Contents

Acknowledgements i
Abstract ... ii
List of Figures vi
List of Tables vii
List of abbreviations x
List of Notations xii
General Introduction 1
Publications 4

Part 1: Operation Research

Chapter 1- Review of literature I: Data Envelopment Analysis (DEA) 8

1.1. Overview ... 8
 1.1.1. Introduction 11

1.2. Generalities, definitions and concepts of DEA 12
 1.2.1. Background of DEA 13
 1.2.2. Basic principles and definitions in DEA 14
 1.2.2.1. The Production Possibility Set 15
 1.2.2.2. Efficiency .. 17

1.3. The classical models in DEA .. 20
 1.3.1. CCR model 20
 1.3.2. BCC model 25
 1.3.3. Additive model 29

1.4. Returns to Scale characterizations .. 31

1.5. Some strengths and limitations in DEA 32

1.6. Conclusion .. 34

Chapter 2- Review of literature II: Multi-Criteria Decision Aid (MCDA) 37

2.1. Introduction .. 37
4.4.2. DEA-AHP integrated model applications 110
4.4.3. AHP vs PROMETHEE .. 114
4.4.4. DEA-PROMETHEE integrated approach 121
 4.4.4.1. Advantages and limitations 123
 4.4.4.2. Some properties of PIIWCCR model 124
4.5. Conclusion .. 139

Chapter 5- A DEA-PROMETHEE approach for complete ranking of units 141
5.1. Introduction ... 141
5.2. Different techniques to complete ranking of units in DEA 143
 5.2.1. Cross efficiency ranking technique 143
 5.2.2. Supper efficiency ranking technique 144
 5.2.3. Benchmarking ranking technique 146
 5.2.4. Multivariate statistics in the DEA context 147
 5.2.5. DEA-MCDA integrated techniques 148
5.3. DEA-PROMETHEE integrated ranking technique 153
 5.3.1. Advantages and limitations ... 163
5.4. Conclusion ... 164

Chapter 6- Determining new possible weight values: a procedure based on Data Envelopment Analysis 166
6.1. Introduction .. 166
6.2. Determining new possible weight values in PROMETHEE: a procedure based on DEA ... 167
 6.2.1. Vertex Enumeration algorithm 173
 6.2.2. Advantages and limitations ... 180
6.3. Conclusion ... 180

General Conclusion .. 183
Bibliography ... 189
Appendix 1 (Tables) ... 207
Appendix 2 (Core thesis publication reprints) 214
List of Figures

1.1 DEA System. ... 9
1.2 Bank branches. ... 10
1.3 DEA literature growth by year (Emrouznejad et al., 2008) 13
1.4 Growth curve of DEA literature (Liu et al., 2013) 14
1.5 Two inputs and single output (Cooper et al., 2004) 19
1.6 The BCC model (Cooper et al., 2004) .. 26
1.7 Additive model (Cooper et al., 2004) ... 30
1.8 RTS and frontiers (Seiford and Zhu, 1999a) ... 32

2.1 MCDA process inspired by Belton and Stewart (2002) 42
2.2 Preference structure between four alternatives .. 50
2.3 Preference functions (Brans and Mareschal, 2002) 62
2.4 GAIA plane of a problem with 10 alternatives and 5 criteria 65
2.5 GAIA plane of medium-sized companies in Brussels 71

3.1 Efficient frontier generated by GDEA’ model with \(\alpha = 10 \) (CCR) 88
3.2 Efficient frontier generated by \(GDEA \) model with \(\alpha = 10 \) (BCC) 88
3.3 The Geometrical representation of the relative performance compared with the ideal point I.91

4.1 Reducing the size of PPS after adding the ARs 104
4.2 Geometrical representation of a convex Cone .. 107
4.3 The algorithm of PIWCCR model ... 123
4.4 Efficiency scores of Oulu’s municipalities with and without weight stability intervals ... 136

5.1 A CCR-I-O Super-efficient illustration (Chen and Du, 2015) 145
5.2 AHP hierarchy in the model of Jablonsky (2012) 151

