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Abstract

We show that transferable utility has no nonparametrically testable implications
for marriage stability in settings with a single consumption observation per house-
hold and heterogeneous individual preferences across households. This completes the
results of Cherchye, Demuynck, De Rock, and Vermeulen (2017), who characterized
Pareto e�cient household consumption under the assumption of marriage stability
without transferable utility. First, we show that the nonparametric testable con-
ditions established by these authors are not only necessary but also su�cient for
rationalizability by a stable marriage matching. Next, we demonstrate that exactly
the same testable implications hold with and without transferable utility between
household members. We build on this last result to provide a primal and dual linear
programming characterization of a stable matching allocation for the observational
setting at hand. This provides an explicit specification of the marital surplus function
rationalizing the observed matching behavior.
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1 Introduction

A most popular assumption in theoretical and empirical models of stable marriage mar-
kets is that utility is transferable between spouses.1 Even though this assumption has
been argued to impose a restrictive structure on the individual utilities, it is often used
because it has several highly desirable implications.2 Most notably, if individual utilities
are transferable, the marriage market equilibrium can be characterized as maximizing the
total marital surplus. In particular, we can define the equilibrium as the solution of a
linear program, and this has been shown to be a powerful vehicle to analyze the properties
of stable matching allocations.3

In a recent paper, Cherchye, Demuynck, De Rock, and Vermeulen (2017) (henceforth
CDDV) established a revealed preference characterization of Pareto e�cient household
consumption when the marriage is stable. They characterized stable marriage with in-
trahousehold (consumption) transfers but without assuming transferable utility between
household members. The characterization generates testable conditions even with a single
consumption observation per household and with fully heterogeneous individual prefer-
ences across households. The characterization is of the revealed preference type and is
intrinsically nonparametric, which means that its empirical implementation does not re-
quire a parametric/functional specification of the individual utilities.4 Interestingly, the
conditions are linear in unknowns, which makes them easy to use in practical applications.

The current paper complements the study of CDDV by characterizing marital stability
under the same observational assumptions but now specifically including the case with
transferable utilities. To begin our argument, we establish a first main result for the general
case with potentially non-transferable utilities. For this case, CDDV introduced their
conditions as necessary requirements for rationalizing the observed household consumption
by a stable marriage matching. In particular, they proved that, if the conditions are

1See, for example, Browning, Chiappori, and Weiss (2014) and Chiappori (2017) for recent overviews
of the literature. In what follows, we will distinguish between (1) the transferable utility case and (2)
the case with (consumption) transfers but general (i.e. potentially non-transferable) utilities. Our case of
transferable utility is sometimes also referred to as the “perfectly” transferable utility case in the literature,
whereas our case with transfers and general utilities is referred to as the “imperfectly” transferable utility
case. Chiappori (2017) provides a detailed discussion of these perfectly and imperfectly transferable utility
notions in a household context.

2See Chiappori (2010), Cherchye, Demuynck, and De Rock (2015) and Chiappori and Gugl (2015)
for detailed discussions on the transferable utility hypothesis in a household consumption context. These
authors also outline the implicit assumptions that underlie the hypothesis as well as the associated testable
implications for household consumption demand (but without using the assumption of marital stability).

3In this respect, a particularly motivating study is the one of Chiappori, McCann, and Nesheim (2010),
who build on the linear programming formulation of the stable matching model (with transferable utilities)
to explore the equivalence with hedonic price equilibria and optimal transportation problems. These
authors state (on p. 318) that “due to the wide body of knowledge about linear programming in general,
and optimal transportation in particular [...], the reduction of the model to this form seems not only
conceptually clearer, but better adapted to bringing powerful methods of theoretical and computational
analysis to bear on the question.”

4Particularly, the characterization follows the revealed preference approach of Afriat (1967), Diewert
(1973) and Varian (1982).
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violated, then the observed household consumption is not rationalizable. In the current
note, we complete this necessity result by showing that the conditions are also su�cient
for such rationalizability: as soon as the data satisfy the conditions, we can construct
individual utility functions that represent the observed household behavior in terms of a
stable marriage matching.

Next, our second main result shows that exactly the same testable implications are
necessary and su�cient for rationalizability under the additional assumption of transferable
utility between household members. In other words, transferable utility has no separate
nonparametric implications for the cross-sectional setting under study. Building on this,
we also define a linear programming characterization of a stable matching allocation in our
observational setting. Attractively, this formulation of our empirical conditions will have
an analogous primal and dual structure as the standard theoretical characterization of a
stable matching allocation under transferable utility. In particular, it reflects the notion
that a stable matching allocation maximizes the total surplus over all possible assignments
on the marriage market. In our case, the marital surplus function that rationalizes the
observed matching behavior will have a specific interpretation in terms of “real income”
di↵erences.

Section 2 introduces our notation and formalizes our concept of stable matching. Sec-
tion 3 sketches the basic intuition of the necessary conditions for rationalizability by a
stable matching. We will summarize these conditions in terms of Axioms of Revealed Sta-
ble Matchings. Section 4 establishes that these axioms provide not only necessary but also
su�cient conditions for such rationalizability. We show that this result holds for general
utilities but also for transferable utilities of the individuals on the marriage market. Sec-
tion 5 presents the linear programming formulation of our nonparametric characterization
of a stable matching allocation. Section 6 concludes. The proofs of our main results are in
the Appendix.

