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Tyler Shape Depth

Davy Paindaveine1 and Germain Van Bever
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Abstract

In many problems from multivariate analysis (principal component analysis,

testing for sphericity, etc.), the parameter of interest is a shape matrix, that is,

a normalised version of the corresponding scatter or dispersion matrix. In this

paper, we propose a depth concept for shape matrices which is of a sign nature, in

the sense that it involves data points only through their directions from the center

of the distribution. We use the terminology Tyler shape depth since the resulting

estimator of shape — namely, the deepest shape matrix — is the depth-based

counterpart of the celebrated M-estimator of shape from Tyler (1987). We in-

vestigate the invariance, quasi-concavity and continuity properties of Tyler shape

depth, as well as the topological and boundedness properties of the corresponding

depth regions. We study existence of a deepest shape matrix and prove Fisher

consistency in the elliptical case. We derive a Glivenko-Cantelli-type result and

establish the almost sure consistency of the deepest shape matrix estimator. We

also consider depth-based tests for shape and investigate their finite-sample per-

formances through simulations. Finally, we illustrate the practical relevance of

the proposed depth concept on a real data example.

Keywords: Elliptical distribution; Robustness; Shape matrix; Statistical depth; Test for
sphericity.

1 Introduction

Location depths measure the centrality of an arbitrary k-vector ✓ with respect to a
probability measure P = PX over Rk. Letting Sk�1 = {x 2 Rk : kxk2 = xTx = 1} be
the unit sphere in Rk, the most famous instance is the (Tukey, 1975) halfspace depth

D(✓, P ) = inf
u2Sk�1

P [uT (X � ✓) � 0], (1.1)

the lower bound of the probability mass of any halfspace whose boundary hyper-
plane contains ✓. The halfspace depth regions {✓ 2 Rk : D(✓, P ) � ↵} form a family
of nested convex subsets of Rk. The innermost region MP = {✓ 2 Rk : D(✓, P ) =
max⇠2Rk D(⇠, P )} (the maximum always exists; see Rousseeuw and Ruts, 1999) extends
the univariate median interval to the multivariate case. Whenever a unique representa-
tive of MP is needed, one often considers the Tukey median ✓P defined as the barycentre
of MP (from convexity, ✓P has maximal depth). The use of ✓P as a robust alternative to
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the expectation E(X) is only one out of the numerous applications of halfspace depth.
Many inference problems can indeed be tackled in a robust and nonparametric way by
using the center-outward order resulting from depth; see, e.g., Liu et al. (1999). Half-
space depth is also important through its links with multivariate quantiles; see, e.g.,
Hallin et al. (2010) and the references therein.

In this paper, the focus is not on location parameters as above, but rather on some
specific multivariate dispersion parameters, namely on shape matrices. We now describe
shape in a context where its definition makes a large consensus, that is, in the elliptical
setup. Denoting as Pk the collection of k ⇥ k symmetric positive definite matrices and
writing A1/2, with A 2 Pk, for the unique square root of A in Pk, we will say that P = PX

is elliptical with location ✓(2 Rk), shape V (2 Pk,tr = {V 2 Pk : tr(V ) = k}) and
generating variate R if X has the same distribution as ✓+RV 1/2U , where U is uniformly
distributed over Sk�1 and is independent of the nonnegative random variable R. The
shape V is identifiable as soon as P [{✓}] < 1. Shape is the parameter of interest in
many multivariate statistics problems, including principal component analysis (PCA),
canonical correlation analysis (CCA), testing for sphericity, etc. In PCA, for instance,
since V is proportional to the covariance matrix ⌃ of X (when it exists), both V and ⌃
provide the same principal directions and the same proportions of explained variance.
Moreover, under infinite second-order moments, shape remains well-defined (unlike ⌃)
and still fixes the elliptical geometry of the distribution that allows to conduct PCA.

The paramount importance of shape in multivariate statistics explains the huge liter-
ature dedicated to M-estimation for shape/scatter parameters; see, among many others,
Tyler (1987), Kent and Tyler (1988, 1991), Dudley et al. (2009), or the survey paper
Dümbgen et al. (2015). It also makes it desirable to extend the concept outside the ellip-
tical setup. Letting U✓,V be the multivariate sign defined as V �1/2(X�✓)/kV �1/2(X�✓)k
if X 6= ✓ and as 0 otherwise (throughout, A�1/2 is the inverse of A1/2), Tyler (1987)
defined the shape of P = PX as the matrix V (2 Pk,tr) satisfying

E
�
W✓,V

�
= 0, with W✓,V = vec

�
U✓,V U

T
✓,V � 1

k
Ik
�
, (1.2)

where vec stacks the columns of a matrix on top of each other and where Ik denotes
the k-dimensional identity matrix. If P does not charge any hyperplane containing ✓,
then (1.2) admits a unique solution V (2 Pk,tr) that agrees with the true shape if P is el-
liptical with location ✓; see Tyler (1987), Kent and Tyler (1988) or Dümbgen (1998). In
essence, (1.2) identifies the shape V making the origin equal to the expectation of W✓,V ,
that is, making the origin most central in an L

2

-sense with respect to the distribu-
tion PW✓,V of W✓,V . The present work finds its source in the idea that, alternatively, one
may define the shape of P as the matrix V (2 Pk,tr) making the origin most central in
the, L

1

, halfspace depth sense, that is, as the value of V maximising D(0, PW✓,V ). This
leads to defining shape as the value of V maximising the following shape depth.

Definition 1.1 (Tyler shape depth). Let P = PX
be a probability measure over Rk

and

fix V 2 Pk,tr. (i) For any ✓ 2 Rk
, the fixed-✓ shape depth of V with respect to P is

D✓(V, P ) = D(0, PW✓,V ) = infu2Sk2�1 P
⇥
uTW✓,V � 0

⇤
. (ii) The shape depth of V with

respect to P is D(V, P ) = D✓P (V, P ), where ✓P is the Tukey median of P .
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Whenever the argument of D(·, P ) is a vector (resp., a shape matrix), then the nota-
tion refers to halfspace depth (resp., to Tyler shape depth). Of course, the terminology
Tyler shape depth refers to the use of the quantity W✓,V from (1.2) to define the proposed
shape depth. The definition of Tyler shape depth in the unspecified location case calls
for some comments. For an unspecified location, it is natural to consider the location ✓
and shape V satisfying both

E
�
U✓,V

�
= 0 and E

�
W✓,V

�
= 0; (1.3)

see Tyler (1987) and Hettmansperger and Randles (2002). In the elliptical setup, the
resulting location and shape still agree with those defined above for an elliptical distri-
bution. Here, the corresponding L

1

-approach leads to considering the values of ✓ and V
maximising D(0, PU✓,V ) + �D(0, PW✓,V ) for some � > 0. Interestingly, the solution does
not depend on �; the properties of halfspace depth indeed ensure that, for any V , the
mapping ✓ 7! D(0, PU✓,V ) is maximised at ✓P . Hence, for any �, the L

1

-approach identi-
fies the location ✓P and the shape V maximisingD(0, PW✓P ,V ). This justifies the “plug-in
approach” adopted in Definition 1.1 for the unspecified location case. Interestingly, to
the best of our knowledge, there is no formal proof that, under appropriate smoothness
conditions on the underlying probability measure, there exists a solution (✓, V ) of (1.3);
this is why, as far as theory is concerned, the plug-in approach is adopted in the M -
estimation framework; see Tyler (1987) and Hettmansperger and Randles (2002). The
depth construction above has the advantage that the plug-in approach and the joint
location-scatter one provide the same depth-based functionals.

The above concept of shape depth raises many questions: does a deepest shape
matrix exist for any P? If it exists, does it coincide, under ellipticity assumptions,
with the shape defined in the elliptical case? What are the properties of Tyler shape
depth and of the corresponding depth regions R✓(↵, P ) = {V 2 Pk,tr : D✓(V, P ) � ↵}
and R(↵, P ) = R✓P (↵, P )? Can one perform inference based on the sample version of
these concepts? Is the resulting ordering of shape matrices of interest for applications?
We answer these questions in this paper. Depth for a generic parameter has been dis-
cussed in Mizera (2002). To the best of our knowledge, however, depth for covariance
or scatter matrices has only been considered in Zhang (2002), Chen et al. (2015) and
Paindaveine and Van Bever (2017a), and only the latter work considers depth for shape
matrices. As we will explain in the sequel, Tyler shape depth presents important ad-
vantages over both the shape depth resulting from the general concept of Mizera (2002)
and the one from Paindaveine and Van Bever (2017a).

