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Abstract

We introduce an Absolute (Relative) Time-consistent Axiom of Revealed Preference
which characterizes the consistency of a choice function with the property of absolute (rel-
ative) time-consistency and impatience. The axiom requires that the absolute (relative)
time-consistent and impatient closure of the revealed preference relation does not conflict
with the strict revealed preference relation.
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1 Introduction

Consider a preference relation over a universal set of alternatives, X. In order to pick a best
element out of every two element choice set (subset of X), it is necessary that the preference
relation is complete. If we want to pick a best element out of any larger choice set, we
must also impose transitivity. Additional requirements on the preference relation normally
require additional structure on the universal set. This paper investigates the implication of
requirements frequently encountered in intertemporal settings.

If we want to impose properties relating to the time-instance at which the various alternatives
are consumed, we can represent the universal set of alternatives as X × T , where X is a set
of alternatives and T is a set of time instances. A preference relation is then a transitive and
complete binary relation on this extended set.

Given transitivity and completeness, this research discusses the implication of three additional
intertemporal properties.

For the first property, consider two time-instances t and v, with instance t before instance v.
We say that a preference relation is ‘impatient’ if for any alternative x, the bundle (x, t) is at
least as good as the bundle (x, v). This condition seems intuitive, at least if goods are non-
perishable and storage is costless. Since this is such a basic requirement in an intertemporal
context, we maintain it throughout, and combine it successively with each of the two following
properties.

For the next property, consider two bundles (x, t) and (y, v) and assume that (x, t) is at
least as good as (y, v). After a certain amount of time s ≤ t, v, the individual is asked to
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reconsider the two bundles, which have now become (x, t − s) and (y, v − s). It would seem
natural to require that individuals do not change their minds (preferences) as time goes by.
Therefore, we should have that (x, t − s) is at least as good as (y, v − s). This property is
called ‘absolute time-consistency’ and it is one of the key assumptions in the characterization
of the exponential discounted utility model (see for example Fishburn and Rubinstein [1982]).

The final property is a variant on the second property and is called ‘relative time-consistency’.
It states, contrary to absolute time-consistency, that preferences over alternatives depend on
the relative time differences between the two consumption periods instead of the absolute
difference. In particular, if (x, t) is at least as good as (y, v), then for any strict positive real
number s, the bundle (x, t.s) is at least as good as the bundle (y, v.s). This property is a key
property for the characterization of the hyperbolic time preference model as in Harvey [1986].

This paper presents two revealed preference axioms which guarantees the existence of an
absolute or relative time-consistent and impatient preference relation rationalizing a given
choice function. The revealed preference axioms, which we call the absolute and relative
time-consistent axiom of revealed preference (ATARP and RTARP), state that the absolute
(relative) time-consistent and impatient closure of the revealed preference relation does not
conflict with the strict revealed preference relation. The computation of these closures requires
the computation of a transitive closure and a simple algebraic expression. In this perspective,
it is computationally only slightly more demanding than computing the transitive closure.

Most research, investigating the plausibility of the absolute or relative time-consistency (and
impatience) assumption start from a specific functional form for the (instantaneous) utility
function, and try to fit the model to the observed data (e.g. Eisenhauer and Ventura [2006],
Angeletos et al. [2001], for a good overview see Frederick et al. [2002]). Our revealed preference
approach has a clear advantage over this approach (Sen [1971], Richter [1966])): the axioms do
not depend on a particular functional form of the preference relation. In fact, the preference
relation does not even need to have a functional form1.
Section 2 presents notation and provides us with the characterization results and section 3
presents the proofs.

2 Notation and results

Let X be the universal set of alternatives and let T = R+ denote the universal set of time
instances. The present is set at time equal to 0. We also define the set T0 = T − {0}. An
element (x, t) of X×T denotes the consumption of alternative x at time t. A binary relation R
is a subset of (X×T )2. Define R−1 as (x, y) ∈ R−1 if and only if (y, x) ∈ R. The asymmetric
part P (R) of the relation R is given by R − R−1, the symmetric part I(R) of R is given by
R ∩ R−1 and the non-comparable part N(R) is given by (X × T )2 − (R ∪ R−1). A relation
R is transitive if for all x, y, z ∈ X and t, v, w ∈ T : ((x, t), (y, v)) ∈ R and ((y, v), (z, w)) ∈ R
implies ((x, t), (z, w)) ∈ R. The relation R is complete if for all x, y ∈ X and t, v ∈ T :
((x, t), (y, v)) ∈ R ∪R−1. A complete and transitive relation is called an ordering.

