
published in the journal IET Information Security [VG17a].

One of the final states of an implementation of a cryptographic algorithm be-
fore the product gets to the consumer is a compiled binary file. This executable file
contains all the code that is supposed to be uploaded into the memory of the hard-
ware device such as a microcontroller (for example embedded into a smart card). At
the stage of compiled binary file all processes that influence the code are over (i.e.,
choices of the programmer, modifications introduced by the compiler). The code will
not bemodified anymore unless the designer decides to create a newer version, which
means that all software-related issues that can be found during side-channel analysis
can be found through the analysis of the compiled file. The main goal of this part of
the work is to provide a tool that can be used for side-channel analysis of compiled
code. We decided to focus on generic simulations to make them usable with a variety
of microcontrollers. As a result we created a simulator that can generate simulated
traces based on a compiled binary.

During this work, we explain how to build a generic simulator for generation
of simulated traces using generic models on the example of ATmega family of AVR
microcontrollers. We then show how this simulator can be used to detect implemen-
tation issues related to side-channel analysis. We base our analysis example on the
4th edition of the DPA Contest. Thanks to our simulator we find a novel issue related
to side-channel leakage in the implementation that was used in this contest. Finally,
we show how to exploit the detected flaw and how to correct the implementation to
avoid it.

171

172 Chapter 8. SAVRASCA

8.1 Description of the tool

Our simulator is called Savrasca which stands for Simulator of AVR Assembly for
Side-Channel Analysis. Our simulator is able to output simulated traces based on a
compiled binary file. Our code with some examples is available online in our git
repository1.

Our simulator is based on an open-source project SimulAVR. SimulAVR is a sim-
ulator for the Atmel AVR family of microcontrollers, it is written in C++. SimulAVR
(and as the result Savrasca) is a cycle accurate simulator i.e., the number of clock
cycles reported by the simulator corresponds to the number of cycles used by a real
device executing the same code. SimulAVR takes Extensible Linking Format (ELF)
compiled binary files as an input. It can be used in order to debug software writ-
ten for popular microcontrollers such as ATmega128, ATmega328, ATmega16 as well
as several other models (the three models listed here are often used in side-channel
analysis experiments). Full list of supported microcontrollers (18 models at the time
of writing) is available on the SimulAVR official website2. It is also available in the
Appendix G.

SimulAVR has a tracing feature which is particularly helpful in the debugging
process, the simulator can output execution traces. An execution trace is the list of
instructions (with their parameters) that were executed, see examples in Listings 8.3
and 8.4. An execution trace does not contain instructions that were not executed but
that are present in the code (e.g., in case of conditional branches), it contains several
occurrences of a block of instructions if it was executed repeatedly (e.g., in case of
a loop). Execution traces also contain CPU-wait cycles that are appended by the
processor to keep the pipeline flowing smoothly (for instructions that require several
clock cycles). This feature turned out to be handy in practice during our experiments
in the context of side-channel analysis. It can help to detect conditional instructions
that will leak information through side-channels.

In order to use SimulAVR one has to instrument the code and recompile it. Actu-
ally, only one minor modification has to be done in the analysed code. It is necessary
in order to interact with the interface of the simulator. The modification concerns
only the I/O and does not require to redesign the software, it consists of about 15
lines of C++ code and it is well documented on the SimulAVR website. Basically, it
allows to route the keyboard input and screen output to a couple virtual pipe regis-
ters. Since this modification only touches the I/O operations it should not affect the
core of the encryption code from the perspective of side-channel analysis.

Our modification of SimulAVR consists in the following idea: on each access to a
memory unit the simulator computes the leakage function in order to generate one
leakage point and then writes it into a file. It happens on both types of memory ac-

1https://github.com/nikita-veshchikov/savrasca
2http://www.nongnu.org/simulavr/usage.html

https://github.com/nikita-veshchikov/savrasca
http://www.nongnu.org/simulavr/usage.html

8.1. Description of the tool 173

cesses i.e., read and write. A memory unit could be a register or a normal memory
cell (e.g., SRAM). The leakage function could be any function that could be expressed
in C++, there are two such functions: one for read memory access and the other one
for writing. We are going to call the first one L∗

r and the second one L∗
w. This sep-

aration exists because in case of a memory write we can use the new value (that is
being written) as well as the old one (already stored in the memory unit). Thus, for
example, one might use the Hamming weight of a value for L∗

r and the Hamming
distance for L∗

w. In addition, it is also possible to use separate leakage functions for
register access and for memory access in order to highlight the difference between
these types of memory3. Thus, our simulator focuses on the simulations of the data
dependent part of the power consumption (Pval, recall Section 3.2.3) and it can use
ODL as well as MTL leakage models. Note, that one can easily disable one of the two
leakage function or even use the leakage function that corresponds only to the regis-
ter accesses while disabling the one that corresponds to SRAM; it allows to perform a
more fine-grained analysis on the code. It is important to highlight that two programs
that need the same number of clock cycles to finish their execution will not neces-
sarily result in simulated traces of the same length. The length of a simulated trace
will depend on the number of memory and register accesses which depend on the
type of instruction. For example, an ADD R0, R1 instruction will produce 3 leakage
points (one per register access for reading them and transferring to the ALU and one
for writing the result back to R0), while an INC R0 instruction will produce 2 leak-
age points (one for accessing R0 and transferring it to the ALU and one for writing it
back to R0). This property allows to discover issues resulting from the dependencies
between values that are handled by the device and the control flow, as we show in
Section 8.2. Figure 8.1 shows the general workflow using Savrasca simulator.

Savrasca is a low level of abstraction simulator compared to Silk and Ascold.
However, it uses a lot of simplifications in its model. One of our goals is to build
a generic and easy to use simulator. Potentially, it could be fed with much more
information (use more complex leakage models) in order to build more accurate and
even lower-level simulations. For example, our version does not take into account
the address of a memory cell (nor the register id) for the computation of the leakage
function. One might also take into account more features related to the architecture
of the micro-controller such as different leakage functions for each instruction (to
include Pop into the simulation) as well effects related to the use of pipelines, bus
transfers, etc. However, it would make the simulator less generic and would require
more parameters which would ultimately make it more difficult to use. Nevertheless,
it will make it more accurate. Our simulator could also be easily modified in order
to output several leakage points per instruction, this feature could be used in order
to simulate the fact that an instruction leaks different values at the beginning and at

3It echoes with our discovery that we made in the analysis of ILA-breaching effects (leakage of
information in SRAM vs. registers), recall Section 7.2.1

174 Chapter 8. SAVRASCA

Figure 8.1 – Scheme of the workflow using Savrasca simulator.

the end of its execution (just like Silk).
Our tool has several common points with existing simulators. Savrasca resem-

bles Oscar [TAL09] simulator in the way it functions, however it does not require
to recompile the code for every new plaintext (or key), which makes it faster than
Oscar. Even if we do not take the re-compilation time into account, Savrasca is
faster than Oscar since our modification of SimulAVR had only negligible effect on
its performance and Andouard showed that SimulAVR is two times faster than Os-
car [And09, section 4.5.3]. Leakagemodels used by Savrasca can be user-defined (as
well as in Silk or Inspector-SCA), i.e., these models can be profiled using techniques
applied during the creation of the tool by Debande et al. [DBBL12] or Elmo [DMO16]
simulator. Unlike Silk or the tool presented by Reparaz [Rep16a], Savrasca does not
suffer from reordering of instructions (by the compiler), thus it can be used to detect
issues related to the order of instructions and to other modifications that a compiler
makes during the compilation (e.g., for optimizations). Also, unlike other simulators
Savrasca can output simulated traces and execution traces (the unrolled version of
code that was actually executed i.e., only the executed instructions from branches
and loops) of the same code. Finally, unlike most of existing simulators, Savrasca is
publicly available.

8.2 Analysis of the DPA Contest 4

We used Savrasca in order to analyse the code from the 4th version of the DPA
Contest4. DPA Contest makes an excellent case study for our simulator, since the
code with all implementation details as well as power traces are available on the of-
ficial website.

4http://www.dpacontest.org/v4/rsm_doc.php

http://www.dpacontest.org/v4/rsm_doc.php

8.2. Analysis of the DPA Contest 4 175

It is worth noting that implementation target of the the DPA Contest 4 is a smart
card that contains an Atmel’s ATmega163 microcontroller. SimulAVR does not sup-
port ATmega163, but it does support ATmega16 — a newer version of this microcon-
troller. There are some minor differences between these two microcontrollers such as
the maximum clock frequency (8 MHz for ATmega163 and 16 MHz for ATmega16)
and the lower limit for the operating voltage for the highest clock frequency AT-
mega163 can operate between 4 V and 5.5 V, ATmega16 can operate between 4.5 V
and 5.5V [Atmb, Atmc]. During the acquisitions of power traces for theDPAContest,
the microcontroller used a 3.57MHz clock and operated at 2.5 V. Another difference
between these two microcontrollers is that ATmega16 has one additional instruction:
BREAK. This instruction is used “For On-Chip Debug Only”, see “Instruction Set Sum-
mary” section of the ATmega16 datasheet [Atmb]. Using SimulAVRwe are looking at
the individual instructions and at the instruction flow, which are identical between
ATmega163 and ATmega16. Thus, for the purpose of our analysis both microcon-
trollers could be treated as identical.

During our analysis we used the following settings for the two leakage functions
in Savrasca:

L∗
r = HW (value)

L∗
w = HD(valueold, valuenew)

where HW and HD are the Hamming weight and the Hamming distance func-
tions. We used the same secret key and fed the same inputs that were used during
the DPA Contest 4 in our simulator.

DPA Contest 4 implements AES-256 on a smart card and uses a countermeasure
against side-channel analysis. More precisely, it uses a lightweight masking coun-
termeasure called Rotating S-box masking (RSM) [NSGD12]. The AES-RSM imple-
mentation used for the DPA Contest 4 is executed in constant time regardless of the
secret key value, it could also be noticed on power traces that were acquired for the
contest. Nevertheless, our simulated traces did not have the same size even though
SimulAVR always returned the same number of clock cycles for the execution of the
program. This result persisted after extensive code analysis as well as with various
compilation options (such as -On with different values of n for optimizations). Same
type of differences in simulated trace sizes were noticed with different values of se-
cret keys and inputs. We discovered that the size of simulated traces depended on
the value that was manipulated by the microcontroller.

We were able to find that even though the execution always takes the same num-
ber of clock cycles, the number of register accesses indeed depends on the manipu-
lated value. This phenomenon occurs due to the way gf256mul function is imple-
mented. This function is implemented in assembly language in the file gf256mul.S
of the DPA Contest implementation (see aes_enc.c file, which makes the call to
gf256mul, Listing 8.1). This function performs a multiplication in a Galois Field

176 Chapter 8. SAVRASCA

256 (noted GF (256)) and it is used to multiply a value by 2 in GF (256) during
MixColumns computation (operation xtime [DRN03, §2.1.3 page 6]). Notice that
the Flash memory is limited on the smart card that is used for the DPA Contest.
Thus, the MixColumns operations cannot be saved along with SubBytes (using T-
tables [DRN03, §5.2.1 page 18]), but are instead computed. Among others, gf256mul
has the instructions that cause a side-channel leakage, see Listing 8.2.

1 #define GF256MUL_2 (a) (g f256mul (2 , (a) , 0 x1b))
2 / * . . . * /
3 t = tmp [4 * i +0] ^ tmp [4 * i +1] ^ tmp [4 * i +2] ^ tmp [4 * i + 3] ;
4 s t a t e −>s [4 * i +0] = GF256MUL_2 (tmp [4 * i +0]^ tmp [4 * i + 1])
5 ^ tmp [4 * i +0] ^ t ;
6 s t a t e −>s [4 * i +1] = GF256MUL_2 (tmp [4 * i +1] ^ tmp [4 * i + 2])
7 ^ tmp [4 * i +1] ^ t ;
8 s t a t e −>s [4 * i +2] = GF256MUL_2 (tmp [4 * i +2] ^ tmp [4 * i + 3])
9 ^ tmp [4 * i +2] ^ t ;

10 s t a t e −>s [4 * i +3] = GF256MUL_2 (tmp [4 * i +3] ^ tmp [4 * i + 0])
11 ^ tmp [4 * i +3] ^ t ;

Listing 8.1 – Computation of MixColumns operation on one column using gf256mul
function in aes_enc.c.

1 LSL B ; L e f t s h i f t by 1 p o s i t i o n
2 BRCC 3 f ; BRanch i f Carry C lea red to l a b e l 3 f
3 EOR B , R20 ; B = e x c l u s i v e−or (B , R20)

Listing 8.2 – Part of gf256mul from gf256mul.S.

1 d p a 4 . e l f 0 x0dac : g f256mul +0 x6 ADD R22 , R22
2 d p a 4 . e l f 0 x0dae : gf256mul +0 x7 BRCC −>0x0002
3 d p a 4 . e l f 0 x0db0 : gf256mul +0 x8 EOR R22 , R20

Listing 8.3 – Part of the execution trace of gf256mul (input MSB=1) produced by
Savrasca.

1 d p a 4 . e l f 0 x0dac : g f256mul +0 x6 ADD R22 , R22
2 d p a 4 . e l f 0 x0dae : gf256mul +0 x7 BRCC −>0x0002
3 d p a 4 . e l f 0 x0dae : gf256mul +0 x7 CPU−wa i t s t a t e

Listing 8.4 – Part of the execution trace of gf256mul (input MSB=0) produced by
Savrasca.

In Listing 8.2, the register B (which is a combination of two bytes of the state)
contains the value that is being multiplied by 2 in GF (256) and the register R20
contains the reducer (always equal to 0x1B in our case). The instruction LSL B (line 1
of Listing 8.2) will set the Carry Flag (CF) to 1 only if MSB of B is 1. The carry flag is
used in BRCC instruction which is executed in 1 cycle if the CF is equal to 1 (does not
branch) and it is executed in 2 cycles if CF is equal to 0 (does branch) [Atma]. The

8.2. Analysis of the DPA Contest 4 177

EOR instruction is always executed in 1 cycle and the label (3f) where BRCC branches
is situated just after the EOR instruction. Thus, if CF is equal to 1, BRCC and EOR take
1 cycle each for the total of 2 cycles, while if CF is equal to 0, BRCC takes 2 cycles and
EOR is not executed. As the result, the code is always executed in constant time but
does not use the registers the same number of times.

In practice it means that depending on the manipulated value we will observe dif-
ferent instructions (either an EOR or the second clock cycle of the branch instruction)
being executed during the same clock cycle, see Listings 8.3 and 8.4 (these listings are
the execution traces obtained with our simulator using different inputs)5. An attacker
could profile these two instructions and cluster power traces into two sets, thereby
recovering the value of the MSB of the intermediate state of the cipher.

Since the difference in power consumption between two different instructions
is generally higher than the difference that one might observe while using different
values with the same instruction, such clustering could be very telling. An attacker
might also use a non-profiled techniques in order to gain information about the in-
ternal state of the device by targeting the same vulnerability. The idea consists in
using a non-supervised clustering algorithm in order to create two groups of traces,
such clustering technique was successfully applied as a part of a side-channel attack
in 2013 [LMV+13]. This vulnerability could also be exploited using basic form of DPA
(with MSB as the leakage model).

This vulnerability could also be easily targeted using Electro-Magnetic Analysis
(EMA) by carefully placing the probes in the region where the accessed registers
are situated in order to detect whether a register was or was not used. Such setup
will improve the quality of acquired data in terms of distinguishability between cases
when the MSB of the intermediate state is 0 or when it is equal to 1. This kind of
EMA that is used to find out whether a register is accessed or not effectively leads to
a simple (not differential) type of analysis which can distinguish between cases when
MSB equals 1 or 0.

It is worth noting that the file gf256mul.S contains two implementations of
gf256mul, one of which has a label OPTIMIZE_SMALL_A (actually used in the DPA
Contest). Our simulation tests show same type of problem in both implementations.

It is interesting to note that an analogous problem was discovered by Koeune and
Quisquater [KQ99] against the similar type of MixColumns implementation in 1999
(not in case of the DPAContest). Their attack was a timing attack that took advantage
of the fact that the two branches in the control flow (the case when a polynomial is
reduced vs. the case when it is not) did not take the same amount of time. The 4th
version of DPA Contest does however implement MixColumns operation in constant
time, but not with a constant amount of register accesses, which is the vulnerability

5Note that for an unsigned binary value a left-shift by one (line 1 of Listing 8.2) corresponds to a
multiplication by 2, which is also equivalent to adding the value to itself (line 1 in Listings 8.3 and 8.4).
This modification is done by the compiler.

178 Chapter 8. SAVRASCA

that we found. Thus, secure implementations should not only be constant-time, but
also constant-flow. It is not easy to keep track of such details in the control flow of
a cryptographic algorithm, thus our findings highlight the importance of automated
tools such as simulators during the process of development.

As we have just explained, we can relatively easily find the value of the most sig-
nificant bit of an intermediate value in the first round of the cipher. This intermediate
value is a combination between two bytes that go into gf256mul function (see e.g.,
line 5 of Listing 8.1). However, DPA Contest uses a masking scheme, thus each byte
is masked and the value of the extracted MSB is also masked. The rationale is that we
have to take into account the masking scheme in order to mount a successful attack
on the DPA Contest 4. The following sections show how it can be done in case of the
4th edition of DPA Contest.

8.3 Analysis of AES-RSM used in DPA Contest 4

The DPA Contest 4 uses a lightweight masking scheme called RSM. The idea be-
hind RSM countermeasure used in this implementation is to precompute 16 masks
m0,m1 . . .m15 (16 different bytes) such that the input mask mi corresponds to the
output maskmi+1 mod 16 in the following way:

MaskedSi(B) = S(B ⊕mi)⊕m(i+1) mod 16

whereB is the byte of the state. In order to randomize this masking scheme a random
offset (between 0 and 15) is generated in order to choose which mask is applied to
each byte of the state.

Masks used for DPA Contest 4 are the following 16 values:

0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65, 0x6a,
0x95, 0x9a, 0xa3, 0xac, 0xc6, 0xc9, 0xf0, 0xff.

ThisAES-RSM implementationwas already analysed [BBB+13, BBD+14,MGH14,
YE13] and attacked numerous times [KP14] using various techniques including pop-
ular distinguishers such as CPA [BDG+14], TA [OWW14] and also Machine Learn-
ing [LMBM13, ZGLG14]. These previous analyses mostly focus on ways of retrieving
one byte of the key at a time either through combination of several points of power
traces or by trying to retrieve the mask offset before going through key hypotheses.

8.3.1 Mask bias

We will say that a randomly chosen bit b is biased if the probability P(b = 1) 6= 0.5
(which also gives P(b = 0) 6= 0.5 i.e., the choice is not a “random coin toss”). We will
use the symbol B for the bias of a bit to denote the value of the following expression:

B = |P(b = 1)− P(b = 0)|

8.3. Analysis of AES-RSM used in DPA Contest 4 179

Table 8.1 – Binary representation of masks in DPA Contest 4.