2 Main properties

In this section, we study the main properties of the fixed-✓ Tyler shape depth and of
the corresponding depth regions. Topological statements for subsets of Pk,tr and for
functions defined on Pk,tr will refer to the topology whose open sets are generated by
balls of the form B(V

0

, r) = {V 2 Pk,tr : d(V, V0

) < r}, where d is the geodesic distance
that is usually defined on Pk: with the usual logarithmic mapping on Pk, the distance d
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is defined through d(Va, Vb) = k log(V �1/2
a VbV

�1/2
a )kF , where kAkF = {tr(AAT )}1/2 is

the Frobenius norm of A; see, e.g., Bhatia (2007). We start with the following continuity
result.

Theorem 2.1. Let P be a probability measure over Rk
and fix ✓ 2 Rk

. Then, (i)

V 7! D✓(V, P ) is upper semicontinuous on Pk,tr; (ii) the depth region R✓(↵, P ) is closed
for any ↵ � 0; (iii) if P is absolutely continuous with respect to the Lebesgue measure,

then V 7! D✓(V, P ) is also lower semicontinuous, hence continuous, on Pk,tr.

We will say that a subset R of Pk,tr is bounded if and only if R ⇢ B(Ik, r) for
some r > 0 (the fact that the distance d actually satisfies the triangle inequality allows
to restrict to balls centered at Ik). Defining t✓,P = supu2Sk�1 P [uT (X � ✓) = 0], we
say that P is smooth at ✓ if t✓,P = 0, that is, if P does not charge any hyperplane
containing ✓. We then have the following boundedness result.

Theorem 2.2. Let P be a probability measure over Rk
and fix ✓ 2 Rk

. Then, the depth

region R✓(↵, P ) is bounded and compact for any ↵ > t✓,P .

The main reason to work with the geodesic distance rather than the Frobenius
one dF (V1

, V
2

) = kV
2

� V
1

kF is that, unlike (Pk,tr, dF ), the metric space (Pk,tr, d) is
complete; see, e.g., Proposition 10 in Bhatia and Holbrook (2006). This is what allows
to establish compacity in Theorem 2.2, which in turn is the main ingredient for the
following result stating the existence of a deepest shape matrix.

Theorem 2.3. Let P be a probability measure over Rk
and fix ✓ 2 Rk

. (i) If R✓(t✓,P , P )
is non-empty, then there exists a shape V⇤ 2 Pk,tr maximising D✓(V, P ). In particular,

(ii) if P is smooth at ✓, then such a deepest shape V⇤ exists.

The deepest shape matrix V⇤ is a natural candidate for the (fixed-✓) shape matrix V✓,P

of P . While the previous result guarantees existence in particular for absolutely con-
tinuous probability measures, unicity is not guaranteed in general. Parallel to what is
done for the Tukey median ✓P , we then define the (fixed-✓) shape matrix of P as the
barycentre of the deepest shape region of P , that is, as the shape matrix V✓,P satisfying

vecV✓,P =

Z

vecR✓(↵⇤,P )

v dv
.Z

vecR✓(↵⇤,P )

dv, (2.1)

where ↵⇤ = maxV D✓(V, P ). Two remarks are in order. First, the integrals in (2.1)
exist and are finite since vecPk,tr is a bounded subset of Rk2 (V 2

ij  ViiVjj  k2 for
any V = (Vij) 2 Pk,tr). Second, the shape V✓,P has maximal depth, which follows from
the following convexity result.

Theorem 2.4. Let P be a probability measure over Rk
and fix ✓ 2 Rk

. Then, (i)

V 7! D✓(V, P ) is quasi-concave on Pk,tr, in the sense that D✓((1 � t)Va + tVb, P ) �
min(D✓(Va, P ), D✓(Vb, P )) for any Va, Vb 2 Pk,tr and any t 2 [0, 1]; (ii) the depth re-

gion R✓(↵, P ) is convex for any ↵ � 0.
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This defines the (fixed-✓) shape of an arbitrary probability measure P under the
extremely mild condition that R✓(t✓,P , P ) is non-empty. Of course, it is important
that, under ellipticity, this agrees with the elliptical definition of shape provided in the
introduction. The following Fisher consistency result confirms this is the case.

Theorem 2.5. Let P be an elliptical probability measure over Rk
with location ✓

0

and

shape V
0

. Then, D✓0(V0

, P ) � D✓0(V, P ) for any V 2 Pk,tr, and, provided that P [{✓
0

}] < 1,
the equality holds if and only if V = V

0

. Letting Yk ⇠ Beta(1/2, (k� 1)/2), the maximal

depth is D✓0(V0

, P ) = (1� P [{✓
0

}])P [Yk > 1/k].

The only role of the constraint P [{✓
0

}] < 1 in this result is to guarantee identifiability
of V

0

. Note that Lemma 2 in Paindaveine and Van Bever (2017b) implies that the
maximal depth in Theorem 2.5 is monotone decreasing in k as soon as P [{✓

0

}] does not
depend on k, in which case the maximal depth converges as k goes to infinity. Since Yk

has the same distribution as Z2

1

/(
Pk

`=1

Z2

` ), where Z = (Z
1

, . . . , Zk)T is standard normal,
the limit is then equal to P [Z2

1

> 1] ⇡ 0.317. The proof of Theorem 2.5 requires the
following a�ne-invariance/equivariance result.

Theorem 2.6. Let P = PX
be a probability measure over Rk

and fix ✓ 2 Rk
. Then, for

any shape matrix V , any invertible k ⇥ k matrix A and any k-vector b,

DA✓+b

�
VA, P

AX+b
�
= D✓(V, P

X) and RA✓+b(↵, P
AX+b) =

�
VA : V 2 R✓(↵, P )

 
,

where VA = kAVAT/tr(AVAT ) is the shape matrix proportional to AVAT
.

This result, which is of independent interest, shows that the fixed-✓ shape depth and
the corresponding regions behave well under a�ne transformations, hence in particular
under changes of the measurement units. In the location setup, the corresponding
a�ne-invariance/equivariance property is one of the classical requirements for depth;
see Property (P1) in Zuo and Serfling (2000).

Tyler shape depth is a sign concept in the sense that it depends on the underlying
random vector X only through its multivariate sign U✓,V . In the elliptical case, it
follows that, as soon as the distribution does not charge the center of the distribution,
this depth is distribution-free in the sense that it does not depend on the distribution
of the underlying generating variate R, hence on the fact that the elliptic distribution is
Gaussian, t, etc. More precisely, we have the following result, that plays an important
role for inference based on Tyler shape depth; see Section 4.

Theorem 2.7. Let P be an elliptical probability measure over Rk
with location ✓

0

and

shape V
0

. Then, (i) for some h : Pk,tr ! [0, 1] that does not depend on V nor on P ,

D✓0(V, P ) = (1� P [{✓
0

}])h
✓
k(V �1/2

0

V V �1/2
0

)

tr(V �1

0

V )

◆
;

(ii) for k = 2,

D✓0(V, P ) = (1� P [{✓
0

}])P

Y
2

� 1

2
+

1

2


1� det

⇢
2V �1

0

V

tr(V �1

0

V )

��
1/2 �

, (2.2)

with Y
2

⇠ Beta(1/2, 1/2).
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This result shows that, while depth in the elliptical case depends on P through V
0

and P [{✓
0

}], its dependence on P [{✓
0

}] does not have any impact on the induced ranking
of shape matrices. The explicit bivariate elliptical depth in (2.2) is compatible with all
results of this section. In particular, it is easy to check that, provided P [{✓

0

}] < 1, (2.2)
is uniquely maximised at V = V

0

and that the corresponding maximal depth is the one
provided in Theorem 2.5. Boundedness of all depth regions R(↵, P ), ↵ > 0, can also be
seen from (2.2): if d(V, I

2

) converges to infinity, then d(V, V
0

) also does, which implies
that the smallest eigenvalue of V �1

0

V , hence also the depth in (2.2), converges to zero.
This strengthens the general result in Theorem 2.2, that was only ensuring that the
regions R(↵, P ), ↵ > P [{✓

0

}], are bounded (note indeed that t✓0,P = P [{✓
0

}] for an
elliptical probability measure).

3 Consistency results

Whenever k-variate observations X
1

, . . . , Xn are available, the sample (fixed-✓) depth of
a shape matrix V may simply be defined as D✓(V, Pn), where Pn denotes the empirical
probability measure associated with X

1

, . . . , Xn. In this section, we state a Glivenko-
Cantelli-type result for this sample depth and investigate consistency of max-depth
shape estimators. The Glivenko-Cantelli result is the following.

Theorem 3.1. Let P be a probability measure over Rk
and let Pn denote the empirical

probability measure associated with a random sample of size n from P . Then, for any ✓ 2
Rk

, supV 2Pk,tr
|D✓(V, Pn)�D✓(V, P )| ! 0 almost surely as n ! 1.