1See also remark 3 in section 2.
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Definition 1 (Impatience). A relation R on X × T is impatient if for all x in X and t, v in
T with t ≤ v:

((x, t), (x, v)) ∈ R.

Any, not necessarily transitive and complete, relation R on X × T can be enlarged to an
impatient relation, R′, given by:

R′ = R ∪ {((x, t), (x, v)) ∈ (X × T )2|t ≤ v}.

Notice that in the definition of R′ we keep the alternative x the same in both bundles. Given
a relation R, we call R′ the impatient closure of the relation R. It is the smallest impatient
relation that contains R.

Definition 2 (absolute time-consistency). The relation R is said to be absolute time-consistent
if for all x, y ∈ X; t, v ∈ T and s ≤ t, v:

((x, t), (y, v)) ∈ R ↔ ((x, t− s), (y, v − s)) ∈ R.

Definition 3 (relative time-consistency). The relation R is said to be relative time-consistent
if for all x, y ∈ X; t, v ∈ T0 and s > 0:

((x, t), (y, v)) ∈ R ↔ ((x, t.s), (y, v.s)) ∈ R.

Notice that for relative time-consistency, we restrict the time domain to T0. The reason for
this will become clear when we define the relative time-consistent closure.

We already introduced the impatient closure of a relation R as the smallest impatient relation
that contains R. In a similar fashion we define the absolute time-consistent closure of the
relation R as the smallest transitive and absolute time-consistent relation containing R. Before
we give the formal definition, let us start with an example. Let R be an arbitrary relation
and let us introduce R̄ as its absolute time-consistent closure. Consider elements x, y and z
in X and assume that

((x, 3), (y, 2)) ∈ R and ((y, 6), (z, 4)) ∈ R.

We know that R̄ contains R and that it satisfies absolute-time consistency, so we can add an
equal amount, 4, to 3 and 2 to get:

((x, 7), (y, 6)) ∈ R̄ and ((y, 6), (z, 4)) ∈ R̄.

As R̄ is also required to satisfy transitivity, we have that ((x, 7), (z, 4)) ∈ R̄. Following the
calculations through, we see that 7 was obtained as 3 + (6 − 2), hence we can write 7 − 4
as (3 − 2) + (6 − 4). Also, notice that by absolute time-consistency of R̄, only the absolute
difference between 7 and 4 really matters. As such, we derive that for all t and v in T for
which t− v = 7− 4 = (3− 2) + (6− 4):

((x, t), (z, v)) ∈ R̄.

It is easy to see that this example does not rely on the specific values of 3, 2, 6 and 4. Hence,
we can substitute 3 = t1, 2 = v1, 6 = t2 and 4 = v2, and derive that:

((x, t1), (y, v1)) ∈ R and ((y, t2), (z, v2)) ∈ R → ((x, t), (z, v)) ∈ R̄,
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where t and v satisfy t− v = (t1 − v1) + (t2 − v2).

This example only relates to two element subsets of R. The generalization to all finite subsets
leads to the following definition2.

Definition 4 (absolute time-consistent closure). The absolute time-consistent closure R̄ of
R is defined as: ((x, t), (y, v)) ∈ R̄ if there is a sequence x = x1, ..., xn = y of elements in X
and sequences t1, ..., tn−1 and v1, ..., vn−1 of elements in T such that for all i = 1, ..., n− 1:

((xi, ti), (xi+1, vi)) ∈ R

and

t− v =
n−1∑
i=1

(ti − vi).

If we follow a similar reasoning for the property of relative time-consistency, we are led to the
following definition:

Definition 5 (relative time-consistent closure). The relative time-consistent closure R̃ of R
is defined by: ((x, t), (y, v)) ∈ R̃ if there is a sequence x = x1, ..., xn = y of elements in X and
sequences t1, ..., tn−1 and v1, ..., vn−1 of elements in T0 such that for all i = 1, ..., n− 1:

((xi, ti), (xi+1, vi)) ∈ R

and
t

v
=

n−1∏
i=1

ti
vi

.

