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1 Introduction

A recent track of research seeks to identify the testable implications of various theories of
multi-agent decision making. Along these lines we set up a test to verify whether players
have independent preference relations and select a Nash equilibrium. Let us start the
exposition with an example.

Consider a two person game in normal form. Each player has two pure strategies: U(p)
and D(own) for player 1, L(eft) and R(ight) for player 2. Each player is informed about the
meaning of a mixture over pure strategies and about the payoff such a mixture generates.
Let x (resp. y) denote the weight attached to the pure strategy U (resp. L). The players
may select the mixture

x×U + (1− x)×D and y×L + (1− y)×R,

with x and y in the closed interval [0, 1], and communicate the selected value of x (resp.
y) to the experimental designer.1 In this setup, we observe the values x = 0.4 and y = 0.3.
Then, a second experiment is executed. For player 1, the set of pure strategies {U,D}, is
modified to {U,D′} with

D′ = 0.4×U + 0.6×D.

For player 2, the set {L, R} is modified to {L′, R} with

L′ = 0.42×L + 0.58×R.

The lottery x′×U + (1− x′)×D′ coincides with (x′ + (1− x′) 0.4)×U + (1− x′) 0.6×D
and the lottery y′×L′ + (1− y′)×R coincides with 0.42 y′×L + (1− 0.42 y′)×R. Given
these sets of pure strategies, player 1 selects 0.4 U + 0.6 D (i.e. x′ = 0) and player 2 selects
0.42 L + 0.58 R (i.e. y′ = 1). Similar experiments generate the following data:

pure strategies 7−→ selected mixtures

player 1 player 2

{U,D} {L, R}
{U,D′ = .4 U + .6 D} {L,R′ = .42 L + .58 R}
{U ′′ = .5 U + .5 D,D} {L′′ = R′′ = .5 L + .5 R}

player 1 player 2

.4 U + .6 D .3 L + .7 R

.4 U + .6 D .42 L + .58 R

.5 U + .5 D .5 L + .5 R

Table 1: observed data.

The following question arises. Given such data, is it possible to check whether or not
these players are rational in the sense that they optimize with respect to an independent
preference relation and select a Nash equilibrium? Section 4 returns to this example and
indicates that the above data are not Nash rationalizable. The remaining part of the
introduction positions this research in the literature and introduces our main results.

1Sopher and Narramore (2000) carry out an experiment to test consistency and (in)transitivity of
individual choice over lotteries and mixtures of lotteries. In the spirit of their questionnaire, we propose
the players to select from a menu of mixtures over pure strategies.
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Many theories on behavior start from assumptions on the individual preference relation
over the feasible set of alternatives (e.g. transitivity, completeness). As soon as one accepts
that binary relations are not observable while actual choices are observable; it is important
to test whether the actual choices support or reject the assumptions. This issue has been
discussed by, among others, Arrow (1959), and Sen (1971).

There are at least two ways to tackle this problem. One approach (Sen, 1971) studies how
the selection reacts upon particular changes in the set of feasible alternatives. Obviously,
if the individual consults a transitive and complete preference relation, then he should not
reconsider his choice when the choice set shrinks while his selected alternative remains
feasible. Analogously, when he selects the same alternative from two different choice sets,
then he should select again this alternative from the union of these two choice sets. As
such, the hypothesis of revealed preference becomes testable. A second approach is offered
through the theory of revealed preferences. If an alternative is chosen from a set, then it is
top ranked in this choice set according to the revealed preference relation. The transitive
closure of this revealed preference relation is called the indirect revealed preference relation.
Richter’s (1966) congruence axiom provides necessary and sufficient conditions for a choice
function to be rationalizable: if an alternative a is indirectly revealed preferred to b, then
b should not be strictly revealed preferred to a.

Sprumont (2000) extends the problem of rationalizability to situations involving different
and interacting individuals. He defines a joint choice function to be Nash rationalizable
if there exists a profile of complete and transitive preference relations over the sets of
actions, so that the observed outcomes coincide with the Nash equilibria based upon these
preferences. In the spirit of Sen’s approach, he characterizes Nash rationalization through
the combination of an expansion and a contraction property. Ray and Zhou (2001) perform
a similar study for subgame perfect Nash equilibria.

We extend one of the results of Sprumont (2000) and tackle the Nash rationalizability of
collective choice when individuals have a menu of mixtures at their disposal (each mixture
defines a probability distribution over the set of pure strategies). For example, Table 1
might result from an experiment. Following the tradition in game theory, we interpret
the rational behavior of a player in terms of expected utility maximization. In particu-
lar, besides completeness and transitivity we impose an independence demand upon the
preference relations of the (rational) players. This independence condition states that the
relationships between two lotteries (over the set of pure strategies profiles) are not af-
fected when they are mixed in the same way with a third lottery. Myerson (1997, p11)
discusses the strength of the independence axiom in the expected utility maximization
theorem. In addition, he indicates some of the difficulties that arise in decision theory
when independence is dropped. As a matter of fact, Clark (2000) introduces a ‘revealed
Archimedean axiom’ (a continuity axiom) to capture the difference between rationalization
by an independent ordering and maximizing expected utility.