2 Preliminaries

We start this section by explaining the dataset that we assume for a given marriage mar-
ket. Then, we introduce our condition for rationalizing this dataset by a stable marriage
allocation. This will set the stage for presenting our main results in the following sections.

Dataset. We consider a marriage market with a finite set of men M and a finite set of
women W . Married couples are defined by the matching function � : M [W ! M [W ,
such that (with some abuse of notation)

• for all men i 2 M , �(i) 2 W ,

• for all women r 2 W, �(r) 2 M ,

• and �(i) = r if and only if �(r) = i.
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Once a man and a woman are married, they consume a set of n private goods and a
set of N public goods. The (column) vector Q 2 RN

+ represents the public consumption
quantities. Similarly, the (column) vector q 2 Rn

+ represents the private consumption
quantities, with q

m the private consumption of the man in the couple and q

w the private
consumption of the woman.

Budget conditions are specific to (potential) couples (i, r) 2 M ⇥W . First, the (row)
vector pi,r 2 Rn

++ denotes the prices for private consumption and the (row) vector Pi,r 2

RN
++ the prices for public consumption. Next, a potential couple (i, r) can spend income

yi,r.5 The couple’s consumption possibilities are defined by the associated budget set.

Definition 1 (Budget set). The budget set for a couple (i, r) is given by the set of bundles

(qm, qw, Q) that can be bought by budget yi,r, i.e.

Bi,r =
�
(qm, qw, Q) 2 R2n+N

+ |pi,r(q
m + q

w) + Pi,rQ  yi,r

 
.

In what follows, we will make two simplifying assumptions regarding what is observed
by the empirical analyst. First, we will disregard singles, i.e. the empirical analyst only
observes married individuals (and, thus, |M | = |W |). Next, we will assume that the em-
pirical analyst can observe the public consumption Q as well as the individuals’ private
consumption q

m and q

w for the married couples (but not for other potential (unmarried)
couples). As explained by CDDV, it is actually fairly easy to relax each of these as-
sumptions. However, this would only complicate our notation and not lead to additional
insights.6

Summarizing, for a given marriage market we assume the dataset

S =
�
�, {q

m
i,�(i), q

w
i,�(i), Qi,�(i)}i2M , {pi,r, Pi,r, yi,r}i2M,r2W

 
,

which consists of a matching function �, observed intrahousehold allocations

(qmi,�(i), q
w
i,�(i), Qi,�(i)),

for all married couples (i, �(i)), and couple-specific prices (pi,r, Pi,r) and incomes yi,r for all
potential couples (i, r), such that

pi,�(i)(q
m
i,�(i) + q

w
i,�(i)) + Pi,�(i)Qi,�(i) = yi,�(i)

for every married couple (i, �(i)).

5The couple-specific prices are especially relevant when the spouses’ leisures are contained in the mod-
elled commodities. In this case, the price of an hour of leisure of a spouse equals that individual’s wage
while the couple’s income equals full income.

6We can add single females (males) as (virtual) couples with the male (female) consuming nothing (i.e.
the private consumption qm = 0 (qw = 0)). Next, unknown individual quantities qm and qw can be treated
similarly as the unknown individual prices Pm and Pw in the ARSM condition captured by our following
Definition 3.
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Rationalizability. We say that a dataset is rationalizable if there exist individual pref-
erences for which the observed intrahousehold allocation is utility maximizing and such
that the matching is stable, which means that no married individual wants to divorce.
Generally, stability of the marriage market requires both “individual rationality” and “no
blocking pairs”. Individual rationality requires that no individual wants to become single
and, similarly, no blocking pairs means that no two currently unmarried individuals prefer
to remarry each other.

In our following analysis, we will solely consider the no blocking pairs condition explic-
itly. Again, it is easy to extend our arguments to also include the individual rationality
condition (along the lines of CDDV), but this would complicate the exposition without
adding new insights.7

Individual preferences depend on private and public consumption quantities. Formally,
we assume that every man i 2 M is endowed with a utility function u

i : Rn+N
! R, and

every women r 2 W with a utility function u

r : Rn+N
! R. Throughout, we will assume

that the functions ui and u

r are strictly monotone and concave. For a given dataset S, our
rationalizability condition requires that there must exist such individual utility functions
that make the observed household allocations consistent with marriage stability (i.e. no
blocking pairs).

Definition 2 (Rationalizability). The dataset S is rationalizable by a stable matching if,

for each man i 2 M and woman r 2 W , there exist utility functions u

i : Rn+N
! R and

u

r : Rn+N
! R such that, for all couples (i, r) 2 M ⇥W and allocations (qm, qw, Q), if

u

i(qm, Q) � u

i(qmi,�(i), Qi,�(i)) and

u

r(qw, Q) � u

r(qw�(r),r, Q�(r),r),

with at least one strict inequality, then (qm, qw, Q) /2 Bi,r.

Thus, rationalizability imposes a separate (no blocking pair) restriction for each po-
tential couple (i, r): any consumption allocation (qm, qw, Q) that gives greater utility
to both individuals than in their current match (i.e. u

i(qm, Q) � u

i(qmi,�(i), Qi,�(i)) and
u

r(qw, Q) � u

r(qw�(r),r, Q�(r),r), with at least one strict inequality) must be infeasible for the
given budget set (i.e. (qm, qw, Q) /2 Bi,r). Indeed, if this last condition were not met, then
both individuals would be better o↵ by exiting their current marriage and remarrying each
other, which would make the given matching allocation unstable.