Masks bits

0x00 0 0 0 0 0 0 0 0
0x0f 0 0 0 0 1 1 1 1
0x36 0 0 1 1 0 1 1 0
0x39 0 0 1 1 1 0 0 1
0x53 0 1 0 1 0 0 1 1
0x5c 0 1 0 1 1 1 0 0
0x65 0 1 1 0 0 1 0 1
0x6a 0 1 1 0 1 0 1 0
0x95 1 0 0 1 0 1 0 1
0x9a 1 0 0 1 1 0 1 0
0xa3 1 0 1 0 0 0 1 1
0xac 1 0 1 0 1 1 0 0
0xc6 1 1 0 0 0 1 1 0
0xc9 1 1 0 0 1 0 0 1
0xf0 1 1 1 1 0 0 0 0
0xff 1 1 1 1 1 1 1 1

P (b = 0) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

it means that if a bit is not biased B is equal to 0 and B 6= 0 otherwise, while higher
value of B means that the bias is bigger.

Masking helps to randomize the internal state of a cryptographic algorithm dur-
ing its execution, recall Section 3.4.1. Normally masks should be chosen randomly
and the values chosen should be uniformly distributed. Values that were used for the
AES-RSM of DPA Contest 4 were selected in such way that if we choose a random
mask among these 16 values, the value of each bit is equally likely to be 1 or 0, see
Table 8.1. However, these values happen to create a bias when they are combined.
This bias is high enough that it allows to mount a first order side-channel attack i.e.,
the AES-RSM implementation in DPA Contest 4 has a first order leakage6. The na-
ture of this bias comes up when several masked bytes are combined together, it is
explained in the following paragraphs.

6Notice that this leakage is not the same as that identified in a older work [MGH14], and could not
have been detected by the method described in this older paper due to the nature of the problem that
we explain here.

180 Chapter 8. SAVRASCA

Let pi the plaintext bytes, normally organized as follows in AES:
p0 p4 p8 p12
p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15

then the input of the MixColumns zi = SB(pi ⊕ ki)⊕mi followed by ShiftRows is
laid out as follows:

z0 z4 z8 z12
z1 z5 z9 z13
z2 z6 z10 z14
z3 z7 z11 z15

 ShiftRows−−−−−→

z0 z4 z8 z12
z5 z9 z13 z1
z10 z14 z2 z6
z15 z3 z7 z11

 . (8.1)

The MixColumns in DPA Contest uses the trick of Rijmen & Daemen described
in the Rijndael AES proposal [DRN03, § 5.1, page 16], see line 3 of Listing 8.1. Some
commonly used values are factored, such as the exclusive-or combination of all four
bytes of the column:

z0 ⊕ z5 ⊕ z10 ⊕ z15 (8.2)

in the C++ code actual indices are 0, 1, 2 and 3 since a ShiftRows operationwas applied
to the state. Here, we see that two masked bytes are combined in lines 4, 6, 8 and 10
of Listing 8.1 (argument to gf256mul function). Thus, several times we have the
combination of masked bytes of the state such as zi ⊕ z(i+5) mod 16. Table 8.2 gives
the bias of every bit of a combination of two masks (bias for all offsets between two
masks is presented in Table 8.3). We can notice that all bits of such combinations,
except the 5th one are biased (or unbalanced). We can also notice that the 3rd bit
is always 1, in other words, the 3rd bit of the resulting byte is always masked using
the same value (in this case it is masked with value 1 or in other words it is always
inverted). Nevertheless, MSB leaks more: it has more points of interest that leak
information and the leakage is higher due to the problem described at the beginning
of Section 8.2, see the side-channel leakage profiling described in Figure 8.3.

Biases for all offsets between two masks are presented in Table 8.3, we can see
that for these values of masks any combination of two bytes has some bias (for at
least 4 out of 8 bits). We can also note that a combination of two masked values
which are 8 bytes apart (mi ⊕mi mod 16) completely removes the masks i.e., a bit is
always “masked” with the same value in such combination. Moreover, the 3rd bit
always has the highest possible bias (1.00) for any of the combinations, which means
it is not masked at all.

Masks of the analysed AES-RSM implementation also create a bias when we com-
bine 4 bytes of the same column of the state at a time, see Table 8.4. This combination
is also used in the implementation of DPA Contest 4 (see line 3 of Listing 8.1). When
combining 4 bytes, almost all bits are well balanced (no bias), however two of the bits

8.3. Analysis of AES-RSM used in DPA Contest 4 181

Table 8.2 – Bias of every bit of the combinationsmi⊕m(i+5 mod 16). Unbalanced bits
are highlighted.

Bit index 7 6 5 4 3 2 1 0

bit = 0 (%) 37.5 25.0 50.0 62.5 0.0 37.5 75.0 62.5
bit = 1 (%) 62.5 75.0 50.0 37.5 100 62.5 25.0 37.5

B 0.25 0.50 0.00 0.25 1.00 0.25 0.50 0.25

Table 8.3 – Bias in combinations of masks of DPA Contest 4. Each column is the bit
index, each line is the bias of a combinationmi ⊕m(i+offset) mod 16. The highlighted
line corresponds to the offset that is used in MixColumns combination of the first
round.

Offset Bit index

7 6 5 4 3 2 1 0

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 0.75 0.50 0.00 0.25 1.00 0.25 0.50 0.75
2 0.50 0.00 1.00 0.50 1.00 0.50 0.00 0.50
3 0.25 0.50 0.00 0.25 1.00 0.25 0.50 0.25
4 0.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00
5 0.25 0.50 0.00 0.25 1.00 0.25 0.50 0.25
6 0.50 0.00 1.00 0.50 1.00 0.50 0.00 0.50
7 0.75 0.50 0.00 0.25 1.00 0.25 0.50 0.75
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 0.75 0.50 0.00 0.25 1.00 0.25 0.50 0.75

10 0.50 0.00 1.00 0.50 1.00 0.50 0.00 0.50
11 0.25 0.50 0.00 0.25 1.00 0.25 0.50 0.25
12 0.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00
13 0.25 0.50 0.00 0.25 1.00 0.25 0.50 0.25
14 0.50 0.00 1.00 0.50 1.00 0.50 0.00 0.50
15 0.75 0.50 0.00 0.25 1.00 0.25 0.50 0.75

(3 and 5) are essentially never masked. This property leads to a first order leakage in
the DPA Contest 4 implementation. In order to exploit this leakage an attacker would
need to attack 4 bytes at a time and use bits 3 and 5 in the distinguisher. Ultimately
it means that the attacker will have to go through 232 hypotheses, which is quite un-
usual for a side-channel attack since it requires more computational power (than for
a more common choice of targeting one byte at a time which leads to 28 hypotheses).
Nevertheless, such an attack is feasible and could be performed in a relatively short

182 Chapter 8. SAVRASCA

Table 8.4 – Bias in combinations of masks of DPA Contest 4. Bias of every bit
of the combinations 4 mask bytes from the same column of the state i.e., mi ⊕
m(i+5) mod 16 ⊕m(i+10) mod 16 ⊕m(i+15) mod 16. Unbalanced bits are highlighted.

Bit index 7 6 5 4 3 2 1 0

bit = 0 (%) 50 50 100 50 100 50 50 50
bit = 1 (%) 50 50 0 50 0 50 50 50

B 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0

time using several standard PCs [MOW14].
When masks are chosen uniformly at random and are not biased (and their com-

binations are not biased as well), then an attacker does not learn anything by finding
out the masked internal state of a cipher. The bias in masks or their combinations
helps the attacker in the task of mounting a side-channel attack. If a combination
of masks of a bit has some non negligible bias (e.g., it is more likely be equal to 1)
then by discovering the value of the masked internal state, the attacker learns that
the non-masked version of the internal state is more likely to be equal to a certain
value. By acquiring more data (power traces) the attacker can effectively find out the
real value of the non-masked internal state of the algorithm.

8.3.2 Experimental results

The choice of unbalanced values for the AES-RSM masking scheme could be ex-
ploited. Wewere able to successfully attack the DPAContest 4 using the issue that we
found using Savrasca combined with our analysis of the masking implementation.
We performed a first order attack that we describe here below.

Attack settings and requirements

The vulnerability that we discovered can be exploited using several different attacks
with various distinguishers. It includes profiled and unprofiled attacks as well as dis-
tinguishers of different complexity (and strength) such as DoM or the one used in
the TA. On one hand using an unprofiled distinguisher is possible and it puts less
constraints on the attacker (no need to do the profiling step and less complex compu-
tations for statistics). On the other hand TA is more powerful and can be used with
less traces in the attack step.

For the sake of clarity and without the loss of generality we describe only one
simple and fast to evaluate multiple times attack. In our work we focus on a simple
distinguisher in order to highlight the fact that the vulnerability which we exploit
leads to very powerful attacks even when the adversary uses very basic statistical

8.3. Analysis of AES-RSM used in DPA Contest 4 183

tools (difference of means). We hope that it helps to emphasise the importance of
such problems, in other words the bias in combination of masks is a big issue for such
schemes. However, in order to speed up the computation of the success rates of our at-
tacks we decide to use a profiled version of the difference of means distinguisher. This
choice allows to speed up the computations becausewe need to cluster traces into two
groups only once (per attack) and this same clustering is usedwith all key hypotheses.
We are attacking two bytes (216 hypotheses) and repeating our experiments 400 times
(per number of traces and per bit index) to get the success rate. Thus, this acceleration
trick is very useful to get the result (success rate curves) in a more reasonable amount
of time: we have to perform the clustering only 400 times (for a fixed number of
traces) instead of 400× 216 which actually gives us only one point on a success rate
curve. Note that real attackers are not interested in computing the success rate, but in
finding the key, therefore they have to perform less computations and thus they can
use an unprofiled version of DoM. An unprofiled attack that uses simple difference of
means or correlation as a distinguisher have same basic requirements as our attack
but does not need the profiling step. A profiled attack such as TA can also benefit
from the values of masks during the profiled step.

For our attack we suppose that the attacker can record a small set of traces for
profiling. The attacker has to know the plaintexts, the key and masks associated
with these traces (for profiling). We also suppose that the attacker can acquire a set
of traces with an unknown key, unknown masks (offsets) and known plaintexts for
the attack. Our attack also works if the mask spaces are not the same between the
profiling and the attack step (i.e., they use two different sets of 16 masks in their
implementations), but the two sets of masks must have the same bias. During the
profiling step masks are used only to find out whether a bit is equal to 0 or 1 for a
single intermediate value and to associate a trace to a set, while the attack step does
not use the values of masks at all7 (only values of the plaintext and the fact that a
combination of masks is biased) even the exact value of the bias is not used during
the attack, the attacker only has to know whether the combination is more likely to
be equal to 0 or to 1. The rationale is that if the attacker knows which particular
instruction is targeted (and which points of a power trace from the attack set corre-
spond to this instruction), there is no need of using the same algorithm and knowing
masks during the profiling step, one can simply profile the targeted instruction using
all possible values. Our experimental results are based on the idea that the attacker
knows the implementation that is used for AES, more particularly the attacker knows
that the specific combinations of values (that we analyse) are indeed handled at some
point during the algorithm. However, notice that DPA Contest 4 uses a set of very
common tricks to build an efficient implementation, which is also the case for a lot
of other real-world implementations because there are only a handful of possible ef-
ficient implementations of AES.

7Our C++ code of the attack does not have values of masks in it.

184 Chapter 8. SAVRASCA

Finally, it is interesting to note that our attack can work on full entropy masking
schemes that reuse some masks on several parts of the state i.e., each mask is selected
at random among all possible values but it is used multiple times during the same
encryption.

Attack description

Our attack consists of three steps, first the attacker has to profile power traces, then
(during the actual attack) the attacker has to group power traces into two clusters
and finally he has to go through the hypotheses of the sub-key in order to determine
the correct one. More formally, we build two templates Θ0 and Θ1 using profiling
traces:

Θ0 = mean(T [i] such that ∀i : bitid(Z[i]0 ⊕Z[i]1) = 0),
Θ1 = mean(T [i] such that ∀i : bitid(Z[i]0 ⊕Z[i]1) = 1),

where Θ0 and Θ1 are vectors of points and bitid(·) is the function that returns the
value of the bit index id (targeted by the attack). During the first part of the attack
step, we cluster traces into two groups g0 and g1 by comparing each trace to the two
profiles:

T [i] ∈ g0 if dist(T [i],Θ0) < dist(T [i],Θ1),
T [i] ∈ g1 otherwise,

where the function dist(·, ·) is the Euclidean distance.
The final step of the attack searches the sub-key. This sub-key is the hypoth-

esis that maximizes the amount of intermediate states that were clustered using it
according to the clustering of power traces:

k̂ = argmax
ka,kb

{
count

(
∀i ·bitid

(
S(P[i]a⊕ka)⊕S(P[i]b⊕kb)

)
= Cl(T [i])

)}
(8.3)

where the function Cl(·) returns the id of the cluster that contains the trace:

Cl(T [i]) =

{
0 if T [i] ∈ g0,

1 if T [i] ∈ g1.

In other words, during this step we cluster the intermediate states for different plain-
texts with each hypothesis and compare whether clusters based on power traces are
similar to clusters based on processed values.

The resulting sub-key k̂ consists of two parts ka and kb, where a and b are such
that a = b + 5 mod 16. The difference (of 5) between indexes for the two bytes of
the secret key is explained by the fact that we target two bytes of the same column
after the ShiftRows operation, see Equation 8.1. Thus, our attack targets 2 bytes of
the secret key and the attacker has to go through 216 hypotheses.

8.3. Analysis of AES-RSM used in DPA Contest 4 185

Experimental results of the attack

We performed a profiled DoM attack described above on reference traces. For our
experiments we use reference traces from the first part of the public dataset of DPA
Contest 4 (file DPA_contestv4_rsm_00000.zip with 10 000 traces). These traces
are available on the official website8. We calculate the success rate of an attack based
on 400 repetitions of the attack. Each repetition uses a different set of power traces,
each set was selected by choosing traces uniformly at random from the entire dataset
(without using the same trace multiple times in the same repetition). Each of our
attacks uses 8 points per trace. We use 1024 traces in order to build our profiles. We
use the DoM distinguisher in order to choose these 8 points (using a known key). For
each attack these 8 points were chosen as points that give the largest absolute value
of DoM between two clusters during the learning phase. The two clusters are created
based on the value of a single bit of the input into the gf256mul function (z0 ⊕ z5).

In our experiments we attack two bytes of the key: k0 and k5. We conduct 10 at-
tacks in total, all attacks are focused on the time interval during the first round when
gf256mul function is called and executed. Namely, we conduct 8 identical attacks
(one per bit index) and two additional attacks on the MSB (using points from different
clock cycles) to estimate the impact of the issue described in Section 8.2 (EOR vs. BRCC
instructions).

The success rates of our attacks on each bit are shown in Figure 8.2. The dif-
ference between the success rates of attacks on different bits comes from two separate
phenomena: (1) the bias in combinations of masks of each bit which depends on the
choice of masks, and (2) the amount of leakage of each bit which depends on the
target hardware.

We can see that some bits leak more information (Figures 8.3 and 8.4) and bits
that have higher bias in masks (Table 8.2) are easier to exploit. Thus, the bit 3 which
is always masked with the same value gives the attack that has the highest success
rate and the bit 5 (no bias in masks) does not provide useful information. We can also
notice that the success rate of the attack on bit 1 is higher than the success rate of the
same attack on bit 6, because, even though combinations of masks of these bits have
the same bias, bit 1 leaks more (through the nature of the device). We can notice the
same phenomenon with bits that have mask bias 0.25. However, the attack on the
MSB has the highest success rate among all bits that have unbalanced masks with the
same value of bias.

While attacks on all bits exploit the hardware leakage (related to Pval) and the
bias in masks, the attack on the MSB also benefits from the fact that two different
instructions are executed during a certain clock cycle as explained in Section 8.2 (i.e.,
it can also exploit differences in Pop, recall Equation 3.7). This additional impact is
visible in Figure 8.4. In order to find out the impact that the unfortunate choice of the

8http://www.dpacontest.org/v4/rsm_traces.php

http://www.dpacontest.org/v4/rsm_traces.php

186 Chapter 8. SAVRASCA

bit 0
bit 1

bit 2
bit 3

bit 4
bit 5

bit 6
bit 7

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

Figure 8.2 –The success rate of the attack on each bit of the intermediate state z0⊕z5.
The success rate was calculated using 400 repetitions.

implementation has on the success rate we perform a second experiment. This time
we perform the same DoM attack, but we exclude the points from the clock cycle
where the difference between BRCC and EOR instructions appears. “Fortunately” the
attacker has a lot of choice to target a combination of bytes during this attack, see
Figure 8.5. We use the next 8 best points (from a different clock cycle), thus this at-
tack does not benefit from the difference between instructions. We also performed
the same attack using 8 points only from the cycle where either BRCC or EOR can be
executed.

Figure 8.6 shows the success rate of these attacks together with the original at-
tack on the MSB (that simply uses 8 best points from any clock cycle). We can see
that the implementation error in gf256mul function actually gives a clear additional
advantage to the adversary which results in a boost of the success rate of the attack.

As could be noticed in Figure 8.2, the bias in values that are used for masks allows
us to attack this protected implementation using a first order attack using one of the
simplest distinguishers. In other terms, this implementation has a first order leakage
that was not discovered before. Interestingly, the other first order leakage identified
earlier by Moradi et al. [MGH14] also targeted biases in values. It required about 500
traces to recover the key while our attack on the 3rd bit that uses a much simpler
distinguisher has a stable success rate of 1 after 230 traces. These results highlight
the fact that the issue that we identify and exploit represents a big threat to LEMS
implementations. We can also notice that the implementation issue in the computa-

8.3. Analysis of AES-RSM used in DPA Contest 4 187

Time (trace points)

A
b

s.
 D

if
fe

re
n

ce
 o

f
M

e
a
n

s
(b

it
 i

n
d

e
x)

7

6

5

4

3

2

1

0

0 1000 2000 3000 4000 5000 6000 7000 8000

●

●

●

●

●

●

●

●

Figure 8.3 – Difference of Means. Best point is highlighted with a circle.

●

●

●

●
●

●

●

●

0 1 2 3 4 5 6 7

0

2

4

6

8

10

12

Bit index

D
o
M

 o
f

b
e
st

 p
o
in

ts

Figure 8.4 – Absolute value of DoM on each bit. Highest points per bit.

188 Chapter 8. SAVRASCA

Time (trace points)

DoM(msb)

gf256Mul

xor(z0, z5)

xor(z0, z5, z10, z15)

z0

z5

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 8.5 – Different distinguishers (correlation and difference of means) applied on
the values used during the gf256mul function.

tion of MixColumns operation contributes to the leakage that exists due to the bias
in masks, ultimately it results in a more powerful attack against this implementation.

Full attack and possible improvements

Our experiments focus on two bytes of the key. This attack could be easily used in
order to extract the entire key since gf256mul is called 4 times during MixColumns
(lines 4, 6, 8, and 10 of Listing 8.1). The same offset between bytes of the state is
used (5 bytes) during these calls, moreover each byte of the state is involved in two
computations of gf256mul. Thus an attacker can use multiple attack strategies in
order to perform an attack on all parts of the key.

First simple strategy consists in attacking two bytes that are used in one call of
gf256mul and then attacking a call to gf256mul that uses two other bytes e.g., lines 4
and 8 in Listing 8.1. This strategy would require to enumerate 216 values twice in
order to extract 4 bytes of the secret key (217 values to test in total).

