
Biogeosciences, 14, 2283–2292, 2017
www.biogeosciences.net/14/2283/2017/
doi:10.5194/bg-14-2283-2017
© Author(s) 2017. CC Attribution 3.0 License.

The origin of methane in the East Siberian Arctic Shelf unraveled
with triple isotope analysis
Célia J. Sapart1,2, Natalia Shakhova3,4, Igor Semiletov3,4,5, Joachim Jansen1,6, Sönke Szidat7, Denis Kosmach5,
Oleg Dudarev5, Carina van der Veen1, Matthias Egger8, Valentine Sergienko9, Anatoly Salyuk5, Vladimir Tumskoy10,
Jean-Louis Tison2, and Thomas Röckmann1

1Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, Princetonplein 5,
3584CC Utrecht, the Netherlands
2Laboratoire de glaciologie, Universtié Libre de Bruxelles (ULB), Avenue Roosevelt 50, 1050 Brussels, Belgium
3University Alaska Fairbanks, International Arctic Research Center, 930 Koyukuk Drive, Fairbanks, AK 99775, USA
4Tomsk Polytechnic University, 30 Prospect Lenina, Tomsk, Russia
5Russian Academy of Sciences, Far Eastern Branch, V.I. Il’ichov Pacific Ocenological Institute, 43 Baltiyskaya street,
Vladivostok 690041, Russia
6Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University,
Svante Arrhenius väg 8, SE 114 18, Stockholm, Sweden
7Department of Chemistry and Biochemistry & Oeschger Centre for Climate Change Research, University of Bern,
Freiestrasse 3, 3012 Bern, Switzerland
8Center for Geomicrobiology, Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus, Denmark
9Russian Academy of Sciences, Far Eastern Branch, Institute of Chemistry, 159 Prospect 100-letiya Vladivostoka,
Vladivostok 690022, Russia
10Moscow State University, 1 Leninskie Gori, 119991, Moscow, Russia

Correspondence to: Célia J. Sapart (csapart@ulb.ac.be)

Received: 31 August 2016 – Discussion started: 7 September 2016
Revised: 30 January 2017 – Accepted: 9 March 2017 – Published: 5 May 2017

Abstract. The Arctic Ocean, especially the East Siberian
Arctic Shelf (ESAS), has been proposed as a significant
source of methane that might play an increasingly impor-
tant role in the future. However, the underlying processes of
formation, removal and transport associated with such emis-
sions are to date strongly debated.

CH4 concentration and triple isotope composition were
analyzed on gas extracted from sediment and water sampled
at numerous locations on the shallow ESAS from 2007 to
2013. We find high concentrations (up to 500 µM) of CH4 in
the pore water of the partially thawed subsea permafrost of
this region. For all sediment cores, both hydrogen and car-
bon isotope data reveal the predominant occurrence of CH4
that is not of thermogenic origin as it has long been thought,
but resultant from microbial CH4 formation. At some loca-
tions, meltwater from buried meteoric ice and/or old organic
matter preserved in the subsea permafrost were used as sub-

strates. Radiocarbon data demonstrate that the CH4 present
in the ESAS sediment is of Pleistocene age or older, but
a small contribution of highly 14C-enriched CH4, from un-
known origin, prohibits precise age determination for one
sediment core and in the water column. Our sediment data
suggest that at locations where bubble plumes have been ob-
served, CH4 can escape anaerobic oxidation in the surface
sediment.