We illustrate this result in the bivariate elliptical case associated with Theorem 2.7(ii).
Figure 1 provides, for three di↵erent bivariate normal probability measures P , contour
plots of

(V
11

, V
12

) 7! D✓(V, P ), with V =

✓
V
11

V
12

V
12

2� V
11

◆

as well as the empirical contour plots obtained from a random sample of size n = 800
drawn from the corresponding distributions. Clearly, the results support the consistency
in Theorem 3.1.

In the previous section, the shape V✓,P of the probability measure P was defined as
the barycentre of the collection of P -deepest shape matrices. In the empirical case, a
natural estimator is of course the corresponding shape matrix V✓,Pn computed from the
empirical probability measure Pn associated with the sample at hand. Since empirical
probability measures are not smooth at ✓, existence of deepest shape matrices in the
sample case does not rely on Theorem 2.3; existence, however, merely follows from the
fact that the only possible values of D✓(V, Pn) are of the form `/n, ` = 0, 1, . . . , n.

Theorem 3.2. Let P be a probability measure over Rk
and let Pn denote the empirical

probability measure associated with a random sample of size n from P . Fix ✓ 2 Rk
and

assume that R✓(t✓,P , P ) is non-empty. Then, d(V✓,Pn , V✓,P ) ! 0 almost surely as n ! 1.
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Figure 1: (First row:) Contour plots of (V
11

, V
12

) 7! D✓(V, P ), for V =
�

V11 V12

V12 2�V11

�
,

where P is bivariate normal with location 0 and shape VA =
�
1 0

0 1

�
(left), VB / �4 0

0 1

�
(cen-

ter) and VC / c
�
3 1

1 1

�
(right). (Second row:) Contour plots for (V

11

, V
12

) 7! D
0

(V, Pn),
where Pn is the empirical probability measure associated with a random sample of
size n = 800 from the centered bivariate normal with shape VA (left), VB (center), and
VC (right). The “true” shapes V

0,P (resp., sample deepest shapes V
0,Pn) are marked in

red (resp., in blue).

The only role of the assumption that R✓(t✓,P , P ) is non-empty is to guarantee the
existence of the (fixed-✓) shape matrix V✓,P of P . Again, this assumption is fulfilled in
particular if P is smooth at ✓. Figure 1 also supports Theorem 3.2 since, in each sample
considered, the sample deepest shape is close to its population counterpart.

4 Depth-based tests for shape

We turn to hypothesis testing and focus on one-sample shape testing in the elliptical
model. More specifically, based on a random sample X

1

, . . . , Xn from a k-variate ellipti-
cal distribution with known location ✓ and unknown shape V , we want to test H

0

: V =
V
0

against H
1

: V 6= V
0

at level ↵ 2 (0, 1), where V
0

2 Pk,tr is fixed (V
0

= Ik provides
the problem of testing sphericity against elliptical alternatives). From Theorem 2.5, a
natural depth-based test, �D say, rejects the null whenever T✓,n = D✓(V0

, Pn) < t↵,n,
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where Pn is the empirical distribution associated with the random sample at hand and
where t↵,n denotes the null ↵-quantile of T✓,n. Under the mild assumption that P does
not charge the center of the distribution, T✓,n is distribution-free under the null, which
allows to approximate t↵,n arbitrarily well through simulations : from 5, 000 mutually
independent standard normal samples for each sample size, we obtained the approxima-
tions t̂.05,200 = 0.395 and t̂.05,500 = 0.434 for k = 2.

We performed two simulations in the bivariate case (k = 2). The first one considers
the problem of testing sphericity about the origin (V

0

= I
2

, ✓ = 0) and compares the
finite-sample powers of �D with those of some competitors. For each value of ` =
0, 1, . . . , 6 we generated M = 3, 000 independent random samples Xi, i = 1, . . . , n of
size n = 500 from the normal with location ✓ = 0 and shape

V`,⇠ = I
2

+ `⇠

✓
1 0.5
0.5 �1

◆

and from the corresponding elliptical Cauchy. The value ` = 0 corresponds to the null,
whereas ` = 1, . . . , 6 provide increasingly severe alternatives. We took ⇠ = 0.035 and
0.045 for the normal and Cauchy samples in order to obtain roughly the same rejection
frequencies in both cases.

For each sample, we carried out five (fixed-✓) tests at nominal level 5%: (i) the test �D

rejecting the null if T✓,500 > t̂↵,500 = 0.434; (ii) the Gaussian test from John (1972)—more
precisely, its extension to elliptical distributions with finite fourth-order moments from
Hallin and Paindaveine (2006b); (iii)-(iv) the sign test and van der Waerden signed-rank
test from the same paper; (v) the test based on the MCD� shape estimator from Pain-
daveine and Van Bever (2014) with � = 0.8 (to achieve a good balance between e�ciency
and robustness). The tests (ii)-(v) were performed based on their asymptotic null dis-
tribution. The resulting rejection frequencies in Figure 2 reveal that the depth-based
test �D performs very similarly to (although it may be slightly dominated by) the sign
test in (ii), which is in line with the sign nature of �D. Consequently, �D performs very
well under heavy tails, where it beats all other tests. As expected, the MCD test shows
low empirical powers and the Gaussian test collapses under heavy tails.

The second simulation compares the five tests above in terms of robustness when
testing H

0

: V = V
0

, with V
0

= diag(2, 1/2) and specified location ✓ = 0. We focused
on “level robustness” (He et al., 1990) under various contaminations. We considered
mixture distributions PX(⌘) = (1� ⌘)PX + ⌘P Y , with ⌘ = 0 (no contamination), 0.025,
0.05, 0.1, 0.2, 0.25 or 0.3 (increasingly severe contaminations). Here, X is a bivari-
ate, normal or elliptical Cauchy, null random vector. The bivariate random vector Y
determines the contamination pattern and was chosen as follows: (i) non-uniform direc-

tional contamination: Y has the same distribution as the vector obtained by rotating X
about the origin by an angle ⇡/4 radiant; (ii) uniform directional contamination: Y
has the same elliptical distribution as X but for the fact that its shape is V = I

2

; (iii)
radial and uniform directional contamination: Y is obtained by multiplying by four
the vector Y in (ii). The uncontaminated distribution PX puts more mass along the
horizontal axis. In (i), the contamination is directional and typically shows along the
main bisector, whereas the contamination in (ii) is uniformly distributed over the unit

8
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Figure 2: Rejection frequencies, under bivariate normal (left) and elliptical Cauchy
(right) densities, of five tests of sphericity: the Gaussian test (red), the van der Waerden
signed-rank test (orange), the sign test (green), the depth-based test (dashed green), and
the MCD-based test (blue). Results are based on 3,000 replications and the sample size
is n = 500. See Section 4 for details.

circle. As for (iii), the contamination combines the directional feature of (ii) with a
radial outlyingness.

For each combination of a distribution type (normal or Cauchy), of a contamination
pattern ((i)-(iii)), and of a contamination level ⌘ (⌘ = 0, 0.025, 0.05, 0.1, 0.2, 0.25 or 0.3),
we generated 3, 000 independent random samples X

(⌘)i, i = 1, . . . , n of size n = 200.
The resulting rejection frequencies are plotted in Figure 3 and reveal the very good
robustness of the depth-based test �D. In particular, �D always dominates its sign-
based competitor. The MCD test seems to dominate �D in some configurations but,
as shown in the first simulation, exhibits very low finite-sample powers. Finally, radial
outliers strongly a↵ect the Gaussian and van der Waerden tests.

5 Comparison with other shape depths

In this section, we shortly comment on how Tyler shape depth compares with other shape
depths. We start with the shape depth that would result from the generic parametric
depth concept proposed in Mizera (2002). Consider a random k-vector X with a distri-
bution P = P#0 from the parametric family P =

�
P# : # 2 ⇥ ⇢ R`

 
and let # 7! F#(X)

be a measure of fit of the parameter value # for an observation X. The Mizera (2002)
tangent depth of # with respect to P = PX is then TD(#, P ) = D(0, Pr#F#(X)),
where Pr#F#(X) stands for the distribution of r#F#(X) under P . As advocated, e.g., in
Mizera and Müller (2004) and Müller (2005), a likelihood-guided approach consists in
taking F#(X) = logL#(X), where L#(X) is the likelihood of X under P#. For location
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Figure 3: Null rejection frequencies, as a function of the contamination level ⌘, of the
same five tests (using the same colours) as in Figure 2, under bivariate normal (left) and
elliptical Cauchy (right) densities. The labels (i)-(iii) refer to the three contaminations
patterns considered; see Section 4 for details. Results are based on 3,000 replications
and the sample size is n = 200.

and shape parameters, it is natural to consider the elliptical likelihood

x 7! L✓,V,g(x) =
ck,g

(detV )1/2
g
�{(x� ✓)TV �1(x� ✓)}1/2�, (5.1)

where ✓ 2 Rk, V 2 Pk,tr, g : R+

0

! R+

0

is a smooth monotone decreasing function and
ck,g is a normalising constant. Irrespective of V and g, the resulting tangent location
depth TD(✓, P ) = D(0, Pr✓ logL✓,V,g(X)) coincides with the halfspace depth of ✓ with
respect to P .