Second strategy consists in attacking two bytes used in the first call to gf256mul
(216 values to test, line 4 of Listing 8.1), supposing that the result is correct and at-
tacking the next call (line 6 of Listing 8.1) while using previously discovered byte
thus going through 28 values for the remaining byte. Then finally repeat this process

8.3. Analysis of AES-RSM used in DPA Contest 4 189

XOR/BRANCH MSB (bias) Combined

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

Figure 8.6 – Success rate of 3 DoM attacks. DoM on the instruction XOR / BRANCH.
DoM on the second best clock cycle (MSB) and the combined attack.

one more time to attack the last byte used in the next call to gf256mul (line 8 of
Listing 8.1). As a result this technique would require to go through 216+28+28 hy-
potheses in order to recover 4 bytes (which is less than required by the first strategy).

Both attack techniques are interesting in practice. While the second one requires
less computational resources than the first one, the first one will not propagate an
error if it occurs during the attack on the first part of the key (which might be the
case in the second one). Both attacks could use a checking mechanism that is based
on the fact that we attack two bytes at a time and that each byte is used twice. In both
cases the attacker can target all four calls to gf256mul and double-check the results.

Our attack could probably be further improved by attacking several instructions
(from different clock cycles) and by using better profiling (more points per trace and
more traces in the profiling set). This attack could be also improved by combining
attacks on several bits at a time as well as through combination with attacks on op-
erations other than MixColumns.

8.3.3 Balanced values for masks

The rotating S-box masking scheme is very useful in practice when we need a rela-
tively lightweight countermeasure against side-channel attacks. Thus, it is interest-
ing to find a set of 16 masks that do not have any bias whether one-by-one or when
combined as described earlier.

190 Chapter 8. SAVRASCA

Fixing 2 and 4-part combinations

In order to mitigate the problem that we found, designers should be able to generate
masks that do not create bias when combined two-by-two or four-by-four. More
formally, we want a set of 16 masks mi where we have P (b = 1) = 0.5 and B = 0
for every bit b of the combination of two bytes mi ⊕ mi+5 (mod 16) as well as for
every bit of the combination of four bytes mi ⊕ mi+5 (mod 16) ⊕ mi+10 (mod 16) ⊕
mi+15 (mod 16). Such set of masks would not leak in the way that we were able to
exploit during our attacks and it can be used in the AES-RSM implementation of DPA
Contest. Wewere able to findmany sets ofmasks that fit our criteria. Herewe present
a simple way of generating them.

In order to generate a set of masks that fits our requirements we start by gener-
ating all sequences of 16 bits that have 8 bits equal to 1 (and 8 equal to 0). There are
only

(
16
8

)
= 12870 ≈ 213.65 such sequences, so nowadays it is possible to enumerate

them all on a standard computer. Each of these sequences is a potential candidate for
any bit index of the future set of masks (i.e., it corresponds to any column in Table 8.1
or in Table 8.6). Once this set is generated, we can filter it in order to reject all se-
quences of bits that do not fit the criterion of the bias (combination of two and four
bits situated 5 values apart as bytes in MixColumns). After this filtering we obtained
2192 unique sequences of 16 bits, each of them corresponded to our criteria. The final
step is to choose 8 of them in order to obtain 16 different values (masks). Table 8.5
presents 8 examples of resulting masks and Table 8.6 shows binary representation
of our first example of balanced masks. There exist many more such sets of masks,
there are 2192 binary strings and we need to choose 8 of them thus, there are

(
2192
8

)
possibilities to choose from (approximately 273.46). Note that not all of them fit our
criteria of having 16 different values, we were not able to go through the entire space
(due to its size) to get the exact number of such sets. Nevertheless, we were able to
generate our examples by picking 8 random binary strings and verify the condition.

The same technique could be used to generate a set of more than 16 masks for
a different algorithm or if we want to use more than 16 precomputed values in the
AES-RSM scheme. Also, this way of generating the set of masks could be modified
in order to encompass new criteria in case if a novel problem related to the choice of
these values is discovered.

Other biased combinations

The way of generating the set of masks presented in the previous section could be
modified in order to encompass new criteria in case if a novel problem related to the
choice of these values is discovered. New criteria should also be included depending
on the specific low entropy masking scheme and on the algorithm that it is being
applied to (in our case we care about combinations that occur in MixColumns, thus
we analyse masks that are situated 5 bytes apart form each other).

8.3. Analysis of AES-RSM used in DPA Contest 4 191

Table 8.5 – Examples of balanced masks for combinations of 2 and 4 bytes.

id Masks

1 0x13, 0x94, 0x25, 0xCB, 0x8E, 0x5F, 0xD9, 0x37
0x77, 0xC6, 0xA8, 0x38, 0x05, 0xEA, 0x70, 0xE8

2 0xAE, 0x1F, 0x43, 0x70, 0x6A, 0x5C, 0xA4, 0xE1
0x5D, 0xAF, 0x11, 0xD6, 0xAB, 0xC2, 0xB0, 0x1D

3 0xA4, 0xE1, 0x08, 0xDC, 0xDF, 0x6D, 0x00, 0x32
0xA0, 0x5F, 0x6F, 0xF6, 0x9B, 0x97, 0x11, 0x6A

4 0x6F, 0x84, 0xB5, 0x0F, 0x9A, 0x65, 0x4B, 0x3D
0x3A, 0xEA, 0xE2, 0x98, 0x55, 0x11, 0xD0, 0xE6

5 0xC0, 0x5A, 0x7D, 0x7F, 0x36, 0x82, 0xED, 0x87
0x43, 0x76, 0xA9, 0xFC, 0x0C, 0x80, 0x9B, 0x31

6 0xF4, 0xC3, 0xE8, 0x22, 0x39, 0x74, 0x1E, 0xF8
0x4F, 0x57, 0x87, 0x01, 0xF3, 0x2C, 0x8C, 0x9B

7 0x56, 0x11, 0xFA, 0x0B, 0x8B, 0xED, 0xFC, 0xB2
0x14, 0xAC, 0xA1, 0x6F, 0xD3, 0x62, 0x1C, 0x45

8 0x27, 0x00, 0x5B, 0xE0, 0x70, 0x47, 0xBE, 0x0E
0xD0, 0x39, 0x8D, 0x81, 0xDF, 0xFF, 0xA8, 0x76

If we take a closer look at the algorithm in the Listing 8.1 (line 3) we can see that
4 masked bytes are combined. Since the system is used in an 8-bit software imple-
mentation there are essentially two ways of combining 4 bytes using an exclusive-or.
Let z0, z1, z2 and z3 be four intermediate values (bytes) that we want to combine, the
first way of getting the combinations z0 ⊕ z1 ⊕ z2 ⊕ z3 is the following:((

(z0 ⊕ z1)⊕ z2

)
⊕ z3

)
(8.4)

and the second one is given by:((
z0 ⊕ z1

)
⊕
(
z2 ⊕ z3

))
(8.5)

where parentheses give the order in which the bytes are combined. In some cases
we may also care about the order of zi in those combinations and in the actual pair-
wise exclusive-or operations (e.g., z0 may be combined with z2 instead of z1 as in
our example). However, for the sake of simplicity we focus on the arrangements of
exclusive-or operations with the same fixed order of bytes.

192 Chapter 8. SAVRASCA

Table 8.6 – Example of a balanced mask with their binary representation.

Masks bits

0x13 0 0 0 1 0 0 1 1
0x94 1 0 0 1 0 1 0 0
0x25 0 0 1 0 0 1 0 1
0xcb 1 1 0 0 1 0 1 1
0x8e 1 0 0 0 1 1 1 0
0x5f 0 1 0 1 1 1 1 1
0xd9 1 1 0 1 1 0 0 1
0x37 0 0 1 1 0 1 1 1
0x77 0 1 1 1 0 1 1 1
0xc6 1 1 0 0 0 1 1 0
0xa8 1 0 1 0 1 0 0 0
0x38 0 0 1 1 1 0 0 0
0x05 0 0 0 0 0 1 0 1
0xea 1 1 1 0 1 0 1 0
0x70 0 1 1 1 0 0 0 0
0xe8 1 1 1 0 1 0 0 0

Note, that in most software implementations it is possible to execute only one
exclusive-or operation at a time. Thus, the first way of combining would give us (and
would leak) information on the combination z0 ⊕ z1, followed by z0 ⊕ z1 ⊕ z2 and
finally z0⊕z1⊕z2⊕z3. Thus, the first way of combining would also leak information
about the combination of 3 masks!

Upon the analysis of combinations mi ⊕mi+5 (mod 16) ⊕mi+10 (mod 16) in the
mask set of the DPA Contest we can note that the bias is always 0 for all bits (i.e., no
issues with unintentional leakage). However, if we look at the masks from Table 8.5
we can notice that their combinations (of 3 values) are biased. There are two ways
of dealing with this issue. The first one would be to use the second way of get-
ting a combination of 4 bytes (Equation 8.5), however it means that the designer of
the masking scheme (and the person who selects the values for the masks) suppose
that the software developer will be aware of it and will take care of the potential
problem. However, it is not always possible to ensure this assumption in practice
(human mistakes and compiler optimisations might be an issue). Thus, the second
way of dealing with combinations of 3 values or any other similar problems would
be to encompass additional properties in the mask generation process.

Table 8.7 shows another set ofmasks thatwe generate using an additional filtering
rule (on the combinations of 3) while filtering sequences of 16 bits as in the previous
section. In the case if we forbid bias in combinations of two bytesmi⊕mi+5 (mod 16),

8.3. Analysis of AES-RSM used in DPA Contest 4 193

Table 8.7 – Examples of sets of balanced masks for combinations of 2, 3 and 4.

id Masks

1 0x13, 0x94, 0x2D, 0xC3, 0xE6, 0x9E, 0x79, 0x41
0x82, 0xBD, 0x58, 0x62, 0xE7, 0x9C, 0x3D, 0x6A

2 0xAE, 0x5F, 0x03, 0x30, 0x28, 0x96, 0x79, 0xD5
0xEA, 0xCE, 0xA5, 0x25, 0x52, 0xB2, 0x59, 0xCD

3 0xA4, 0xE1, 0x08, 0xDC, 0x5F, 0x7B, 0xC5, 0x8D
0xE2, 0x70, 0x92, 0xB4, 0x6F, 0x3B, 0x02, 0x1F

4 0x6F, 0x84, 0xB5, 0x0F, 0x1A, 0xF0, 0xDF, 0xE8
0xF5, 0x16, 0x11, 0x4A, 0x00, 0xF3, 0x6C, 0xAB

5 0xA3, 0x6A, 0x14, 0xBC, 0x5A, 0xE5, 0xD8, 0xF7
0xA1, 0x03, 0x32, 0x0D, 0x4F, 0xED, 0x9E, 0x50

6 0xC0, 0x5A, 0x7D, 0x7F, 0xA6, 0x37, 0x12, 0x19
0xCE, 0x5B, 0xA1, 0xA8, 0xC7, 0xAC, 0x50, 0xA5

7 0xF4, 0xC3, 0x68, 0xBA, 0xA1, 0x07, 0x56, 0xED
0x74, 0x11, 0x0C, 0x9B, 0xE3, 0x1E, 0x4B, 0xBC

8 0xE9, 0x06, 0xB3, 0x0E, 0x6F, 0xE0, 0x94, 0x71
0x86, 0xDB, 0x3D, 0x9A, 0x18, 0x67, 0xFD, 0x40

three bytesmi⊕mi+5 (mod 16)⊕mi+10 (mod 16) and four bytesmi⊕mi+5 (mod 16)⊕
mi+10 (mod 16) ⊕ mi+15 (mod 16) we end up with 768 binary strings of 16 bits that
satisfy our requirements. Once again, here we present 8 examples of sets of well-
balanced masks, but there are more of such sets. The total number of sets to choose
from is equal to

(
768
8

)
which is approximately 261.33 (note that not all of them will

produce a set of 16 different values that we impose on the scheme).
Note, that similar issues related to combinations of several masks can appear in

other LEMS applied to different algorithms. The techniques of combining values by
groups (as in Equation 8.5) instead of “one-by-one” (as in Equations 8.4) might become
a necessity if a mask set has so many constraints on combinations that it cannot be
satisfied using the required number of different values (16 in our case). In other
words, we may need to choose a specific way of combining values (and forbidding
the others for security reasons) in order to be able to relax the constraints on the
values of masks.

For a number of combined bytes other than 4 we may use more different order-
ings for combining them. For example, let us take a hypothetical encryption algo-
rithm that uses a combination of 6 bytes on the intermediate state (z0, z1 . . . z5). We

194 Chapter 8. SAVRASCA

will use ⊕
i to note that the given exclusive-or operation (⊕) leaks information on

the combination of i values e.g., ⊕
3 means that the operation leaks information on

the combination of 3 bytes. The 6 values can be combined one-by-one (it will leak
information on combinations of 2, 3, 4, 5 and 6 values):((((

(z0 ⊕
2
z1)⊕

3
z2
)
⊕
4
z3

)
⊕
5
z4

)
⊕
6
z5

)
(8.6)

or by three groups of 2 (leakage on combinations of 2, 4 and 6 values):((
(z0 ⊕

2
z1)⊕

4
(z2 ⊕

2
z3)
)
⊕
6
(z4 ⊕

2
z5)

)
(8.7)

or in two groups of 3 bytes (resulting in leakage of combinations of 2, 3 and 6 values):((
(z0 ⊕

2
z1)⊕

3
z2

)
⊕
6

(
(z3 ⊕

2
z4)⊕

3
z5

))
(8.8)

in these equations each⊕ produces a combination of values that will leak information
on the combination of its operands (left and right parts). In case of a specific algorithm
wemay use the technique from the Equation 8.7 or 8.8 (while avoiding the other one).
Note that here we only focused on the way of combining values while always using
them in the same order (0, 1 . . . 5) but even the order of zi in each combination may
be important for a specific implementation of a given algorithm.

8.4 Note on DPA Contest 4.2

As a response to the attacks on the 4th edition of the DPA Contest its authors created
a new updated version (4.2) of the contest with several modifications and improve-
ments [BBD+14].

The version 4.2 is fully written in assembly language, it uses a different set of
masks9 and also uses a shuffling countermeasure called Random Permutation (RP).
We applied the same analysis to this new version.

As a result we found that DPA Contest 4.2 fixes the problem related to the imple-
mentation of the MixColumns operation, this version is executed in constant time (as
the one in the version 4) and it does the same number of register accesses regardless
of the input value. This modification effectively solves the problem of the value of
MSB that can be extracted using simple EMA (the execution of BRCC vs. EOR, recall
Section 8.2). However, we would like to point out that the authors were unaware of
the problem at it was solved unintentionally and by chance.

The updated version also uses the RSM technique, the new masks used in version
4.2 are the following 16 values:

9http://www.dpacontest.org/v4/42_doc.php

http://www.dpacontest.org/v4/42_doc.php

8.4. Note on DPA Contest 4.2 195

0x03, 0x0c, 0x35, 0x3a, 0x50, 0x5f, 0x66, 0x69,
0x96, 0x99, 0xa0, 0xaf, 0xc5, 0xca, 0xf3, 0xfc.

We can notice that these values were obtained by applying an exclusive-or be-
tween masks used in DPA Contest 4 and the constant 0x03. As a result all masks
from the version 4.2 have the same problem i.e., their combinations are biased as
combinations of masks from the version 4 of the contest. Thus, version 4.2 of the
DPA Contest could be attacked by exploiting the same bias. However, in case of DPA
Contest 4.2 an attacker also have to deal with shuffling.

196 Chapter 8. SAVRASCA

8.5 Summary

We showed how a debugger for microcontrollers, such as SimulAVR, can be trans-
formed into a simple low-level of abstraction simulator for side-channel analysis.
Note, that this is a simulator that deals with a narrow scope of phenomena i.e., we
are only dealing and simulating leakage related to memory transfers (read and write
accesses to any memory unit). Nevertheless, we were able to show that even such
simple simulation can be very useful for side-channel analysis. Our tool Savras-
ca can be improved by introducing additional models that encompass more details
about the simulated microcontroller e.g., simulating leakages resulting from the ALU
as well as from data transfers on the internal buses.

With the help of Savrasca we were able to detect an issue in the implementation
of AES that is used in DPA Contest. Thus, we showed that detection of issues related
to timing differences and differences in the control flow of operations can be done
automatically using our method based on simulations. The detection of the issue in
this implementation pushed us towards further analysis of the masking countermea-
sure that was used in the AES-RSM implementation of DPA Contest 4. As a result, we
have found a novel problem related to the choice of masks in the RSM scheme. We
successfully used it in order to analyse DPA Contest 4 reference traces and found that
it could be exploited: an attacker can retrieve secret information using a first order
side-channel attack even with very simple distinguishers (DoM). The vulnerability is
related to the choice of values for precomputed masks in AES-RSM implementation.
Masks in DPA Contest 4 are unbalanced which leads to a bias and first order leakage
when masked values are combined in MixColumns.

Our analyses show that a leakage can occur and can be exploited by observing a
combination of two or even four bytes of the state. Such combination happen in block
ciphers very often, since every single bit of the output should depend on every bit of
the plaintext and of the key; thus block ciphers use operations that combine different
parts of the internal state. Generally, during an implementation of a masking scheme
the programmer has to pay attention and make precautions in order not to combine
the mask and the masked value (to avoid accidental leakage). Our results show that
even a combination of two seemingly unrelated masks can be dangerous in case of
precomputed values such as used in AES-RSM scheme. The rationale is that in LEMS
schemes all masks are related through the choice of masks among all possible values.

We specifically chose on of the simplest and weakest forms of side-channel at-
tacks (simple distinguisher, only one bit of the output is considered with few leakage
points) to emphasise how important this issue is: even in this scenario we achieve
better success rate than some previous works. However, our attack can be definitely
improved by focusing on several (biased) bits at a time, by combining it with other
attacks on the DPA Contest, by choosing a better distinguisher as well as through use
of more focal points (by targeting more operations).

8.5. Summary 197

This issue that we analyse was not discovered by previous analysis, since they
mostly focus on a single byte of the state while our work focused on combinations
of bytes. However, we would like to point out that such issues can potentially be
discovered using other analysis techniques. For example, the paper by Moradi et
al. [MGH14] uses a leakage detection technique that can potentially be used to detect
the leakage that we identify. Normally their method is particularly well suited for
analysis of single bytes (or binary words of other length). In order to analyse com-
binations of words or larger parts, their method could be adapted: if we were to use
it to detect leakages that occur only after a combination of several masks (as it hap-
pens in e.g., MixColumns) it would require to go through all possible combinations.
However, such adaptation will quickly result in “combinatorial explosions” i.e., rapid
growth of the number of tests (that have to be performed) due to the number of pos-
sible combinations. In this particular case, our findings concern combinations of 2
and 4 bytes, detecting these issues using the method described byMoradi et al. would
require to run their tests

(
16
2

)
and

(
16
4

)
times (respectively 120 and 1820). Moreover,

since the experimentalist does not know in advance what combinations (which bytes
and how many bytes are concerned)10 one would need to run 2n repetitions of their
tests in the worst case scenario (for a state of n bytes).

As the first step towards the improvement of LEMS schemes we showed how to
correct the implementation of AES-RSM in DPA Contest in order to effectively re-
move the bias in the combinations of masks that we found and exploited. Moreover,
we also gave a set of examples of masks that could be used in order to do this im-
provement. In this work we provided some hints on how to fix a particular issue that
we exploit, but these problems have to be addressed more generally (for AES, includ-
ing decryption, and for other block ciphers) and in more details in future works. We
would like to emphasize the fact that the choice of masks in LEMS countermeasures
can lead to non-obvious leakages when masked values are combined. Thus, selection
of mask sets is a non-trivial task that has to be studied more in depth. This choice
depends on the masking scheme (number of masks and the way they are used) and
it also depends on the particular algorithm (different parts of the internal state are
combined in different block ciphers). Most interesting and promising directions for
future works include two ideas: (1) finding a way of detecting leakages and biases
that appear after a combination of several parts of the internal state, and (2) more
generally, studying in depth the choice of masks for LEMS.