6.1 Kendall’s Tau correlation between PROMETHEE II rankings and DEA ranking for an instance based on 3 criteria and 6 alternatives \((n = 6, k = 3) \) 171
6.2 Area of DEA-PROMETHEE compatible weights in a 3 criteria instance with 6 alternatives
6.2a Possible weight values, which are compatible between the two rankings 172
6.2b The projection of 6.2a on a plane to show constraints satisfaction 172
6.3 GAIA Plane of Example 6.1 ... 172
6.4 GAIA Plane of Numerical example (The screen shot from MATLAB) 178
List of Tables

1.1 Input, output, and efficiency values for the bank branches ... 10
1.2 Efficiency evaluation of 7 bank branches with 2 inputs and 1 output (Cooper et al., 2004) . 19
1.3 The result of running CCR model on data set of Table 1.2 21
1.4 Optimal solution values for the CCR-I-O and CCR-O-O models on data set of Table 1.2 . 24
1.5 Different CCR models (Cooper et al., 2004, 2005, 2007 and 2011) 25
1.6 Optimal solution values for the BCC-I-O models on data set of Table 1.2 28
1.7 The slack variables of Additive model based on data set of Table 1.2 30

2.1 Evaluation table (Brans et al. 1984) ... 47
2.2. MAUT matrix .. 51
2.3 PROMETHEE parameters (Gazelles) .. 69
2.4 Weight Stability Intervals of PROMETHEE II in \(r = 1 \) (Gazelles) 70
2.5 Weight Stability Intervals of PROMETHEE II in \(r = 3 \) (Gazelles) 70
2.6 Strengths and weaknesses of MAUT, AHP and outranking methods 72

3.1 The efficiency scores of DEA models .. 83
3.2 Ranking results of mediums sized companies in Brussels 84
3.3 Kendall’s Tau rank correlation (Gazelles) ... 82
3.4 The dataset of 6 DMUs with 1 input and 1 output (Nakayama et al., 2002) 87
3.5 Results of classical DEA models, GDEA and GDEA’ .. 87
3.6 DEA and relative distance comparisons in an example (Kao, 2010) 90

4.1 Data set of 7 departments (Wong and Beasley, 1990) .. 97
4.2 Efficiency scores and weight factors resulted from unbounded CCR model 97
4.3 Results of 3 students (Liu et al., 2006) ... 101
4.4 Results of CCR and absolute weight restricted CCR models 102
4.5 Results of Example 4.2 with ARI ... 104
4.6 Summary of comparison between the AHP and the PROMETHEE, extracted from (Macharlis et al., 2004) .. 120
4.7 The Hospital case (Cooper et al., 2005) .. 128
4.8 PROMETHEE parameters (The Hospital case) ... 128
4.9 Weight Stability Intervals of PROMETHEE II in the level 1 (Hospital case) 129
4.10 The unicriterion score matrix (The Hospital case) .. 129
4.11 Ranking order of different methods (Hospital case) (*: PROMETHEE II) 130
4.12 The results of sensitivity analysis (Hospital case) .. 130
4.13 Efficiency variation in the hospital case ... 132
4.14 Efficiency variation after 5% data changes (the hospital case) 132
4.15 Weight Stability Intervals of PROMETHEE II in level 1 (localization of the waste management system) (Bagherikahvarin and De Smet, 2016) 134
4.16 The efficiency scores of DEA models (localization of the solid waste management system in Oulu, Finland) extracted from Bagherikahvarin and De Smet (2016) 134
4.17 Weight Stability Intervals of PROMETHEE II in level 2 (localization of the waste management system) .. 135
4.18 The CV of efficiency scores in different rankings in the problem of localization of the waste management system ... 135
4.19 Kendall’s Tau rank correlation coefficient ... 137
4.20 Ranking results of medium-sized companies in Brussels (Gazelles) 138
4.21 Kendall’s Tau rank correlation values, $r = 1$ (Gazelles) .. 138
4.22 Kendall’s Tau rank correlation values, $r = 3$ (Gazelles) .. 139
5.1 Database of Sinuany-Stern and her colleagues (2000) .. 149
5.2 Generated pairwise comparison matrix by DEA to use in AHP 150
5.3 Ranking results of DEA and DEA-AHP ... 150
5.4 Database of Sexton et al. (1986) ... 152
5.5 Results of running classical DEA models .. 152
5.6 Results of running some techniques of complete ranking in DEA 152
5.7 Generated pairwise comparison matrix by DEA to use in PROMETHEE II 156
5.8 Ranking results of DEA and DEA-AHP ... 156
5.9 Evaluation table extracted from (www.arwu.org) .. 157
5.10 Generated pairwise comparison matrix by DEA ... 157
5.11 Comparison between DEA and DEA-PROMETHEE II rankings 158
6.1 Illustrative example: evaluation table and preference parameters 171
6.2 Evaluation table and preference parameters, based on Brans and Mareschal (2002)... 176
6.3 DEA ranking ... 176
6.4 Unicriterion net flow scores matrix in Example 6.3 .. 177
A1. Data set of medium-sized companies (Gazelles)- The last 2 columns present the ranking result of PROMETHEE II and Gazelles ... 208
A2. The weight matrix resulted by model PIIWCCR when \(r=1 \), for localization of the solid waste management system ... 210
A3. The weight matrix resulted by model PIIWCCR when \(r=2 \), for localization of the solid waste management system ... 211
A4. The weight matrix resulted by model PIIWCCR when \((W_k^- + 5.6\%, W_k^+ - 5.6\%) \), for localization of the solid waste management system ... 212
A5. The weight matrix resulted by system (6.8) in Example 6.3 213
List of Abbreviations