Consider an arbitrary relation R, and take its corresponding impatient closure R′ (see defi-
nition 1). The absolute time-consistent closure of R′ is then denoted by R̄′. Lemma 1 in the
next section shows that R̄′ is the smallest transitive, absolute time-consistent and impatient
relation containing R. As such, we also call it the absolute time-consistent and impatient
closure of R. Likewise, we let R̃′ be the relative time-consistent closure of R′ and we call it
the relative time-consistent and impatient closure of R.

Consider the set Λ = 2X×T − {∅} which is the set of all non-empty choice sets. A choice
function, C, is a function from a set Σ ⊆ Λ to Λ such that for all A ∈ Σ: C(A) ⊆ A. The set
C(A) is to be interpreted as the choices made from the set A.
A choice function C is said to be rationalizable by an absolute time-consistent and impatient
ordering if and only if there exist an absolute time-consistent and impatient ordering R on
X × T such that for all A ∈ Σ:

C(A) = {(x, t) ∈ A|∀(y, v) ∈ A : ((x, t), (y, v)) ∈ R}.

In plain English: the choices made from A are the ones that are top ranked according to the
ordering R.

2The proof that the relation R̄ in definition 4 coincides with the smallest transitive and absolute time-
consistent relation containing R is almost identical to the proof of Lemma 1 in section 3 and is therefore
omitted.
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To introduce the notion of relative time-consistent rationalizability, we adjust the set of choice
sets to Λ0 = 2X×T0 and we introduce a choice function, C0, as a function from a set Σ0 ⊆ Λ0

to Λ0 such that for all A ∈ Σ0 : C0(A) ⊆ A.
Analogously, a choice function C0 is rationalizable by a relative time-consistent and impatient
ordering if and only if there exist a relative time-consistent and impatient ordering R on X×T0

such that for all A ∈ Σ0:

C0(A) = {(x, t) ∈ A|∀(y, v) ∈ A : ((x, t), (y, v)) ∈ R}.

Given a choice function, C, we can define the revealed preference relation Rv as ((x, t), (y, v)) ∈
Rv if and only if there is an A ∈ Σ such that (x, t) ∈ C(A) and (y, v) ∈ A. The strict revealed
preference relation Pv is defined as ((x, t), (y, v)) ∈ Pv if and only if there is an A ∈ Σ such
that (x, t) ∈ C(A) and (y, v) ∈ A−C(A). These definitions remains the same when we change
from Σ and C to Σ0 and C0.

Consider a choice function C and assume that C is rationalizable by an absolute time-
consistent and impatient ordering R. The choice function, C, is only defined over the set
Σ, so in general it is not possible to reconstruct the ordering R from the observation of C.
On the other hand, we do observe the relations Rv and Pv. From the rationalizability of C,
we know that Rv ⊆ R and Pv ⊆ P (R). The ordering R is transitive, absolute time-consistent
and impatient, hence it must include the absolute time-consistent and impatient closure of
Rv, i.e. R̄′

v ⊆ R. Therefore, it must be that R̄′
v ∩ P−1

v is empty. If not, we would have that
R ∩ P (R)−1 is also non-empty and this would contradicts the definition of the asymmetric
part. We call this property the Absolute Time-consistent Axiom of Revealed Preference.

Definition 6 (ATARP). A choice function C satisfies the absolute time-consistent axiom of
revealed preference if

R̄′
v ∩ P−1

v = ∅.

Similarly, we may define the Relative Time-consistent Axiom of Revealed Preference in the
following way:

Definition 7 (RTARP). A choice function C0 satisfies the relative time-consistent axiom of
revealed preference if

R̃′
v ∩ P−1

v = ∅.

As shown above, the ATARP (RTARP) is a necessary condition for a choice function to be
rationalizable by an absolute (relative) time-consistent and impatient ordering. Fortunately,
it turns out that it is also a sufficient condition. We state this in the following theorems. The
proof is given in the next section.