Overall, our results suggest that use of simulators is beneficial for leakage detec-
tion in at least two ways: (1) we were able to identify a problem that was not detected
by previous works and moreover, (2) we did it without actually analysing the power
traces, only by looking at the code using automated methods. Afterwards, we anal-

10We may try to get an idea on how many and which bytes are conserved by analysing the combi-
nations that happen in the algorithm, but those are not the only combinations that happen in an actual
implementation, recall Chapter 7.

198 Chapter 8. SAVRASCA

ysed the actual power traces in order to confirm our findings and to show that the
found issues are indeed exploitable.

Chapter 9

Conclusions

Cryptography provides us with encryption — a tool that allows to ensure confiden-
tiality of information and ultimately gives us the method of secure communications.
Unfortunately, simply having a secure algorithm is not the end of the story. Even
if cryptographers can provide a theoretically sound encryption algorithm, creating
a secure final product that uses this algorithm can be very tricky. Indeed, when an
encryption algorithm is implemented it goes from abstract mathematical world to the
real physical world and the cryptographic device that implements it brings new prop-
erties into the algorithm. These properties, such as power consumption — the main
focus of this work, can unintentionally leak secret information that is handled by
the device. An attacker can take advantage of these information leakages by measur-
ing the physical properties of the target cryptographic system and thus extracting the
encryption key from a seemingly secure implementation using side-channel analysis.

Side-channel attacks belong to one of the strongest types of attacks against cryp-
tographic systems. Nowadays they are much more powerful than classical cryptanal-
ysis against modern encryption algorithms. At the same time, side-channel analysis
is one of the most complex kinds of issues that developers and security evaluators
want to analyse. It is very complex because a side-channel attack involves many
steps, choices and parameters which are related to different domains of computer
science, mathematics and engineering. Thus, there exist many types and flavours of
side-channel attacks and any one of them presents a potential threat against a cryp-
tographic system. Therefore, an evaluator of a cryptographic system (with respect to
its security) is faced with a big challenge of verifying that the given system is secure
i.e., does not have security flaws and can resist side-channel attacks.

Security evaluation of any system is a non-trivial task since an evaluator has to
check and show that the system is well protected against all known attacks, while an
attacker is satisfied if they can find one security flaw. Moreover, attackers can some-
times find and exploit new, previously unknown issues that evaluation lab did not
test. Performing security evaluation of cryptographic systems from the perspective

199

200 Chapter 9. Conclusions

of side-channel analysis presents evaluators and developers with an additional prob-
lem: in order to test a cryptographic device for its resistance against side-channel
attacks the device has to be complete. Indeed, since we are dealing with attacks that
take advantage of physical properties of the device, we need the physical device in
order to test it. It is not a huge problem in itself, however if a side-channel related
security flaw can be discovered at the very last step of the development process then
themanufacturer might have to restart a substantial part of the design in order to deal
with discovered issues, which in its turn increases development costs. Therefore, de-
velopers and manufacturers of cryptographic systems can benefit from methods that
allow them to discover issues related to side-channel attacks on early stages of devel-
opment of cryptographic implementations.

One way of trying to ensure the absence of security issues during the develop-
ment process is using provably secure countermeasures against side-channel attacks.
Unfortunately, even countermeasures with security proofs such as masking are fre-
quently broken in real implementations, it happens because of assumptions used in
the proofs (value-based vs. distance-based leakage), due to unaccounted physical
phenomena (e.g., glitches) and because of issues related to the implementation of
those masking schemes (such as choosing values for a Low-Entropy Masking Scheme
(LEMS)). Therefore, this approach does not always yield the expected result in prac-
tice, partially due to human errors related to the amount of different centres of atten-
tion that the developer has to keep track of. Thus, the use of good security policies
and developmentmethods could also benefit from additional continuous side-channel
analysis on all stages of development. In our work we suggest that simulations can
be used to achieve this goal.

There already exist methods (attacks and analysis techniques) that can be used
to evaluate the security of cryptographic systems using power traces available at the
final stage of development. The same analysis methods can be used on simulated
traces that we can generate using intermediate representations (versions) of the de-
veloped system which are available on any stages of its development. Through this
work we suggested a number of simulation techniques on different stages of devel-
opment that can be used in order to generate simulated traces that model the real
power traces. Ultimately we were able to provide 3 automated and opensource tools
based on simulations.

First of all, in Chapter 5 we were able to show that simulations are useful for side-
channel analysis in general due to their advantages over real experiments (full control
over the system, high reliability and speed). We also emphasised that even though
several simulators were presented to the scientific community, the majority of them
remain unavailable and thus cannot be used or compared among them. Moreover, re-
searchers are already using simulation techniques, but they tend to adopt disposable
pieces of code designed to be used only once. Therefore we can conclude that despite
the need and benefits that the community can get from use of available simulators,

201

this domain remains underdeveloped. Therefore, we made first steps towards filling
in this gap by providing automated simulation tools for the community and showing
how evaluators can use them.

The first tool that we presented in Chapter 6, called Silk, is meant to be used at the
earliest stages of analysis of cryptographic algorithms and countermeasures against
side-channel attacks. Its goal is to generate simulated traces given a high-level de-
scription of the leakage and the C++ source code that we want to study, it produces
traces that contain information on the dynamic power consumption (related to the
data dependant part) and the noise. Being a very high-level of abstraction simulator it
is very generic and flexible. We showed how it can be useful for comparative analysis
of S-boxes, which ultimately results in new approaches that can be used for building
S-boxes. We also showed how Silk can be used for comparing countermeasures on
the example of shuffling schemes. We were able to show that simulations based on
very simple and abstract models are well representative of real experiments in terms
of relative strengths of attacks (or countermeasures) i.e., two attacks will have simi-
lar success rates when performed on simulated or real power traces. However, this
approach is not well suited for detection of implementation flaws in a specific im-
plementation, mostly due to the fact that the vast majority of device specific and im-
plementation specific details are not “visible” or available at this layer of abstraction.
Thus, we advertise the use of this tool for preliminary analysis of countermeasures
described in higher abstraction layers and for tests and development of new attacks
and preprocessing techniques. But most importantly, we showed that Silk can be
used to perform massive comparative studies that are very hard to execute using
only physical experiments due to time and cost constraints. Thus we conclude that
it is possible to gain several orders of magnitude in terms of speed of side-channel
analysis while using tools such as Silk for preliminary studies of algorithms.

Several questions related to high-level of abstraction simulations remain open.
First of all, we do not know how to choose a good set of parameters (such as the
leakage function) for such simulations and whether it is possible to build such high
level of abstraction simulators to be device-specific. Other open problem is related to
the fact that some issues can never be discovered using analysis based on high-level
of abstraction simulators since such abstract models do not encompass all features
of the final product and, a security flaw can potentially be related to (i.e., caused by)
a very low-level feature. Thus, it would be interesting to know the limits of very
high-level of abstraction simulations and to find out which type of issues cannot be
discovered using only high-level of abstraction simulators. The same question about
the limits of side-channel leakage that can be detected on each level of abstraction
(recall Section 5.2) remains as an open problem. Finally, it is interesting to know
how to build better and easier to use high-level of abstraction simulators. Such study
requires more different simulators that use the same type of input and provide same
kind of output but run the simulation differently (apply different models).

202 Chapter 9. Conclusions

The second tool presented in this work in Chapter 7 is called Ascold. This tool
works by processing slightly lower-level of abstraction information (compared to
Silk) — assembly code. The goal of this tool is to detect some of the side-channel
leakages by analysing the assembly code written by a developer. Ascold outputs
all lines of code that can break the Independant Leakage Assumption (ILA), it also
prints a message explaining the nature of the detected problem. Thus, it can be used
during the development process, before the code gets compiled and loaded into the
microcontroller. Ascold has two main distinctive features compared to many other
simulators with respect to its structure and functions: (1) Ascold is build based on
extensive profiling of a specific model of a microcontroller but it does not output sim-
ulated traces, (2) it can directly pin-point the location of hazardous operations related
to misuse (poor implementation) of a masking scheme, thus it is a checker. Findings
presented in this part of our work showed that creating a correct masking implemen-
tation that does not leak is far from being trivial and that it requires to keep track of
huge amount of potential issues that can result in breaching the independent leakage
assumption (which is required to build a masking scheme). The rationale is that a
developer will most likely not be able to implement a masking scheme without for-
getting about one of the ILA breaching issues that we discovered, thus an automated
tool is required to check the assembly code. Moreover, we were able to provide such
tool.

Ascold is a device specific tool since all information that was used to build it
was extracted from one model of microcontroller. Therefore, several questions re-
main open. More tests have to be performed on other devices (including different
architectures) to find out whether these results are similar on them. Moreover, we
do not know if more similar effects exist and how to test their absence or existence.
However, the main question related to this type of tools if the knowledge about the
cause (underlying hardware details) of each ILA-breaching effect. Opensource hard-
ware platform can shed a lot of light on this issue and thuswill be extremely beneficial
to the entire community. Another extremely interesting question that should be ad-
dressed is how rules used in the Ascold tool could be integrated in a compiler in
order to provide a fully automated ILA-enforcing compiler assisted masking.

The third tool that we created during this work is called Savrasca and it is de-
scribed in Chapter 8. This tool works on even lower-level type of input — compiled
executable files. Savrasca uses a compiled binary as its input and produces power
traces similar to the ones produced by Silk, but using a lower level knowledge: fully
compiled assembly code and the knowledge of the model of microcontroller with
user-defined leakage functions. Thus, its goals is to provide traces that can be used
on last steps of the development process in order to evaluate the security of the im-
plementation. Savrasca is device specific, but it can support multiple models of AVR
microcontrollers. It allows to work with the lowest-level inputs available during the
development process of a cryptographic implementation, just before the code gets

203

loaded into the microcontroller. Thus, it can already get to the analysis of very spe-
cific low-level issues related to side-channel analysis. Using this tool we were able
to detect a previously undiscovered issue in an implementation (from DPA Contest)
that was analysed by several dozen researchers over more than 3 years. We have
discovered this problem in matter of minutes using our automated tool by analysing
only the compiled binary file. Moreover, this discovery pushed us to uncover more
advanced issue related to the same implementation and confirm all our findings on
real power traces. In addition to that, we were able to show how to correct the dis-
covered issue. The rationale is that having automated tools significantly increases
chances and abilities of evaluators to detect implementation flaws.

Even though Savrasca uses a very low-level input (compiled binary) we used it
with very simple leakage models. A very interesting question arises: what leakage
features should be included in such simulators without rendering them too cumber-
some to use while improving their accuracy (resemblance) with respect to real power
traces. Moreover, there are actually two ways of improving the accuracy of such
simulators: first way would be simply profiling each instruction of a device and inte-
grating those profiles into the simulator, the second would be to use low-level models
to build a more accurate trace; for example, SPICE simulations can be used on parts
of the circuit alongside with other higher-level models (as in SCARD) to improve the
overall accuracy of the simulation. While the first approach is simpler it does not
provide us with the knowledge on ”what” is causing a leakage. The second approach,
on the other hand, does give us more clues on how to solve side-channel leakage is-
sues, but it requires the knowledge on the underlying hardware (that manufacturers
do not like to share).

Overall, we were able to provide 3 tools that can be used at different stages of
development of cryptographic systems: from the very creation and analysis using the
most abstract models (Silk), through the process of checking implementation specific
issues (Ascold) to the very last stage before the code gets into the microcontroller
(Savrasca). Two of the developed tools can generate simulated traces and the third
one can run a simulation for automated leakage detection (based on the knowledge
previously extracted from the device). Thus, Silk and Savrasca can actually be used
with any of the existing leakage detection techniques that are usually applied on
real power traces, while Ascold is useful during the development itself in order to
help the developer in writing the code that enforces the ILA. Table 9.1 shows the
information on our tools in the format presented in the survey in Table 5.2.

204 Chapter 9. Conclusions

Ta
bl
e
9.
1
–
Si
m
ul
at
or

sd
ev

el
op

ed
fo
rs

id
e-
ch

an
ne

la
na

ly
si
s.

N
am

e
Ye

ar
In
pu

t
Ty

pe
M
ai
n
pu

rp
os

e
Le

ak
ag

e
m
od

el
s

St
ag

e
Av

ai
la
bi
lit
y

Si
lk

20
14

C+
+
co

de
G

Co
m
pa

ra
tiv

e
an

al
ys

is
U
se
rd

efi
ne

d
A
0
,S
1

3

A
sc

ol
d

20
17

AV
R

as
se
m
-

bl
y

&
YA

ML
co

nfi
g.

V
D
et
ec

tio
n
of

is
su

es
in

m
as
ki
ng

im
pl
em

en
ta
tio

ns
Pr

ofi
lin

g
S2

3

Sa
vr

as
ca

20
17

Co
m
pi
le
d

bi
na

ry
G

Ev
al
ua

tio
n
of

D
PA

-r
es
is
ta
nc

e
U
se
rd

efi
ne

d
S3

3

G
—

ge
ne

ra
to
r,
V

—
ve

rifi
er

(c
he

ck
er
).

205

As the result of our work, we can answer the question we asked ourself at the
beginning: the robustness of cryptographic devices against side-channel attacks can
and should be evaluated in early stages of development, it can be done using simula-
tions that can either immediately detect a security flaw or output a set of simulated
traces resembling real traces, which can in their turn be analysed with any existing
leakage detection and security evaluation techniques.

As a bonus contribution to our main goals of providing simulation tools for side-
channel analysis we were able to analyse and work on novel topics related to side-
channel analysis. We showed a set of novel problems related to masking implemen-
tations: the ILA-breaching effects and the problem of choice of values in LEMS. We
also developed a range of scalable shuffling countermeasures that can be selected
and tuned depending on the requirements of the system. Moreover, we also showed
a novel approach in the design of S-boxes. Our analysis of masking schemes and
their implementations with Ascold and Savrasca tools highlighted that even a the-
oretically sound masking scheme can be broken due to the issues related to the con-
crete implementation of the masking scheme (ILA-breaching effects or bad choice of
masks). Issues in the masking scheme can be found using tools such as the one pre-
sented by Barthe et al. [BBD+15], however they do not detect all issues that arise at
the implementation stage. Thus, it is important to develop tools and methods for the
verification of secure implementations, such as the Paioli tool [RGN13].

In addition to the unsolved problems mentioned above, we would like to point
out some interesting topics for future research. During this work we have focused
our attention on software implementations of block ciphers in microcontrollers in
case when the evaluator can use the microcontroller as a black box i.e., the evalua-
tor does not have full knowledge of the internals of the hardware. Our work can be
extended for other types of hardware such as FPGAs and ASICs: the idea is to build
side-channel analysis simulators based on hardware description languages such as
VHDL. Note, that in this case the developer knows more about the hardware structure
of the cryptographic system thus predictive capabilities of such simulators can poten-
tially be greater that in case of microcontrollers. Another way of extending this work
would be to work on open hardware platform which should allow us to understand
why some types of leakage occur and where (which part of the hardware) they orig-
inate from. Both of our trace generators (Silk and Savrasca) use relatively generic
and abstract user defined models, an interesting approach is to apply profiled models
in case of such simulators. From our perspective, a very powerful contribution to the
domain of side-channel analysis could be done by implementing a simulator that can
be parametrised using profiled models, in this case any researcher can contribute to
it by providing a new profile: either for a new model of microcontroller or by cre-
ating a better profile for an already profiled device. Through our analysis, we used
our trace generators with relatively simple user defined models, this domain can def-
initely benefit from more complex models that can give more information and allow

206 Chapter 9. Conclusions

to detect more security flaws in early stages of development. Moreover, our tools
do not encompass all phenomena that are actually studied in side-channel analysis,
creation of new available simulators that also model glitches and fault injections are
very promising direction for future works. Finally, we were not able to compare our
simulators with other existing tools due to their non-availability. We made all our
code available, we would like to emphasise that creating more available simulators
will allow other researchers to compare them and to improve existing tools or build
new and better ones.

We would like to point out an important issue and offer a cautionary note related
to the detection of security flaws related to side-channel attacks in real products. Even
if many issues can be detected during the development with the help of simulators
and automated tools it is critical to perform the concluding security evaluation on
the final version of the device. It is very important because simulators do not offer a
hard guarantee on providing results that fit the reality perfectly thus, some security
flaws can only be found through the analysis of the final product. The main reason
lies in the fact that simulators use models and a model, however good it appears to
be, is always different from the reality.

To sumup, we provided 3 simulation-based tools that can be used for side-channel
analysis on different stages of development of cryptographic systems. We showed
how these tools can be used on multiple examples including protected and unpro-
tected algorithms. Through our work we were able to show the usefulness of such
approach by discovering previously unknown issues and by showing howmuch time
can be saved by using simulators for side-channel analysis. We hope researchers as
well as developers of cryptographic devices will integrate our results in their pro-
cesses.

Appendix A

Silk example

1 # include < ios t ream >
2 # include ” . . / s i l k / s i l k . hpp ”
3 us ing namespace s td ;
4

5 const U8 sbox [] = {
6 0x0C , 0 x05 , 0 x06 , 0x0B , 0 x09 , 0 x00 , 0x0A , 0x0D ,
7 0 x03 , 0 x0E , 0 x0F , 0 x08 , 0 x04 , 0 x07 , 0 x01 , 0 x02 } ;
8

9 void mix (U8 msg , U8 key) {
10 U8 s t a t e = msg ^ key ;
11 s t a t e = ((sbox [s t a t e >> 4]) < <4) + sbox [sbox [s t a t e && 0xF]] ;
12 }
13

14 in t main () {
15

16 / / s e t up the paramete r s
17 U8 : : s e t L eakageFunc t i on (hammingWeightOut) ;
18 T r a c e r : : s e t LeakagePo in t sNb r (1 0) ;
19 T r a c e r : : s e tLeakageOve r l ap (2) ;
20 T r a c e r : : s e t L e a k a g eD i s t r i b u t i o n Fun c (sinMul , M_PI) ;
21

22 T r a c e r : : c l e a r T r a c e () ; / / c l e a r the t r a c e
23 mix (0 x08 , 0 xB7) ; / / c a l l your f u n c t i o n
24 T r a c e r : : t r a c e T o F i l e (” s i m u l a t i o n . c s v ”) ; / / save the s imu l a t ed t r a c e
25

26 return 0 ;
27 }

Listing A.1 – Silk example: setting up the parameters.

207

208 Appendix A. Silk example

Appendix B

Success rate of S-boxes using
simulations

35 40 45 50 55 60

0.85

0.95

Number of traces

S
u

cc
e
ss

 r
a
te

AES
AESCC

SCREAM
STRIBOB

Figure B.1 – Zoom on the success rate of CPA on 8× 8 S-boxes.

209

210 Appendix B. Success rate of S-boxes using simulations

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

DES1
DES2
DES3
DES4

DES5
DES6
DES7
DES8

(a) Success rate.

40 45 50 55 60

0.7

0.8

Number of traces

S
u

cc
e
ss

 r
a
te

DES1
DES2
DES3
DES4

DES5
DES6
DES7
DES8

(b) Zoom.