ARWU = Academic Ranking of World Universities
AHP = Analytical Hierarchy Process
AR = Assurance Regions
BCC = Banker, Charnes, Cooper
BFS = Basic Feasible Solution
CCA = Canonical Correlation Analysis
CCR = Charnes, Cooper, Rhodes
CI = Consistency Index
CRS = Constant Return to Scale
CSW = Common Set of Weights
CV = Coefficient of Variation
D = Dual
DEA = Data Envelopment Analysis
DM = Decision Maker
DMU = Decision Making Unit
DRS = Decreasing Returns to Scale
ELECTRE = ELimination Et Choix Traduisant la REalité/ ELimination and Choice Translating Reality
FDH = Free Disposal Hull
FMS = Flexible Manufacturing System
GAIA = Geometrical Analysis for Interactive Aid
GDEA = General Data Envelopment Analysis
GDP = Gross Domestic Product
GM = Geometric Mean
H & M = Hennes & Mauritz
HDI = Human Development Index
IMDb = Internet Movie Database
IMP = IMProved
I-O = Input-Oriented
IRS = Increasing Returns to Scale
IWR = Input Weight Restriction
LP = Linear Programming
MACBETH = Measuring Attractiveness by a Categorical Based Evaluation Technique
MAUT = Multi-Attribute Utility Theory
MCDA = Multiple Criteria Decision Aid/ Multicriteria Decision Aid
MCDEA = Multi-Criteria Data Envelopment Analysis
MPG = Miles Per Gallon
MS = Management Science
NLP = Non-Linear Programming
O-O = Output-Oriented
OR = Operations Research
OWR = Output Weight Restriction
P = Primal
PCA = Principal Component Analysis
PIIWCCR = PROMETHEE II Weight restricted CCR model
PPS = Production Possibility Set
PROMETHEE = Preference Ranking Organization METHod for Enrichment Evaluation
PTE = Pure Technical Efficient
RI = Random Index
RTS = Returns to Scale
SBM = Slack Base Measurement
SE = Scale Efficient
SEI = Sustainable Energy Index
TE = Technical Efficient
TSP = Travelling Salesman Problem
VEA = Vertex Enumeration Algorithm
VRS = Variable Return to Scale
WCCR = Weight restricted CCR
List of Notations

Chapter 1

- The optimal solution is: \(x^* = \text{argmax} \ {f(x)}_{x \epsilon A} \);
- An input vector \(X_j = (x_{1j}; x_{2j}; \ldots; x_{ij}; \ldots; x_{mj})^T \); \(x_{ij} \) is the quantity of input \(i \) used by \(DMU_j \);
- An output vector \(Y_j = (y_{1j}; y_{2j}; \ldots; y_{rj}; \ldots; y_{sj})^T \); \(y_{rj} \) is the quantity of output \(r \) obtained by \(DMU_j \); where \(j = 1, 2, \ldots, n; i = 1, 2, \ldots, m \) and \(r = 1, 2, \ldots, s \);
- \(DMU_j \) is the unit \(j \);
- Virtual input= \(\sum_{i=1}^{m} v_i^* X_j, j = 1, \ldots, n \);
- Virtual output= \(\sum_{r=1}^{s} u_r^* Y_j, j = 1, \ldots, n \);