Theorem 1. A choice function C is rationalizable by an absolute time-consistent and impa-
tient ordering if and only if it satisfies the ATARP.

Theorem 2. A choice function C0 is rationalizable by a relative time-consistent and impatient
ordering if and only if it satisfies the RTARP.

We conclude this section with a few remarks.

Remark 1. We assumed that T = R+, but we can easily change this to a smaller set T ′ ⊂ R+,
e.g. T ′ = N, and the theorems remains valid. To see this, notice that we can select the set Σ
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to select only sets A which have elements with time components in T ′. The theorems give rise
to a rationalization R∗, which is defined over the entire set X × T . However, the restriction
of this R∗ to the set X × T ′ will provide us with a rationalization on this smaller domain.

Remark 2. Sometimes, the definition of time-consistency is defined in term of sequences,
(xi, t), (xi+1, t+1)..., (xi+n, t+n), of consumption bundles instead of individual consumption
bundles. In this sense, we can say that a relation R is n absolute time-consistent if for all
t, v ∈ N, t, v ∈ Z and s ≤ t, v:

(((xi, t), ..., (xi+n, t + n)), ((yi, v), ..., (yi+n, v + n))) ∈ R

if and only if:

(((xi, t− s), ..., (xi+n, t + n− s)), ((yi, v − s)..., (yi+n, v + n− s))) ∈ R.

Let us take the set of alternatives to be X̃ and redefine our universal set X as X = X̃n. If we
let (x1, ..., xn, t) = (x, t) ∈ X×T denote the bundle ((x1, t), ..., (xn, t+n)) we see immediately
that our definition of absolute time-consistency is the same as the definition of n absolute
time-consistency given above. As such, taking into account remark 1, the main result carries
directly over to this alternative definition of time-consistency. An analogous result holds of
course also for the property of relative time-consistency. Also, setting X = X̃∞, allows for
infinite sequences.

Remark 3. The existence of an absolute (relative) time-consistent ordering on X × T does
not specify anything on the specific functional form of this ordering. Moreover, it may even
be the case, that no functional (real valued) representation exists. As an example, consider
ordering R where:

((x, t), (y, v)) ∈ R ↔ t < v or (t = v and (x, y) ∈ Q),

with Q an ordering on the set X. The ordering R is absolute time-consistent, relative time-
consistent and impatient. On the other hand, R is a lexicographic ordering and it is well
known that such an ordering has no real valued representation (e.g. Durieu et al. [2006],
Example 4 or Debreu [1954]).

3 Proof of theorem 1

We provide the proof for the case of rationalizability by an absolute time-consistent and
impatient ordering (Theorem 1). The proof for Theorem 2 is completely analogous and is left
to the reader.
Let R be an arbitrary relation on X × T and consider the relation R̄′. We have the following
result:

Lemma 1. For a relation R, the closure R̄′ is the smallest, transitive, absolute time-consistent
and impatient relation containing R.

Proof. That R̄′ contains R is obvious. As R̄′ also contains R′, we have that R̄′ is impatient.
To see that R̄′ is absolute time-consistent, assume that ((x, t), (y, v)) ∈ R̄′ so that there is a
sequence x = x1, ..., xn = y in X and sequences t1, ..., tn−1 and v1, ..., vn−1 in T such that for
all i = 1, ..., n− 1:

((xi, ti), (xi+1, vi)) ∈ R′

6



and

t− v =
n−1∑
i=1

(ti − vi).

Immediately, we see that for any s ≤ t, v:

(t− s)− (v − s) =
n−1∑
i=1

(ti − vi).

This implies that: ((x, t− s), (y, v − s)) ∈ R̄′, hence R̄′ is absolute time-consistent.

To prove that R̄′ is transitive, let ((x, t), (y, v)) ∈ R̄′ and ((y, v), (z, w)) ∈ R̄′ so that there are
sequences x = x1, ..., xn = y and y = y1, ..., ym = z in X and sequences t1, ..., tn−1; v1, ..., vn−1;
s1, ..., sm−1 and w1, ..., wm−1 in T such that for all i = 1, ..., n− 1 and j = 1, ...,m− 1:

((xi, ti), (xi+1, vi)) ∈ R′,

((yj , sj), (yj+1, wj)) ∈ R′,

t− v =
n−1∑
i=1

(ti − vi)

and

v − w =
m−1∑
j=1

(sj − wj).