Figure B.2 – Success rate of CPA on 6× 4 (DES) S-boxes using simulations.

Appendix C

S-boxes generated using
evolutionary computations

Table C.1 – Evolved S-boxes when considering TA with a model extracted from an
ATmega328P microcontroller. Values of S-boxes are given in hexadecimal format.

Size Name S-box

4× 4

EvolvedTASR1 0,5,7,C,A,6,2,4,9,8,B,F,D,E,1,3.

EvolvedTASR2 4,2,D,E,B,1,6,5,7,8,3,A,F,0,C,9.

EvolvedTASR3 9,4,5,D,3,0,1,F,B,2,C,7,E,8,A,6.

EvolvedTASR4 4,0,6,7,1,2,A,F,5,3,C,E,D,9,B,8.

5× 5

EvolvedTASR1 1F,15,01,0C,14,1D,12,00,1A,09,08,17,05,0E,0B,0D,

04,18,1B,0A,13,11,06,1E,10,19,16,02,0F,07,03,1C.

EvolvedTASR2 07,14,1D,11,12,02,06,13,19,0F,09,0C,1C,15,0A,08,

01,0B,1F,0D,03,17,1E,05,04,1B,0E,00,1A,18,10,16.

EvolvedTASR3 1F,01,02,1A,04,1B,15,0C,08,1E,17,07,0B,1C,18,09,

10,0D,1D,06,0F,13,0E,14,16,03,19,0A,11,05,12,00.

EvolvedTASR4 1F,01,02,1E,04,0E,1D,15,08,13,1C,05,1B,14,0B,06,

10,0F,07,1A,19,12,0A,03,17,0D,09,11,16,18,0C,00.

EvolvedTASR5 01,13,11,16,0F,03,08,10,0B,1A,02,1B,0C,1E,17,12,

19,0D,14,00,05,04,18,07,1F,1D,06,15,0A,1C,0E,09.

EvolvedTASR6 1F,15,18,05,01,06,08,0B,12,02,17,0D,03,1C,04,16,

0F,1B,09,13,0C,11,1E,1A,00,19,0A,07,1D,14,0E,10.

211

212 Appendix C. S-boxes generated using evolutionary computations

Table C.2 – Evolved S-boxes when considering CPA. Values of S-boxes are given in
hexadecimal format.

Size Name S-box

4× 4
EvolvedSR1 2,4,8,0,F,B,7,D,6,5,E,3,1,9,C,A.
EvolvedSR2 F,E,0,A,1,8,9,B,7,6,4,C,5,2,3,D.
EvolvedK 0,F,1,9,B,5,8,2,E,3,C,6,D,4,A,7.

5× 5

EvolvedSR1 1E,07,15,02,0E,09,19,04,17,12,0B,08,1C,0A,1D,06,
0C,1B,05,0D,00,14,18,1F,10,13,11,1A,01,16,03,0F.

EvolvedSR2 15,02,1F,0A,19,11,1B,12,08,0E,0C,07,06,0F,10,16,
13,00,17,09,1D,18,0D,03,04,1A,14,1C,05,1E,01,0B.

EvolvedSR3 1D,15,03,02,1C,0A,0C,09,11,10,1F,0D,18,14,19,16,
06,12,0F,17,01,04,13,1B,0B,07,0E,05,1A,1E,00,08.

EvolvedSR4 0A,1C,01,13,04,08,12,10,06,05,03,0D,02,18,09,00,
0F,1B,1A,11,14,1D,0B,0E,16,07,15,19,0C,17,1E,1F.

EvolvedSR5 04,17,1C,18,07,00,12,19,0E,14,10,15,06,13,1F,08,
1A,11,0C,0B,05,1E,0F,01,02,1D,1B,09,0D,03,0A,16.

EvolvedSR6 09,05,1E,1C,0D,16,14,06,07,1D,01,10,03,02,13,1F,
1B,15,08,18,04,00,0F,1A,0A,12,0B,0E,19,17,11,0C.

EvolvedSR7 1B,13,17,16,0B,0F,0D,1A,03,06,01,09,02,14,08,11,
10,12,00,0A,1F,18,05,0C,1D,1C,04,07,0E,1E,15,19.

EvolvedSR8 00,0E,1C,16,19,01,0D,11,13,08,02,1D,1A,17,03,0A,
07,0B,10,18,04,1E,1B,05,15,0C,0F,12,06,09,14,1F.

EvolvedSR9 00,07,0E,0B,1C,10,16,18,19,04,01,1E,0D,1B,11,05,
13,15,08,0C,02,0F,1D,12,1A,06,17,09,03,14,0A,1F.

EvolvedK 15,07,06,03,18,0E,04,01,0C,05,0A,16,1F,1D,19,13,
12,0F,11,1B,09,1A,17,10,08,0B,00,14,02,1C,1E,0D.

C.1. Success rate of attacks on the S-boxes 213

C.1 Success rate of attacks on the S-boxes

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

EvolvedCC
EvolvedTO

PRESENT
PRINCE

KLEIN
EvolvedSR1
EvolvedSR2
EvolvedK

(a) 4× 4 S-boxes

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

EvolvedCC
EvolvedTO

PRESENT
PRINCE

KLEIN
EvolvedSR1
EvolvedSR2
EvolvedK

(b) Inverses of 4× 4 S-boxes

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

ASCON
KECCAK
PRIMATE
EvolvedSR1
EvolvedSR2
EvolvedSR3
EvolvedSR4

EvolvedSR5
EvolvedSR6
EvolvedSR7
EvolvedSR8
EvolvedSR9
EvolvedK

(c) 5× 5 S-boxes

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

ASCON
KECCAK
PRIMATE
EvolvedSR1
EvolvedSR2
EvolvedSR3
EvolvedSR4

EvolvedSR5
EvolvedSR6
EvolvedSR7
EvolvedSR8
EvolvedSR9
EvolvedK

(d) Inverses of 5× 5 S-boxes

Figure C.1 – Success rates of CPA on S-boxes.

214 Appendix C. S-boxes generated using evolutionary computations

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

EvolvedCC
EvolvedTO

PRESENT
PRINCE
KLEIN

EvolvedTASR1
EvolvedTASR2
EvolvedTASR3
EvolvedTASR4

(a) 4× 4 S-boxes

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

EvolvedCC
EvolvedTO

PRESENT
PRINCE
KLEIN

EvolvedTASR1
EvolvedTASR2
EvolvedTASR3
EvolvedTASR4

(b) Inverses of 4× 4 S-boxes

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

ASCON
KECCAK
PRIMATE
EvolvedTASR1
EvolvedTASR2

EvolvedTASR3
EvolvedTASR4
EvolvedTASR5
EvolvedTASR6

(c) 5× 5 S-boxes

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

ASCON
KECCAK
PRIMATE
EvolvedTASR1
EvolvedTASR2

EvolvedTASR3
EvolvedTASR4
EvolvedTASR5
EvolvedTASR6

(d) Inverses of 5× 5 S-boxes

Figure C.2 – Success rates of TA on S-boxes.

Appendix D

Heatmaps of shuffling schemes

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.5

1.0

1.5

2.0

(a) 4× 4 SSS with 1 bit

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

2147350000

2147400000

2147450000

2147500000

2147550000

2147600000

(b) Approximation for RP

Figure D.1 – SSS and RP heatmaps of positions when the SubBytes operation takes
place for every byte.

215

216 Appendix D. Heatmaps of shuffling schemes

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.2

0.4

0.6

0.8

1.0

(a) V-RSI 1 bit

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.2

0.4

0.6

0.8

1.0

(b) V-RSI 2 bits

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.2

0.4

0.6

0.8

1.0

(c) V-RSI 3 bits

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.6

0.8

1.0

1.2

1.4

(d) V-RSI 4 bits

Figure D.2 – V-RSI Heatmap of positions when the SubBytes operation takes place
for every byte.

217

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.2

0.4

0.6

0.8

1.0

(a) M-RSI 1 bit

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.2

0.4

0.6

0.8

1.0

(b) M-RSI 2 bits

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.2

0.4

0.6

0.8

1.0

(c) M-RSI 3 bits

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0

1

2

3

4

5

6

7

8

(d) M-RSI 4 bits

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.6

0.8

1.0

1.2

1.4

(e) M-RSI∗ 4 bits

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0

1

2

3

4

5

6

7

8

(f) M-RSI 5 bits

Figure D.3 – M-RSI 4× 4 Heatmaps of positions when the SubBytes operation takes
place for every byte.

218 Appendix D. Heatmaps of shuffling schemes

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0

1

2

3

4

5

6

7

8

(a) M-RSI 6 bits

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0

10

20

30

40

50

60

(b) M-RSI 8 bits

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0

10

20

30

40

50

60

(c) M-RSI 9 bits

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

63.6

63.8

64.0

64.2

64.4

(d) M-RSI 10 bits

Figure D.4 – M-RSI 4× 4 Heatmaps part 2 of positions when the SubBytes operation
takes place for every byte.

219

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.2

0.4

0.6

0.8

1.0

(a) M-RS 1 bit

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.2

0.4

0.6

0.8

1.0

(b) M-RS 2 bits

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0.0

0.5

1.0

1.5

2.0

(c) M-RS 3 bits

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0

1

2

3

4

5

6

7

8

(d) M-RS 4 bits

Position

B
yt

e
 i

n
d

e
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

0

1

2

3

4

5

6

7

8

(e) M-RS 5 bits

Figure D.5 – M-RS 4 × 4 Heatmaps of positions when the SubBytes operation takes
place for every byte.

220 Appendix D. Heatmaps of shuffling schemes

Appendix E

Success rates of attacks on
shuffling schemes

Success rates of CPA (with and without preprocessing) and TA on different shuffling
schemes as well as the unprotected implementation. Note, that the horizontal axis of
each plot uses a logarithmic scale.

221

222 Appendix E. Success rates of attacks on shuffling schemes

1 5 10 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

No Shuffling
M−RS1

M−RS2

M−RS3

M−RS4

M−RS5

1 5 10 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

No Shuffling
V−RSI1

V−RSI2

V−RSI3

V−RSI4

1 5 10 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

No Shuffling
M−RSI1

M−RSI2

M−RSI3

M−RSI4

M−RSI*4

M−RSI5

M−RSI6

M−RSI8

Figure E.1 –The success rate of CPA against different shuffling techniques. Horizontal
axis is logarithmic.

223

1 5 10 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

No Shuffling
M−RS1

M−RS2

M−RS3

M−RS4

M−RS5

1 5 10 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

No Shuffling
V−RSI1

V−RSI2

V−RSI3

V−RSI4

1 5 10 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

No Shuffling
M−RSI1

M−RSI2

M−RSI3

M−RSI4

M−RSI*4

M−RSI5

M−RSI6

M−RSI8

Figure E.2 – The success rate of CPA with integration preprocessing against different
shuffling techniques. Horizontal axis is logarithmic.

224 Appendix E. Success rates of attacks on shuffling schemes

1 5 10 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

No Shuffling
M−RS1

M−RS2

M−RS3

M−RS4

M−RS5

1 5 10 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

No Shuffling
V−RSI1

V−RSI2

V−RSI3

V−RSI4

1 5 10 50 100 500

0.0

0.2

0.4

0.6

0.8

1.0

Number of traces

S
u

cc
e
ss

 r
a
te

No Shuffling
M−RSI1

M−RSI2

M−RSI3

M−RSI4

M−RSI*4

M−RSI5

M−RSI6

M−RSI8

Figure E.3 – The success rate of a TA against different shuffling techniques. Horizon-
tal axis is logarithmic.

Appendix F

Ascold example

Here is a small piece of code that loads 2 shares, a random value and then combined
them all.

1 ; l o ad i n g sha r e s a0 , a1
2 lds r2 , 0 xA000
3 lds r3 , 0 xC007
4 ; l o ad i n g the random va lue
5 lds r6 , 0 xF001
6 eor r2 , r 3
7 eor r2 , r 6

Listing F.1 – Simple xor example with
neighbour-registers leakage.

1 ; l o ad i n g sha r e s a0 , a1
2 lds r2 , 0 xA000
3 lds r10 , 0 xC007
4 ; l o ad i n g the random va lue
5 lds r6 , 0 xF001
6 eor r2 , r 6
7 eor r2 , r 10

Listing F.2 – Simple xor example with-
out neighbour-registers leakage.

Here is the configuration file:

rand_list_of_addr:
- 0xF001

mask_list_of_addr:
- [0xA000, a, 0]
- [0xC007, a, 1]

225

226 Appendix F. Ascold example

Ta
bl
e
F.
1
–
Ta

bl
e
of

ne
ig
hb

ou
rs
-r
eg

is
te
rs

in
AT

m
eg

a1
63

m
ic
ro

co
nt
ro
lle

r.
Va

lu
e
1
(h
ig
hl
ig
ht
ed

in
gr
ey

)d
en

ot
es

th
e
pr

es
en

ce
of

le
ak

ag
e.

Re
g

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

00
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
01

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

02
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
03

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

04
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
05

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

06
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
07

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

08
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
09

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

10
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
11

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

12
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
13

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

14
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
15

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

16
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
17

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

18
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
19

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

20
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
21

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

22
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
23

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

24
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
25

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

26
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
27

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

28
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
29

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

30
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
31

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

Appendix G

List of microcontrollers
supported by SAVRASCA

Here is the list of microcontrollers supported by Savrasca (and SimulAVR at the
moment of writing). The list of devices suported by SimulAVR is availalbe on its offi-
cial website: http://www.nongnu.org/simulavr/usage.html, the list of devices
supported by Savrasca can also be printed by executing the tool with --help option.

• ATmega128

• ATmega1284a

• ATmega16

• ATmega164a

• ATmega168

• ATmega32

• ATmega324a

• ATmega328

• ATmega48

• ATmega644a

• ATmega8

• ATmega88

• AT90can128

• AT90can32

• AT90can64

• AT90s4433

• AT90s8515

• ATtiny2313

227

http://www.nongnu.org/simulavr/usage.html

228 Appendix G. List of microcontrollers supported by SAVRASCA

Bibliography

[AARR02] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Ro-
hatgi. The EM side-channel(s). In Jr. et al. [JKP03], pages 29–45.

[ABB+14] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian
Mendel, Bart Mennink, Nicky Mouha, and Qingju Wang an Kan Ya-
suda. PRIMATEs v1.02, Sept 2014. CAESAR submission.

[ABK98] Ross J. Anderson, Eli Biham, and Lars R. Knudsen. Serpent: A new
block cipher proposal. In Serge Vaudenay, editor, Fast Software En-
cryption, 5th International Workshop, FSE ’98, Paris, France, March 23-
25, 1998, Proceedings, volume 1372 of Lecture Notes in Computer Science,
pages 222–238. Springer, 1998.

[ABKT98] Ross J. Anderson, Eli Biham, Lars R. Knudsen, and Haifa Technion.
Serpent: A flexible block cipher with maximum assurance. In The first
AES candidate conference, pages 589–606, 1998.

[AES01] Specification for the advanced encryption standard (AES). Federal In-
formation Processing Standards Publication 197, 2001.

[AFG+15] Julien Allibert, Benoit Feix, Georges Gagnerot, Ismael Kane, Hugues
Thiebeauld, and Tiana Razafindralambo. Chicken or the egg - compu-
tational data attacks or physical attacks. Cryptology ePrint Archive,
Report 2015/1086, 2015. http://eprint.iacr.org/2015/1086.

[AK96] Ross Anderson and Markus Kuhn. Tamper resistance-a cautionary
note. In Proceedings of the second Usenix workshop on electronic com-
merce, volume 2, pages 1–11, 1996.

[AMM+06] Manfred Josef Aigner, Stefan Mangard, Francesco Menichelli, Re-
nato Menicocci, Mauro Olivieri, Thomas Popp, Giuseppe Scotti, and
Alessandro Trifiletti. Side channel analysis resistant design flow. In
International Symposium on Circuits and Systems (ISCAS), 21-24 May
2006, Island of Kos, Greece. IEEE, 2006.

229

http://eprint.iacr.org/2015/1086

230 Bibliography

[And09] Philippe Andouard. Outils d’aide à la recherche de vulnérabilités dans
l’implantation d’applications embarquées sur carte à puce. PhD thesis,
Bordeaux 1, 2009.

[ARMa] ARM Holdings. Cortex-A8 Technical Reference Manual.
http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf.

[ARMb] ARM Holdings. Cortex-M4 Technical Reference Manual.
http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf.

[Atma] Atmel Corporation. 8-bit AVR instruction set. http:
//www.atmel.com/webdoc/avrassembler/avrassembler.
wb_instruction_list.html.

[Atmb] Atmel Corporation. Atmega-16 datasheet. http://www.atmel.com/
images/doc2466.pdf.

[Atmc] Atmel Corporation. Atmega-163 datasheet. http://www.atmel.
com/images/doc1142.pdf.

[BB15] Paul Bottinelli and JoppeW. Bos. Computational aspects of correlation
power analysis. IACR Cryptology ePrint Archive, 2015:260, 2015.

[BBB+13] Pierre Belgarric, Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger,
Nicolas Debande, Sylvain Guilley, Annelie Heuser, Zakaria Najm, and
Olivier Rioul. Time-Frequency Analysis for Second-Order Attacks. In
Francillon and Rohatgi [FR14], pages 108–122.

[BBD+14] Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley,
and Zakaria Najm. Analysis and improvements of the DPA contest v4
implementation. In Chakraborty et al. [CMS14], pages 201–218.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-
Order Masking. In Elisabeth Oswald and Marc Fischlin, editors, Ad-
vances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on theTheory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of
Lecture Notes in Computer Science, pages 457–485. Springer, 2015.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun,
Miroslav Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav
Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://www.atmel.com/webdoc/avrassembler/avrassembler.wb_instruction_list.html
http://www.atmel.com/webdoc/avrassembler/avrassembler.wb_instruction_list.html
http://www.atmel.com/webdoc/avrassembler/avrassembler.wb_instruction_list.html
http://www.atmel.com/images/doc2466.pdf
http://www.atmel.com/images/doc2466.pdf
http://www.atmel.com/images/doc1142.pdf
http://www.atmel.com/images/doc1142.pdf

Bibliography 231

Thomsen, and Tolga Yalçin. PRINCE - A low-latency block cipher for
pervasive computing applications - extended abstract. In Wang and
Sako [WS12], pages 208–225.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In Marc Joye and Jean-Jacques
Quisquater, editors, Cryptographic Hardware and Embedded Systems
- CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings, volume 3156 of Lecture Notes in Computer Sci-
ence, pages 16–29. Springer, 2004.

[BDG+13] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, and Pierre-Yves Strub. Easycrypt: A tutorial. In
Alessandro Aldini, Javier Lopez, and Fabio Martinelli, editors, Foun-
dations of Security Analysis and Design VII - FOSAD 2012/2013 Tuto-
rial Lectures, volume 8604 of Lecture Notes in Computer Science, pages
146–166. Springer, 2013.

[BDG+14] Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley, Annelie Heuser,
and Yannick Teglia. Boosting Higher-Order Correlation Attacks by
Dimensionality Reduction. In Chakraborty et al. [CMS14], pages
183–200.

[BDGN13] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm.
A low-entropy first-degree secure provable masking scheme for
resource-constrained devices. In Proceedings of the Workshop on
Embedded Systems Security, WESS 2013, Montreal, Quebec, Canada,
September 29 - October 4, 2013, pages 7:1–7:10. ACM, 2013.