where \(v^* = (v_1^*, \ldots, v_n^*) \): non-negative input optimal weight vector and \(u^* = (u_1^*, \ldots, u_s^*) \): non-negative output optimal weight vector;
- \(\geq \text{ in } X_j \geq 0 \) shows a non-negative input vector; \(\exists j: x_{ij} \neq 0 \) means at least one of the input vector’s elements is not zero;
- \(\geq \text{ in } Y_j \geq 0 \) shows a non-negative input vector; \(\exists j: y_{rj} \neq 0 \) means at least one of the output vector’s elements is not zero;
- \((X, Y) \) Activity ;
- \(X \geq X \) and \(Y \leq Y \): any activity with input no less than \(X \) in any component and with output no greater than \(Y \) in any component;

In this thesis, vectors are compared in their magnitude.
- Convex set: \((X, Y) \epsilon PPS, (X', Y') \epsilon PPS \) and \(\lambda \epsilon (0,1) \Rightarrow \lambda(X, Y) + (1 - \lambda)(X', Y') \epsilon PPS \);
- \(PPS_{CRS} = \{(X, Y) | X \geq \sum_{j=1}^{n} X_j \lambda_j, Y \leq \sum_{j=1}^{n} Y_j \lambda_j, \lambda_j \geq 0 \} \);
- \(PPS_{VRS} = \{(X, Y) | X \geq \sum_{j=1}^{n} X_j \lambda_j, Y \leq \sum_{j=1}^{n} Y_j \lambda_j, \sum_{j=1}^{n} \lambda_j = 1, \lambda_j \geq 0 \} \);
- \(\theta \) is the efficiency score of \(DMU_j \): the optimal solution of primal LP (CCR, BCC and Additive I-O multiplier models);
- \(Z \) is the efficiency score of \(DMU_j \): the optimal solution of dual LP (CCR, BCC and Additive I-O envelopment models);
- \(u_r \) is the weight of output \(r \);
- \(v_i \) is the weight of input \(i \);
• \((Z^*, \lambda^*)\) is an optimal solution for the CCR I-O envelopment model;
• \((\phi^*, \tilde{\lambda}^*)\) is optimal for the corresponding CCR O-O model;
• \(\lambda_j\) the dual variable;
• \(u_o\) the dual variable of BCC model;
• \(s_i^-\) is the shortage quantity of input \(i\) in \(DMU_j\);
• \(s_r^+\) are and extra quantity of output \(r\) in \(DMU_j\);
• \(\varepsilon > 0\), where \(\varepsilon\) is a non-Archimedean element smaller than any positive real number;
• \(Q\) is the efficiency score of the O-O multiplier BCC model;
• \((\tilde{x}_{o}\tilde{y}_{o})\) The projected point on the efficient frontier in CCR and BCC models.

Chapter 2
• \(F = \{f_1, ..., f_k, ..., f_q\}\) Family of criteria;
• \(\mathcal{A} = \{a_1, ..., a_j, ..., a_n\}\) Set of alternatives;
• \(f_k(a)\) The evaluation of action \(a\) (alternative \(a\)) according to criterion \(j\);
• \(aPb\) \(a\) is preferred to \(b\);
• \(aIa\) \(a\) is indifferent to \(b\);
• \(aRb\) \(a\) is incomparable to \(b\);
• \(a_j \neg P a_i\): \(P\) is “asymmetric”;
• \(a_i \neg R a_i\): \(R\) is irreflexive;
• \(S = (P \cup I)\) an outranking relation;
• \(aDb \leftrightarrow f_k(a) \geq f_k(b): a, b \in \mathcal{A}, k = \{1,2, ..., q\} : a\) dominates \(b\);
• \(\exists k \epsilon \{1,2, ..., q\}: f_k(a) > f_k(b): a, b \in \mathcal{A}; a\) is efficient in comparison with \(b\);
• \(U(x)\) is the utility function;
• \(v_{n,q}\): The cells of the matrix contain estimates of the performance of each alternative on each of the criteria provided by an expert or various experts in MAUT;
• \(U(a) > U(b) \iff a > b\) (\(a\) is preferred to \(b\));
• \(U(a) = U(b) \iff a = b\) (\(a\) is indifference to \(b\));
• \(U_k\) is the utility function of criterion \(k\): \(k = \{1,2, ..., q\}\).
\[C_{ik} ; i, k = 1, 2, ..., q \] expresses the relative importance of the criterion \(i \) over the criterion \(k \) in AHP;