As a final note, we remark that CDDV also explicitly assumed Pareto e�cient within-
household allocations, in addition to marriage stability. In our set-up, this explicit assump-
tion is redundant, as our rationalizability condition in Definition 2 automatically guarantees
within-household Pareto e�ciency. In particular, for each married couple (i.e. r = �(i))
the condition imposes that there cannot exist a consumption allocation that makes both
spouses better o↵ (and at least one spouse strictly better o↵) than the given allocation
(qmi,�(i), q

w
i,�(i), Qi,�(i)), which e↵ectively excludes the possibility of Pareto improvements.

7Formally, the individual rationality requirement coincides with the no blocking pairs requirement when
using “individuals pairing with nobody” as potentially blocking pairs.
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3 Revealed stable matchings

We next introduce CDDV’s testable conditions for Pareto e�cient household behavior un-
der marriage stability. The conditions are of the revealed preference type and intrinsically
nonparametric, which means that their empirical implementation does not require an ex-
plicit parametric specification of the individuals’ utilities. We provide the main intuition
for the necessary nature of these rationalizability conditions, which we summarize in terms
of the Axiom of Revealed Stable Matchings (ARSM). We say that an observed match-
ing allocation consistent with ARSM is “revealed stable”, to indicate that the associated
dataset S does not allow us to reject stability.

In what follows, we will also introduce the Weak Axiom of Revealed Stable Matchings
(WARSM), which provides a marginally weaker empirical requirement than the ARSM. We
will explain that WARSM consistency is easier to verify empirically than ARSM consis-
tency. In addition, the theoretical connection between the ARSM and WARSM conditions
will be relevant for our discussion in Section 4.

Axiom of Revealed Stable Matchings. To sketch the necessity argument for the Ax-
iom of Revealed Stable Matchings (ARSM) condition, we consider a currently unmatched
couple (i, r). For this couple, we further assume a (Pareto e�cient) allocation (qmi,r, q

w
i,r, Qi,r)

2 Bi,r such that the man i is indi↵erent between the consumption bundle (qmi,r, Qi,r) and
the bundle (qmi,�(i), Qi,�(i)) in his current marriage.

For this allocation (qmi,r, q
w
i,r, Qi,r), the slope of i’s indi↵erence curve at the bundle

(qmi,r, Qi,r) is given by the price vectors (pi,r, Pm
i,r), where the individual prices P

m
i,r represent

man i’s willingness-to-pay for the public quantities. For convex preferences (following from
concavity of ui), a simple revealed preference argument shows that man i’s indi↵erence be-
tween (qmi,r, Qi,r) and (qmi,�(i), Qi,�(i)) implies

pi,rq
m
i,r + P

m
i,rQi,r  pi,rq

m
i,�(i) + P

m
i,rQi,�(i), (1)

i.e. the hyperplane with slope (pi,r, Pm
i,r) through (qmi,r, Qi,r) must be situated below the

bundle (qmi,�(i), Qi,�(i)).
Next, the indi↵erence curve of the woman r at the allocation (qwi,r, Qi,r) will have the

slope (pi,r, Pw
i,r). In this case, the individual prices P

w
i,r give woman r’s willingness-to-

pay for the public consumption in the allocation (qmi,r, q
w
i,r, Qi,r). We can use that Pareto

e�ciency implies Pm
i,r + P

w
i,r = Pi,r, i.e. the individual prices Pm

i,r and P

w
i,r must add up to

the actual price Pi,r and can be interpreted as “Lindahl prices” associated with the e�cient
consumption of public goods.

For (i, r) not to be a blocking pair, we must have that woman r prefers the bundle
(qw�(r),r, Q�(r),r) over the bundle (qwi,r, Qi,r) (because man i is indi↵erent between (qmi,r, Qi,r)
and (qmi,�(i), Qi,�(i))). In other words, the indi↵erence curve of woman r through (qwi,r, Qi,r)
should lie below the indi↵erence curve through (qw�(r),r, Q�(r),r), which implies

pi,rq
w
i,r + P

w
i,rQi,r  pi,rq

w
�(r),r + P

w
i,rQ�(r),r. (2)

6



By combining the inequalities (1) and (2), we obtain the requirement

yi,r  pi,r(q
m
i,�(i) + q

w
�(r),r) + P

m
i,rQi,�(i) + P

w
i,rQ�(r),r, (3)

where we use that yi,r = pi,r(qmi,r + q

w
i,r) + (Pm

i,r + P

w
i,r)Qi,r and P

m
i,r + P

w
i,r = Pi,r.

The ARSM condition states that this necessary requirement for marriage stability ap-
plies to any potential couple (i, r).8 An observed marriage matching is revealed stable if it
satisfies ARSM.

Definition 3 (ARSM). A dataset S satisfies the Axiom of Revealed Stable Matchings

(ARSM) if, for all couples (i, r), there exist price vectors P

m
i,r, P

w
i,r 2 RN

++, with P

m
i,r+P

w
i,r =

Pi,r, such that

yi,r  pi,r(q
m
i,�(i) + q

w
�(r),r) + P

m
i,rQi,�(i) + P

w
i,rQ�(r),r.