Describing the corresponding tangent shape depth requires the following notation.
Let vech(A) be the vector stacking the upper-diagonal entries of A on top of each other
and write vech

0

(A) for the dk-vector (dk = k(k+1)/2�1) obtained by depriving vech(A)
of its first component. Further, let Bk be the dk ⇥ k2 matrix such that BT

k (vech0

A) =
vecA for any k ⇥ k symmetric matrix A with trace zero. Writing rV for the gradient
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with respect to vech
0

(V ), the tangent shape depth of V with respect to P = PX is then

TD✓,g(V, P ) = D(0, PrV logL✓,V,g(X)),

where the score (see Hallin and Paindaveine, 2006a or Paindaveine, 2008)

rV logL✓,V,g(X) = 1

2

Bk(V
⌦2)�1/2 vec

�
'g

�
d✓,V

�
d✓,V U✓,V U

T
✓,V � 1

k
Ik
�

involves the Mahalanobis distance d✓,V = {(X�✓)TV �1(X�✓)}1/2. Tangent shape depth
is much less satisfactory than its location counterpart : first, it depends on g in (5.1);
for instance, a Gaussian likelihood and a t⌫ likelihood will provide di↵erent tangent
shape depths. Second, more importantly, the tangent deepest shape is not Fisher-
consistent under ellipticity, irrespective of g, as the following example shows. Let X be
a bivariate normal random vector with location ✓

0

= 0 and shape V
0

= diag(3/4, 5/4).
Then it can be showed (a proof is available on request from the authors) that, even
when considering the tangent shape depth associated with the “true” location ✓ and
function g (i.e., the one obtained with ✓ = ✓

0

and g(r) = g
0

(r) = exp(�r2/2) in (5.1)),
one has TD✓0,g0(V0

, PX) < TD✓0,g0(I2, P
X), which implies that the true shape V

0

does
not maximise V 7! TD✓0,g0(V, P

X). This clearly disqualifies tangent depth for shape
parameters.

We turn to a comparison with the halfspace shape depth from Paindaveine and
Van Bever (2017a). In its specified-✓ version, this depth is obtained as HD✓(V, P ) =
sup�2>0

HDsc

✓ (�
2V, P ), where HDsc

✓ (·, P ) is a companion concept of halfspace depth for
(unnormalised) scatter matrices. The halfspace shape depth HD✓(V, P ) therefore re-
quires a (delicate) maximisation in �2 of the halfspace scatter depth, that itself re-
quires a projection-pursuit optimisation in Rk. In comparison, Tyler shape depth has
the advantage to be intrinsically a depth for shape matrices. A possible drawback of
Tyler shape depth, however, is that it in principle requires to evaluate halfspace (lo-
cation) depth in Rk2 , which is computationally prohibitive even for relatively small
dimensions k. Interestingly, the next result shows that Tyler shape depth only requires
evaluating halfspace depth in Rdk (recall that we let dk = k(k + 1)/2� 1 above).

Theorem 5.1. Let P = PX
be a probability measure over Rk

and fix ✓ 2 Rk
. Then,

D✓(V, P )=D(0, P
˜W✓P ,V )=infu2Sdk�1P

⇥
uT W̃✓,V � 0

⇤
, with W̃✓,V =vech

0

�
U✓,V UT

✓,V � 1

k
Ik
�
.

From a computational point of view, thus, Tyler shape depth competes well for k = 2
and 3 with its halfspace counterpart; the latter, however, would dominate Tyler shape
depth in this respect for larger dimensions k. Most importantly, a strong advantage
of Tyler shape depth over its halfspace competitor is its distribution-freeness (Theo-
rem 2.7), which results from the sign nature of the concept. As illustrated in Section 4,
distribution-freeness allows to perform inference on Tyler shape depth in the elliptical
framework. This cannot be done with the halfspace shape depth that turns out to cru-
cially depend on the type of elliptical distribution at hand. We defer to the next section
a comparison of both shape depths on a real data example.
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6 The unspecified location case and a real-data ex-

ample

The previous sections focused on the fixed-✓ shape depth D✓(V, P ). Most of the re-
sult extend, with only minor modifications (if any), to the unspecified-location shape
depth D(V, P ) = D✓P (V, P ) from Definition 1.1. Theorems 2.1 to 2.4 hold for any fixed ✓
and their unspecified-✓ versions are simply obtained by substituting ✓P for ✓ throughout.
In particular, the existence of an unspecified-location deepest shape matrix is guaran-
teed if P is smooth at ✓P , or, more generally, if R(t✓P ,P , P ) is non-empty. The same
construction allows to identify a unique representative VP of the collection of deepest
shape matrices. Theorem 2.5 and Theorem 2.7 also readily extend to the unspecified-
location case since ✓P = ✓

0

for any elliptical probability measure P with location ✓
0

. In
particular, if P is elliptical with shape V

0

, then the unspecified-✓ shape depth D(V, P )
is uniquely maximised at V = V

0

(as soon as the distribution is not degenerate at a
single point). In view of the a�ne equivariance of ✓P (i.e., ✓PAX+B = A✓PX + b), the
a�ne-invariance/equivariance properties

D
�
VA, P

AX+b
�
= D(V, PX) and R(↵, PAX+b) =

�
VA : V 2 R(↵, P )

 

directly follow from Theorem 2.6 (see this result for the definition of VA). As a matter
of fact, only the consistency results in Theorems 3.1-3.2 require stronger assumptions
(absolute continuity) in the unspecified-location case compared to the specified-location
one. More precisely, we have

Theorem 6.1. Let P be a probability measure over Rk
that is absolutely continuous

with respect to the Lebesgue measure and let Pn denote the empirical probability measure

associated with a random sample of size n from P . Then, (i) supV 2Pk,tr
|D(V, Pn) �

D(V, P )| ! 0 almost surely as n ! 1; (ii) d(VPn , VP ) ! 0 almost surely as n ! 1.

We illustrate the use of the unspecified-location Tyler shape depth on a real data
example. For each trading day between February 1st, 2015 and February 1st, 2017,
we collected every five minutes the Nasdaq Composite and S&P500 stock indices and
computed their returns, that is, the di↵erences between two consecutive index values.
The returns on a given day form a bivariate dataset of usually 78 observations. The
exact number of observations per day varies due to some missing values and days with
less than 70 bivariate returns were discarded. The resulting dataset comprises n = 38489
observations distributed over D = 478 trading days.

The analysis conducted here studies the joint behavior of the bivariate returns. Its
goal is to determine which trading days present an atypical pattern, di↵erent from
the “global” behavior of the volatility. Of course, an important source of atypicality is
associated with the overall scale of the bivariate returns that alternate between periods of
high and low volatility. Such deviations, however, can easily be detected by comparing,
e.g., the trace of any scatter measure on intraday data with that on the whole dataset.
Therefore, we rather focus on detecting atypicality in the shape of the joint volatility.
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In other words, we aim at detecting days for which the ratios of the marginal volatilities
or the correlation between the returns much deviate from their global behavior.

To this end, let V̂
full

denote the unspecified-location Tyler shape M -estimate com-
puted from the full collection of n returns, that is, (the shape part in) the solution of
the empirical version of (1.3); see Tyler (1987) or Hettmansperger and Randles (2002).
For each day d = 1, . . . , D, we evaluated the depth D(V̂

full

, Pd) of the global shape es-
timate with respect to the empirical distribution Pd of the bivariate returns on day d.
The reason why we base this measure of (a)typicality on V̂

full

is twofold. First, V̂
full

is
a robust shape estimate which takes into account outliers that occurs naturally in the
dataset (returns at the beginning of each trading period are notoriously more volatile
and should be downweighted in the shape estimation procedure). Second, V̂

full

is very
deep in the global series of returns (denoting as P

full

the empirical distribution of the
full collection of bivariate returns, we have D(V̂

full

, P
full

) = 0.4965), hence is an excellent
proxy for the (global) deepest shape matrix, whose computation seems to be a di�cult
task.