- \(C \) the weight matrix in AHP;
- \(CI \) consistency index;
- \(c(a_i S a_j) \) Concordance index in ELECTRE;
- \(d(a_i S a_j) \) Discordance index;
- \(v \) discordance threshold;
- \(\forall a_j \in A \setminus A' \) the solutions, which are not belongs to \(A \);
- \(s_1 \) and \(s_2 \) concordance thresholds;
- \(v_k(f_k(a_i)) \) veto threshold;
- \(S(a_i, a_j) \) the credibility degree;
- \(q_k \) and \(p_k \) are indifference and preference thresholds;
- \(d_k(a_i, a_j) = f_k(a_i) - f_k(a_j) \), the differences between each pair of alternatives on each criterion in PROMETHEE;
- \(P_k(a_i, a_j) \) predefined preference function;
- \(P_k(d_k(a, b)) \) Function of preference of one action over another;
- \(\pi_k(a_i, a_j) \) unicriterion preference degrees;
- \(\pi(a_i, a_j) \) outranking degree;
- \(\phi(a) = \phi^+(a) - \phi^-(a) \), The net outranking flow is defined as the difference between the positive flow and the negative one;
- \(\phi_k(a_j) \) the unicriterion net flow score of alternative \(a_j \);
- \((S^+, I^+) \) and \((S^-, I^-) \) be the complete pre-orders obtained from the positive and negative flows;
- \((P^I, I^I, R^I) \) correspond to the preference, indifference and incomparability of each pair of alternatives in PROMETHEE I;
- \((P^{II}, I^{II}) \) are the preference and indifference relations between each pair of alternatives in PROMETHEE II;
- \(\phi \) matrix of unicriterion net flow scores;
- \(\alpha_j \) is the coordinate vector of each alternative;
• \(e_k\) is an axis for each criterion;
• \(w\) is the weight vector;
• \(\pi\) the decision stick;
• \(\delta\) is the amount of information preserved by GAIA plane;
• \(\Delta(a_i, a_j) = \emptyset(a_i) - \emptyset(a_j);\)
• \(\Delta'(a_i, a_j) = \emptyset'(a_i) - \emptyset'(a_j);\)
• \(\Delta_k(a_i, a_j) = \emptyset_k(a_i) - \emptyset_k(a_j);\)
• \(\alpha\) and \(\beta\) the factor of rearranging weights;
• \(\alpha^-\) the lower bound of \(\alpha;\)
• \(\Omega^- = \{(a_i, a_j) \in A \times A, s.t. \Delta(a_i, a_j) \Delta_k(a_i, a_j) < 0\};\)
• \(\alpha^+\) the upper bound of \(\alpha;\)
• \(\Omega^+ = \{(a_i, a_j) \in A \times A, s.t. \Delta(a_i, a_j) \Delta_k(a_i, a_j) > \Delta^2(a_i, a_j)\};\)
• \(\Omega^0 = \{(a_i, a_j) \in A \times A, s.t. \Delta(a_i, a_j) = 0 and \Delta_k \neq 0\}.\)

Chapter 3

• \(\geq\) and \(>\) mean \(\geq\) and \(>\);
• \(\Delta\) Objective function of GDEA model;
• \(\bar{d}_j\) is the maximum of deviation between weighted investigated DMU and other DMUs.
• \(Y^*_r\) is the output of the ideal point;
• \(s_j\) is the relative distance to the ideal point.