Furthermore, in contrast to Sprumont (2000), we follow the track of revealed preferences. If
only one individual is involved, it is sufficient to check the transitive closure of the revealed
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preference relation. The present setting with more than one individual, however, is more
demanding. We modify Richter’s axiom and require that the ‘transitive and independent’
closure of the revealed preference relation does not conflict with the strict revealed prefer-
ence relation. Besides that, we need an axiom that connects the individual behavior to the
collective behavior. We assume that a strategy profiles belongs to the collective choice if
each player keeps his selected strategy when he is assured that he is the only player allowed
to deviate. We refer to this condition as the collective choice being noncooperative. Later
on, we will argue that this condition has some flavor of an expansion-contraction axiom.
Our main result reads (see Theorem 3 in Section 4 for the exact formulation):

Theorem. A collective choice correspondence is Nash rationalizable if and only if it is
noncooperative and satisfies the modified version of Richter’s congruence axiom.

Let us highlight two intermediate results towards this theorem. First, we need a condition
that is strong enough to guarantee that a binary relation extends to a transitive, com-
plete, and independent relation. Here, we learn from Suzumura (1976), who showed that
consistency is sufficient and necessary for a relation to have an ordering extension. We
shift Suzumura’s result to a setup involving choices over lotteries, and we use the term
‘lottery-consistency’ as a reference. Second, we study the behavior of a single individual
choosing from a set of lotteries. Here, we show that the extended version of Richter’s
congruence axiom—restricted to one player—is sufficient and necessary for the individual
choice function to be rationalizable by an independent ordering.2 Then, we broaden the
setup from one individual to a finite number of interacting players. We apply the axiom
of noncooperation behavior and conclude the above theorem.3

This theorem can be used in an experimental setting to test whether players have inde-
pendent preference relations and select a Nash equilibrium. First, each player is told the
structure of the game: the number of players, the sets of pure strategies, the concept of
a mixture (and its interpretation as a probability distribution over the set of pure strate-
gies), and the payoff function. Subsequently, each individual is informed about the menus
available to all of the players, and is asked to choose from ‘his’ menu of mixtures. The
size of such a menu is either finite (e.g. MacDonald and Wall, 1989; Conlisk, 1989; Oliver,
2003) or infinite (Sopher and Narramore, 2000; Shachat, 2002). Once each player has in-
dependently chosen a mixture from his menu, the experimenter determines the resulting
lottery over the pure strategy profiles and the corresponding outcome.

The assumption that outcomes from mixed strategies are observable is crucial and we
recognize the intrinsic difficulties. The problem is especially manifest if observations only
encompass the pure strategy outcomes that result from the mixed strategy profile. For
these situations, the one shot Nash equilibrium in mixed strategies is a rather unappealing
equilibrium concept. However, in cases where the experimenter controls the outcomes,

2Section 3 discusses similar results obtained by Clark (1993, Thm 3) and by Kim (1996, Thm 3.1).
3Galambos (2005) considers a related set-up where the strategy space is restricted to consists only of

pure strategies. He introduces an analogous condition (I-congruence) for the Nash rationalizability. See
section 4 for a discussion.
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one may resort to the following setup. Each individual is asked to select a t-tuple of
pure strategies from his menu. Then, the experimenter computes for each individual the
corresponding probability distribution over the set of pure strategies, and computes—on
the basis of the product distribution—the corresponding outcome of the game. This setup
certainly avoids the problem of correlated distributions in case the game (and the one-shot
Nash equilibrium) is repeated t times. Furthermore, taking t large enough each lottery can
be approximated as accurately as desired.

In order to check whether individuals play a Nash equilibrium, we propose to proceed in two
stages. In a first experiment, the players are screened according to whether they maximize
with respect to an independent preference relation. This can be done, for instance, through
some Allais-paradox test (e.g. Conlisk, 1989; Oliver, 2003). This step filters out those
individuals who violate the expected utility criterion. In the second step, one confronts
the remaining players with a noncooperative game. As such, one can judge on the basis of
observations whether in mixed strategies the Nash criterion is rejected or supported.

The next section introduces the notation and studies binary relations and their independent
and transitive extensions. Section 3 introduces the concept of lottery-consistency as a test
for the rational behavior of an individual choosing over lotteries, and discusses related
results of Clark (1993) and Kim (1996). Section 4 extends the notation to collective choice
and proves the main result. Here, we also return to the data in Table 1. Section 5 links
our result to the analysis of Sprumont (2000). Finally, in Section 6 we demonstrate the
independency of the key axioms (noncooperation and congruence).

2 Independent ordering extensions

This section establishes the notation, introduces the concept of independence of a binary
relation, and provides conditions for a relation to have an independent ordering extension.

Let H ⊂ Rn be the hyperplane of n-vectors the coordinates of which add up to 1, and let
∆ = ∆n ⊂ H be the (n − 1)-dimensional simplex.4 An element x = (x1, x2, . . . , xn) in ∆
is an n-tuple of nonnegative real numbers adding up to 1, and is called a lottery. The i-th
coordinate xi of the lottery x gives the probability that state i occurs.