The left panel of Figure 4 presents the depth values D(V̂
full

, Pd) as a function of
d = 1, . . . , D. Vertical lines mark major events a↵ecting the shape of the volatility, while
the two greyed rectangles cover two periods during which the markets notoriously knew
some atypical returns. The first period follows the devaluation of the Yuan on August
11th, 2015 which saw rapid changes in the stock markets, including large devaluations
on the “Black Monday” of August 24th (marked in orange). The second period covers
the beginning of 2016, which was hit by slump in oil prices, making stocks relying
on oil very volatile compared to non oil-based ones. This resulted in atypical shape
behavior during the fortnight spanning January 22 - February 9 (this last day is marked
in blue, and is known to have the sharpest loss for the S&P500 index). The other
events are (3) the decision of the European Central Bank on March 10th, 2016 (in
green) to extend quantitative easing thereby slashing interest rates (known to have
had a significant positive impact on both Nasdaq and S&P500, but more pronounced
for the latter), (4) the positive impact on the financial stocks following Fed o�cials’
comments on the possibility of rate hike made on May 27, 2016 (in red), (5) the slump
in the S&P500 Futures prices on August 15th, 2016 (in purple), and (6) the aftermath of
Donald Trump’s election at the US presidency on November 9th (in teal). All events are
associated with days known to have atypical volatilities and are seen to have a low shape
depth value. Some other major financial events – such as OPEC refusing to reduce oil
production in early 2015 or the aftermath of the Brexit vote on June 24, 2016 (midway
between events (4) and (5)) – had an e↵ect on the overall size of the bivariate returns
but not on their shape, which explains that the corresponding days are not flagged as
overly atypical by Tyler shape depth.

For the sake of comparison, we also computed the halfspace shape depthHD(V̂
full

, Pd)
(see Paindaveine and Van Bever, 2017a) of the global estimate for each day d. The right
panel of Figure 4 provides the plot of D(V̂

full

, Pd) versus HD(V̂
full

, Pd) for d = 1, . . . , D.
The plot shows a clear positive association (correlation between the two variables is
0.6413). The following two remarks are, however, in order. First, halfspace shape depth
values seem to have a higher concentration than Tyler’s. This is due to the fact that the
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former maximises a concept of scatter depth in scale and has, possibly, more leeway to
find scatter estimates better suited to the data. Indeed, a decrease in volatility in one of
the marginals might be balanced by considering a scatter with a smaller scale and hence
keep a large depth value. A byproduct of this is the fact that, when evaluating halfspace
shape depth, the (di�cult) maximisation step in scale seems to be crucial in correctly
computing the depth ranking of the data (small deviations can indeed cause changes in
this ranking). More importantly, while events (1) to (3) receive low depth with respect
to both concepts, only Tyler shape depth succeeds in flagging days associated with
events (4) to (6) as “outlying”.
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Figure 4: (Left:) Plot of D(V̂
full

, Pd) as a function of d. Events (1) to (6) are described
in Section 6. (Right:) Plot of D(V̂

full

, Pd) vs HD(V̂
full

, Pd) for each trading day d. Events
from the left panel are highlighted using the same colour.
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A Appendix

Many of the subsequent results require the following lemma.

Lemma A.1. Let P be a probability measure over Rk
and fix ✓ 2 Rk

. Write CM
✓,V =

�
x 2

Rk \ {✓} : (ux
✓,V )

TMux
✓,V � 1

k
tr(M)

 
and C̃M

✓,V =
�
x 2 Rk : (ux

✓,V )
TMux

✓,V � 1

k
tr(M)

 
,

where ux
✓,V is defined as V �1/2(x�✓)/kV �1/2(x�✓)k if x 6= ✓ and as 0 otherwise. Then,

for any V 2 Pk,tr and any r 2 R,

D✓(V, P ) = inf
M2Mall

k

P
⇥
C̃M

✓,V

⇤
= inf

M2Mall
k,F

P
⇥
C̃M

✓,V

⇤
= inf

M2Mall
k

P
⇥
CM

✓,V

⇤
= inf

M2Mr
k

P
⇥
CM

✓,V

⇤
,

where Mall

k (resp., Mr
k) collects the k⇥k symmetric matrices with arbitrary trace (resp.,

with trace r) and where Mall

k,F is the collection of matrices in Mall

k with Frobenius norm

one.

Proof. It directly follows from the definition of Tyler shape depth that

D✓(V, P ) = inf
v2Rk2

P
⇥�
x 2 Rk : vTvec (ux

✓,V (u
x
✓,V )

T � 1

k
Ik) � 0

 ⇤
.

When v runs over Rk2 , the matrix M satisfying v = vec(MT ) runs over the collection Nk

of k ⇥ k matrices. Since (ux
✓,V )

TMux
✓,V = (ux

✓,V )
T{(M +MT )/2}ux

✓,V for any M 2 Nk,
this yields

D✓(V, P ) = inf
M2Nk

P
⇥�
x 2 Rk2 : tr

⇥
M{ux

✓,V (u
x
✓,V )

T � 1

k
Ik}
⇤ � 0

 ⇤

= inf
M2Nk

P
⇥
C̃M

✓,V

⇤
= inf

M2Mall
k

P
⇥
C̃M

✓,V

⇤
. (A.1)

Letting I[A] be equal to one if condition A holds and to zero otherwise, this provides

D✓(V, P ) = inf
M2Mall

k

⇣
P
⇥
CM

✓,V

⇤
+ P [{✓}]I⇥tr(M)  0

⇤⌘
= inf

M2Mall
k

P
⇥
CM

✓,V

⇤
, (A.2)

where we have used the fact that P
⇥
CM

✓,V

⇤
is unchanged whenM is replaced withM+�Ik

for any � 2 R. The same invariance property explains that the infimum over Mall

k

in (A.2) may be replaced with an infimum over Mr
k for any r. Finally, the result

for Mall

k,F follows from (A.1) by noting that C̃�M
✓,V = C̃M

✓,V for any � > 0 and that M = 0
cannot provide the infimum in (A.1). The proof is complete.

Proof of Theorem 2.1. (i) Fix M 2 Mall

k and consider C̃M = C̃M
0,Ik

, where C̃M
✓,V was

defined in Lemma A.1. Since C̃M is closed, the mapping P 7! P [C̃M ] is upper semi-
continuous for weak convergence. Now, Slutzky’s lemma entails that, as d(V, V

0

) ! 0,
the measure defined by B 7! P [✓+V 1/2B] converges weakly to the one defined by B 7!
P [✓+V 1/2

0

B]. Therefore, V 7! P [✓+V 1/2C̃M ] = P [C̃M
✓,V ] is upper semicontinuous at V

0

.
From Lemma A.1, we then obtain that

V 7! D✓(V, P ) = inf
M2Mall

k

P [C̃M
✓,V ],
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is upper semicontinuous (as the infimum of a collection of upper semicontinuous func-
tions). (ii) The result follows from the fact that the depth region R✓(↵, P ) is the inverse
image of [↵,1) by the upper semicontinuous function V 7! D✓(V, P ). (iii) Fix a se-
quence (Vn) in Pk,tr such that d(Vn, V0

) ! 0. In view of Lemma A.1 again, we can, for
any n, pick Mn(2 Mall

k,F ) such that P [C̃Mn
✓,Vn

]  D✓(Vn, P )+ 1

n
. Compactness of Mall

k,F en-
sures that we can extract a subsequence (Mn`

) of (Mn) that converges to M
0

(2 Mall

k,F ).
Writing I[B] for the indicator function of the set B, the dominated convergence theorem
then yields that

P [C̃
Mn`
✓,Vn`

]� P [C̃M0
✓,V0

] =

Z

Rk

(I[C̃Mn`
✓,Vn`

]� I[C̃M0
✓,V0

]) dP ! 0

as ` ! 1 (the absolute continuity assumption on P guarantees that I[C̃Mn`
✓,Vn`

]�I[C̃M0
✓,V0

] !
0 P -almost everywhere). Consequently,

lim inf
n!1

D✓(Vn, P ) = lim inf
n!1

P [C̃M
✓,Vn

] = lim inf
`!1

P [C̃
Mn`
✓,Vn`

] = P [C̃M0
✓,V0

] � D✓(V0

, P ).

We conclude that, if P is absolutely continuous with respect to the Lebesgue measure,
then V ! D✓(V, P ) is also lower semicontinuous, hence continuous.

The proof of Theorem 2.2 requires the following result.

Lemma A.2. Let P be a probability measure over Rk
and fix ✓ 2 Rk

. Write ux
✓ =

(x � ✓)/kx � ✓k if x 6= ✓ and 0 otherwise. For any c � 0, further let t✓,P (c) =
supv2Sk�1 P [|vTuX

✓ |  c], so that t✓,P = t✓,P (0) = supv2Sk�1 P [vT (X � ✓) = 0]. Then,

t✓,P (c) ! t✓,P as c ! 0.

Proof of Lemma A.2. Since t✓,P (c) is increasing in c over [0,1) and is larger than or
equal to t✓,P for any positive c, we have that t̃✓,P = limc!0

t✓,P (c) exists and is such
that t̃✓,P � t✓,P . Now, fix a decreasing sequence (cn) converging to 0 and consider an
arbitrary sequence (vn) such that

P [|vTnuX
✓ |  cn] � t✓,P (cn)� (1/n).