1 Introduction

The Arctic subsea permafrost harbors a very large active car-
bon pool of similar size to the terrestrial Siberian permafrost
reservoir (Shakhova et al., 2010a). Between 12 and 5 kyr
before present (BP), the Holocene transgression (Bauch et
al., 2001) submerged extensive parts of the Pleistocene age
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terrestrial permafrost in northern Siberia, forming the very
shallow East Siberian Arctic Shelf (ESAS; Romanovskii et
al., 2005). As a result, the formerly terrestrial permafrost
has been continuously exposed to increasing seawater tem-
perature, salt and anoxic conditions (Dmitrenko et al., 2011;
Nicolsky et al., 2012), allowing the remobilization of carbon
from the Pleistocene reservoirs. The four suggested mech-
anisms controlling the release of Pleistocene carbon to the
ESAS are the deepening of the permafrost level, gas hy-
drate degradation, coastal erosion and riverine discharge (e.g.
Shakhova et al., 2005, 2009, 2010a, b, 2015; O’Connor et al.,
2010; Winterfeld et al., 2015; James et al., 2016). Holocene-
age carbon originating mainly from coastal erosion and river-
ine discharge (Charkin et al., 2011; Semiletov et al., 2012;
Karlsson et al., 2011, 2016) has accumulated on the ESAS
and overlays the Pleistocene age sediment (Vonk et al., 2012,
2014; Feng et al., 2013).

Under anaerobic conditions and depending on its type
and quality (Schuur et al., 2013), the remobilized carbon
can be used to produce CH4. Microbial CH4 is produced
by methanogenesis using carbon dioxide (CO2) or acetate
as the main substrates according to the following reactions
(Whiticar, 1999).

(CO2 reduction) CO2+ 4H2→ CH4+ 2H2O

(Acetate fermentation) CH3CO−2 +H2O→ CH4+HCO−3

In the deep Earth layers, CH4 can also be formed through
thermal degradation of organic matter (e.g. Schoell, 1988)
and migrate towards the surface. This CH4 is considered ther-
mogenic. A large part of the CH4 formed in the seafloor is re-
moved by anaerobic oxidation with seawater sulfate in sed-
iments (e.g. Reeburgh, 2007; Knittel and Boetius, 2009) or
in the water column where CH4 can be consumed by aero-
bic methanotrophic bacteria under specific nutrient and redox
conditions (e.g. Kessler et al., 2011; Mau et al., 2013; Steinle
et al., 2015). Each type of CH4 formation and/or removal
pathway produces CH4 with a characteristic isotopic signa-
ture (δ13C and δD) depending on the isotopic composition of
the substrate and the kinetic isotope effect associated with the
respective chemical reaction involved. Microorganisms need
less energy to metabolize molecules with smaller bond en-
ergy, which leads to discrimination against heavy isotopes.
Therefore, CH4 produced by methanogenesis has a lighter
isotopic signature than its substrates, but when it is con-
sumed, its remaining reservoir will become more enriched
in heavy isotopes (e.g. Whiticar, 1999; Conrad, 2005). Dif-
fusive transport can also cause isotopic discrimination, be-
cause lighter isotopologues diffuse faster than heavier ones.
However, this fractionation is relatively small (< 5 ‰: Fuex,
1980; < 20 ‰: Prinzhofer and Pernaton, 1997; and 3 ‰:
Chanton, 2005) compared to the isotopic fractionation as-
sociated with methanogenesis (7–95 ‰ for δ13C and 260–
430 ‰ for δD) and with CH4 oxidation (2–39 ‰ for δ13C
and 66–350 ‰ for δD) (Whiticar, 1999; Holler et al., 2009).

Shakhova et al. (2010b) have shown that CH4 concen-
trations in the ESAS water were anomalously high (up to
500 nM) compared to CH4 values generally observed in
ocean waters (∼ 5 nM, Damm et al., 2008). Vigorous bub-
bling events (1.5 to 5.7 bubbles per second) were observed
at some sites (Shakhova et al., 2013) as well as seepages
of thermogenic CH4 (Cramer and Franke, 2005) indicating
that part of the water column supersaturation likely results
from a seabed source. The destabilization of gas hydrates
is frequently discussed as a CH4 source in this region (e.g.
Kvenvolden, 1988; Romanovskii et al., 2005; Shakhova et
al., 2010a; Ruppel and Kessler, 2017); however, important
gaps exist in the assessment of the quantity and the nature of
the CH4 stored or formed in the Arctic seabed (e.g. Ruppel,
2014).