Throughout, the set D refers to either ∆ or H. A binary relation R in the set D is a subset
of the cartesian product D ×D. The symmetric component R ∩R−1 is denoted by I, the
asymmetric part R \ I by P , and the non-comparable part D ×D \ (R ∪R−1) by N . For
the binary relation R′ we denote these induced relations by I ′, P ′, N ′; for R∗ we use I∗,
P ∗, N∗; etc. A reflexive and transitive relation is said to be a quasi-ordering. A complete
quasi-ordering is said to be an ordering. The binary relation R′ in D extends the relation
R if R ⊂ R′ and P ⊂ P ′.

4For two sets A and B, we write A ⊂ B if each element of A belongs to B. The combination A ⊂ B
and B ⊂ A is summarized as A = B.
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Next, we introduce the notion of independence. This condition studies the behavior of
a binary relation on compound vectors. For x and y in H and for α a nonnegative real
number, the vector [α, x, y] denotes the linear combination α x+(1−α)y. For α in between
0 and 1, the compound vector [α, x, y] is a convex combination of x and y. And, for α > 1
the compound vector is a point on the ray starting in y and going through x and does not
belong to the closed interval [x, y].

A relation R in D is said to be independent if for each pair in R the composition with a
third vector in D preserves the initial relationships. Formally, R is independent if for each
x, y, and z in D, we have

if (x, y) ∈ R, α ≥ 0, [α, x, z] ∈ D, and [α, y, z] ∈ D; then ([α, x, z], [α, y, z]) ∈ R. (1)

This condition implies the reflexivity of R (put α = 0). Observe that α is allowed to take
values larger than 1. As a consequence of this, an independent relation satisfies the ‘strict’
version of condition (1):

if (x, y) ∈ P, α > 0, [α, x, z] ∈ D, and [α, y, z] ∈ D; then ([α, x, z], [α, y, z]) ∈ P.

Indeed, let us assume that (x, y) ∈ P and α > 0, while ([α, x, z], [α, y, z]) /∈ P . Since R is
independent and (x, y) ∈ P ⊂ R, it follows that ([α, x, z], [α, y, z]) ∈ R. The assumption
([α, x, z], [α, y, z]) /∈ P implies that ([α, y, z], [α, x, z]) ∈ R. Therefore,

(y, x) =

([
1

α
, [α, y, z], z

]
,

[
1

α
, [α, x, z], z

])
∈ R.

A contradiction is obtained: (y, x) ∈ R and (x, y) ∈ P . Note that α and 1/α simultaneously
occur (one of these values is larger than 1).

In case R happens to be a complete binary relation, a similar argument implies that R is
independent if and only if R is reflexive and for each x, y, z in D, and each α, we have

if (x, y) ∈ R (resp. P ) and 0 < α ≤ 1, then ([α, x, z], [α, y, z]) ∈ R (resp. P ). (2)

Obviously, condition (1) entails condition (2). Let us check that (2) implies (1). Suppose
the antecedent clause of (1) holds, and let α > 1. Then, the opposite conclusion—in the
assumption that R is complete—reads: “( [α, y, z], [α, x, z] ) ∈ P”. Again, we obtain a
contradiction: (y, x) ∈ P while (x, y) ∈ R.
Condition (2) only considers convex combinations and is therefore, in the present setting,
perhaps a more natural property.

There is an obvious relationship between the class of independent orderings on H and
the class of independent orderings on ∆. If R is an independent ordering on H, then its
restriction to ∆ is an independent ordering on ∆. The next lemma looks at the reverse
relationship.

Lemma 1. An independent, transitive, and complete relation R in ∆, uniquely extends
to an independent, transitive, and complete relation R′ in H.
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Proof. Let x and y belong to H. Let z be an element in the interior of ∆. Choose α > 0
sufficiently close to 0, such that x′ = [α, x, z] and y′ = [α, y, z] belong to ∆. Let the ordering
R′ on {x, y} agree with the ordering R on {x′, y′}. The ordering R′ on {x, y} does not
depend upon the choice of z and α. We show this by contradiction. Let x′′ = [β, x, u] ∈ ∆
and y′′ = [β, y, u] ∈ ∆ and assume that (x′, y′) ∈ R while (y′′, x′′) ∈ P . By independence,
we have([

β

α + β
, x′, y′′

]
︸ ︷︷ ︸

v1

,

[
β

α + β
, y′, y′′

]
︸ ︷︷ ︸

v2

)
∈ R and

([
α

α + β
, y′′, y′

]
︸ ︷︷ ︸

v3

,

[
α

α + β
, x′′, y′

]
︸ ︷︷ ︸

v4

)
∈ P.

Observe that v2 and v3 coincide. Transitivity of R implies that (v1, v4) ∈ P . One can write
v1 and v4 in terms of x, y, z, and u and verify that v1 = v4. Hence, we obtain (v1, v1) ∈ P .
This contradicts the definition of the asymmetric component P of the relation R. Therefore,
R′ is well defined. Transitivity and independence of R′ follows from the definition of R′ in
combination with the transitivity and independence of R.