Since Sk�1 is compact, we can consider a subsequence (vn`
) that converges to v

0

(2
Sk�1); without loss of generality, we can of course assume that this subsequence is such
that (vT

0

vn`
) is an increasing sequence. Let then C` = {v 2 Sk�1 : vT

0

v � vT
0

vn`
}.

Clearly, C` is a decreasing sequence of sets with \`C` = {v
0

}, so that

lim
`!1

P [uX
✓ 2 [v2C`

{|vTy|  cn`
}] = P [uX

✓ 2 {|vT
0

y|  0}] = P [|vT
0

uX
✓ | = 0].

Now, for any `, we have P [uX
✓ 2 [v2C`

{|vTy|  cn`
}] � P [|vTn`

uX
✓ |  cn`

] � t✓,P (cn`
) �

(1/n`), which implies that t✓,P � P [|vT
0

uX
✓ | = 0] � t̃✓,P .
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Proof of Theorem 2.2. Fix V 2 Pk,tr and denote as �
1

(V ) (resp., �k(V )) the largest
(resp., smallest) eigenvalue of V (possible ties are unimportant below). Letting v

1

(V )
and vk(V ) be arbitrary corresponding unit eigenvectors, Lemma A.1 provides (withMV =
v
1

(V )vT
1

(V ) 2 Mall

k )

D✓(V, P )  P
h
(uX

✓,V )
TMV u

X
✓,V � 1

k
tr(MV ), X 6= ✓

i

= P
h
k��1

1

(V ){vT
1

(V )(X � ✓)}2 � kV �1/2(X � ✓)k2, X 6= ✓
i

 P
h
kV �1/2(X � ✓)k2  kkX � ✓k2, X 6= ✓

i
= P

⇥kV �1/2uX
✓,Ik

k2  k, uX
✓ 6= 0

⇤
,

where we used the inequality �
1

(V ) � 1 (which follows from the constraint tr(V ) = k)
and where us

✓ is defined in Lemma A.2. Therefore,

D✓(V, P )  P
⇥
�
1

(V �1)(vT
1

(V )uX
✓ )

2  k
⇤  t✓,P

�
(k�k(V ))1/2

�
. (A.3)

Now, ad absurdum, take " > 0 such that R✓(t✓,P + ", P ) is unbounded. This implies
that there exists a sequence (Vn) in Pk,tr satisfying D✓(Vn, P ) � t✓,P + " for any n and
for which d(Vn, Ik) ! 1. Since �

1

(Vn) < tr[Vn] = k, we must have that �k(Vn) ! 0.
Lemma A.2 and (A.3) then imply that D✓(Vn, P ) < t✓,P + " for n large enough, a
contradiction. Consequently, R✓(↵, P ) is bounded for any ↵ > t✓,P .

Now, Lemma C.1 in Paindaveine and Van Bever (2017a) readily implies that a
bounded subset of Pk,tr is also totally bounded, in the sense that, for any " > 0, it can be
covered by finitely many balls of the form B(V, ") = {Ṽ 2 Pk,tr : d(Ṽ , V ) < "}. Part (i)
of the result and Theorem 2.1(ii) thus entail that, for any ↵ > t✓,P , the region R✓(↵, P )
is closed and totally bounded. The result then follows from the completeness of the
metric space (Pk,tr, d).

Proof of Theorem 2.3. Let ↵⇤ = supV 2Pk,tr
D✓(V, P ). By assumption, R✓(t✓,P , P ) is non-

empty. Thus, ↵⇤ � t✓,P and the result holds if ↵⇤ = t✓,P . We may therefore assume
that ↵⇤ > t✓,P . For any n, pick then Vn in R✓((↵⇤ � 1/n)

+

, P ), where u
+

= max(u, 0).
Fix " 2 (0,↵⇤ � t✓,P ). For n large enough, all terms of the sequence (Vn) belong to the
compact set R✓(↵⇤�", P ); see Theorem 2.2. Thus, there exists a subsequence (Vnk

) that
converges in R✓(↵⇤�", P ), to V⇤ say. For any "0 2 (0, "), all (Vnk

) eventually belong to the
closed set R✓(↵⇤�"0, P ), so that V⇤ 2 R✓(↵⇤�"0, P ). Therefore, ↵⇤�"0  D✓(V⇤, P )  ↵⇤
for any such "0, which establishes the result.

The proof of Theorem 2.4 requires the following preliminary result.

Lemma A.3. For any y 2 Rk
and any k ⇥ k symmetric matrix M , the mapping V 7!

tr(MV )yTV �1y is quasi-convex, that is, for any Va, Vb 2 Pk,tr and any t 2 [0, 1],
tr(MVt)yTV

�1

t y  max{tr(MVa)yTV �1

a y, tr(MVb)yTV
�1

b y}, with Vt = (1� t)Va + tVb.

Proof. We treat two cases separately. (i) Assume first that tr(MVa)tr(MVb) > 0. Write

Vt

tr(MVt)
= (1� st)

Va

tr(MVa)
+ st

Vb

tr(MVb)
, with st =

t tr(MVb)

(1� t)tr(MVa) + t tr(MVb)
·
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Since st 2 [0, 1], the (weighted) harmonic-arithmetic matrix inequality (see, e.g., Lemma 2.1
(vii) in Lawson and Lim, 2013) then shows that, for any y 2 Rk,

yT
⇢

Vt

tr(MVt)

��1

y  yT

(1� st)

⇢
Va

tr(MVa)

��1

+ st

⇢
Vb

tr(MVb)

��1

�
y

 max


yT
⇢

Va

tr(MVa)

��1

y, yT
⇢

Vb

tr(MVb)

��1

y

�
,

as was to be showed. (ii) Assume then that tr(MVa)tr(MVb)  0. Without loss of
generality, assume that tr(MVa)  0 and tr(MVb) � 0. If tr(MVa) = tr(MVb) = 0,
then tr(MVt) = 0 for any t and the result trivially holds. Hence, we may assume
that tr(MVa) 6= 0 or tr(MVb) 6= 0, which implies that tr[MVt0 ] = 0 for a unique t

0

2
[0, 1]. From continuity, pick then � 2 (0, 1� t

0

) such that, for any t 2 [t
0

, t
0

+ �),

tr(MVt)y
TV �1

t y  tr(MVb)y
TV �1

b y

 max{tr(MVa)y
TV �1

a y, tr(MVb)y
TV �1

b y}.
By applying Part (i) of the proof with Vt0+� and Vb, we obtain that, for any t 2 [t

0

+�, 1],

tr(MVt)y
TV �1

t y  max{tr(MVt0+�)y
TV �1

t0+�y, tr(MVb)y
TV �1

b y}
 max{tr(MVa)y

TV �1

a y, tr(MVb)y
TV �1

b y}.
Since tr(MVt)yTV

�1

t y  0  max{tr(MVa)yTV �1

a y, tr(MVb)yTV
�1

b y} for any t 2 [0, t
0

],
the result follows.

Proof of Theorem 2.4. (i) Write Vt = (1� t)Va + tVb, where Va, Vb 2 Pk,tr and t 2 [0, 1]
are fixed. First note that, letting d2✓(V ) = (X � ✓)TV �1(X � ✓), Lemma A.1 yields

D✓(V, P ) = inf
M2Mall

k

P
⇥
(X � ✓)TV �1/2MV �1/2(X � ✓) � 1

k
tr(M)d2✓(V ), X 6= ✓

⇤

= inf
M2Mall

k

P
⇥
(X � ✓)TM(X � ✓) � 1

k
tr(MV )d2✓(V ), X 6= ✓

⇤
. (A.4)

Writing again Vt = (1� t)Va + tVb, Lemma A.3 thus yields that, for any M 2 Mall

k ,

P
⇥
(X � ✓)TM(X � ✓) � 1

k
tr(MVt)d

2

✓(Vt), X 6= ✓
⇤

� P
⇥
(X � ✓)TM(X � ✓) � 1

k
max{tr(MVa)d

2

✓(Va), tr(MVb)d
2

✓(Vb)}, X 6= ✓
⇤

= min
⇣
P
⇥
(X � ✓)TM(X � ✓) � 1

k
tr(MVa)d

2

✓(Va), X 6= ✓
⇤
,

P
⇥
(X � ✓)TM(X � ✓) � 1

k
tr(MVb)d

2

✓(Vb), X 6= ✓
⇤⌘

� min(D✓(Va, P ), D✓(Vb, P )).

The result then follows from (A.4). (ii) If Va, Vb 2 R✓(↵, P ), then Part (i) of the result
entails that D✓((1� t)Va+ tVb, P ) � min{D✓(Va, P ), D✓(Vb, P )} � ↵, so that (1� t)Va+
tVb 2 R✓(↵, P ).
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The proof of Theorem 2.5 requires both following lemmas.