Essentially, the axiom complies with CDDV’s requirement for consistency of a dataset
S with the no blocking pairs requirement of marriage stability (i.e. statement (ii) in their
Proposition 1).

Weak Axiom of Revealed Stable Matchings. The Weak Axiom of Revealed Stable
Matchings (WARSM) provides an alternative necessary requirement for rationalizability.
It also follows from a basic revealed preference argument. As we will explain below, it is
computationally easier to verify but imposes marginally weaker empirical restrictions on S

than the ARSM condition in Definition 3.
To introduce the WARSM condition, we again consider a currently unmatched pair

(i, r), with the man consuming the bundle (qmi,�(i), Qi,�(i)) and the woman consuming the
bundle (qw�(r),r, Q�(r),r) in their current marriages. Assume that the budget conditions that
apply to this couple are such that

yi,r > pi,r(q
m
i,�(i) + q

w
�(r),r) + Pi,r max{Qi,�(i), Q�(r),r}, (4)

where the max function is element-wise. In words, the budget yi,r available to the couple
(i, r) strictly exceeds the cost of buying the private quantities (qm�(i),i and q

w
�(r),r) and the

maximal public quantities (max{Qi,�(i), Q�(r),r}) that are consumed in the given marriages.
This would mean that the couple can a↵ord a bundle (qmi,r, q

w
i,r, Qi,r) 2 Bi,r such that

(qmi,r, Qi,r) � (qmi,�(i), Qi,�(i)) and

(qwi,r, Qi,r) � (qw�(r),r, Q�(r),r),

with a strict inequality for at least one component of the quantity vectors. Because the
utility functions ui and u

r are strictly monotone, this obtains

u

i(qmi,r, Qi,r) � u

i(qmi,�(i), Qi,�(i)) and

u

r(qwi,r, Qi,r) � u

r(qw�(r),r, Q�(r),r),

8Observe that, for a married couple (i,�(i)), the inequality restriction in the ARSM definition becomes
an equality restriction that simply reproduces the associated budget constraint.

7



with at least one strict inequality. But this implies that the rationalizability condition in
Definition 2 is violated.

Thus, we can conclude that rationalizability by a stable matching requires that the in-
equality (4) does not hold for any couple (i, r). This is captured by our WARSM condition.

Definition 4 (WARSM). A dataset S satisfies the Weak Axiom of Revealed Stable Match-

ings (WARSM) if, for all couples (i, r),

yi,r  pi,r(q
m
i,�(i) + q

w
�(r),r) + Pi,r max{Qi,�(i), Q�(r),r},

where the max function is element-wise.

Technically, the sole di↵erence between the ARSM concept in Definition 3 and the
WARSM concept in Definition 4 pertains to the fact that the term

P

m
i,rQi,�(i) + P

w
i,rQ�(r),r, (5)

in the ARSM requirement, is replaced by the term

Pi,r max{Qi,�(i), Q�(r),r}, (6)

in the WARSM requirement. As an implication, checking the WARSM condition does
not require searching for unknown individual prices Pm

i,r and P

w
i,r. This makes it easier to

verify WARSM than ARSM and, thus, the WARSM condition is more attractive from a
computational point of view.

To conclude, we formalize the theoretical connection between the ARSM and WARSM
requirements. This connection will also be relevant for our discussion in the following
section.

Proposition 1. If the ARSM is satisfied, then the WARSM is also satisfied. If the

WARSM inequality holds as a strict inequality for all unmatched couples, then the ARSM

is also satisfied with strict inequality for all unmatched couples.

Proposition 1 states the ARSM condition is marginally stronger than the WARSM
condition. However, under an empirically mild and easy-to-verify condition, the WARSM
requirement coincides with the ARSM requirement.

4 Necessary and su�cient conditions

In this section, we first show that the above (W)ARSM requirements provide testable
conditions that are not only necessary but also su�cient for rationalizability by a stable
matching allocation. This completes the argument of CDDV, who only proved necessity
of the empirical stability requirements. In addition, we establish that exactly the same
necessary and su�cient conditions for rationalizability hold under transferable utility. This
implies that transferable utility does not generate separate testable implications for the
cross-sectional setting under study.
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General utilities. Our first main result shows that, as soon as the data satisfy the
the ARSM, we can reconstruct individual utility functions that represent the observed
household behavior in terms of a stable marriage matching. These functions are strictly
monotone and concave, as required.

Theorem 1. A dataset S is rationalizable by a stable matching if and only if it satisfies

the ARSM.

We can combine this result with Proposition 1, which showed that the WARSM re-
quirement is (only) marginally weaker than the ARSM requirement.

Corollary 1. If a dataset S is rationalizable by a stable matching, then it satisfies the

WARSM. If the WARSM inequality holds as a strict inequality for all unmatched couples,

then the dataset S is rationalizable by a stable matching.

This is a useful result from a practical perspective. As indicated above, WARSM
consistency is easier to verify than ARSM consistency (see our discussion of (5) and (6)).
In fact, we can expect the WARSM characterization to be a su�cient characterization in
many practical instances, as the empirical di↵erence between ARSM and WARSM (defined
in Proposition 1) will generally be very weak. In such cases, explicitly using the individual
Lindahl prices P

m
i,r and P

w
i,r for publicly consumed quantities does not generate specific

testable implications. As soon as a dataset S satisfies the necessary and su�cient (ASRM)
characterization that explicitly accounts for these individual prices, it also satisfies the
necessary and su�cient (WASRM) characterization that does not include these unobserved
prices.