Finally, we show that the extension R′ is unique. Let the independent, transitive, and
complete relations R′ and R′′ extend R. Let x and y belong to H. Let z be an element
in the interior of ∆. Choose α > 0 sufficiently close to 0 such that x′ = [α, x, z] and
y′ = [α, y, z] both belong to ∆. Since R′ and R′′ extend R and are independent, it follows
that R′ and R′′ rank x and y in the same way. Hence, R′ = R′′. 2

Now, we focus on conditions that are strong enough to guarantee that a binary relation
has an extension that is complete, transitive, and independent.

Let us insert here a result of Suzumura (1976, Thm 3) who solved a similar exercise.
Suzumura started from a relation R and looked for a complete and transitive relation
R∗ such that R ⊂ R∗ and P ⊂ P ∗. A natural way to proceed is to check whether the
transitive closure RT of R respects the asymmetric part, i.e. P ⊂ PT . Apparently, this
provides sufficient (and necessary) conditions: R has an ordering extension if and only if

for each x, y, we have (x, y) ∈ RT implies (y, x) /∈ P.

Suzumura labeled this condition as consistency.

We proceed similarly. Let R be a relation in D. The independent order relation R∗ in D is
said to be an independent ordering extension of R if R ⊂ R∗ and P ⊂ P ∗. The transitive
and independent closure of R is the smallest (for inclusion) relation in D that includes R,
satisfies transitivity and independence.

The next lemmas provide further insight in the transitive and independent closure of a
relation in the hyperplane H. Let R be a relation in H. Define the binary relation RTI

in H by (x, y) ∈ RTI if there exists a natural number k, elements x1 = x, x2, . . . , xk+1 = y
and z1, z2, . . . , zk in H, and positive real numbers α1, α2, . . . , αk such that

for each i = 1, 2, . . . , k, we have ([αi, xi, zi] , [αi, xi+1, zi]) ∈ R.
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Lemma 2. Let R be a relation in H. The above defined relation RTI is its transitive and
independent closure.

Proof. It is easy to see that RTI is transitive. To check independence, let (x, y) ∈ RTI ,
β ≥ 0, and let q ∈ H. We have to show that (x′ = [β, x, q] ; y′ = [β, y, q]) belongs to RTI .
Since (x, y) ∈ RTI , there exist elements xi (x1 = x and xk+1 = y), zi in H, and positive
real numbers αi such that

([αi, xi, zi] , [αi, xi+1, zi]) ∈ R, for each i = 1, 2, . . . , k.

Define vi = (1−αi)βzi−(1−β)αiq
β−αi

and x′i = [β, xi, q] in H. In case β = αi, the element vi has no
role and can be chosen arbitrarily, e.g. put vi = 0. It follows that([

αi

β
, x′i, vi

]
,

[
αi

β
, x′i+1, vi

])
∈ R, for each i = 1, 2, . . . , k.

Hence, (x′, y′) ∈ RTI .
Finally, we have to show that RTI is the smallest (for inclusion) independent and transitive
relation containing R. Let R′ be an independent and transitive extension of R. For each
(x, y) in RTI , there exists elements x1 = x, x2, . . . , xk+1 = y; z1, z2, . . . , zk in H and positive
real numbers α1, α2, . . . , αk such that

([αi, xi, zi] , [αi, xi+1, zi]) ∈ R, for each i = 1, 2, . . . , k.

The independence of R′ and the fact that R ⊂ R′ imply that (xi, xi+1) ∈ R′ for each
i = 1, 2, . . . , k. The transitivity of R′ implies that (x, y) ∈ R′. Therefore, RTI ⊂ R′. 2

Lemma 3. Let R be a relation in H. Then, (x, y) belongs to the transitive and independent
closure RTI of R if and only if

• either, (x, y) belongs to the transitive closure of R;

• or, x − y = Σ`
i=1βi(xi − yi), with (xi, yi) in R and βi > 0 for each i, and βj 6= 1 for

at least one j.

Proof. First, let (x, y) ∈ RTI . The elements x and y are linked through a finite sequence
x = x1, x2, . . . , xk+1 = y; and there exist z1, z2, . . . , zk in H and α1, α2, . . . , αk > 0 such
that

( [αi, xi, zi], [αi, xi+1, zi] ) ∈ R, for each i = 1, 2, . . . , k.

For each i we obtain [αi, xi, zi]− [αi, xi+1, zi] = αi (xi − xi+1). Multiply these equations by
1/αi > 0, and add them up:

x− y = x1 − xk+1 = Σk
i=1

[αi, xi, zi]− [αi, xi+1, zi]

αi

.
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In case α1 = α2 = · · · = αk = 1, then (x, y) belongs to the transitive closure of R.

Next, assume x − y = Σ`
i=1βi(xi − yi) with (xi, yi) in R, βi > 0, and βj 6= 1. We have to

prove that (x, y) ∈ RTI . We proceed by induction on `.

For ` = 1, it suffices to observe that the vector z = (x− β1x1)/(1− β1) in H allows us to
write x = [β1, x1, z] and y = [β1, y1, z].