To disentangle the origin(s) of this CH4 anomaly, we mea-
sured CH4 concentration, stable isotope composition and (on
selected samples) radiocarbon content in sediment and water
samples from several winter campaigns and summer cruises
from 2007 to 2013 on the ESAS and shelf edge. While sta-
ble isotope analyses help identify the chemical pathways in-
volved in CH4 removal and formation processes, radiocarbon
measurements give information on the age of the CH4 sub-
strate. The combination of the isotope information thus helps
in determining the possible origin(s) of this gas. Determining
the stable isotope signatures of the main methane sources in
the ESAS also remains crucial to better quantify the CH4
emissions in this region using isotopic- and back-trajectory
analysis of atmospheric CH4 (Thornton et al., 2016).

2 Method

2.1 Drilling and sediment sampling

Summer surface sediment drilling and water sampling cam-
paigns were carried out on research vessels, while the win-
ter field campaigns were accomplished using an equipment
caravan, which traveled over the sea ice to the drilling lo-
cations. In the latter case, casings were drilled through the
fast ice into the seabed, allowing dry drilling using a rotary
drill with 4 m casing with a newly built URB-4T drilling rig
(made in 2011 by the Vorovskii Factory for Drilling Equip-
ment, Ekaterinburg, Russia). Thawed and frozen sediments
for each core were subsampled straight after (i.e. maximum
a few minutes after) the drilling using ice screws for frozen
samples and a heavy plastic syringe-like sampler for thawed
samples at 20 cm vertical resolution.

2.2 Gas extraction and measurement in sediments

Sediment subsamples were subsequently immersed in glass
vials filled with a saturated sodium chloride solution to drive
gases out of solution, and capped with a septum for equili-
bration in an ultrasonic water bath at a temperature of 20 ◦C.
The gas chromatograph (GC) used to measure CH4 concen-
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trations was equipped with two 10-Port gas sampling valves,
a 2 m MolSieve 13X column, a 30 m capillary column and
a 6 channel PeakSimple data system. A flame ionization de-
tector (FID) was used for concentrations of CH4 < 200 ppm
and a thermal conductivity detector (TCD) for concentrations
of CH4 > 200 ppm. The GC oven was operated isothermally
at 40 ◦C and the maximum detector temperature was held at
≈ 250 ◦C. The carrier gas used was helium. Daily calibra-
tion was performed with certified 1.96 and 99.999 ppm CH4
gas standards from Air Liquide, USA. The standard devia-
tion of duplicate analyses (three to five replicates) was< 2 %.
Reproducibility was ∼ 1 % based on multiple standard in-
jections during daily calibrations. The concentration of dis-
solved CH4 in the water and sediment samples was calcu-
lated with the Bunsen solubility coefficient for CH4 (Wiesen-
burg and Guinasso, 1979) for the appropriate equilibration
temperature, pressure and the volume of headspace and wa-
ter and/or sediment in each vial.

The stable isotope measurements were performed using a
continuous-flow isotope ratio mass spectrometry (CF-IRMS)
system as described in Brass and Röckmann (2010) and
Sapart et al. (2011). Radiocarbon analyses could be per-
formed only on the largest samples (containing more than
20 µg of CH4). In that case, CH4 was preconcentrated and
combusted to CO2. The 14C content of the CO2 was mea-
sured by accelerator mass spectrometry (Szidat et al., 2014)
using a specific gas inlet (Ruff et al., 2010).

2.3 Gas extraction and measurement from
seawater samples

Water samples were collected directly from the Niskin bot-
tles. Gas from seawater samples was extracted using a
modified headspace vacuum-ultrasonic degassing method
(Schmitt et al., 1991; Lammers and Suess, 1994). The gas
released was accumulated in an evacuated burette to measure
its quantity and was then transferred into a smaller flask for
storage, and analyzed as described in Sect. 2.2.