[BDPA09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Note on side-channel attacks and their countermeasures, May 2009.
http://keccak.noekeon.org/NoteSideChannelAttacks.pdf.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
The keccak reference, 2011. Submission to NIST (Round 3).

[BE01] Mark Blunden and Adrian Escott. Related key attacks on reduced
round KASUMI. In Matsui [Mat02], pages 277–285.

[Ber05] Daniel J Bernstein. Cache-timing attacks on aes, 2005.

[BFGV12] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Theory and practice of a leakage resilient masking scheme.
In Wang and Sako [WS12], pages 758–775.

http://keccak.noekeon.org/NoteSideChannelAttacks.pdf

232 Bibliography

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked
software implementations. In Marc Joye and Amir Moradi, editors,
Smart Card Research and Advanced Applications - 13th International
Conference, CARDIS 2014, Paris, France, November 5-7, 2014. Revised Se-
lected Papers, volume 8968 of Lecture Notes in Computer Science, pages
64–81. Springer, 2014.

[BGH+16] Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Olivier Rioul,
François-Xavier Standaert, and Yannick Teglia. Taylor expansion of
maximum likelihood attacks for masked and shuffled implementa-
tions. In Cheon and Takagi [CT16], pages 573–601.

[BGP+11] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Ri-
vain, François-Xavier Standaert, and Nicolas Veyrat-Charvillon. Mu-
tual Information Analysis: a Comprehensive Study. J. Cryptology,
24(2):269–291, 2011.

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen.
Differential computation analysis: Hiding your white-box designs is
not enough. In Gierlichs and Poschmann [GP16], pages 215–236.

[BI15] Andrey Bogdanov and Takanori Isobe. How secure is AES under leak-
age. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryp-
tology - ASIACRYPT 2015 - 21st International Conference on the Theory
and Application of Cryptology and Information Security, Auckland, New
Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 361–385. Springer,
2015.

[Bih97] Eli Biham. A Fast New DES Implementation in Software. In Eli Biham,
editor, FSE, volume 1267 of Lecture Notes in Computer Science, pages
260–272. Springer, 1997.

[BIT16] Andrey Bogdanov, Takanori Isobe, and Elmar Tischhauser. Towards
practical whitebox cryptography: Optimizing efficiency and space
hardness. In Cheon and Takagi [CT16], pages 126–158.

[BK] Elaine Barker and John Kelsey. Recommendation for random number
generation using deterministic random bit generators. http://csrc.
nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf.

[BK98] Alex Biryukov and Eyal Kushilevitz. From differential cryptanalysis
to ciphertext-only attacks. In Krawczyk [Kra98], pages 72–88.

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

Bibliography 233

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar,
Axel Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and
C. Vikkelsoe. PRESENT: an ultra-lightweight block cipher. In Pail-
lier and Verbauwhede [PV07], pages 450–466.

[BKM+15] Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tis-
chhauser, and Marc Witteman. Fast and memory-efficient key re-
covery in side-channel attacks. In Orr Dunkelman and Liam Keli-
her, editors, Selected Areas in Cryptography - SAC 2015 - 22nd Interna-
tional Conference, Sackville, NB, Canada, August 12-14, 2015, Revised Se-
lected Papers, volume 9566 of Lecture Notes in Computer Science, pages
310–327. Springer, 2015.

[Bla79] George Robert Blakley. Safeguarding cryptographic keys. Proc. of the
National Computer Conference1979, 48:313–317, 1979.

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols
based on the RSA encryption standard PKCS #1. In Krawczyk [Kra98],
pages 1–12.

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryp-
tosystems. In AlfredMenezes and ScottA. Vanstone, editors,Advances
in Cryptology - CRYPTO ’90, 10th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 11-15, 1990, Proceed-
ings, volume 537 of Lecture Notes in Computer Science, pages 2–21.
Springer, 1990.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryp-
tosystems. J. Cryptology, 4(1):3–72, 1991.

[CBG+17] Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav
Nikov, Svetla Nikova, and Vincent Rijmen. Does coupling affect the
security of masked implementations? In Guilley [Gui17], pages 1–18.

[CC11] Liang Cai and Hao Chen. Touchlogger: Inferring keystrokes on touch
screen from smartphone motion. In Patrick D. McDaniel, editor, 6th
USENIX Workshop on Hot Topics in Security, HotSec’11, San Francisco,
CA, USA, August 9, 2011. USENIX Association, 2011.

[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Dif-
ferential power analysis in the presence of hardware countermeasures.
In Koç and Paar [KP00], pages 252–263.

[CDG+13] Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua
Jaffe, Gary Kenworthy, and Pankaj Rohatgi. Test vector

234 Bibliography

leakage assessment (TVLA) methodology in practice, 2013.
http://icmc-2013.org/wp/wp-content/uploads/2013/
09/goodwillkenworthtestvector.pdf.

[CDN98] Gary Carter, Ed Dawson, and Lauren Nielsen. Key schedules of it-
erative block ciphers. In Colin Boyd and Ed Dawson, editors, Infor-
mation Security and Privacy, Third Australasian Conference, ACISP’98,
Brisbane, Queensland, Australia, July 1998, Proceedings, volume 1438
of Lecture Notes in Computer Science, pages 80–89. Springer, 1998.

[CDN99] Gary Carter, Ed Dawson, and Lauren Nielsen. Key schedule classifica-
tion of the AES candidates. In Proceedings of the end AES Conference,
Rome, Italy, pages 1–14, 1999.

[CEJvO02] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van
Oorschot. A white-box DES implementation for DRM applications. In
Joan Feigenbaum, editor, Security and Privacy in Digital Rights Man-
agement, ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA,
November 18, 2002, Revised Papers, volume 2696 of Lecture Notes in
Computer Science, pages 1–15. Springer, 2002.

[CGP+12] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline
Renner, Matthieu Rivain, and Praveen Kumar Vadnala. Conversion
of security proofs from one leakage model to another: A new issue.
In Werner Schindler and Sorin A. Huss, editors, Constructive Side-
Channel Analysis and Secure Design - Third International Workshop,
COSADE 2012, Darmstadt, Germany, May 3-4, 2012. Proceedings, vol-
ume 7275 of Lecture Notes in Computer Science, pages 69–81. Springer,
2012.

[CGPR08] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, and
Matthieu Rivain. Attack and improvement of a secure s-box calcu-
lation based on the fourier transform. In Oswald and Rohatgi [OR08],
pages 1–14.

[CIMW15] Christophe Clavier, Quentin Isorez, Damien Marion, and Antoine
Wurcker. Complete reverse-engineering of aes-like block ciphers
by SCARE and FIRE attacks. Cryptography and Communications,
7(1):121–162, 2015.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards SoundApproaches to Counteract Power-Analysis Attacks. In
Wiener [Wie99], pages 398–412.

http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf

Bibliography 235

[CK13] Omar Choudary and Markus G. Kuhn. Efficient template attacks. In
Francillon and Rohatgi [FR14], pages 253–270.

[CK14] Omar Choudary and Markus G. Kuhn. Efficient stochastic meth-
ods: Profiled attacks beyond 8 bits. IACR Cryptology ePrint Archive,
2014:885, 2014.

[Cla04] Christophe Clavier. Side channel analysis for reverse engineering
(scare) - an improved attack against a secret a3/a8 gsm algorithm.
Cryptology ePrint Archive, Report 2004/049, 2004. http://eprint.
iacr.org/2004/049.

[CMS14] Rajat Subhra Chakraborty, Vashek Matyas, and Patrick Schaumont,
editors. Security, Privacy, and Applied Cryptography Engineering -
4th International Conference, SPACE 2014, Pune, India, October 18-22,
2014. Proceedings, volume 8804 of Lecture Notes in Computer Science.
Springer, 2014.

[CNK04] Jean-Sébastien Coron, David Naccache, and Paul C. Kocher. Statistics
and secret leakage. ACM Trans. Embedded Comput. Syst., 3(3):492–508,
2004.

[CPR07] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side
channel cryptanalysis of a higher order masking scheme. In Paillier
and Verbauwhede [PV07], pages 28–44.

[CPRR13] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and
Thomas Roche. Higher-order side channel security and mask refresh-
ing. In Shiho Moriai, editor, Fast Software Encryption - 20th Interna-
tional Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Se-
lected Papers, volume 8424 of Lecture Notes in Computer Science, pages
410–424. Springer, 2013.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks.
In Jr. et al. [JKP03], pages 13–28.

[CSM+17] Kaushik Chakraborty, Sumanta Sarkar, SubhamoyMaitra, Bodhisatwa
Mazumdar, Debdeep Mukhopadhyay, and Emmanuel Prouff. Redefin-
ing the transparency order. Des. Codes Cryptography, 82(1-2):95–115,
2017.

[CT16] Jung Hee Cheon and Tsuyoshi Takagi, editors. Advances in Cryptology
- ASIACRYPT 2016 - 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Vietnam,

http://eprint.iacr.org/2004/049
http://eprint.iacr.org/2004/049

236 Bibliography

December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes
in Computer Science, 2016.

[DBBL12] Nicolas Debande, Maël Berthier, Yves Bocktaels, and Thanh-Ha Le.
Profiled model based power simulator for side channel evaluation.
Cryptology ePrint Archive, Report 2012/703, 2012. http://eprint.
iacr.org/2012/703.

[DEMS15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. ASCON v1.1, Aug 2015. CAESAR submission.

[DES77] Specification for the data encryption standard (DES). Federal Infor-
mation Processing Standards publication 46, 1977.

[DGN+17] Jean-Luc Danger, Sylvain Guilley, Philippe Nguyen, Robert Nguyen,
and Youssef Souissi. Analyzing security breaches of countermeasures
throughout the refinement process in hardware design flow. In David
Atienza and Giorgio Di Natale, editors, Design, Automation & Test in
Europe Conference & Exhibition, DATE 2017, Lausanne, Switzerland,
March 27-31, 2017, pages 1129–1134. IEEE, 2017.

[dGPdlP+16] Wouter de Groot, Kostas Papagiannopoulos, Antonio de la Piedra, Erik
Schneider, and Lejla Batina. Bitsliced masking and ARM: friends or
foes? In Andrey Bogdanov, editor, Lightweight Cryptography for Se-
curity and Privacy - 5th InternationalWorkshop, LightSec 2016, Aksaray,
Turkey, September 21-22, 2016, Revised Selected Papers, volume 10098 of
Lecture Notes in Computer Science, pages 91–109. Springer, 2016.

[DGV93a] Joan Daemen, René Govaerts, and Joos Vandewalle. A new approach
to block cipher design. In Ross J. Anderson, editor, Fast Software En-
cryption, Cambridge Security Workshop, Cambridge, UK, December 9-
11, 1993, Proceedings, volume 809 of Lecture Notes in Computer Science,
pages 18–32. Springer, 1993.

[DGV93b] Joan Daemen, René Govaerts, and Joos Vandewalle. Weak keys for
IDEA. In Douglas R. Stinson, editor, Advances in Cryptology - CRYPTO
’93, 13th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 22-26, 1993, Proceedings, volume 773 of Lecture
Notes in Computer Science, pages 224–231. Springer, 1993.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptogra-
phy. IEEE Trans. Information Theory, 22(6):644–654, 1976.

http://eprint.iacr.org/2012/703
http://eprint.iacr.org/2012/703

Bibliography 237

[DH77] Whitfield Diffie and Martin E. Hellman. Special feature exhaustive
cryptanalysis of the NBS data encryption standard. IEEE Computer,
10(6):74–84, 1977.

[DH79] Whitfield Diffie and Martin E Hellman. Privacy and authentica-
tion: An introduction to cryptography. Proceedings of the IEEE,
67(3):397–427, 1979.

[dHdV04] Jerry den Hartog and Erik P. de Vink. Virtual analysis and reduction
of side-channel vulnerabilities of smartcards. InTheodosis Dimitrakos
and Fabio Martinelli, editors, Formal Aspects in Security and Trust: Sec-
ond IFIP TC1 WG1.7 Workshop on Formal Aspects in Security and Trust
(FAST), an event of the 18th IFIP World Computer Congress, August 22-
27, 2004, Toulouse, France, volume 173 of IFIP, pages 85–98. Springer,
2004.

[dHVdV+03] Jerry den Hartog, Jan Verschuren, Erik P. de Vink, Jaap de Vos, and
W. Wiersma. PINPAS: A tool for power analysis of smartcards. In
Dimitris Gritzalis, Sabrina De Capitani di Vimercati, Pierangela Sama-
rati, and Sokratis K. Katsikas, editors, Security and Privacy in the Age
of Uncertainty, IFIP TC11 18th International Conference on Information
Security (SEC2003), May 26-28, 2003, Athens, Greece, volume 250 of IFIP
Conference Proceedings, pages 453–457. Kluwer, 2003.

[dKGHG08] Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D. Gar-
cia. A practical attack on the MIFARE classic. In Gilles Grimaud and
François-Xavier Standaert, editors, Smart Card Research and Advanced
Applications, 8th IFIP WG 8.8/11.2 International Conference, CARDIS
2008, London, UK, September 8-11, 2008. Proceedings, volume 5189 of
Lecture Notes in Computer Science, pages 267–282. Springer, 2008.

[DMO16] Carolyn Whitnall David McCann and Elisabeth Oswald. Elmo: Em-
ulating leaks for the arm cortex-m0 without access to a side channel
lab. Cryptology ePrint Archive, Report 2016/517, 2016.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the
Advanced Encryption Standard. Springer-Verlag, 2002.

[DRN03] Joan Daemen, Vincent Rijmen, and NIST. AES Proposal: Rijndael,
April 2003. http://csrc.nist.gov/archive/aes/rijndael/
Rijndael-ammended.pdf.

[EMST78] William F Ehrsam, Carl HW Meyer, John L Smith, and Walter L Tuch-
man. Message verification and transmission error detection by block
chaining, February 14 1978. US Patent 4,074,066.

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

238 Bibliography

[ES03] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Springer-Verlag, Berlin Heidelberg New York, USA, 2003.

[EWTS14] Hassan Eldib, ChaoWang, MostafaM. I. Taha, and Patrick Schaumont.
QMS: evaluating the side-channel resistance of masked software from
source code. In The 51st Annual Design Automation Conference 2014,
DAC ’14, San Francisco, CA, USA, June 1-5, 2014, pages 209:1–209:6.
ACM, 2014.

[FDLZ15] Yunsi Fei, A. AdamDing, Jian Lao, and Liwei Zhang. A statistics-based
success rate model for DPA and CPA. J. Cryptographic Engineering,
5(4):227–243, 2015.

[Fei73] Horst Feistel. Cryptography and computer privacy. Scientific ameri-
can, 228:15–23, 1973.

[FH08] Julie Ferrigno and Martin Hlavác. When AES blinks: introducing op-
tical side channel. IET Information Security, 2(3):94–98, 2008.

[FIP80] DES modes of operation. Federal Information Processing Standards
publication 81, December 2nd, 1980.

[FLD12] Yunsi Fei, Qiasi Luo, and A. Adam Ding. A statistical model for DPA
with novel algorithmic confusion analysis. In Prouff and Schaumont
[PS12], pages 233–250.

[FN14] Gerhard Fettweis and Wolfgang Nebel, editors. Design, Automation
& Test in Europe Conference & Exhibition, DATE 2014, Dresden, Ger-
many, March 24-28, 2014. European Design and Automation Associa-
tion, 2014.

[FR14] Aurélien Francillon and Pankaj Rohatgi, editors. Smart Card Research
and Advanced Applications - 12th International Conference, CARDIS
2013, Berlin, Germany, November 27-29, 2013. Revised Selected Papers,
volume 8419 of Lecture Notes in Computer Science. Springer, 2014.

[Fri07] Jeffrey Friedman. Tempest: A signal problem. NSA Cryptologic Spec-
trum, page 4, 1972, (partially decalssified in 2007).

[Gag13] Georges Gagnerot. Étude des attaques et des contre-mesures associées
sur composants embarqués. PhD thesis, Université de Limoges, 2013.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual
information analysis. In Oswald and Rohatgi [OR08], pages 426–442.

Bibliography 239

[GdKGM+08] Flavio D. Garcia, Gerhard de Koning Gans, Ruben Muijrers, Peter van
Rossum, Roel Verdult, Ronny Wichers Schreur, and Bart Jacobs. Dis-
mantling MIFARE classic. In Sushil Jajodia and Javier López, editors,
Computer Security - ESORICS 2008, 13th European Symposium on Re-
search in Computer Security, Málaga, Spain, October 6-8, 2008. Proceed-
ings, volume 5283 of Lecture Notes in Computer Science, pages 97–114.
Springer, 2008.

[GH15] Tim Güneysu and Helena Handschuh, editors. Cryptographic Hard-
ware and Embedded Systems - CHES 2015 - 17th InternationalWorkshop,
Saint-Malo, France, September 13-16, 2015, Proceedings, volume 9293 of
Lecture Notes in Computer Science. Springer, 2015.

[GHM+17] Sylvain Guilley, Annelie Heuser, Tang Ming, Olivier Rioul, SAS
Secure-IC, and LTCI Telecom-ParisTech. Stochastic Side-Channel
LeakageAnalysis via Orthonormal Decomposition. In Innovative Secu-
rity Solutions for Information Technology and Communications, volume
10006 of Lecture Notes in Computer Science. Springer, 2017.

[GLS+15] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem
Varici, Anthony Journault, François Durvaux, Lubos Gaspar, and
Stéphanie Kerckhof. SCREAM Side-Channel Resistant Authenticated
Encryption with Masking, Aug 2015. CAESAR submission.

[GLSV14] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and
Kerem Varici. LS-designs: Bitslice encryption for efficient masked
software implementations. In Carlos Cid and Christian Rechberger,
editors, Fast Software Encryption - 21st International Workshop, FSE
2014, London, UK,March 3-5, 2014. Revised Selected Papers, volume 8540
of Lecture Notes in Computer Science, pages 18–37. Springer, 2014.

[GM06] Louis Goubin and Mitsuru Matsui, editors. Cryptographic Hardware
and Embedded Systems - CHES 2006, 8th International Workshop, Yoko-
hama, Japan, October 10-13, 2006, Proceedings, volume 4249 of Lecture
Notes in Computer Science. Springer, 2006.

[GNL11] Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A new family
of lightweight block ciphers. In Ari Juels and Christof Paar, editors,
RFID. Security and Privacy - 7th International Workshop, RFIDSec 2011,
Amherst, USA, June 26-28, 2011, Revised Selected Papers, volume 7055
of Lecture Notes in Computer Science, pages 1–18. Springer, 2011.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analy-
sis (the ”duplication” method). In Çetin Kaya Koç and Christof Paar,

240 Bibliography

editors, Cryptographic Hardware and Embedded Systems, First Inter-
national Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999,
Proceedings, volume 1717 of Lecture Notes in Computer Science, pages
158–172. Springer, 1999.

[GP16] Benedikt Gierlichs and Axel Y. Poschmann, editors. Cryptographic
Hardware and Embedded Systems - CHES - 18th International Confer-
ence, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, volume
9813 of Lecture Notes in Computer Science. Springer, 2016.

[GSF14] Vincent Grosso, François-Xavier Standaert, and Sebastian Faust.
Masking vs. multiparty computation: how large is the gap for aes?
J. Cryptographic Engineering, 4(1):47–57, 2014.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via
low-bandwidth acoustic cryptanalysis. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I, volume 8616 of Lecture Notes in Computer Science,
pages 444–461. Springer, 2014.