Suppose the result holds up to `. Consider a positive linear combination of length ` + 1.
Assume that β1 6= 1. Consider (x′ − y′) = (1/β) × Σ`+1

i=2 βi(xi − yi), with 0 < β 6= 1 such
that at least one of the coefficients βi/β differs from 1. From the induction basis, we obtain
(x′, y′) ∈ RTI . Hence, we can write

x− y = β1(x1 − y1) + β(x′ − y′), with 0 < β1 6= 1 and 0 < β 6= 1.

Let z and ỹ in H solve the equations x1 = [1/β1, x, z] and y1 = [1/β1, ỹ, z]. Independence
implies (x, ỹ) ∈ RTI . Next, let z′ and y∗ in H solve the equations x′ = [1/β, ỹ, z′] and
y′ = [1/β, y∗, z′]. Then, (ỹ, y∗) ∈ RTI . The transitivity of RTI implies (x, y∗) ∈ RTI .
Finally, the equations x1 − y1 = (x− ỹ)/β1 and x′ − y′ = (ỹ − y∗)/β imply that y∗ = y. 2

Now, we are able to shift the result of Suzumura towards the present setting. We extend
the definition of consistency and we state the main result of this section.

Definition 1. The relation R in D is said to be lottery-consistent if for each x and y in
D, we have that (x, y) ∈ RTI implies (y, x) /∈ P .

Theorem 1. Let R be a relation in ∆. Then, R has an independent ordering extension
in ∆ if and only if R is lottery-consistent.

Proof. Let R∗ be an independent ordering extension of R. Then, by Lemma 2, R ⊂ RTI ⊂
R∗ and by the definition of extension P ⊂ P ∗. Hence, it cannot happen that (x, y) ∈ RTI

and (y, x) ∈ P ; otherwise the combination (x, y) ∈ R∗ and (y, x) ∈ P ∗ would occur.
Conclude that R is lottery-consistent.

The proof of the reverse implication is more involved. We indicate that the non-comparable
part of an incomplete, independent, and transitive extension of R can be further reduced
by adding one single couple. We use this result, in combination with a free ultrafilter on
an appropriate set, to define a complete, independent, and transitive extension of R.

Hence, let R∗ be an incomplete, independent, and transitive extension of R. Let (x, y) ∈
N∗. Define the relation Q = R∗ ∪ {(x, y)} and let QTI be the transitive and independent
closure of Q. We show that QTI extends R. First, observe the inclusions R ⊂ R∗ ⊂ QTI .
The inclusion P ⊂ PTI is shown by contradiction. Therefore, assume the existence of a
couple (z, w) in P such that (w, z) ∈ QTI . Apply Lemma 3 upon QTI and obtain

w − z = Σ`
i=1 βi(xi − yi), with (xi, yi) ∈ Q, and βi > 0 for each i.

As R∗ extends R and (z, w) ∈ P ⊂ P ∗, the pair (x, y) occurs at the right hand side; say
(x1, y1) = (x, y). Rewrite the previous equation:

y − x = γ(z − w) + Σ`
i=2 γi(xi − yi), with γ > 0, γi > 0 for each i.
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Lemma 3 implies that R∗ is able to compare x and y. This conflicts with (x, y) ∈ N∗.

Next, let [D]<∞ be the collection of all finite subsets of D. For each A in [D]<∞, let S(A)
collect all the finite supersets of A. For example, S(∅) = [D]<∞. Let U be an ultrafilter
that extends the filter generated by the family {S(A) |A ∈ [D]<∞}.5

For each set A ∈ [D]<∞, let the relation Q be an independent and transitive extension of
R that is able to compare all pairs in A. The relation Q either coincides with RTI or can
be obtained by adding a finite number of couples to RTI (as explained above). Denote the
restriction of Q to the set A by RA, i.e. RA = Q∩ (A×A). Finally, define the relation R∗

in D as follows:

(x, y) ∈ R∗ if and only if {A ∈ [D]<∞ | (x, y) ∈ RA} ∈ U .

We check that R∗ extends R, is independent and transitive, and complete.

(i) R∗ extends R. Let R be able to compare x and y. For each set A in S({x, y}) the
relation RA agrees with R on the pair {x, y}. As S({x, y}) belongs to the ultrafilter U , the
relation R∗ extends R.
(ii) R∗ is transitive and independent. Let x− y =

∑l
i=1 αi(xi − yi) with (xi, yi) ∈ R∗ and

αi > 0 for each i = 1, 2, . . . , l. By definition, the sets Ui = {A | (xi, yi) ∈ RA} belong to U .
The finite intersection property implies that U = U1 ∩U2 ∩ . . .∩Ul and U ∩S({x, y}) both
belong to U . Since each relation RA is transitive and independent, we have (x, y) ∈ RA∪{x,y}
for each A in U . Hence, (x, y) ∈ R∗.
(iii) R∗ is complete. Consider the pair {x, y}. The collection S({x, y}) splits up into three
parts,

S({x, y}) = {A | (x, y) ∈ PA} ∪ {A | (y, x) ∈ PA} ∪ {A | (x, y), (y, x) ∈ RA}.