Consider the compound sequence x = x1, ..., xn, y2, ..., ym = z in X and the compound se-
quences t1, ..., tn−1, s1, ..., sm−1 and v1, ..., vn−1, w1, ..., wm−1 in T . As:

t− v + v − w = t− w =
n−1∑
i=1

(ti − vi) +
m−1∑
j=1

(sj − wj),

we can conclude that ((x, t), (z, w)) ∈ R̄′, hence R̄′ is transitive.

We are left to show that R̄′ is the smallest transitive, absolute time-consistent and impatient
relation containing R. Assume on the contrary that there is a relation R∗ which contains
R and is transitive, absolute time-consistent and impatient and that there exist elements
x, y ∈ X and time instances t, v ∈ T , such that ((x, t), (y, v)) ∈ R̄′ and ((x, t), (y, v)) /∈ R∗.
Consequently, there is a sequence x = x1, ..., xn = y in X and sequences t1, ..., tn−1 and
v1, ..., vn−1 in T such that for all i = 1, ..., n− 1:

((xi, ti), (xi+1, vi)) ∈ R′

and

t− v =
n−1∑
i=1

(ti − vi).

We show that ((x, t), (y, v)) ∈ R∗ by induction on n. For n = 2, we have that:

((x, t1), (y, v1)) ∈ R′
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and
t− v = t1 − v1.

As R∗ is impatient, we derive that ((x, t1), (y, v1)) ∈ R∗. Also, we have that t1−t = v1−v ≤ tl
hence setting s = t1 − t and applying absolute time-consistency of R∗, we obtain:

((x, t), (y, v)) ∈ R∗.

For the induction step, suppose that ((x, t), (y, v)) ∈ R∗ whenever ((x, t), (y, v) ∈ R̄′ for
all n ≤ l and consider the case where n = l + 1. This implies that there is a sequence
x = x1, ..., xl, xl+1 = y and sequences t1, ..., tl and v1, ..., vl such that for all i = 1, ..., l:

((xi, ti), (xi+1, vi)) ∈ R′

and

t− v =
l∑

i=1

(ti − vi).

Take two elements t′ and v′ from T such that:

t′ − v′ =
l−1∑
i=1

(ti − vi).

Hence t′−v′+tl−vl = t−v. From the induction hypothesis, we have that ((x, t′), (xl, v
′)) ∈ R∗.

Observe that also ((xl, tl), (y, vl)) ∈ R∗. If v′ ≥ tl put s = tl − v′ and from absolute time-
consistency, we have that: ((x, t′), (xl, v

′)) ∈ R∗ and ((xl, v
′), (y, vl − tl + v′)) ∈ R∗. From

transitivity, we derive that ((x, t′), (y, t′ − t + v)) ∈ R∗. Put s = t′ − t and apply the absolute
time-consistency of R∗. We derive that ((x, t), (y, v)) ∈ R∗. The case where v′ ≤ tl is solved
similarly. Conclude that ((x, t), (y, v)) ∈ R∗, a contradiction. Hence, R̄′ is indeed the smallest
(transitive, absolute time-consistent and impatient) relation containing R.

Consider a relation R on X × T . We say that R∗ is an extension of R if R ⊆ R∗ and
P (R) ⊆ P (R∗).

Lemma 2. A relation R has a time-consistent and impatient ordering extension R∗ if and
only if:

R̄′ ∩ P (R)−1 = ∅.

Proof. The proof is similar to the proof of Szpilrajn’s lemma (Szpilrajn [1930])3, which states
that every quasi-order (transitive and reflexive binary relation) has an ordering extension.
To see necessity assume that R has an absolute time-consistent and impatient ordering ex-
tension, R∗, and assume on the contrary that there exist ((x, t), (y, v)) ∈ R̄′ ∩ P (R)−1. From
lemma 1, we have that R̄′ is the smallest absolute time-consistent, impatient and transitive
relation containing R. As R∗ is also an absolute time-consistent, impatient and transitive
relation, we must have that R̄′ ⊆ R∗. This means that ((x, t), (y, v)) ∈ R∗. Also, as R∗ is an
extension of R, we must have that ((y, v), (x, t)) ∈ P (R∗), which is in contradiction with the
definition of P (R∗). Hence, R̄′ ∩ P (R)−1 = ∅.