Transferable utilities. Our second main result shows that the (W)ASRM condition
characterizes stable matching allocations not only in terms of general utilities but also in
terms of transferable utilities. Specifically, as soon as a given dataset S is rationalizable
by a stable matching allocation, it is also rationalizable with individual utilities that are
transferable, and vice versa.

To formalize this point, we treat one of the private goods as a numeraire good. We let
x represent the quantities of this good and we define the normalized prices such that the
price of the numeraire good is one for all (potential) couples.9 Then, the ARSM inequality
in Definition 3 can be rephrased as

yi,r pi,r

�
q

m
i,�(i) + q

w
�(r),r

�
(7)

+ P

m
i,rQi,�(i) + P

w
i,rQ�(r),r + x

m
i,�(i) + x

w
�(r),r,

and the WARSM inequality in Definition 4 as

yi,r pi,r

�
q

m
i,�(i) + q

w
�(r),r

�
(8)

+ Pi,r max{Qi,�(i), Q�(r),r}+ x

m
i,�(i) + x

w
�(r),r.

9We remark that, because we use this price normalization, we can arbitrarily select any observed good
as the numeraire good to make our following argument. Thus, assuming the existence of a numeraire good
is without loss of generality.
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As discussed in Chiappori (2010) and Cherchye et al. (2015), a su�cient condition for
transferable utility between household members is that the agents have quasi-linear utility
functions. That is, for all men i 2 M and women r 2 W the utility functions take the
form

u

i(q,Q, x) = v

i(q,Q) + x,

u

r(q,Q, x) = v

r(q,Q) + x.

For these utility structures, the spouses can use the numeraire good to transfer utilities
at a fixed rate of exchange. As we show in the Appendix, we can fairly easily adapt the
construction of the utility functions in the proof of Theorem 1 to extend the su�ciency
argument to the case with quasi-linear utilities as defined above. In turn, this implies the
next result.

Theorem 2. A dataset S is rationalizable by a stable matching with transferable utilities

if and only if it satisfies the ASRM with inequality (7).

A direct implication of Theorems 1 and 2 is that transferable utility has no separately
testable implications for the observational setting at hand. Or, putting it di↵erently, it is
not possible to nonparametrically identify whether individual utilities are transferable (or
not) if the observed matching allocation is stable.

Analogous to before, we can formulate the following corollary.

Corollary 2. If a dataset is rationalizable by a stable matching with transferable utilities,

then it satisfies the WARSM with inequality (8). If the WARSM inequality (8) holds as a

strict inequality for all unmatched couples, then the dataset S is rationalizable by a stable

matching with transferable utilities.

5 Linear programming formulation

From the previous section, we conclude that any dataset S that is rationalizable by a stable
matching allocation (i.e. S satisfies the (W)ARSM condition) can also be represented as if

it is stable with transferable individual utilities. Building on this, we next show that our
conditions for a stable matching allocation (with or without transferable utility) can be
rephrased in terms of the standard linear programming characterization of stable matchings
under transferable utility. As motivated in the Introduction, this linear programming
formulation of stable marriage allocations with transferable utilities has shown to be a
powerful vehicle to analyze the properties of these allocations. Our results show that, for
the cross-sectional setting that we study here, the same linear programming tools can be
used for the empirical analysis of stable marriages, without needing to assume transferable
utilities or specific parametric structures for the individual preferences.

The linear programming formulation reflects the notion that a stable matching allo-
cation maximizes the total surplus over all possible assignments on the marriage market.
In our case, the marital surplus function that rationalizes the observed behavior will have

10



a specific representation in terms of “real income” di↵erences. Intuitively, it implies that
any rationalizable dataset S can always be represented as if it follows from “matching
on real income” (i.e. marriage and divorce decisions are determined by the aggregate real
income of the two partners). Interestingly, we can relate this finding to the argument of
Chiappori, Iyigun, and Weiss (2007, 2015) that such matching on real income holds under
(i) transferable utility between spouses under marriage, (ii) transferable utility between
spouses under divorce and (iii) invariance of the exchange rate of the utilities of the two
partners to changes in marital status. These conditions are satisfied under quasi-linearity
of individual preferences.10 In Section 4, we have shown that quasi-linearity is not testable
under stable marriage in our observational setting: as soon as the dataset is rationalizable
by a stable matching, it is rationalizable under the additional assumption of quasi-linearity.
In the current section, we add that such a stable matching allocation can equally be rep-
resented as maximizing the total surplus expressed in real income terms.

Primal and dual programs. We begin our argument by briefly recapturing the primal
and dual linear programming characterization of a stable matching allocation under trans-
ferable utility.11 To focus our discussion, we will only consider the linear programs for the
WARSM condition. But the following reasoning readily extends to the ARSM condition
for rationalizability.12

The primal formulation describes the stable marriage matching in terms of an optimal
assignment problem (as in Shapley and Shubik (1972)). Formally, let �i,r represent the
marital surplus if male i were married to female r. Further, the assignment indicators ⇡i,r

are defined such that ⇡i,r = 1 if i is married to r and ⇡i,r = 0 otherwise. Then, a stable
marriage assignment solves

max
⇡i,r

X

i2M

X

r2W

⇡i,r�i,r (9)

such that ⇡i,r � 0 and

X

r2W

⇡i,r  1 for all i 2 M,

X

i2M

⇡i,r  1 for all r 2 W.