Since U is an ultrafilter and S({x, y}) ∈ U , exactly one of these three parts belongs to U .
Conclude that R∗ is able to compare x and y. 2

3 Rationalizability of choice over lotteries

This section extends Richter’s result towards the rationalizability of individual choice over
lotteries. At the end of this section we shortly discuss similar studies by Clark (1993) and
by Kim (1996).

Consider the (n− 1)-dimensional simplex ∆ and let S be a collection of nonempty subsets
of ∆. A choice correspondence C is a correspondence

C : S −→→ ∆ : S 7−→ C(S) ⊂ S.

5A filter F on a set Ω is a subset of 2Ω that (i) does not contain the empty set (∅ 6∈ F), (ii) satisfies
the intersection property (if A,B ∈ F , then A ∩ B ∈ F), and (iii) is closed for supersets (if A ∈ F and
A ⊂ B ⊂ Ω, then B ∈ F). If the filter F contains, for each A ⊂ Ω, either A or its complement Ω − A;
then F is said to be an ultrafilter. An ultrafilter is a maximal (for inclusion) filter. Zorn’s lemma implies
that each filter extends to an ultrafilter. An ultrafilter that does not contain finite sets, is said to be free.
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The choice correspondence C is said to be rationalizable if there exists an independent
ordering R∗ in ∆ such that for each S in S the set C(S) collects the maximizers of the
restriction of R∗ to S, i.e.

for each S in S : C(S) = M(R∗|S) = {x ∈ S | for each y in S : (x, y) ∈ R∗} .

Observe that for a (rationalizable) choice correspondence the choice set C(S) might be
empty; e.g. if S ⊂ ∆ is an open (in the Euclidean topology) set and if the ordering
R∗ happens to be continuous, the set M(R∗|S) of maximizers might be empty. As it is
unclear what one should conclude on the basis of an empty choice set, we impose the choice
correspondence to be decisive on S, i.e. a set S for which C(S) = ∅ is excluded from S.

For a choice correspondence C : S →→ ∆, the revealed preference relations R̃ and π̃ in ∆
are defined as follows. The pair (x, y) belongs to the revealed preference relation R̃ if and
only if there is a set S in S such that x ∈ C(S) and y ∈ S. Furthermore, the pair (x, y)
belongs to the strict revealed preference relation π̃ if and only if there is a set S in S such
that x ∈ C(S) while y ∈ S \ C(S).

We extend the congruence axiom of Richter (1966).

Definition 2. A choice correspondence C : S →→ ∆ is said to satisfy the congruence
axiom if for each x and y in ∆ we have

(x, y) ∈ R̃TI implies (y, x) /∈ π̃,

where R̃TI is the transitive and independent closure of the revealed preference relation R̃.

We will show that this congruence axiom is strong enough to guarantee the choice corre-
spondence to be rationalizable. The next lemma is a first step towards this result.

Lemma 4. If the choice correspondence C : S →→ ∆ satisfies the congruence axiom,
then the asymmetric part P̃ of the revealed preference relation R̃ coincides with the strict
revealed preference relation π̃.

Proof. (i) : P̃ ⊂ π̃. If (x, y) ∈ P̃ , then (x, y) ∈ R̃ and (y, x) /∈ R̃. Hence, there exists a
set S such that x ∈ C(S) and y ∈ S; and for each set T containing x and y, it holds that
y /∈ C(T ). Put T = S and conclude that x ∈ C(S) while y ∈ S \ C(S), i.e. (x, y) ∈ π̃.

(ii) : π̃ ⊂ P̃ . If (x, y) ∈ π̃, then (x, y) ∈ R̃. In case also (y, x) ∈ R̃, the congruence axiom
is violated: (y, x) ∈ R̃ ⊂ R̃TI and (x, y) ∈ π̃. Therefore, (y, x) /∈ R̃ and (x, y) ∈ P̃ . 2

As a corollary we obtain that if a choice correspondence satisfies the congruence axiom,
then the revealed preference relation is lottery-consistent. The main result of this section
reads:

Theorem 2. Let the choice correspondence C : S →→ ∆ be decisive on S. Then, C is
rationalizable if and only if it satisfies the congruence axiom.

Proof. Let the independent ordering R∗ in ∆ rationalize the choice correspondence C.
Obviously, R∗ extends the revealed preference relation: R̃ ⊂ R∗ and π̃ ⊂ P ∗. As R∗ is
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transitive and independent, R∗ includes the transitive and independent closure R̃TI of R̃
(use Lemma 2). Suppose now that (y, x) ∈ π̃. Then, (y, x) ∈ P ∗ and (x, y) /∈ R∗. As a
consequence, if (y, x) ∈ π̃, then (x, y) /∈ R̃TI .

Let C satisfy the congruence axiom. By Lemma 4, the revealed preference relation is
lottery-consistent. Apply Theorem 1 and extend the revealed preference relation R̃ to an
independent ordering R∗ in ∆. Now, we have to verify whether C(S) = M(R∗|S) holds
each set S in S. Let x ∈ C(S). Hence, for each y in S we have (x, y) ∈ R̃ ⊂ R∗, i.e.
x ∈ M(R∗|S). Next, let x ∈ S \C(S). By assumption, C is decisive on S: there exists a y
in S such that y ∈ C(S). It follows that (y, x) ∈ π̃ ⊂ P ∗. Conclude that x /∈ M(R∗|S). 2

The ultimate goal is to establish a test for the null hypothesis

H0 : the individual choice correspondence C : S −→→ ∆ is rationalizable.