Lemma A.4. Let P be elliptical over Rk
with location 0 and shape Ik. Then, D0

(Ik, P ) =
(1�P [{0}])P [U2

1

> 1/k], where U = (U
1

, . . . , Uk)T is uniformly distributed over the unit

sphere Sk�1

.

Lemma A.5. Let P be elliptical over Rk
with location 0 and shape Ik. Then, for any

V 2 Pk,tr \ {Ik}, D
0

(V, P ) < (1 � P [{0}])P [U2

1

> 1/k], where U = (U
1

, . . . , Uk)T is

uniformly distributed over Sk�1

.

Proof of Lemma A.4. In the spherical setup considered, we have that, for anyM 2 Mall

k ,

P


XTMX

kXk2 � 1

k
tr(M), X 6= 0

�
= P

⇥
UTMU � 1

k
tr(M)

⇤
P [X 6= 0],

where U = (U
1

, . . . , Uk)T is uniform over Sk�1. Lemma A.1 then entails that

D
0

(Ik, P ) = (1� P [{0}]) inf
M2Mall

k

P
⇥
UTMU � 1

k
tr(M)

⇤
.

Decomposing M into O⇤OT , where O is a k ⇥ k orthogonal matrix and where ⇤ =
diag(�

1

, . . . ,�k) is a diagonal matrix, this yields

D
0

(Ik, P ) = (1� P [{0}]) inf
�2Rk

P

 kX

`=1

�`U
2

` � 1

k

kX

`=1

�`

�

= (1� P [{0}]) inf
�2Rk

P

 kX

`=1

�`

⇣
U2

` � 1

k

⌘
� 0

�
=: (1� P [{0}]) inf

�2Rk
p(�).

By using successively the facts that p(0) = 1 and p(�) = p(�/k�k) for any � 2 Rk \ {0},
we obtain

D
0

(Ik, P ) = (1� P [{0}]) inf
�2Rk\{0}

p(�) = (1� P [{0}]) inf
�2Sk�1

p(�). (A.5)

The result then follows from Theorem 2 from Paindaveine and Van Bever (2017b), that
states that the last infimum in (A.5) is equal to P [U2

1

> 1/k].

Proof of Lemma A.5. Fix V 2 Pk,tr and let X be a random k-vector with P = PX .
Write V = O⇤OT , where O is a k ⇥ k orthogonal matrix and ⇤ = diag(�

1

, . . . ,�k) is a
diagonal matrix with �

1

� �
2

� . . . � �k. A�ne invariance (see Theorem 2.6) entails
that

D
0

(V, PX) = D
0

�
OTV O, POTX

�
= D

0

�
⇤, PX

�
.

Denoting by e
1

the first vector of the canonical basis of Rk2 , we then have

D
0

(V, PX) = D
0

�
⇤, PX

�  P
⇥
eT
1

vec
�
U
0,⇤U

T
0,⇤ � 1

k
Ik
� � 0

⇤
= P

⇥
((U

0,⇤)1)
2 � 1

k
� 0
⇤

= P
⇥
((U

0,⇤)1)
2 � 1

k
� 0, X 6= 0

⇤
= P

⇥
��1

1

X2

1

� 1

k

Pk
`=1

��1

` X2

` , X 6= 0
⇤

(A.6)

 P
⇥
X2

1

� 1

k

Pk
`=1

X2

` , X 6= 0
⇤
= P

⇥
X2

1

/kXk2 � 1

k
, X 6= 0

⇤
= P [X 6= 0]P

⇥
U2

1

� 1

k

⇤
,
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where U = (U
1

, . . . , Uk)T is uniform over Sk�1. To have D
0

(V, PX) = P [X 6= 0]P
⇥
U2

1

�
1

k

⇤
, the inequality in (A.6) needs to be an equality, which requires that �` = �

1

for all `,
hence that V = Ik.

We can now prove Theorem 2.5.

Proof of Theorem 2.5. Lemmas A.4-A.5 establish the result in the spherical case as-
sociated with ✓

0

= 0 and V
0

= Ik. For general values of ✓
0

and V
0

, note that Y =
V �1/2
0

(X�✓
0

) is elliptical with location 0, shape Ik, and satisfies P [Y = 0] = P [X = ✓
0

].
By a�ne invariance,

D✓0(V, P
X) = D

0

 
kV �1/2

0

V V �1/2
0

tr(V �1/2
0

V V �1/2
0

)
, P Y

!

 D
0

(Ik, P
Y ) = D

0

 
kV �1/2

0

V
0

V �1/2
0

tr(V �1/2
0

V
0

V �1/2
0

)
, P Y

!
= D✓0(V0

, PX),

with equality if and only if kV �1/2
0

V V �1/2
0

/tr(V �1/2
0

V V �1/2
0

) = Ik, that is, if and only if
V = V

0

.

Proof of Theorem 2.6. In the proof of Theorem 2.4, we showed that

D✓(V, P ) = inf
M2Mall

k

P
⇥
(X�✓)TV �1/2MV �1/2(X�✓) � 1

k
tr(M)(X�✓)TV �1(X�✓), X 6= ✓

⇤
.

Using the fact that V 1/2
A = k1/2AV 1/2O/{tr(AVAT )}1/2 for some k ⇥ k orthogonal ma-

trix O (recall that V 1/2
A stands for the symmetric positive definite square root of VA),

this readily yields

DA✓+b(VA, P ) = inf
M2Mall

k

P
⇥
(X � ✓)TV �1/2OMOTV �1/2(X � ✓)

� 1

k
tr(OMOT )(X � ✓)TV �1(X � ✓), X 6= ✓

⇤
= D✓(V, P ),

as was to be showed. The a�ne-equivariance property of the depth regions readily
follows.

The proof of Theorem 2.7 requires the following lemma (the proof is straightforward,
hence is omitted).

Lemma A.6. For any v
1

, v
2

such that v2
1

+ v2
2

< 1, we have

(1� v2
1

)1/2 � |v
2

|
(1� v2

1

)1/2 + |v
2

| 
(1� v2

1

)1/2 + |v
2

|
(1� v2

1

)1/2 � |v
2

| 
1 + (v2

1

+ v2
2

)1/2

1� (v2
1

+ v2
2

)1/2
·
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Proof of Theorem 2.7. (i) If P = PX is elliptical with location ✓
0

and shape V
0

, then

V �1/2
0

(X � ✓
0

) is equal in distribution to RU , where U is uniformly distributed over the
unit sphere Sk�1 and is independent of the nonnegative random variable R. Theorem 2.6
then yields

D✓0(V, P
X) = D

0

 
kV �1/2

0

V V �1/2
0

tr(V �1/2
0

V V �1/2
0

)
, PRU

!
. (A.7)

Now, for any Ṽ 2 Pk,tr, Lemma A.1 entails that

D
0

(Ṽ , PRU) = inf
M2M0

k

P
⇥
UT Ṽ �1/2MṼ �1/2U � 0, R > 0

⇤
(A.8)

= P [R > 0] inf
M2M0

k

P
⇥
UT Ṽ �1/2MṼ �1/2U � 0

⇤
= P [R > 0]D

0

(Ṽ , PU).

Combining with (A.7), we obtain

D✓0(V, P
X) = (1� PX [{✓

0

}])D
0

 
kV �1/2

0

V V �1/2
0

tr(V �1/2
0

V V �1/2
0

)
, PU

!
,

which establishes Part (i) of the result. (ii) Assume that P = PX is bivariate standard
normal and fix V 2 P

2,tr. We aim at evaluating

D
0

(V, PX) = inf
M2M0

k

P
⇥
XTV �1/2MV �1/2X � 0

⇤
; (A.9)

see (A.8). To do so, it will be convenient to parametrise V and the matrix M from as

V =

✓
1 + v

1

v
2

v
2

1� v
1

◆
and M = m

1

✓
1 m

2

m
2

�1

◆
,

with v2
1

+ v2
2

< 1 and m
1

6= 0 (note indeed that m
1

= 0 makes the probability in (A.9)
equal to one, which cannot be the infimum). Decomposing V �1/2MV �1/2 into O⇤OT ,
where O is a 2 ⇥ 2 orthogonal matrix and where ⇤ = diag(�

1

(V �1M),�
2

(V �1M)),
with �

1

(V �1M) � �
2

(V �1M), involves the eigenvalues of V �1M (equivalently, of
V �1/2MV �1/2), we have

D
0

(V, P ) = inf
(m1,m2)2R0⇥R

P
⇥
�
1

(V �1M)X2

1

+ �
2

(V �1M)X2

2

� 0
⇤
, (A.10)

whereX = (X
1

, X
2

)T is still bivariate standard normal. Since �
1

(�V �1M) = ��
2

(V �1M)
for any M 2 M0

k (we will show below that �
2

(V �1M) < 0 < �
1

(V �1M) for any M 2
M0

k), we have

D
0

(V, P ) = min
⇣

inf
(m1,m2)2R+

0 ⇥R
P
⇥
�
1

(V �1M)X2

1

+ �
2

(V �1M)X2

2

� 0
⇤
, (A.11)

inf
(m1,m2)2R+

0 ⇥R
P
⇥
�
1

(V �1M)X2

1

+ �
2

(V �1M)X2

2

 0
⇤⌘

,
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which allows us to restrict to positive values of m
1

. A direct computation shows that,
for m

1

> 0,

�
1

(V �1M) =
m

1

detV

⇥� (v
1

+m
2

v
2

) + {(v
1

+m
2

v
2

)2 + (1 +m2

2

) detV }1/2 ⇤ > 0

and

�
2

(V �1M) =
m

1

detV

⇥� (v
1

+m
2

v
2

)� {(v
1

+m
2

v
2

)2 + (1 +m2

2

) detV }1/2 ⇤ < 0.