3 Results and discussion

We present results of CH4 concentrations, stable isotope
composition and (on selected samples) radiocarbon content
on four shallow sediment cores (< 3 m), four deep sediment
cores (ID-11, IID-13, IIID-13, VD-13) (down to a maximum
depth of 53m in the Buor-Khaya Bay) and about fifty wa-
ter samples from four coastal areas of the ESAS: the Lena
Delta, the Buor-Khaya Bay, the Dmitry Laptev Strait and the
shelf edge (Fig. 1) (see Table S1 for more detail on the sam-
ple locations). Because of the harsh field and weather con-
ditions during this campaign, no sediment drilling was pos-
sible at the shelf edge; hence only water data are presented
for this site. All water and sediment sampling, except for the
ID-11 core, was performed at hotspot sites, i.e., at locations

Figure 1. Sampling location. Water sampling (triangles), sediment
drilling (diamonds). Summer sampling (close symbols) and winter
sampling (open symbols). The color legends of the deep sediment
cores are shown on the top right.

where active gas bubbling from the seafloor and high concen-
trations of dissolved CH4 were previously observed, as dis-
cussed in Shakhova et al. (2010a). The location of core ID-
11 is therefore referred to as the “non-ebullition site”. This
core, as well as the IIID-core, was thawed all the way down
(> 50 m) while the IID-13 and VD-13 cores were thawed
down to 19 and 12 m, respectively. Note that for the two lat-
ter cores, sampling was continued through the deeper frozen
sediment to 30 and 35 m respectively. For more details on the
lithology, the cryostructure and the sediment properties, see
the Supplement, Sect. S1 and Figs. S1–S4.

3.1 CH4 formation pathways in the sediment

Depth profiles of CH4 concentration, stable isotope compo-
sition (δ13C and δD) and the radiocarbon content (in per-
centage of modern carbon, pmC) are presented in Fig. 2. In
both hotspot and non-ebullition cores, CH4 concentrations
are far above values observed in the water column, and CH4
is strongly depleted in heavy stable isotopes in all sediment
cores. CH4 in the hotspot cores IID-13, IIID-13 and VD-13
is more depleted in D and slightly more enriched in 13C than
in the non-ebullition core. These differences can be caused
by the distance of the drill sites from the coast, the amount
of time each site has been inundated and the differences in
lithology (Supplement, Sect. S1). These factors will play a
role in the substrate availability (Karlsson et al., 2011, 2016;
Tesi et al., 2014, 2016). We will focus the discussion on the
origin of the substrate(s) for each core below.

The expected stable isotope signatures of the three po-
tential CH4 formation pathways in marine sediment (e.g.
Whiticar, 1999), CO2 reduction, acetate fermentation and
thermal degradation of organic matter, are depicted together
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Figure 2. CH4 data from sediment and overlying water sampled
on the East Siberian Arctic Shelf. Water sampling (triangles), sedi-
ment cores (diamonds). Summer sampling (close symbols) and win-
ter sampling (open symbols). Buor-Khaya Bay (purple, ID-11: non-
ebullition site and IID-13, IIID-13 and VD13 hotspot sites), Dmitry
Laptev Strait (red and orange), Lena Delta (light blue) and Shelf
Edge (yellow) (see Fig. 1 for detailed location). (a) CH4 concen-
trations, (b) δD (‰ versus VSMOW), (c) δ13C (‰ versus VPDB),
(d) 14C (pmC). The red dotted line corresponds to modern values
(i.e., 100 pmC) and the black dashed line corresponds to the onset
of the Holocene (11 000 years BP). Note that the y axis for the wa-
ter samples is divided in two sections. The upper part corresponds
to the depth from the sea surface and the lower part corresponds
to the depth from the seabed. See Figs. S1–S4 for the ice-bonded
permafrost table depths and Table S1 for bathymetric information.

with our water and sediment stable isotope data in a dual
isotope plot (Fig. 3). Overall, the deep sediment core data
(diamonds) fall in between the isotope source signatures of
the two main microbial CH4 formation pathways: carbon-
ate reduction and acetate fermentation. These atypical sta-
ble isotope signatures could imply that CH4 is formed by a
mixture of both microbial pathways and/or by using different
substrates from the ones considered in Whiticar (1999). It is
unlikely to be explained by physical alteration (e.g. diffusion,
gravitational settling) because these processes would result in
equal fractionation for the CH3D and 13CH4 isotopologues.