3For further generalizations of Szpilrajn’s lemma, see Suzumura [1976], Duggan [1999] and Donaldson and
Weymark [1998] among others.
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For sufficiency, consider the set Ω of all extensions, Q, of R for which Q̄′ ∩P (Q)−1 = ∅. This
set is non-empty as R ∈ Ω. Let Ω′ be a chain in Ω, i.e. for all Q,S ∈ Ω either Q ⊆ S or
S ⊆ Q. Consider the relation B =

⋃
Q∈Ω′ Q and let us show that B ∈ Ω. It is easy to see that

B is an extension of R. To see that B̄′∩P (B)−1 = ∅, assume on the contrary that there exist
elements x, y ∈ X and t, v ∈ T such that ((x, t), (y, v)) ∈ B̄′ ∩ P (B)−1. Then, there exist a
sequence x = x1, ..., xn = y of elements in X and sequences t1, ..., tn−1 and v1, ..., vn−1 such
that for all i = 1, ..., n− 1:

((xi, ti), (xi+1, vi)) ∈ B

and

t− v =
n−1∑
i=1

(ti − vi).

From the construction of B, we see that there must be relations Q1, ..., Qn−1 in Ω′ such that
for all i ≤ n − 1, ((xi, ti), (xi+1, vi) ∈ Qi. As all these relations are ranked by set inclusion,
there must be a largest one, lets say Qj . Also, from the definition of B, there must be a
relation Q0 ∈ Ω′ such that ((y, v), (x, t)) ∈ Q0 and for all Q ∈ Ω′ we can not have that
((x, t), (y, v)) ∈ Q. The relations Q0 and Qj are ranked by set inclusion so either Qj ⊆ Q0 or
Q0 ⊆ Qj . In the first case, we have that ((x, t), (y, v)) ∈ Q̄′

0∩P (Q0)−1, contradicting the fact
that Q0 ∈ Ω. In the second case, we have that ((x, t), (y, v)) ∈ Q̄′

j ∩ P (Qj)−1, contradicting
the fact that Qj ∈ Ω. Therefore, we can conclude that B ∈ Ω. By application of Zorn’s
lemma, the set Ω has a maximal element. Let R∗ be such an element.

First of all, notice that by maximality of R∗: R∗ = R∗′. Therefore, by Lemma 1, R∗ is
absolute time-consistent, impatient and transitive. Let us show that R∗ is complete. If on
the contrary, R∗ is not complete, there exist elements x′, y′ ∈ X and time-instances t′, v′ ∈ T
such that ((x′, t′), (y′, v′)) ∈ N(R∗). Consider the relation:

Q = R∗ ∪ {((x′, t′), (y′, v′))}.

From Lemma 1, this relation is time-consistent, impatient and transitive, hence Q̄′∩P (Q)−1 =
∅. Moreover, it is strictly larger than R∗, i.e. R∗ ⊂ Q. To show that Q is in Ω, we
need to show that Q extends R. That R ⊆ Q is straightforward. Now assume on the
contrary that ((y, v), (x, t)) ∈ P (R) and ((x, t), (y, v)) ∈ Q. Consequently there is a sequence
x = x1, ..., xn = y in X and sequences t1, ..., tn−1 and v1, ..., vn−1 in T such that for all
i = 1, .., n− 1:

((xi, ti), (xi+1, vi)) ∈ R∗ ∪ {((x′, t′), (y′, v′))}

and

t− v =
n−1∑
i=1

(ti − vi).

As ((x, t), (y, v)) /∈ R∗ (R∗ is an extension of R), there must be at least one instance of i for
which ((xi, ti), (xi+1, vi)) = ((x′, t′), (y′, v′)). Let L ⊆ {1, ..., n − 1} be the set containing all
these instances of i. We then have that:

|L|(v′ − t′) =
∑
i/∈L

(ti − vi) + v − t.