[Gui17] Sylvain Guilley, editor. Constructive Side-Channel Analysis and Secure
Design - 8th International Workshop, COSADE 2017, Paris, France, April
13-14, 2017, Revised Selected Papers, volume 10348 of Lecture Notes in
Computer Science. Springer, 2017.

[Hab65] Donald H Habing. The use of lasers to simulate radiation-induced
transients in semiconductor devices and circuits. IEEE Transactions on
Nuclear Science, 12(5):91–100, 1965.

[HBdH04] Gijs Hollestelle, Wouter Burgers, and JI den Hartog. Power analysis on
smartcard algorithms using simulation. Technical report, Eindhoven
University of Technology, 2004. http://eprints.eemcs.utwente.
nl/798/01/200422.pdf.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES
smart card implementation resistant to power analysis attacks. In
Jianying Zhou, Moti Yung, and Feng Bao, editors, Applied Cryptog-
raphy and Network Security, 4th International Conference, ACNS 2006,
Singapore, June 6-9, 2006, Proceedings, volume 3989 of Lecture Notes in
Computer Science, pages 239–252, 2006.

[HRG14] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. A Theoretical
Study of Kolmogorov-Smirnov Distinguishers — Side-Channel Anal-
ysis vs. Differential Cryptanalysis. In Prouff [Pro14], pages 9–28.

http://eprints.eemcs.utwente.nl/798/01/200422.pdf
http://eprints.eemcs.utwente.nl/798/01/200422.pdf

Bibliography 241

[IEE04] IEEE. 2004 Design, Automation and Test in Europe Conference and Expo-
sition (DATE 2004), 16-20 February 2004, Paris, France. IEEE Computer
Society, 2004.

[IKD+08] Sebastiaan Indesteege, Nathan Keller, Orr Dunkelman, Eli Biham, and
Bart Preneel. A practical attack on keeloq. In Nigel P. Smart, editor,
Advances in Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on theTheory and Applications of Cryptographic Techniques,
Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2008.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in
Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 17-21, 2003, Proceed-
ings, volume 2729 of Lecture Notes in Computer Science, pages 463–481.
Springer, 2003.

[JKP03] Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors. Cryp-
tographic Hardware and Embedded Systems - CHES 2002, 4th Interna-
tional Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers, volume 2523 of Lecture Notes in Computer Science. Springer,
2003.

[JNP15] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik v1.3, Aug 2015.
CAESAR submission.

[KB07] Boris Köpf and David A. Basin. An information-theoretic model for
adaptive side-channel attacks. In Peng Ning, Sabrina De Capitani
di Vimercati, and Paul F. Syverson, editors, Proceedings of the 2007
ACM Conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, October 28-31, 2007, pages 286–296. ACM,
2007.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Wiener [Wie99], pages 388–397.

[KK99] Oliver Kömmerling and Markus G. Kuhn. Design principles for
tamper-resistant smartcard processors. In Scott B. Guthery and Pe-
ter Honeyman, editors, Proceedings of the 1st Workshop on Smartcard
Technology, Smartcard 1999, Chicago, Illinois, USA, May 10-11, 1999.
USENIX Association, 1999.

242 Bibliography

[KL08] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptog-
raphy: principles and protocols. cryptography and network security,
2008.

[KLL+14] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian
Rechberger, Peter Schwabe, and Tolga Yalçin. Prøst v1.1, Jun 2014.
CAESAR submission.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, Advances in
Cryptology - CRYPTO 1996, 16th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 18-22, 1996, Proceed-
ings, volume 1109 of Lecture Notes in Computer Science, pages 104–113.
Springer, 1996.

[Koz84] Władysław Kozaczuk. Enigma: how the German machine cipher was
broken, and how it was read by the Allies in World War Two. University
Publications of America, 1984.

[KP00] Çetin Kaya Koç and Christof Paar, editors. Cryptographic Hardware
and Embedded Systems - CHES 2000, Second International Workshop,
Worcester, MA, USA, August 17-18, 2000, Proceedings, volume 1965 of
Lecture Notes in Computer Science. Springer, 2000.

[KP07] Mario Kirschbaum and Thomas Popp. Evaluation of power estimation
methods based on logic simulations. Citeseer, 2007.

[KP14] Sebastian Kutzner and Axel Poschmann. On the Security of RSM -
Presenting 5 First- and Second-Order Attacks. In Prouff [Pro14], pages
299–312.

[KQ99] François Koeune and Jean-Jacques Quisquater. A timing attack against
rijndael. Technical report, UCL Crypto Group, 1999.

[Kra98] Hugo Krawczyk, editor. Advances in Cryptology - CRYPTO ’98, 18th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 23-27, 1998, Proceedings, volume 1462 of Lecture Notes in
Computer Science. Springer, 1998.

[LBM11] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Side
Channel Attack: an Approach Based on Machine Learning. In Sec-
ond International Workshop on Constructive SideChannel Analysis and
Secure Design, pages 29–41. Center for Advanced Security Research
Darmstadt, 2011.

Bibliography 243

[LBM15a] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. The bias-
variance decomposition in profiled attacks. J. Cryptographic Engineer-
ing, 5(4):255–267, 2015.

[LBM15b] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. A ma-
chine learning approach against a masked AES - reaching the limit
of side-channel attacks with a learning model. J. Cryptographic Engi-
neering, 5(2):123–139, 2015.

[LJH14] Frédéric Lafitte, Jorge Nakahara Jr., and Dirk Van Heule. Applications
of SAT solvers in cryptanalysis: Finding weak keys and preimages.
JSAT, 9:1–25, 2014.

[LM90] Xuejia Lai and James L.Massey. A proposal for a new block encryption
standard. In Ivan Damgård, editor, Advances in Cryptology - EURO-
CRYPT ’90, Workshop on theTheory and Application of of Cryptographic
Techniques, Aarhus, Denmark, May 21-24, 1990, Proceedings, volume
473 of Lecture Notes in Computer Science, pages 389–404. Springer,
1990.

[LMBM13] Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bontempi, and
Olivier Markowitch. A machine learning approach against a masked
AES. In Francillon and Rohatgi [FR14], pages 61–75.

[LMM17] Liran Lerman, Zdenek Martinasek, and Olivier Markowitch. Robust
profiled attacks: should the adversary trust the dataset? IET Informa-
tion Security, 11:188–194(6), July 2017.

[LMV+13] Liran Lerman, Stephane Fernandes Medeiros, Nikita Veshchikov, Cé-
dric Meuter, Gianluca Bontempi, and Olivier Markowitch. Semi-
supervised template attack. In Emmanuel Prouff, editor, Construc-
tive Side-Channel Analysis and Secure Design - 4th International Work-
shop, COSADE 2013, Paris, France, March 6-8, 2013, Revised Selected Pa-
pers, volume 7864 of Lecture Notes in Computer Science, pages 184–199.
Springer, 2013.

[LMV16] Liran Lerman, Olivier Markowitch, and Nikita Veshchikov. Compar-
ing sboxes of ciphers from the perspective of side-channel attacks.
In 2016 IEEE Asian Hardware-Oriented Security and Trust, AsianHOST
2016, Yilan, Taiwan, December 19-20, 2016, pages 1–6. IEEE Computer
Society, 2016.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markow-
itch, and François-Xavier Standaert. Template attacks vs. machine

244 Bibliography

learning revisited (and the curse of dimensionality in side-channel
analysis). In Stefan Mangard and Axel Y. Poschmann, editors, Con-
structive Side-Channel Analysis and Secure Design - 6th International
Workshop, COSADE 2015, Berlin, Germany, April 13-14, 2015. Revised
Selected Papers, volume 9064 of Lecture Notes in Computer Science,
pages 20–33. Springer, 2015.

[LR11] Pierre-Yvan Liardet and Fabrice Romain. Secured cryptographic cal-
culation method, in particular against DFA and one-way attacks,
and corresponding component, April, 6 2011. Patent: EP2509252A1,
and also demand US20120257747 A1 (under a slightly different title:
“Method of secure cryptographic calculation, in particular, against at-
tacks of the DFA and unidirectional type, and corresponding compo-
nent”).

[LVPM17] Liran Lerman, Nikita Veshchikov, Stjepan Picek, and Olivier Markow-
itch. On the Construction of Side-Channel Attack Resilient S-boxes.
In Guilley [Gui17], pages 102–119.

[LWR00] Helger Lipmaa, David Wagner, and Phillip Rogaway. Comments to
nist concerning aes modes of operation: Ctr-mode encryption, 2000.

[Mat02] Mitsuru Matsui, editor. Fast Software Encryption, 8th International
Workshop, FSE 2001 Yokohama, Japan, April 2-4, 2001, Revised Papers,
volume 2355 of Lecture Notes in Computer Science. Springer, 2002.

[May00] Rita Mayer-Sommer. Smartly analyzing the simplicity and the power
of simple power analysis on smartcards. In Koç and Paar [KP00], pages
78–92.

[Med12] Stephane Fernandes Medeiros. The schedulability of AES as a coun-
termeasure against side channel attacks. In Andrey Bogdanov and
Somitra Kumar Sanadhya, editors, Security, Privacy, and Applied Cryp-
tography Engineering - Second International Conference, SPACE 2012,
Chennai, India, November 3-4, 2012. Proceedings, volume 7644 of Lec-
ture Notes in Computer Science, pages 16–31. Springer, 2012.

[MGH14] Amir Moradi, Sylvain Guilley, and Annelie Heuser. Detecting hidden
leakages. In Ioana Boureanu, Philippe Owesarski, and Serge Vaude-
nay, editors,Applied Cryptography andNetwork Security - 12th Interna-
tional Conference, ACNS 2014, Lausanne, Switzerland, June 10-13, 2014.
Proceedings, volume 8479 of Lecture Notes in Computer Science, pages
324–342. Springer, 2014.

Bibliography 245

[MGH+15] Paweł Morawiecki, Kris Gaj, Ekawat Homsirikamol, Krystian Ma-
tusiewicz, Josef Pieprzyk, Marcin Rogawski, Marian Srebrny, and
Marcin Wójcik. ICEPOLE v2, Aug 2015. CAESAR submission.

[MGV+16] Stephane Fernandes Medeiros, François Gérard, Nikita Veshchikov,
Liran Lerman, and Olivier Markowitch. Breaking kalyna 128/128
with power attacks. In Claude Carlet, M. Anwar Hasan, and Vishal
Saraswat, editors, Security, Privacy, and Applied Cryptography Engi-
neering - 6th International Conference, SPACE 2016, Hyderabad, India,
December 14-18, 2016, Proceedings, volume 10076 of Lecture Notes in
Computer Science, pages 402–414. Springer, 2016.

[MO17] David McCann and Elisabeth Oswald. Practical evaluation of mask-
ing software countermeasures on an iot processor. Cryptology ePrint
Archive, Report 2017/399, 2017. http://eprint.iacr.org/2017/
399.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks - revealing the secrets of smart cards. Springer, 2007.

[MOPT12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall.
Compiler assisted masking. In Prouff and Schaumont [PS12], pages
58–75.

[Mor15] Amir Moradi. Advances in side-channel security. PhD thesis, Habilita-
tion, Ruhr-Universität Bochum, 2015.

[MOW14] Luke Mather, Elisabeth Oswald, and Carolyn Whitnall. Multi-target
DPA attacks: Pushing DPA beyond the limits of a desktop computer.
In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology -
ASIACRYPT 2014 - 20th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture
Notes in Computer Science, pages 243–261. Springer, 2014.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Success-
fully attacking masked AES hardware implementations. In Rao and
Sunar [RS05], pages 157–171.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff.
Breaking cryptographic implementations using deep learning tech-
niques. Cryptology ePrint Archive, Report 2016/921, 2016. http:
//eprint.iacr.org/2016/921.

http://eprint.iacr.org/2017/399
http://eprint.iacr.org/2017/399
http://eprint.iacr.org/2016/921
http://eprint.iacr.org/2016/921

246 Bibliography

[MS01] Itsik Mantin and Adi Shamir. A practical attack on broadcast RC4. In
Matsui [Mat02], pages 152–164.

[MS06] Stefan Mangard and Kai Schramm. Pinpointing the side-channel leak-
age of masked AES hardware implementations. In Goubin and Matsui
[GM06], pages 76–90.

[MSV+15] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapandian,
Dan Boneh, and Gabi Nakibly. Powerspy: Location tracking usingmo-
bile device power analysis. In Jaeyeon Jung andThorstenHolz, editors,
24th USENIX Security Symposium, USENIX Security 2015, Washington,
D.C., USA, August 12-14, 2015., pages 785–800. USENIX Association,
2015.

[MVOV96] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Hand-
book of applied cryptography. CRC press, 1996.

[MY92] Mitsuru Matsui and Atsuhiro Yamagishi. A new method for known
plaintext attack of FEAL cipher. In Rainer A. Rueppel, editor, Advances
in Cryptology - EUROCRYPT ’92, Workshop on the Theory and Applica-
tion of of Cryptographic Techniques, Balatonfüred, Hungary, May 24-
28, 1992, Proceedings, volume 658 of Lecture Notes in Computer Science,
pages 81–91. Springer, 1992.

[NGD11] Maxime Nassar, Sylvain Guilley, and Jean-Luc Danger. Formal anal-
ysis of the entropy / security trade-off in first-order masking coun-
termeasures against side-channel attacks. In Daniel J. Bernstein and
Sanjit Chatterjee, editors, Progress in Cryptology - INDOCRYPT 2011
- 12th International Conference on Cryptology in India, Chennai, In-
dia, December 11-14, 2011. Proceedings, volume 7107 of Lecture Notes
in Computer Science, pages 22–39. Springer, 2011.

[Nov03] Roman Novak. Side-channel attack on substitution blocks. In Jianying
Zhou, Moti Yung, and Yongfei Han, editors, Applied Cryptography and
Network Security, First International Conference, ACNS 2003. Kunming,
China, October 16-19, 2003, Proceedings, volume 2846 of Lecture Notes
in Computer Science, pages 307–318. Springer, 2003.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold
implementations against side-channel attacks and glitches. In Peng
Ning, Sihan Qing, and Ninghui Li, editors, Information and Communi-
cations Security, 8th International Conference, ICICS 2006, Raleigh, NC,
USA, December 4-7, 2006, Proceedings, volume 4307 of Lecture Notes in
Computer Science, pages 529–545. Springer, 2006.

Bibliography 247

[NRS+04] Ulrich Neffe, Klaus Rothbart, Christian Steger, Reinhold Weiss, Edgar
Rieger, and Andreas Mühlberger. Energy estimation based on hierar-
chical bus models for power-aware smart cards. In 2004 Design, Au-
tomation and Test in Europe Conference and Exposition (DATE 2004),
16-20 February 2004, Paris, France [IEE04], pages 300–305.

[NSGD12] Maxime Nassar, Youssef Souissi, Sylvain Guilley, and Jean-Luc Dan-
ger. RSM: A small and fast countermeasure for aes, secure against
1st and 2nd-order zero-offset scas. In Wolfgang Rosenstiel and Lothar
Thiele, editors, 2012 Design, Automation & Test in Europe Conference
& Exhibition, DATE 2012, Dresden, Germany, March 12-16, 2012, pages
1173–1178. IEEE, 2012.

[OGDR10] Roman Oliynykov, Ivan Gorbenko, Viktor Dolgov, and Viktor
Ruzhentsev. Results of ukrainian national public cryptographic com-
petition. Tatra Mountains Mathematical Publications, 47(1):99–113,
2010.

[OGK+15] Roman Oliynykov, Ivan Gorbenko, Oleksandr Kazymyrov, Victor
Ruzhentsev, Oleksandr Kuznetsov, Yurii Gorbenko, Oleksandr Dyrda,
Viktor Dolgov, Andrii Pushkaryov, Ruslan Mordvinov, and Dmytro
Kaidalov. A new encryption standard of ukraine: The kalyna block
cipher. Cryptology ePrint Archive, Report 2015/650, 2015. http:
//eprint.iacr.org/2015/650.

[OR08] Elisabeth Oswald and Pankaj Rohatgi, editors. Cryptographic Hard-
ware and Embedded Systems - CHES 2008, 10th International Workshop,
Washington, D.C., USA, August 10-13, 2008. Proceedings, volume 5154
of Lecture Notes in Computer Science. Springer, 2008.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In Pointcheval [Poi06], pages 1–20.

[OWW14] Yossef Oren, Ofir Weisse, and Avishai Wool. A new framework for
constraint-based probabilistic template side channel attacks. In Lejla
Batina and Matthew Robshaw, editors, Cryptographic Hardware and
Embedded Systems - CHES 2014 - 16th International Workshop, Busan,
South Korea, September 23-26, 2014. Proceedings, volume 8731 of Lecture
Notes in Computer Science, pages 17–34. Springer, 2014.

[PGA06] Emmanuel Prouff, Christophe Giraud, and Sébastien Aumônier. Prov-
ably secure s-box implementation based on fourier transform. In
Goubin and Matsui [GM06], pages 216–230.

http://eprint.iacr.org/2015/650
http://eprint.iacr.org/2015/650

248 Bibliography

[Pic16] Stjepan Picek. Evolutionary computation and cryptology. In Tobias
Friedrich, Frank Neumann, and Andrew M. Sutton, editors, Genetic
and Evolutionary Computation Conference, GECCO 2016, Denver, CO,
USA, July 20-24, 2016, CompanionMaterial Proceedings, pages 883–909.
ACM, 2016.

[PM05] Thomas Popp and Stefan Mangard. Masked dual-rail pre-charge logic:
Dpa-resistance without routing constraints. In Rao and Sunar [RS05],
pages 172–186.

[PMMB15] Stjepan Picek, Bodhisatwa Mazumdar, Debdeep Mukhopadhyay, and
Lejla Batina. Modified transparency order property: Solution or just
another attempt. In Rajat Subhra Chakraborty, Peter Schwabe, and
Jon A. Solworth, editors, Security, Privacy, and Applied Cryptography
Engineering - 5th International Conference, SPACE 2015, Jaipur, India,
October 3-7, 2015, Proceedings, volume 9354 of Lecture Notes in Com-
puter Science, pages 210–227. Springer, 2015.

[Poi06] David Pointcheval, editor. Topics in Cryptology - CT-RSA 2006, The
Cryptographers’ Track at the RSA Conference 2006, San Jose, CA, USA,
February 13-17, 2006, Proceedings, volume 3860 of Lecture Notes in
Computer Science. Springer, 2006.

[PPE+14] Stjepan Picek, Kostas Papagiannopoulos, Baris Ege, Lejla Batina, and
Domagoj Jakobovic. Confused by confusion: Systematic evaluation
of DPA resistance of various s-boxes. In Willi Meier and Debdeep
Mukhopadhyay, editors, Progress in Cryptology - INDOCRYPT 2014 -
15th International Conference on Cryptology in India, New Delhi, In-
dia, December 14-17, 2014, Proceedings, volume 8885 of Lecture Notes
in Computer Science, pages 374–390. Springer, 2014.

[Pro05] Emmanuel Prouff. DPA attacks and s-boxes. In Henri Gilbert and He-
lena Handschuh, editors, Fast Software Encryption: 12th International
Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised Se-
lected Papers, volume 3557 of Lecture Notes in Computer Science, pages
424–441. Springer, 2005.