For the non-ebullition core ID-11, most of the δ13C val-
ues are typical (though on the light end side) of the reduction
of carbonates, but about 2/3 of the samples show δD val-
ues that are considered too low (down to about −60 ‰) for
such a pathway. The most enriched δD data correspond to the
top of this core and are discussed in Sect. 3.2. For this core,
salinity measurements (from 20 PSU at the surface to 13 PSU
at depth) indicate the presence of interstitial seawater all the
way down the core. When the seawater sulfate enters the ma-
rine sediment, it provides sulfate-reducing bacteria with the


















-400 

-300 

-200 

-100 

0 
-110 -90 -70 -50 -30 

δD
 (‰

 
v
s.


 V
SM

O
W

)
 

δ13C (‰
 vs. 
VPDB)  

CO2 
reduction 

Acetate 
fermentation 

Thermogenic 

Figure 3. Dual-isotope CH4 plot. Legend is similar to Fig. 2. Areas
delimited by black lines correspond to the three main CH4 forma-
tion processes and their isotopic signatures (Whiticar, 1999).

electron acceptor they need to out-compete methanogens for
acetate (Lessner, 2009). This indicates that for this core, in
situ (i.e. at the depth where the samples were taken) aceto-
clastic CH4 formation may be suppressed, despite an abun-
dance of organic material. CO2 and water therefore remain
the most likely non-competitive substrate for methanogens
if CH4 formation would occur in the thawed permafrost. In
that case, the very low δD values can be due to (1) a mix-
ture of carbonate-reduced (formed in situ or not) and aceto-
clastic (migrating vertically or horizontally) CH4 or (2) the
use of isotopically depleted hydrogen substrate for CH4 for-
mation by carbonate reduction. On the dual isotope plot
(Fig. 2), the area of the carbonate reduction pathway consid-
ers modern seawater as water substrate for carbonate reduc-
tion. However, the meltwater present in subsea permafrost
originates from buried meteoric ice with much more depleted
δD(H2O) signatures. Chanton et al. (2006) and Brosius et
al. (2012) reported values for δD(H2O) of −135± 25 ‰ and
−220± 30 ‰, respectively in old Arctic permafrost. This is
about 200 to 105 ‰ more depleted in deuterium than mod-
ern Arctic seawater (Friedman et al., 1964). We suggest that
methanogens present in the thawing permafrost (Koch et al.,
2009) use and/or have used such depleted permafrost melt-
water or unfrozen porewater as a hydrogen source to form
CH4 with low δD values as it is observed in the non-ebullition
core.

For the hotspot cores IID-13 IIID-13 and VD-13, the δD
values are characteristic of acetate fermentation, but the δ13C
signatures are about 30 ‰ more depleted in 13C in compar-
ison to what has been measured previously from this path-
way (e.g. Whiticar, 1999; Walter et al., 2008). This depletion
in 13C must originate from (1) the addition of carbonate-
reduced CH4 to an acetoclastic pool and/or (2) the recy-
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Figure 4. CH4 concentration versus stable isotope plots. Water
sampling (triangles), sediment cores (diamonds). Summer sampling
(close symbols) and winter sampling (open symbols). Buor-Khaya
Bay (purple, ID-11: non-ebullition site and IID-13, IIID-13 and
VD13 hotspot sites), Dmitry Laptev Strait (red and orange), Lena
Delta (light blue) and Shelf Edge (yellow) (see Fig. 1 for detailed
locations and Table S1 for bathymetric information).

cling of CH4 after AOM-mediated carbon isotope equilib-
rium under sulfate limitation conditions (Yoshinaga et al.,
2014; Geprägs et al., 2016). For the latter, the 13C deple-
tion must be accompanied by a decrease in CH4 concentra-
tion, but this was not observed: the CH4 concentrations in
our cores were relatively constant and not correlated with the
δ13C values (Fig. 4). For these cores, because of the harsh
conditions in the field, no reliable sulfate and salinity pro-
files could be retrieved, so unfortunately no sulfate data are
available to support the interpretation.