Since f(m
2

) = ��
2

(V �1M))/�
1

(V �1M) does not depend on m
1

, (A.11) leads to

D
0

(V, P ) = min

 
P

"
X2

1

X2

2

� sup
m22R

f(m
2

)

#
, P

"
X2

1

X2

2

 inf
m22R

f(m
2

)

#!

= P

"
X2

1

X2

2

� max

✓
sup
m22R

f(m
2

) , 1 / inf
m22R

f(m
2

)

◆#
. (A.12)

It is easy to check that f is di↵erentiable over R with a derivative of the form cv1,v2(m2

)(v
2

�
v
1

m
2

), where cv1,v2(m2

) > 0 for any m
2

, and that

f(±1) = lim
m2!±1

f(m
2

) =

p
1� v2

1

± v
2p

1� v2
1

⌥ v
2

·

We treat the cases v
1

= 0 and v
1

6= 0 separately.

(a) Assume that v
1

= 0. If v
2

= 0, then V = I
2

and Theorem 2.5 establishes the
result. If v

2

6= 0, then f has no critical point and

sup
m22R

f(m
2

) = max
�
f(�1), f(1)

�
=

1 + |v
2

|
1� |v

2

|
and

inf
m22R

f(m
2

) = min
�
f(�1), f(1)

�
=

1� |v
2

|
1 + |v

2

| ,

so that (A.12) yields

D
0

(V, P )=P

"
X2

1

X2

2

� 1 + |v
2

|
1� |v

2

|

#
=P

"
X2

1

X2

2

� 1 + (1� detV )1/2

1� (1� detV )1/2

#
=P


Y
2

� 1

2
+
1

2

�
1�det(V )

 
1/2
�
,

where we have used the fact that if Z has a F (1, 1) Fisher-Snedecor distribution,
then Z/(1 + Z) has a Beta(1/2, 1/2) distribution.

(b) Assume now that v
1

6= 0. Then the only critical point of f is mcrit

2

= v
2

/v
1

, so
that, irrespective of the fact that this critical point is a local minimum/maximum of f ,

sup
m22R

f(m
2

) = max
�
f(�1), f(1), f(mcrit

2

)
�
= max

 
(1� v2

1

)1/2 + |v
2

|
(1� v2

1

)1/2 � |v
2

| ,
Sign(v

1

) + (v2
1

+ v2
2

)1/2

Sign(v
1

)� (v2
1

+ v2
2

)1/2

!

22



and

inf
m22R

f(m
2

) = min
�
f(�1), f(1), f(mcrit

2

)
�
= min

 
(1� v2

1

)1/2 � |v
2

|
(1� v2

1

)1/2 + |v
2

| ,
Sign(v

1

) + (v2
1

+ v2
2

)1/2

Sign(v
1

)� (v2
1

+ v2
2

)1/2

!
.

Lemma A.6 yields

sup
m22R

f(m
2

) =
(1� v2

1

)1/2 + |v
2

|
(1� v2

1

)1/2 � |v
2

| I[v1 < 0] +
1 + (v2

1

+ v2
2

)1/2

1� (v2
1

+ v2
2

)1/2
I[v

1

> 0]

and

inf
m22R

f(m
2

) =
�1 + (v2

1

+ v2
2

)1/2

�1� (v2
1

+ v2
2

)1/2
I[v

1

< 0] +
(1� v2

1

)1/2 � |v
2

|
(1� v2

1

)1/2 + |v
2

| I[v1 > 0],

hence also

max

✓
sup
m22R

f(m
2

) , 1 / inf
m22R

f(m
2

)

◆
=

1 + (v2
1

+ v2
2

)1/2

1� (v2
1

+ v2
2

)1/2
=

1 + (1� det(V ))1/2

1� (1� det(V ))1/2
·

Therefore, (A.12) finally provides

D
0

(V, P ) = P

"
X2

1

X2

2

� 1 + (1� detV )1/2

1� (1� detV )1/2

#
= P


Y
2

� 1

2
+

1

2

�
1� det(V )

 
1/2

x

�
.

This proves the result for the case where P is bivariate standard normal. The general
result then follows from Part (i) of the Theorem.

Proof of Theorem 3.1. Let P and Q be two probability measures over Rk and fix V 2
Pk,tr. Fix " > 0 and assume, without loss of generality, that D✓(V, P )  D✓(V,Q).
Lemma A.1 entails that there exists M

0

2 M0

k such that P
⇥
CM0

✓,V

⇤  D✓(V, P )+", where

we still use the notation CM
✓,V =

�
x 2 Rk\{✓} : (ux

✓,V )
TMux

✓,V � 1

k
tr(M)

 
. Consequently,

using Lemma A.1 again,

|D✓(V,Q)�D✓(V, P )| = D✓(V,Q)�D✓(V, P )

 Q
⇥
CM0

✓,V

⇤� P
⇥
CM0

✓,V

⇤
+ "  sup

C2C✓
|Q[C]� P [C]|+ ",

with C✓ = {CM
✓,V : M 2 M0

k, V 2 Pk,tr}. Since this holds for any " > 0 and for
any V 2 Pk,tr, we have

sup
V 2Pk,tr

|D✓(V,Q)�D✓(V, P )|  sup
C2C✓

|Q[C]� P [C]|.

It thus only remains to show that C✓ is a Vapnik-Chervonenkis class. To do so, note
that CM

✓,V =
�
x 2 Rk \ {✓} : (x � ✓)TV �1/2MV �1/2(x � ✓) � 0

 
, so that C✓ ⇢ {D✓,A \

(Rk \ {✓}) : A 2 Mall

k }, with D✓,A =
�
x 2 Rk : (x � ✓)TA(x � ✓) � 0

 
. Theorem 4.6

from Dudley (2014) implies that {D✓,A : A 2 Mall

k } is a Vapnik-Chervonenkis class D✓.
It then follows from Lemma 2.6.17(ii) in Van der Vaart and Wellner (1996) that {D✓,A\
(Rk \ {✓}) : A 2 Mall

k }, hence also C✓, is a Vapnik-Chervonenkis class.
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Proof of Theorem 3.2. Recall from (2.1) that V✓,P is defined as the barycentre ofR✓(↵⇤, P ),
with ↵⇤ = maxV D✓(V, P ). The mapping V 7! D✓(V, P ) is upper semicontinuous (The-
orem 2.1) and constant over R✓(↵⇤, P ). Clearly, it is easy to define a mapping V 7!
D̃✓(V, P ) that is upper semicontinuous, agrees with V 7! D✓(V, P ) in the complement
of R✓(↵⇤, P ), and for which V✓,P is the unique maximiser. By using Theorem 3.1, the
result then follows from Theorem 2.12 and Lemma 14.3 in Kosorok (2008).

Proof of Theorem 5.1. Write L✓,V = U✓,VUT
✓,V � 1

k
Ik. Since (L✓,V )11 = �Pk

`=2

(L✓,V )``,
there exists a (dk + 1)⇥ dk full-rank matrix H

0

such that vech(L✓,V ) = H
0

vech
0

(L✓,V ).
Therefore, there exists a k2 ⇥ dk full-rank matrix H (one can take H = DH

0

, where D
is the usual duplication matrix) such that W✓,V = vec(L✓,V ) = HW̃✓,V . It follows that

D✓(V, P ) = D(0, PW✓,V ) = inf
u2Rk2

P
⇥
uTW✓,V � 0

⇤

= inf
u2Rk2

P
⇥
(HTu)T W̃✓,V � 0

⇤
= inf

v2Rdk

P
⇥
vT W̃✓,V � 0

⇤
= D(0, P

˜W✓,V ),

where we used the fact that HT has full column rank.

The proof of Theorem 6.1(i) is long and technical, but follows along the same lines
as the proof of Theorem 2.2 in Paindaveine and Van Bever (2017a). As for the proof of
Theorem 6.1(ii), it is strictly the same as that of Theorem 3.2. We therefore omit the
proof of Theorem 6.1.
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