Chapter 4

• \((\alpha_i, \beta_i, \gamma_i, \delta_i, \eta_i, \theta_i, k_i, \rho_i, \sigma_i, \tau_i, \varphi_i)\) are constants which imposed to weights in different weight restricted DEA model (5-2);
• \(V = \{v| Cv \geq 0\}\) convex cone for the inputs weights in Cone-Ratio DEA model: intersection form;
• \(U = \{u| Du \geq 0\}\) convex cone for the outputs weights in Cone-Ratio DEA model: intersection form;
• \(\mathbb{R}^+_m\) the non-negative real numbers: domain of inputs weights;
• \(\mathbb{R}^+_s\) the non-negative real numbers: domain of outputs weights;
• \(\mathcal{V} \) convex cone for the inputs weights in Cone-Ratio DEA model: sum form;
• \(\mathcal{U} \) convex cone for the outputs weights in Cone-Ratio DEA model: sum form;
• \(w_i^* \) the central weights in the vector \(W \);
• \(\phi_i(a_j) = 1 \) : the dummy input added to unicriterion net flow score matrix ;
• \(v_i \) associated weight to dummy input;
• \(\alpha_k, \beta_k \) and \(\lambda_j \) are the dual variables of the model PIIWCCR;
• \(\phi_k \) the output vector of dual form of PIIWCCR;
• \(\lambda, A \) and \(B \) are the vectors of dual variables of PIIWCCR;
• \(W^+ \) and \(W^- \) are also lower and upper bounds vectors;
• \((Z^*_o, C_o^*, \lambda^*, s^{++}_i, s^{-+}_i, A^*, B^*)\) an optimal solution of dual PIIWCCR ;
• \(E_o \) reference set ;
• \((\tilde{O}_{to}, \tilde{O}_{ko})\) the improved activity in dual of PIIWCCR ;
• \(P_{imp} \) : the primal form according to the improved activity;
• \(D_{imp} \) : the dual form according to the improved activity;
• \((Z^{*\text{imp}}_{o_1} = 1, \lambda^{*\text{imp}} = \lambda^*, s^{*\text{imp}}_{i_1}, s^{*\text{imp}}_{i_2}, A^{*\text{imp}}, B^{*\text{imp}} = 0)\) the optimal solution of dual problem according to improved activity;
• \((v^{*\text{imp}}_i, w^{*\text{imp}}_i)\) the optimal solution of primal problem according to improved activity.

Chapter 5
• \(v^{*}_{ik} \) and \(u^{*}_{rk} \) : the optimal weights of inputs and outputs resulted by running CCR;
• \(E_{kj} \) : the related score of \(DMU_j \), using weights of \(DMU_k \);
• \(E_k \) : the average cross efficiency scores;
• \(M_k \) : maverick index;
• \(\rho_o^* \) : the benchmark score of efficient \(DMU_o \);
• \(Z_j \) and \(W_j \) : input and output composites, respectively ;
• \(r_{ZW} \) : the coefficient correlation between composite input and output;
• \(S_{XX}, S_{YY} \) : the matrices of the sums of squares of the input and output variables, respectively;
• \(S_{XY} \) : the matrix of the sums of products of the input and output variables;
• T_i: DEA scores of DMUs of canonical correlation analysis technique;
• a_{jk}: the evaluation of unit j over unit k in the pairwise comparison matrix in AHP;
• v_q: the weights of the criteria in the Jablonsky’s model;
• w_{ij}: the preference indices of efficient DMUs;
• E_{AB} and E_{BA}^*: the cross efficiency scores of each pair of A and B;
• E_{ij}^*: the cross efficiency score of unit i in comparison with unit j;
• E_i^* and E_{i+k}^*: the efficiency score of unit i and $i + k$, respectively, in comparison between n units with a single input and a single output;
• $A_i = \frac{x_j}{y_j}$;
• $E_{i,i+k}, E_{i+k,i}^*$: the efficiency scores of DMU_i and DMU_{i+k}, respectively;
• E''_{i}, E''_{i+k}^*: the efficiency scores of DMU_i and DMU_{i+k} after adding α to their outputs, respectively;
• $\varnothing'(a_i), \varnothing'(a_{i+k})$: the net flow scores of DMU_i and DMU_{i+k} after adding α to the outputs in DEA model.

Chapter 6

• w_k^- and w_k^+: weight intervals within which the values are likely to vary, determined by DM;
• $\Delta_{ij} = \varnothing_k(a_i) - \varnothing_k(a_j)$;
• P is a convex polyhedron;
• R^q q-dimentional space of polyhedron;
• v is a vertex of polyhedron P;
• B is the set of basic points;
• N is the set of co-basic points;
• $M = c(n, 2)$ is the number of constraints resulted by a super-efficient ranking;
• $M' = c(n, 2) - c(N(\text{efficiency} = 1), 2)$ is the number of constraints resulted by a CCR ranking;
• w_{kj} is the weight of criterion k in the constraint j;
• GM the geometric mean in weight matrix.