The 14C content of CH4 from the hotspot cores covers a
range from 0.79 to 3.4 pmC corresponding to a radiocarbon
age of 26 to 39 kyr BP (Fig. 2). This indicates a carbon sub-
strate of Pleistocene age. For the ID-11 non-ebullition core,
14C values are unexpectedly high and vary from 87 pmC
(radiocarbon age= 1 kyr BP) to 2367 pmC (Fig. 2), which
represents a substantial enrichment above the natural back-
ground. The same applies to water samples from the shelf
edge. Note that levels close to 100 pmC indicate modern
values. Even samples that had been affected by the nuclear
bomb testing in the 1950s and 1960s would show levels be-
low 200 pmC; thus 14C values > 200 pmC cannot be caused
by known natural processes. As discussed in the Supple-
ment Sect. S2, local anthropogenic nuclear contribution, e.g.
from nuclear waste buried in the coastal permafrost, is the
most likely explanation for these elevated radiocarbon lev-
els. The drilling location is shallow (12.5 m) and very diffi-
cult to reach and hence waste burial is very unlikely to have
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Figure 5. Close-up of the CH4 concentration, stable isotope and
other biogeochemical data of the surface of the non-ebullition sedi-
ment core ID-11, from the Buor-Khaya Bay. Red shaded area corre-
sponds to the marine sediment deposited during the Holocene trans-
gression and the grey shaded area corresponds to the thawed per-
mafrost layer. The black dotted line corresponds to the depth where
CH4 oxidation starts to occur.

occurred directly in this area. Moreover, the highest contam-
ination is observed at 30 m depth in the sediment, showing
that it may not originate from the surface. Our first sugges-
tion is that this anthropogenic contamination has been lat-
erally transported in the pore water of the thawing subsea
permafrost in the form of CH4 or of one of its precursors
(e.g. dissolved inorganic carbon) from the coastal terrestrial
permafrost to our drilling site (see Supplement Sect. S2 for
more detailed). More data (e.g. of other radionuclides) would
be essential to confirm this assumption.

The shallow sediment samples from hotspot sites have
14CH4 values from 3 to 88 pmC (radiocarbon age= 1–
26 kyr BP), showing the presence of old CH4 in surface sedi-
ment of relatively modern age and thus confirming the migra-
tion of old gas from deeper layers towards the surface. Note
that the overall low content of organic carbon (< 2.3 %) with
a high fraction of lignin (Bröder et al., 2016; Vonk et al.,
2014) in the surface sediment (Fig. 5), and the likely pres-
ence of sulfate, would severely inhibit CH4 formation in the
marine layer; hence in situ methanogenesis there is highly
unlikely.

We conclude that the CH4 present in the surface thawed
subsea permafrost is formed mainly microbially. For the non-
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ebullition core, our observations imply that CH4 is at least
partly not formed in situ in thawed subsea permafrost, but
that it migrates vertically or laterally to the surface of the
partially thawed ESAS subsea permafrost. For the hotspot
cores, which are closer to the shore and more recently inun-
dated (Table S1), most of the methane present is of acetoclas-
tic origin and formed with Pleistocene carbon remobilized in
the thawing subsea permafrost.

3.2 CH4 removal pathways in the sediment

The ID-11 non-ebullition site was the only coring location
where no active bubbling was observed from the surface sed-
iment. Here, the top 5.8 m consists of a thick silty-clay layer
(Fig. S1) of marine origin as indicated by the higher salinity
and silica concentrations (Fig. 5), typical of a marine envi-
ronment enriched in diatoms. The increase in sulfate con-
centration, together with the strong CH4 concentration de-
crease and the isotopic enrichment in both 13C and D towards
the sediment surface, indicates that most of the CH4 diffus-
ing through this thick Holocene marine layer is removed by
anaerobic oxidation with sulfate in the surface sediment be-
fore reaching the water column.