Of course, one can extract the binary relation behind the choice correspondence (by check-
ing all the pairs in ∆) and verify whether this relation is an independent ordering. In an
empirical setting, however, this is impossible to manage. Theorem 2 allows us to test on
the basis of a finite data set whether or not the null hypothesis should be rejected. As
usual, not rejecting H0 does not imply that H0 is shown to hold. The next section returns
to this issue.

Our approach to revealed preferences on lotteries differs from the work of Clark (1993)
and Kim (1996). Where Kim (1996, Appendix) uses a generalization of the theorem of
the alternative, we follow the axiomatic approach and start from the theory of binary
extensions. Furthermore, Kim (1996, Thm 3.1) restricts the attention to finite choice sets.
We do not impose restrictions on the size of the choice set. However, recall from Theorem
2 that we need the choice correspondence to be decisive on the choice sets.
Finally, as the revision of this paper was being completed, we learned of a result of Clark
(1993). Although his Theorem 3 is very similar to our Theorem 2, there are some differ-
ences. First, Clark formulates different independence axioms. In the presence of transitivity
and completeness, however, the combination of these axioms turn out to coincide with our
independence condition. Second, Clark applies the Hausdorff maximality principle to ob-
tain a complete relation. In contrast, we obtain completeness by means of a free ultrafilter
(cf. Theorem 1). Hence, both proofs rely on non-constructive methods. The existence of
a free ultrafilter, however, is a weaker assumption than the Hausdorff principle (which is
equivalent to the axiom of choice). Third, we believe that our Lemma 3 provides additional
insights to the concept of independency.

4 Nash rationalization of collective choice

Assume an experimental setting with individuals playing a game allowing mixtures over the
set of pure strategies. The experimenter observes the mixtures selected by each individual
separately. In case the profile of revealed preferences extends to a profile of independent
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orderings such that the selection corresponds to a Nash equilibrium, then we say that the
observations support the hypothesis of Nash rationalizable behavior. If the data reject this
hypothesis, then either some player does not consult a complete, transitive, and indepen-
dent binary relation, or the Nash equilibrium is not the right equilibrium concept. This
section develops such a test procedure.

We start by introducing some further notation. Let J = {1, 2, . . . ,m} be the set of players,
m ∈ N. Individual j has nj pure strategies, his strategy space ∆j is the (nj−1)-dimensional
simplex ∆nj . A strategy profile is a vector x = (x1, x2, . . . , xm) with xj in ∆j the strategy
of player j. The product set ∆J = ∆1 ×∆2 × · · · ×∆m collects all the strategy profiles:

∆J =
{
x = (x1, x2, . . . , xm) |xj = (xj 1, xj 2, . . . , xj nj

) ∈ ∆j, j = 1, 2, . . . ,m
}

.

In order to distinguish the strategy xj in ∆j of player j from the strategies of his opponents,
we denote the strategy profile x also by (xj, x−j) with x−j = (x1, . . . , xj−1, xj+1, . . . , xk)
collecting the strategies of j’s opponents.

A choice set S is a cartesian product S1 × S2 × · · · × Sm ⊂ ∆J with Sj a nonempty subset
of ∆j for each j. A choice set represents an experiment in which players are confronted
with restrictions within their strategy spaces. In the example in Section 1 (Table 1) each
choice set is the convex hull of a finite set of points. The results below do not hinge on
this convexity assumption.

For a choice set S, a strategy profile x in S, and a player j in J , we denote the cartesian
product Sj × {x−j} by Sx

j . In the choice set Sx
j the strategy space of player j is reduced

to Sj while the opponents only have one option (opponent i selects xi from his strategy
space {xi}).

Let S be a collection of choice sets. A joint choice correspondence C is a correspondence

C : S −→→ ∆J : S 7−→ C(S) ⊂ S.

We assume that the choice correspondence C is individually decisive, that is, we assume
that C(Sx

j ) is nonempty for each choice set in S of the form Sx
j . In words, when the choice

of all but one players is limited to only one option, then this one player should be able to
select a strategy.6

In order to employ individual decisiveness, we impose that for each choice set S in S all
one-person choice sets Sx

j derived from S also belong to S; Sprumont (2000) and Galambos
(2005) impose the same condition.

In contrast to the previous section, we do not equip the players with a preference relation
on the set ∆J of strategy profiles. Instead, we assume that the players have preferences over
the probability distributions of pure strategy profiles (e.g. via the payoffs corresponding to
the pure strategies). As each player j has nj pure strategies, these pure strategies generate

6Decisiveness is usually assumed in this context. Clark (1995) discusses indecisive choice functions.
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n = n1 n2 · · · nm pure strategy profiles.7 The (n − 1)-dimensional simplex ∆n collects all
the distributions over these profiles. Let d denote the map that converts a strategy profile
in ∆J into a probability distribution in ∆n:

d : ∆J −→ ∆n : x 7−→ d(x), with di1,i2,...,im(x) = x1 i1 x2 i2 · · · xm im ,

where ij runs over the pure strategies 1 to nj of player j. Within this notation, we can
define Nash rationalizability of choice over lotteries.