Introduce tn = v and vn = t an let us include the element ((y, v), (x, t)) = ((xn, tn), (x1, vn))
into the sequence in order to make a loop joining xn = y back to x1 = x. We see that we can
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divide this loop into |L| subsequences each starting with y′ and ending with x′. Denote the
set of i’s falling in the l-th sequence by Ll.
Consider elements tl and vl (l ∈ {1, ..., |L|} such that:

vl − tl =
∑
i∈Ll

(ti − vi).

Observe, by absolute time-consistency of R∗, that for all l ∈ L, we have that ((y′, vl), (x′, tl)) ∈
R∗. Let l′ ∈ L be such that:

vl′ − tl′ ≥ vl − tl

for all l ∈ L.We have that |L|(v′ − t′) =
∑

l∈L(vl − tl) ≤ |L|(vl′ − tl′), hence v′ − t′ ≤ vl′ − tl′ .
Consider elements w and q in T such that w − q = v′ − t′ and vl′ − w ≤ tl′ . Such elements
always exist. By absolute time consistency:

((y′, vl′ − vl′ + w), (x′, tl′ − vl′ + w)) ∈ R∗.

By impatience of R∗, the fact that tl′ − vl′ + w ≤ q and transitivity of R∗, we derive that

((y′, w), (x′, q)) ∈ R∗.

Using absolute time-consistency of R∗ a final time, we can conclude that

((x′, v′)(y′, t′)) ∈ R∗.

This is in contradiction with the assumption that ((x′, v′), (y′, t′)) ∈ N(R∗). Conclude that
Q is in Ω. As R∗ ⊂ Q, this implies that R∗ is not maximal, again a contradiction. Conclude
that R∗ is complete.

Now, we present the main part of the proof of theorem 1.

Proof. Let R∗ be a rationalization of C and assume on the contrary that ((x, t), (y, v)) ∈ R̄′
v

and ((y, v), (x, t)) ∈ Pv. As R∗ is absolute time-consistent, transitive and impatient, we
see from the definition of Rv and Lemma 1 that R̄′

v ⊆ R∗. Also from the definition of
Pv, we can conclude that Pv ⊆ P (R∗). From this, we have that ((x, t), (y, v)) ∈ R∗ and
((y, v), (x, t)) ∈ P (R∗), a contradiction.

To see the converse, let C satisfy ATARP , i.e. R̄′
v ∩ P−1

v = ∅. First we show that Pv =
P (Rv). To see Pv ⊆ P (Rv), observe that from the definitions Pv ⊆ Rv. If on the contrary,
((x, t), (y, v)) ∈ Pv and ((y, v), (x, t)) ∈ Rv, we have a contradiction with R̄′

v ∩P−1
v = ∅, hence

Pv ⊆ P (Rv). To see that P (Rv) ⊆ Pv, assume that ((x, t), (y, v)) ∈ P (Rv). Then, there is an
A ∈ Σ such that (x, t) ∈ C(A) and (y, v) ∈ A. If on the contrary ((x, t), (y, v)) /∈ Pv, we must
have that (y, v) ∈ C(A). This implies that ((y, v), (x, t)) ∈ Rv, a contradiction. Conclude
that P (Rv) = Pv.

Now, we can rewrite R̄′
v ∩ P−1

v = ∅ as R̄′
v ∩ P (Rv) = ∅. From Lemma 2, we derive that Rv

has a time-consistent and impatient ordering extension R∗. If (x, t) ∈ C(A), we immediately
have that ((x, t), (y, v)) ∈ Rv for all (y, v) ∈ A, hence ((x, t), (y, v)) ∈ R∗ for all (y, v) ∈ A. If
(x, t) /∈ C(A), we see from the non-emptiness4 of C(A) that there is an (y, v) ∈ A such that

4This follows from the assumption that the set Λ does not contain the empty set.
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((y, v), (x, t)) ∈ Pv = P (Rv). As R∗ is an extension of Rv, we derive that ((y, v), (x, t)) ∈
P (R∗). Conclude that

C(A) = {(x, t) ∈ A|∀(y, v) ∈ A, ((x, t), (y, v)) ∈ R∗}.

Hence, R∗ is an absolute time-consistent and impatient rationlization of C.
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