[Pro14] Emmanuel Prouff, editor. Constructive Side-Channel Analysis and Se-
cure Design - 5th International Workshop, COSADE 2014, Paris, France,
April 13-15, 2014. Revised Selected Papers, volume 8622 of Lecture Notes
in Computer Science. Springer, 2014.

[PRR14] Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. On the prac-
tical security of a leakage resilient masking scheme. In Josh Benaloh,

Bibliography 249

editor, Topics in Cryptology - CT-RSA 2014 - The Cryptographer’s Track
at the RSA Conference 2014, San Francisco, CA, USA, February 25-28,
2014. Proceedings, volume 8366 of Lecture Notes in Computer Science,
pages 169–182. Springer, 2014.

[PS12] Emmanuel Prouff and Patrick Schaumont, editors. Cryptographic
Hardware and Embedded Systems - CHES 2012 - 14th International
Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume
7428 of Lecture Notes in Computer Science. Springer, 2012.

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso.
Simple key enumeration (and rank estimation) using histograms: An
integrated approach. In Gierlichs and Poschmann [GP16], pages
61–81.

[PV07] Pascal Paillier and Ingrid Verbauwhede, editors. Cryptographic Hard-
ware and Embedded Systems - CHES 2007, 9th International Workshop,
Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of
Lecture Notes in Computer Science. Springer, 2007.

[PV17] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the Gap: To-
wards Secure 1st-orderMasking in Software. In Guilley [Gui17], pages
282–297.

[Rep16a] Oscar Reparaz. Detecting flawed masking schemes with leakage de-
tection tests. In Thomas Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23,
2016, Revised Selected Papers, volume 9783 of Lecture Notes in Com-
puter Science, pages 204–222. Springer, 2016.

[Rep16b] Oscar Reparaz. Detecting flawed masking schemes with leakage de-
tection tests. IACR Cryptology ePrint Archive, 2016:282, 2016.

[RFFT14] Md. Tauhidur Rahman, Domenic Forte, Jim Fahrny, and Mohammad
Tehranipoor. ARO-PUF: an aging-resistant ring oscillator PUF design.
In Fettweis and Nebel [FN14], pages 1–6.

[RGN13] Pablo Rauzy, Sylvain Guilley, and Zakaria Najm. Formally proved
security of assembly code against power analysis: A case study on
balanced logic. Cryptology ePrint Archive, Report 2013/554, 2013.
http://eprint.iacr.org/2013/554.

[RNS+05] Klaus Rothbart, Ulrich Neffe, Christian Steger, Reinhold Weiss, Edgar
Rieger, and Andreas Mühlberger. Power consumption profile analy-
sis for security attack simulation in smart cards at high abstraction

http://eprint.iacr.org/2013/554

250 Bibliography

level. In Wayne H. Wolf, editor, EMSOFT 2005, September 18-22, 2005,
Jersey City, NJ, USA, 5th ACM International Conference On Embedded
Software, Proceedings, pages 214–217. ACM, 2005.

[RO04] Christian Rechberger and Elisabeth Oswald. Practical template at-
tacks. In Chae Hoon Lim and Moti Yung, editors, Information Security
Applications, 5th International Workshop, WISA 2004, Jeju Island, Ko-
rea, August 23-25, 2004, Revised Selected Papers, volume 3325 of Lecture
Notes in Computer Science, pages 440–456. Springer, 2004.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order
masking of AES. In Stefan Mangard and François-Xavier Standaert,
editors, Cryptographic Hardware and Embedded Systems, CHES 2010,
12th International Workshop, Santa Barbara, CA, USA, August 17-20,
2010. Proceedings, volume 6225 of Lecture Notes in Computer Science,
pages 413–427. Springer, 2010.

[RPD09] Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-order
masking and shuffling for software implementations of block ciphers.
In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009, 11th International Workshop, Lau-
sanne, Switzerland, September 6-9, 2009, Proceedings, volume 5747 of
Lecture Notes in Computer Science, pages 171–188. Springer, 2009.

[RRSY98] Ronald L. Rivest, Matthew J.B. Robshaw, Ray Sidney, and Yiqun Lisa
Yin. The RC6TM block cipher. In First Advanced Encryption Standard
(AES) Conference, page 16, 1998.

[RS05] Josyula R. Rao and Berk Sunar, editors. Cryptographic Hardware and
Embedded Systems - CHES 2005, 7th InternationalWorkshop, Edinburgh,
UK, August 29 - September 1, 2005, Proceedings, volume 3659 of Lecture
Notes in Computer Science. Springer, 2005.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun.
ACM, 21(2):120–126, 1978.

[RSV+11] Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-
Charvillon, Dina Kamel, and Denis Flandre. A formal study of power
variability issues and side-channel attacks for nanoscale devices. In
Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT
2011 - 30th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.

Bibliography 251

Proceedings, volume 6632 of Lecture Notes in Computer Science, pages
109–128. Springer, 2011.

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction
attacks. In Jr. et al. [JKP03], pages 2–12.

[SB15] Markku-Juhani O. Saarinen and Billy B. Brumley. STRIBOBr2:
“WHIRLBOB”, Aug 2015. CAESAR submission.

[SBG+12] Youssef Souissi, Shivam Bhasin, Sylvain Guilley, Maxime Nassar, and
Jean-Luc Danger. Towards different flavors of combined side channel
attacks. In Orr Dunkelman, editor, Topics in Cryptology - CT-RSA 2012
- The Cryptographers’ Track at the RSA Conference 2012, San Francisco,
CA, USA, February 27 - March 2, 2012. Proceedings, volume 7178 of
Lecture Notes in Computer Science, pages 245–259. Springer, 2012.

[Sch07] Bruce Schneier. Applied cryptography: protocols, algorithms, and source
code in C. john wiley & sons, 2007.

[Sch15] Bruce Schneier. Data and Goliath: The hidden battles to collect your
data and control your world. WW Norton & Company, 2015.

[SDB+10] Oliver Schimmel, Paul Duplys, Eberhard Boehl, Jan Hayek, R Bosch,
andWRosenstiel. Correlation power analysis in frequency domain. In
COSADE 2010 First International Workshop on Constructive SideChan-
nel Analysis and Secure Design, 2010.

[SGV08] François-Xavier Standaert, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Partition vs. comparison side-channel distinguishers: An
empirical evaluation of statistical tests for univariate side-channel at-
tacks against two unprotected CMOS devices. In Pil Joong Lee and
Jung Hee Cheon, editors, Information Security and Cryptology - ICISC
2008, 11th International Conference, Seoul, Korea, December 3-5, 2008,
Revised Selected Papers, volume 5461 of Lecture Notes in Computer Sci-
ence, pages 253–267. Springer, 2008.

[Sha45] Claude E Shannon. A mathematical theory of cryptography. Memo-
randum MM, 45:110–02, 1945.

[Sha49] Claude Elwood Shannon. Communication in the presence of noise.
Proceedings of the IRE, 37(1):10–21, 1949.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979.

252 Bibliography

[Sin00] Simon Singh. The code book: the science of secrecy from ancient Egypt
to quantum cryptography. Anchor, 2000.

[SKS09] François-Xavier Standaert, François Koeune, and Werner Schindler.
How to compare profiled side-channel attacks? In Michel Abdalla,
David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, ed-
itors, Applied Cryptography and Network Security, 7th International
Conference, ACNS 2009, Paris-Rocquencourt, France, June 2-5, 2009. Pro-
ceedings, volume 5536 of Lecture Notes in Computer Science, pages
485–498, 2009.

[SKW+98] Bruce Schneier, JohnKelsey, DougWhiting, DavidWagner, Chris Hall,
and Niels Ferguson. Twofish: A 128-bit block cipher. NIST AES Pro-
posal, 15, 1998.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic
model for differential side channel cryptanalysis. In Rao and Sunar
[RS05], pages 30–46.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodol-
ogy - A clear roadmap for side-channel evaluations. In Güneysu and
Handschuh [GH15], pages 495–513.

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified
framework for the analysis of side-channel key recovery attacks. In
Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Pro-
ceedings, volume 5479 of Lecture Notes in Computer Science, pages
443–461. Springer, 2009.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT
solvers to cryptographic problems. In Oliver Kullmann, editor, Theory
and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceed-
ings, volume 5584 of Lecture Notes in Computer Science, pages 244–257.
Springer, 2009.

[SNK+12] Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna
Orlic, and Jean-Pierre Seifert. Simple photonic emission analysis of
AES - photonic side channel analysis for the rest of us. In Prouff and
Schaumont [PS12], pages 41–57.

Bibliography 253

[SNK+13] Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna
Orlic, and Jean-Pierre Seifert. Simple photonic emission analysis of
AES. J. Cryptographic Engineering, 3(1):3–15, 2013.

[SP06] Kai Schramm and Christof Paar. Higher order masking of the AES. In
Pointcheval [Poi06], pages 208–225.

[SPW07] Bharat B. Sukhwani, Uday Padmanabhan, and Janet Meiling Wang.
Nano-sim: A step wise equivalent conductance based statistical sim-
ulator for nanotechnology circuit design. CoRR, abs/0710.4633, 2007.

[SPY+10] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques
Quisquater, Moti Yung, and Elisabeth Oswald. Leakage resilient cryp-
tography in practice. In Ahmad-Reza Sadeghi and David Naccache,
editors, Towards Hardware-Intrinsic Security - Foundations and Prac-
tice, Information Security and Cryptography, pages 99–134. Springer,
2010.

[STA+15] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sug-
awara, Yumiko Murakami, Mitsuru Matsui, and Shoichi Hirose. Mi-
nalpher v1.1, Aug 2015. CAESAR submission.

[Stö12] Marc Stöttinger. Mutating runtime architectures as a countermeasure
against power analysis attacks. PhD thesis, Darmstadt University of
Technology, Germany, 2012.

[Sto15] Ko Stoffelen. Intrinsic side-channel analysis resistance and efficient
masking, 2015. Master Thesis.

[SVO+10] François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Os-
wald, Benedikt Gierlichs, Marcel Medwed, Markus Kasper, and Stefan
Mangard. The world is not enough: Another look on second-order
DPA. In Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT
2010 - 16th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 5-9, 2010.
Proceedings, volume 6477 of Lecture Notes in Computer Science, pages
112–129. Springer, 2010.

[SYY+01] Takeshi Shimoyama, Hitoshi Yanami, Kazuhiro Yokoyama, Masahiko
Takenaka, Kouichi Itoh, Jun Yajima, Naoya Torii, and Hidema Tanaka.
The block cipher SC2000. In Matsui [Mat02], pages 312–327.

[TAL09] Céline Thuillet, Philippe Andouard, and Olivier Ly. A Smart Card
Power Analysis Simulator. In CSE (2), pages 847–852. IEEE Computer
Society, 2009.

254 Bibliography

[TAV02] Kris Tiri, MoonmoonAkmal, and Ingrid Verbauwhede. A dynamic and
differential CMOS logic with signal independent power consumption
to withstand differential power analysis on smart cards. In Proceedings
of the 28th European Solid-State Circuits Conference - ESSCIRC 2002,
Florence, Italy, September 24-26, pages 403–406. IEEE, 2002.

[TAV+04] Yuh-Fang Tsai, Ananth Hegde Ankadi, Narayanan Vijaykrishnan,
Mary Jane Irwin, and Theocharis Theocharides. Chippower: an
architecture-level leakage simulator. In Proceedings IEEE International
SOC Conference, September 12-15, 2004, Hilton Santa Clara, CA, USA,
pages 395–398. IEEE, 2004.

[THM07] Stefan Tillich, Christoph Herbst, and Stefan Mangard. Protecting AES
software implementations on 32-bit processors against power anal-
ysis. In Jonathan Katz and Moti Yung, editors, Applied Cryptography
and Network Security, 5th International Conference, ACNS 2007, Zhuhai,
China, June 5-8, 2007, Proceedings, volume 4521 of Lecture Notes in
Computer Science, pages 141–157. Springer, 2007.

[TV04] Kris Tiri and Ingrid Verbauwhede. A logic level design methodology
for a secure DPA resistant ASIC or FPGA implementation. In 2004 De-
sign, Automation and Test in Europe Conference and Exposition (DATE
2004), 16-20 February 2004, Paris, France [IEE04], pages 246–251.

[TV05] Kris Tiri and Ingrid Verbauwhede. Simulationmodels for side-channel
information leaks. In William H. Joyner Jr., Grant Martin, and An-
drew B. Kahng, editors, Proceedings of the 42nd Design Automation
Conference, DAC 2005, San Diego, CA, USA, June 13-17, 2005, pages
228–233. ACM, 2005.

[Ves14] Nikita Veshchikov. SILK: high level of abstraction leakage simulator
for side channel analysis. In Mila Dalla Preda and Jeffrey Todd Mc-
Donald, editors, Proceedings of the 4th Program Protection and Reverse
Engineering Workshop, PPREW@ACSAC 2014, New Orleans, LA, USA,
December 9, 2014, pages 3:1–3:11. ACM, 2014.

[VG17a] Nikita Veshchikov and Sylvain Guilley. Implementation flaws in the
masking scheme of DPA Contest v4. IET Information Security, 2017.

[VG17b] Nikita Veshchikov and Sylvain Guilley. Use of simulators for side-
channel analysis. In 2017 IEEE European Symposium on Security and
PrivacyWorkshops, EuroS&PWorkshops 2017, Paris, France, April 26-28,
2017, pages 104–112. IEEE, 2017.

Bibliography 255

[VGRS12] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and
François-Xavier Standaert. An optimal key enumeration algorithm
and its application to side-channel attacks. In Lars R. Knudsen and
Huapeng Wu, editors, Selected Areas in Cryptography, 19th Interna-
tional Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012,
Revised Selected Papers, volume 7707 of Lecture Notes in Computer Sci-
ence, pages 390–406. Springer, 2012.

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and
François-Xavier Standaert. Shuffling against side-channel attacks:
A comprehensive study with cautionary note. In Wang and Sako
[WS12], pages 740–757.

[VML17] Nikita Veshchikov, Stephane Fernandes Medeiros, and Liran Lerman.
Variety of scalable shuffling countermeasures against side channel at-
tacks. Journal of Cyber Security andMobility, pages 195–232, July 2017.

[vWWB11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Bram Bakker.
Improving differential power analysis by elastic alignment. In Agge-
los Kiayias, editor, Topics in Cryptology - CT-RSA 2011 - The Cryptogra-
phers’ Track at the RSA Conference 2011, San Francisco, CA, USA, Febru-
ary 14-18, 2011. Proceedings, volume 6558 of Lecture Notes in Computer
Science, pages 104–119. Springer, 2011.

[Wie99] Michael J. Wiener, editor. Advances in Cryptology - CRYPTO 1999, 19th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in
Computer Science. Springer, 1999.

[WO15] CarolynWhitnall and Elisabeth Oswald. Robust profiling for dpa-style
attacks. In Güneysu and Handschuh [GH15], pages 3–21.

[WOM11] Carolyn Whitnall, Elisabeth Oswald, and Luke Mather. An Explo-
ration of the Kolmogorov-Smirnov Test as a Competitor to Mutual
Information Analysis. In Emmanuel Prouff, editor, CARDIS, volume
7079 of Lecture Notes in Computer Science, pages 234–251. Springer,
2011.

[WS12] XiaoyunWang and Kazue Sako, editors. Advances in Cryptology - ASI-
ACRYPT 2012 - 18th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Beijing, China, December
2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Sci-
ence. Springer, 2012.

256 Bibliography

[YE13] Xin Ye and Thomas Eisenbarth. On the Vulnerability of Low Entropy
Masking Schemes. In Francillon and Rohatgi [FR14], pages 44–60.

[YMOT14] Noritaka Yamashita, Kazuhiko Minematsu, Toshihiko Okamura, and
Yukiyasu Tsunoo. A smaller and faster variant of RSM. In Fettweis
and Nebel [FN14], pages 1–6.

[ZBL+15] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan
Yang, and Ingrid Verbauwhede. RECTANGLE: a bit-slice lightweight
block cipher suitable for multiple platforms. SCIENCE CHINA Infor-
mation Sciences, 58(12):1–15, 2015.

[ZDD+17] Liwei Zhang, A. AdamDing, Francois Durvaux, Francois-Xavier Stan-
daert, and Yunsi Fei. Towards sound and optimal leakage detec-
tion procedure. Cryptology ePrint Archive, Report 2017/287, 2017.
http://eprint.iacr.org/2017/287.

[ZGLG14] Zhong Zeng, Dawu Gu, Junrong Liu, and Zheng Guo. An improved
side-channel attack based on support vector machine. In Tenth In-
ternational Conference on Computational Intelligence and Security, CIS
2014, Kunming, Yunnan, China, November 15-16, 2014, pages 676–680.
IEEE Computer Society, 2014.

[ZJRR12] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-vm side channels and their use to extract private keys. In Ting
Yu, George Danezis, and Virgil D. Gligor, editors, the ACM Conference
on Computer and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012, pages 305–316. ACM, 2012.

http://eprint.iacr.org/2017/287

	List of Notations
	Cryptography
	Side-channel analysis
	Statistics
	Sets and elements
	List of Abbreviaitons

	List of Figures
	List of Tables
	List of Listings
	Introduction
	I Preliminary notions
	Cryptography
	Ciphers
	Block ciphers
	Attacks on block ciphers

	Summary

	Side-channel analysis
	Types of side-channel attacks
	Information channel
	Invasiveness
	Interference
	Profiled and unprofiled attacks
	Simple and differential analysis
	Summary of types of side-channel attacks

	Power analysis
	Acquisition setup
	Target operation
	Leakage model
	Distinguishers
	Key enumeration

	Analysis of side-channel attacks
	Performance of an attack

	Countermeasures
	Masking
	Hiding
	Other countermeasures
	Summary on countermeasures

	Summary

	The problem of leakage detection
	Leakage detection
	Analysis during early stages
	Goals

	II Contributions
	Simulation tools for side-channel analysis
	Motivation
	Levels of abstraction
	Survey of existing simulators
	Other works related to simulations

	Summary

	SILK
	Description of the tool
	Parameters
	Discussion

	Evaluation of S-boxes
	Results based on theoretical metrics
	Experimental results on simulations
	Experimental results on a real device

	Improvement of S-boxes
	Genetic algorithms and search strategy
	Results for Correlation Power Analysis
	Results for Template Attacks
	Discussion

	Scalable shuffling schemes
	Extensions of random start index
	Reverse shuffle
	Sweep swap shuffle

	Analysis of shuffling schemes
	Randomization
	Number of shuffles
	Resources
	Resistance against side-channel attacks
	Applications & modifications
	Discussion

	Summary

	ASCOLD
	Acquisition setup and evaluation
	ILA-Breaching Effects
	Overwrite effect
	Memory remnant effect
	Neighbour leakage effect

	Description of the tool
	1st order masked S-box for Rectangle cipher
	Summary

	SAVRASCA
	Description of the tool
	Analysis of the DPA Contest 4
	Analysis of AES-RSM used in DPA Contest 4
	Mask bias
	Experimental results
	Balanced values for masks

	Note on DPA Contest 4.2
	Summary

	Conclusions
	Silk example
	Success rate of S-boxes using simulations
	S-boxes generated using evolutionary computations
	Success rate of attacks on the S-boxes

	Heatmaps of shuffling schemes
	Success rates of attacks on shuffling schemes
	Ascold example
	List of microcontrollers supported by SAVRASCA
	Bibliography