This marine layer may also act as a physical barrier pre-
venting gas migration towards the surface directly. The in-
crease in CH4 concentration from 9 to 5.8 m depth without
strong isotopic shifts (Fig. 5) and the acoustic data (Fig. 6)
show that gas accumulates under this less permeable layer.
Part of this gas might migrate laterally and be released to the
water at locations where the marine clay layer is thinner or
absent. The isotopic signatures of the CH4 in the pore water
of the hotspot cores do not show isotopic fractionation to-
ward the surface (Fig. 2). At these sites, ebullition processes
may disturb the sulfate-reducing layer and advection may oc-
cur. This would reduce the amount of CH4 subject to anaero-
bic oxidation (only dissolved CH4 is accessible for methan-
otrophic organisms) and allow direct gas release to the water
column.

Overduin et al. (2015) have reported CH4 concentration
and δ13C values measured on one sediment core drilled in the
Buor-Khaya Bay. The carbon isotopic signature of that core
was typical of acetate fermentation in the frozen part of the
core, but they observed a strong enrichment in 13C associated
with a decrease in CH4 concentration directly above the ice-
bonded permafrost. They concluded that CH4 was strongly
oxidized in the thawed subsea permafrost before reaching the
water column. Our dataset suggests that the Overduin et al.
core is not typical for the entire region as we did not ob-
serve similar enrichment in either D or 13C associated with a
decrease in CH4 concentration at the ice-bonded permafrost
table for the partly frozen cores IID-13 and VD-13 (Figs. 2,
S2 and S4).

	
Figure	6 :	Acoustic	profile	of	the	borehole	of	the	ID -11	drilling	site.	Darker	areas	represent	changes	
in	density	between	the	 different	horizontal	 layers 	(Sergienko	et 	al.,	2012).	We	assume	that	these	
changes	in	density	 indicate 	gas	accumulation,	because	the	sediment	at	this	location	is	totally	
thawed,	so	it	is	very	unlikely	to	be	ice. 	
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Figure 6. Acoustic profile of the borehole of the ID-11 drilling
site. Darker areas represent changes in density between the differ-
ent horizontal layers (Sergienko et al., 2012). We assume that these
changes in density indicate gas accumulation, because the sediment
at this location is totally thawed, so it is very unlikely to be ice.

3.3 CH4 in the water

Compared to the sediment samples, CH4 in the water sam-
ples is more enriched in heavy isotopes. The highest CH4
concentrations in the water column are observed close to the
seabed and at the surface in the presence of sea ice (Fig. 2a
blue triangles). The 14C values of water samples are between
83 and 9560 pmC (radiocarbon age= 2 kyr BP to strongly
enriched above natural present-day values) (Fig. 2d) (Sup-
plement Sect. S2). For the water samples we only encoun-
tered the highly enriched 14CH4 values at the shelf edge. As
demonstrated by the 14CH4 data in the non-ebullition core
ID-11, this anomaly likely originates from anthropogenic
contamination in the sediment. Hence, we suggest that this
signature may be diluted over the shelf but becomes indis-
cernible at locations where a strong release of old CH4 from
the sediment occurs. This could explain the broad range of
pmC values observed in the water column.

Several scenarios may explain the difference in stable iso-
tope signatures between the water samples and sediment
samples. The first assumes a mixture of microbial CH4 with
a source that is more enriched in heavy isotopes. This source
could be either a water source or thermal degradation of or-
ganic matter in the Earth’s deep crust. In the marine envi-
ronment, CH4 could in principle be produced at the pycn-
ocline, where natural differences of water density create a
“fluid bottom”, on which organic particles and pellets could
accumulate as substrate for in situ methanogenesis (Damm
et al., 2008; Karl et al., 2008; Sasakawa et al., 2008). In the
ESAS, the pycnocline is very shallow, and at the location
of sampling, low primary production is expected because of
darkness and ice cover in the winter and because of the lit-
tle available sunlight in the summer due to the high solar
zenith angles and the very turbid waters (Semiletov et al.,
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2016). Bussmann (2013) has investigated the distribution of
CH4 in the estuary of the Lena, one of the largest Russian
rivers draining into the ESAS. They reported high CH4 con-
centrations (up to 1500 nM) in the river and in the creeks
draining from permafrost soil and a strong decrease in the
Buor-Khaya Bay (down to 26–33 nM). They concluded that
the CH4 contained in the rich waters of the river was, for the
most part, not reaching the marine waters, but that it was re-
leased by diffusion into the atmosphere before reaching the
bay. A large water source is therefore unlikely to explain the
CH4 saturation we observe in the ESAS coastal waters.