10Quasilinearity is crucial for conditions (i), (ii) and (iii) to hold simultaneously. For example, Chiappori,
Iyigun, and Weiss (2007, 2015) showed that “generalized” quasi-linearity (as defined by Bergstrom and
Cornes (1981, 1983)) guarantees (i) but not (ii) and (iii).

11For a more detailed discussion of the primal and dual problems (9) and (10), we refer to Chapter 7 of
Browning, Chiappori, and Weiss (2014).

12Specifically, for the linear programming formulation of the ASRM we need to modify the surplus
function (11) in accordance with Definition 3 (for unknown Pm

i,r, P
w
i,r 2 Rn

++ that satisfy Pm
i,r+Pw

i,r = Pi,r).
The primal and dual programs (9) and (10) must be adjusted correspondingly.
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The objective (9) reflects that a stable matching allocation maximizes the total surplus
on the marriage market, which is the defining property of a stable allocation under trans-
ferable utility. Intuitively, we can interpret each variable ⇡i,r as the probability that male
i (re)matches with female r. Because of the specific linear structure of the problem, there
always exists at least one solution of program (9) with all ⇡i,r equal to either zero or one.

Next, let ⌫i and µr be the dual variables associated with the constraints of program
(9). Then, we can define the dual program

min
⌫i,µr

X

i2M

⌫i +
X

r2W

µr (10)

such that ⌫i � 0, µr � 0 and

(⌫i + µr) � �i,r for all i 2 M and r 2 W.

In this program, the variables ⌫i and µr represent potential remarriage gains of males i
and females r. They can be interpreted as the shadow prices of the constraints of the primal
maximization problem. By construction, we have that ⌫i + µr = �i,r when a marriage is
formed (i.e. ⇡i,r = 1 is an optimal solution of (9)) and ⌫i + µr � �i,r otherwise. In the
literature, this is referred to as the “complementary slackness condition”.

Marital surplus. For a given dataset S, we can derive the linear programming character-
ization of a stable matching allocation (satisfying the WARSM condition) when specifying
the marital surplus as

�i,r = yi,r � y

B
i,r, (11)

i.e. the di↵erence between income yi,r of the (potential) couple (i, r) and the benchmark
income

y

B
i,r = pi,r(q

m
i,�(i) + q

w
�(r),r) + Pi,r max{Qi,�(i), Q�(r),r}, (12)

In words, the benchmark income y

B
i,r corresponds to the value of total (public and

private) consumption of the male i and female r in their current marriages. Because we
evaluate this benchmark income in terms of the prices that apply to the couple (i, r), we
can interpret the surplus specification (11) as representing the “real income” di↵erence be-
tween the potential decision situation (i, r) and the actual consumption situations (i, �(i))
for male i and (�(r), r) for female r. It gives the additional consumption possibilities for
the potentially blocking pair (i, r) when choosing to remarry each other. The fact that we
use the actual consumption allocations (qmi,�(i), Qi,�(i)) and (qm�(r),r, Q�(r),r) for the bench-
mark real income (12) follows naturally from our empirical set-up: these are the (only)
consumption bundles that are e↵ectively observed for the given males i and females r.
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When using the specification (11) for the marital surplus �i,r, we easily obtain that the
dataset S satisfies the WARSM condition (i.e. S is rationalizable by a stable matching) if
and only if the dual problem program (10) has an optimal objective value that equals zero.
Intuitively, there is no consumption (i.e. real income) gain associated with remarriage.
By contrast, if the optimal objective value of program (10) is strictly positive, then the
associated optimal values of the dual variables ⌫i > 0 and µr > 0 represent the possible
consumption gains for males i and females r in case of remarriage.

Because of the Dual Theorem of linear programming, rationalizability of S equally
requires that the optimal objective value of the primal program (9) is zero for the surplus
�i,r defined in (11). In this case, we will have ⇡i,�(i) = 1 and ⇡�(r),r = 1 (for all i and
r) as an optimal solution, which means that there is no remarriage gain for the observed
matchings in S. On the contrary, if the optimal objective value is above zero, the optimal
values of the variables ⇡i,r will characterize the most profitable rematches (in consumption
terms) for the observed males i and females r. This allows us in turn to further analyse
the stability of the new matching allocation.

As a final remark, when using this primal formulation (9), we can also give a specific
interpretation to the optimal matching allocation in the case where prices are the same in
all possible decision situations, i.e. pi,r = p and Pi,r = P for all (i, r). In such an instance,
the objective function becomes

max
⇡i,r

X

i2M

X

r2W

⇡i,ryi,r � C, (13)

for the constant

C =
X

i2M

X

r2W

[p(qmi,�(i) + q

w
�(r),r) + P max{Qi,�(i), Q�(r),r}].

From (13), it follows directly that under constant prices the optimal marriage assign-
ment (defined by the variables ⇡i,r) is the one that maximizes the total (nominal) income.
Conversely, it also implies that variation in relative prices over marriages and di↵erences
in individual preferences can lead to stable matching allocations that do not correspond to
a maximal total (nominal) income on the marriage market.

6 Conclusion

We have shown that transferable utility has no nonparametrically testable implications for
marriage stability in settings with a single consumption observation per household and het-
erogeneous individual preferences across households. To establish this conclusion, we have
completed the results of Cherchye, Demuynck, De Rock, and Vermeulen (2017). First, we
have shown that these authors’ conditions for rationalizability by a stable matching are not
only necessary but also su�cient. We characterized a stable matching allocation in terms
of the Axiom of Revealed Stable Matchings (ARSM) and the Weak Axiom of Revealed
Stable Matchings (WARSM). We argued that the ARSM condition and the (marginally
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weaker) ASRM condition will be empirically equivalent in many practical instances. This
is convenient from a practical point of view, as WARSM consistency is easier to check than
ARSM consistency.

Next, we have shown that exactly the same testable conditions hold under the addi-
tional assumption of transferable utility between household members. Thus, transferable
utility does not generate separate testable implications for the cross-sectional setting at
hand. We built on this result to provide a linear programming formulation of our empirical
conditions for a stable matching allocation that parallels the standard theoretical charac-
terization of stable marriage under transferable utility. Attractively, this obtains that the
powerful linear programming tools that have been used for the analysis of stable match-
ing allocations can actually be used for the empirical analysis of stable marriages, even
without assuming transferable utilities or particular parametric forms for the individual
preferences. In addition, it gives a specific interpretation to a stable matching allocation
as maximizing the total surplus expressed in real income terms.

As a final note, we remark that these conclusions hold for cross-sectional datasets
containing (only) a single consumption observation per household. As soon as multiple
(time series) household observations are available, the assumption of Pareto e�ciency will
generate additional testable implications, which will also allow one to identify individuals’
willingness-to-pay for public consumption. See, for example, Cherchye, De Rock, and
Vermeulen (2007, 2011) for a nonparametric revealed preference analysis. In a similar
vein, transferable utility will have separate testable implications when more consumption
observations for one and the same household can be used. Cherchye, Demuynck, and De
Rock (2015) derived the associated revealed preference characterization.
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Appendix

Proof of Proposition 1

Proof. Consider any two price vectors Pm
i,r, P

w
i,r 2 RN

++ such that Pm
i,r + P

w
i,r = Pi,r. Then,

Pi,r max{Qi,�(i), Q�(r),r} = P

m
i,r max{Qi,�(i), Q�(r),r}+ P

w
i,r max{Qi,�(i), Q�(r),r}

� P

m
i,rQi,�(i) + P

w
i,rQ�(r),r.

As such, if the ARSM is satisfied, then

yi,r  pi,r

�
q

m
i,�(i) + q

w
�(r),r

�
+ P

m
i,�(i)Qi,�(i) + P

w
�(r),rQ�(r),r,

 pi,r

�
q

m
i,�(i) + q

w
�(r),r

�
+ Pi,r max{Qi,�(i), Q�(r),r},
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which gives the WARSM. For the second part, let

⇣̄ = pi,r

�
q

m
i,�(i) + q

w
�(r),r

�
+ Pi,r max{Qi,�(i), Q�(r),r}� yi,r > 0.

Then, by Lemma 1 we know that there exists a ⇣ > 0, with ⇣ < ⇣̄, and prices Pm
i,r, P

w
i,r 2

RN
++, with P

m
i,r + P

w
i,r = Pi,r, such that

Pi,r max{Qi,�(i), Q�(r),r} = P

m
i,rQi,�(i) + P

w
i,rQ�(r),r + ⇣.

This implies

⇣̄ = pi,r

�
q

m
i,�(i) + q

w
�(r),r

�
+ Pi,r max{Qi,�(i), Q�(r),r}� yi,r

> Pi,r max{Qi,�(i), Q�(r),r}� P

m
i,rQi,�(i) � P

w
i,rQ�(r),r = ⇣.

Or, equivalently,

yi,r < pi,r

�
q

m
i,�(i) + q

w
�(r),r

�
+ P

m
i,rQi,�(i) + P

w
i,rQ�(r),r,

as was to be shown.

Lemma 1. Let P 2 RN
++ be a vector of prices and Q1, Q2 2 RN

+ two vectors of quantities.

For every ⇣̄ > 0, there exists a number ⇣ 2 [0, ⇣̄] and vectors of prices P1, P2 2 RN
++, with

P1 + P2 = P , such that

P max{Q1, Q2} = P1Q1 + P2Q2 + ⇣.

Proof. Throughout our proofs, [z]j denotes the j � th component of some given vector z.
Then, take a number " > 0 small enough such that

"

 
NX

j=1

([Q2]j � [Q1]j)1[[Q2]j > [Q1]j] +
NX

j=1

([Q1]j � [Q2]j)1[[Q1]j � [Q2]j]

!
⌘ ⇣ < ⇣̄,

where 1[.] stands for the indicator function. Take [P1]j = [P ]j � " if [Q1]j � [Q2]j and
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[P1]j = " otherwise. Let P2 = P � P1. Then, we have

P max{Q1, Q2} =P1 max{Q1, Q2}+ P2 max{Q1, Q2}

=
NX

j=1

(P j
� ")[Q1]j1[[Q1]j � [Q2]j] +

NX

j=1

"[Q2]j1[[Q1]j < [Q2]j]

+
NX

j=1

"[Q1]j1[[Q1]j � [Q2]j] +
NX

j=1

([P ]j � ")[Q2]j1[[Q1]j < [Q2]j]