Thermogenic emissions from the sediment are possible,
especially from the fault zone near the shelf edge where we
find strong heavy isotope enrichment in the water. While we
have not measured any CH4 with a thermogenic stable iso-
topic signature in our deep sediment cores from the continen-
tal shelf, it could be present in the sediments of the shelf edge
(which we were unable to sample due to rough field condi-
tions). Moreover, no measurements could be performed di-
rectly on gas bubbles (because of the low probability of trap-
ping bubbles in the Niskin bottles during sampling), which at
the shelf edge might partly originate from thermal degrada-
tion of organic matter.

The difference between the water and sediment samples
may also result from substantial oxidation of the CH4 emit-
ted from the deep sediment. Such a process should involve
enrichments in D and 13C associated with a decrease in CH4
concentration. This pattern is only observed for the winter
water samples of the Lena Delta (Fig. 4, blue open triangles)
where CH4 trapped under the sea ice could be removed by
aerobic oxidation. All other water data were collected in the
summer and do not show any clear isotopic enrichment cor-
related with concentration decrease. This could be explained
by the continuous addition of CH4 from the sediment and
its direct diffusion from the water into the atmosphere in the
summer, especially during storms (Shakhova et al., 2013).
These processes as well as water-column mixing could mask
any oxidative isotope signature.

In the winter, CH4 likely accumulates under the sea ice
where the bubble and dissolved phases could equilibrate and
aerobic oxidation could occur, while in the summer the gas
bubbles will directly reach the atmosphere. In the sediment,
gas bubbles have time to equilibrate with pore water, espe-
cially when the gas is trapped under relatively impermeable
sediment, e.g. the Holocene marine silty-clay layer. There-
fore, we assume that in the sediment, the pore water can be
in equilibrium with the gas bubbles, while we suggest that in
the summer the seawater bubbles may travel too rapidly to
reach an isotopic equilibrium with the dissolved gas and to
be oxidized. This means that the CH4 isotopic signature of
the gas bubbles may not strongly affect the CH4 dissolved in
seawater, which could also explain the difference observed
between the water and sediment stable isotopes values.

4 Conclusion

Our triple isotope dataset of CH4 from the sediment and wa-
ter of the shallow ESAS reveals the presence of CH4 of mi-
crobial origin formed on old carbon with unexpectedly low
stable carbon (δ13C as low as −108 ‰) and hydrogen (δD as
low as −350 ‰) isotope signatures down to about 50 m un-
der the seabed in the thawed permafrost. These data demon-
strate that at locations where a thick marine clay layer is
present, this CH4 is partially oxidized before reaching the
seawater. However, at locations where ebullition was ob-
served from the seabed, no oxidation was identified in the
stable isotope surface sediment profile. In that case, and con-
sidering the very shallow water column (< 10 m) in this area,
this microbial gas will likely reach the atmosphere when
sea ice is absent. Our results show that thawing subsea per-
mafrost of the ESAS emits CH4 with an isotopic signature
that cannot be easily distinguished from Arctic wetland emis-
sions when looking only at stable isotope data. This similar-
ity might complicate recent efforts to quantify Arctic CH4
source strengths on the basis of isotopic- and back-trajectory
analysis of atmospheric CH4. Further in situ work is neces-
sary – specifically on the isotopic composition of CH4 in gas
bubbles that reach the atmosphere – to better quantify the
contribution of the ESAS to the global methane budget.
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