=
NX

j=1

([P ]j � ")[Q1]j1[[Q1]j � [Q2]j] +
NX

j=1

"[Q1]j1[[Q1]j < [Q2]j]

+
NX

j=1

"([Q2]j � [Q1]j)1[[Q1]j < [Q2]j]

+
NX

j=1

"([Q1]j � [Q2]j)1[[Q1]j � [Q2]j]

+
NX

j=1

(P j
� ")[Q2]j1[[Q1]j < [Q2]j] +

X

j

"[Q2]j1[[Q1]j � [Q2]j]

=P1Q1 + P2Q2 +
X

i

"([Q2]j � [Q1]j)1[[Q1]j < [Q2]j]

+
NX

j=1

"([Q1]j � [Q2]j)1[[Q1]j � [Q2]j]

=P1Q1 + P2Q2 + ⇣.

Proof of Theorem 1

Proof. Necessity was shown in the main text. For the su�ciency part, let us assume that
the ARSM is satisfied. Let the numbers m,M 2 R++ satisfy

m < min
i,r,j

{[pi,r]j, [P
w
i,r]j, [P

m
i,r]j} and M > max

i,r,j
{[pi,r]j, [P

w
i,r]j, [P

m
i,r]j}.

We can then define the piecewise linear function v:

v : R ! R : x 7! v(x) =

⇢
Mx if x  0,
mx if x > 0.

This function v will be used to construct the two utility functions. More specifically, for a
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man i 2 M , consider the utility function

u

i : Rn+N
! R : (q,Q) 7! u

i(q,Q) =
nX

j=1

v([q]j � [qmi,�(i)]j) +
NX

J=1

v([Q]J � [Qi,�(i)]J).

Clearly, this obtains that the man has utility zero for the observed bundle (qmi,�(i), Q) in his
current match. As a direct implication, the man i needs positive utility to form a blocking
pair. Similarly, for a woman r 2 W we consider the utility function

u

r : Rn+N
! R : (q,Q) 7! u

r(q,Q) =
nX

j=1

v([q]j � [qw�(r),r]j) +
NX

J=1

v([Q]J � [Q�(r),r]J).

Let us assume that for these specific utility functions the dataset is not rationalizable by a
stable matching. As explained above, this implies that there exists a couple (i, r) 2 M⇥W

and an allocation (qm, qw, Q) 2 Bi,r such that

u

i(qm, Q) � u

i(qmi,�(i), Qi,�(i)) = 0,

u

r(qw, Q) � u

r(qw�(r),r, Q�(r),r) = 0,

with at least one strict inequality.
For man i, we have that if [q]j > [qmi,�(i)]j (or [Q]J > [Qi,�(i)]J ), then by definition m([q]j �
[qmi,�(i)]j) < [pi,r]j([q]j � [qmi,�(i)]j) (or m([Q]J � [Qi,�(i)]J) < P

m
i,r([Q]J � [Qi,�(i)]J). Conversely,

if [q]j  [qmi,�(i)]j (or [Q]J  [Qi,�(i)]J ), then by definition M([q]j � [qmi,�(i)]j)  [pi,r]j([q]j �

[qmi,�(i)]j) (or m([Q]J � [Qi,�(i)]J)  P

m
i,r([Q]J � [Qi,�(i)]J). This shows that u

i(qm, Q) � 0
implies

pi,rq
m + P

m
i,rQ � pi,rq

m
i,�(i) + P

m
i,rQi,�(i),

by replacing the positive terms by a higher positive number and the negative terms by a
less negative number. The same reasoning holds for woman r:

pi,rq
w + P

w
i,rQ � pi,rq

w
�(r),r + P

w
i,rQ�(r),r,

where at least one of the last two inequalities has to be strict. Adding up these two
inequalities gives

pi,r(q
m + q

w) + Pi,rQ > pi,r(q
m
i,�(i) + q

w
�(r),r) + P

m
i,rQi,�(i) + P

w
i,rQ�(r),r.

Also, given that (qm, qw, Q) 2 Bi,r, we have that the left hand side is less than or equal to
yi,r, which gives

yi,r > pi,r(q
m
i,�(i) + q

w
�(r),r) + P

m
i,rQi,�(i) + P

w
i,rQ�(r),r.

This obtains a violation of ARSM, which finishes the proof.
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Proof of Theorem 2

Proof. The reasoning is exactly the same as in Theorem 1. The only di↵erence is that we
now need the following quasilinear utility functions for man i and woman r:

u

i : Rn+N
! R : (x, q,Q) 7! u

i(x, q,Q) = x� x

m
i,�(i) +

n�1X

j=1

v([q]j � [qmi,�(i)]j) +
NX

J=1

v([Q]J � [Qi,�(i)]J).

u

r : Rn+N
! R : (x, q,Q) 7! u

r(x, q,Q) = x� x

w
�(r),r +

n�1X

j=1

v([q]j � [qw�(r),r]j) +
NX

J=1

v([Q]J � [Q�(r),r]J).

Correspondingly, in this case the numbers m,M 2 R++ must satisfy

m < min
i,r,j

{[pi,r]j, [P
w
i,r]j, [P

m
i,r]j, 1} and M > max

i,r,j
{[pi,r]j, [P

w
i,r]j, [P

m
i,r]j, 1}.
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