Definition 3. The joint choice correspondence C : S →→ ∆J is said to be Nash rational-
izable if there exists a profile (R∗

1, R
∗
2, . . . , R

∗
m) of independent orderings in ∆n such that

for each S in S, we have

x ∈ C(S) if and only if d(x) ∈ M
(
R∗

j | d(Sx
j )
)

for each j in J.

In words, a joint choice correspondence is Nash rationalizable if each player consults an
independent ordering to select his own strategy conditional upon his opponents’ strategies.

For a Nash rationalizable choice correspondence it holds that, whenever Sx
j is in the domain

S, x ∈ C(Sx
i ) if and only if d(x) ∈ M(R∗

i | d(Sx
i )). Hence, if C is Nash rationalizable and

Sx
j ∈ S for each j in J , then x ∈ C(S) if and only if x ∈ C(Sx

j ) for each j in J . The
noncooperative behavior of the players is clearly incorporated in the definition of Nash
rationalizability: a joint strategy is chosen if no single player has an incentive to deviate.

We modify the definitions of the revealed preference relations from the previous section
towards the present setting. Let a, b ∈ ∆n.

We start with the revealed preference relations R̃1, R̃2, . . . , R̃m. We have (a, b) ∈ R̃j if there
exist an x in ∆J and an Sx

j in S such that y ∈ Sx
j , x ∈ C(Sx

j ), and (a, b) = (d(x), d(y)).

Next, we consider the strict revealed preference relations π̃1, π̃2, . . . , π̃m. We have (a, b) ∈ π̃j

if there exist an x in ∆J , Sx
j in S, and y in Sx

j such that x ∈ C(Sx
j ), y ∈ Sx

j \ C(Sx
j ), and

(a, b) = (d(x), d(y)).

These modifications imply that a player is only able to reveal preferences conditional upon
a status quo of his opponents’ strategies. A player is able to select a above b only if he
has a and b at ‘his’ disposal, i.e. only if he is able to switch between a and b without the
cooperation of any other player.

Similar to the previous section, we search for conditions upon the revealed preferences to
guarantee the Nash rationalizability of a choice correspondence C : S →→ ∆J .

Definition 4. The joint choice correspondence C is said to satisfy the joint congruence
axiom if for all a and b in ∆n and for each j in J , we have

(a, b) ∈ R̃j T I implies (b, a) /∈ π̃j,

with R̃j T I the transitive and independent closure of the revealed preference relation R̃j.

7The example in Section 1 exhibits four pure strategy profiles: (U,L), (U,R), (D,L), and (D,R).

14



The next lemma states that if a joint choice correspondence satisfies the joint congruence
axiom, then the revealed preference relations are lottery-consistent. Its proof only involves
minor modifications of the proof of Lemma 4 and is omitted.

Lemma 5. If C satisfies the joint congruence axiom, then for each player j the asymmetric
part P̃j of the revealed preference relation R̃j coincides with the strict revealed preference
relation π̃j.

At this point we are ready to provide conditions for the rationalizability of the individual
choice correspondence Sx

j 7→ C(Sx
j ). In order to obtain rationalizability of the joint choice

correspondence S →→ ∆J , we need some ‘local-global’ condition to link the collective
choice from a set S with the individual choices from the sets Sx

j . Here, we return to the
noncooperative nature of the Nash equilibrium.

Definition 5. The joint choice correspondence C : S →→ ∆J is said to be noncooperative
if for each S in S we have

x ∈ C(S) if and only if x ∈ C(Sx
j ) for each j in J.

In words, if a strategy profile x is selected from S then each player j selects this profile
when the choice set S contracts or shrinks into his individual choice set Sx

j . And, if the
group of players jointly select x from the choice sets Sx

j , then the group of players jointly
select x from the union S = Sx

1 ∪ Sx
2 ∪ . . . ∪ Sx

m. As such, this axiom has some flavor of a
contraction-expansion property.

Noncooperation might be observed even in those cases where the individuals do not select
a Nash equilibrium or do not consult an ordering. While choice sets of the type Sx

j are
sufficient to test the joint congruence axiom, different types of choice sets are involved to
test the local-global condition of noncooperation. Section 6 provides further evidence for
the independency of these two axioms: we provide data sets that support one axiom and
violate the other axiom. Furthermore, the axioms of joint congruence and noncooperation
only depend on the choice sets and the selections made from these sets. As such, these
axioms are testable. The combination of noncooperation and the joint congruence axiom
implies the rationalizability of the joint choice correspondence.

Theorem 3. Let the joint choice correspondence C : S →→ ∆J be individually decisive
and assume that S satisfies the domain condition. Then, C is Nash rationalizable if and
only if C is noncooperative and satisfies the joint congruence axiom.

Proof. Let C be Nash rationalizable through the profile (R∗
1, R

∗
2, . . . , R

∗
m) of independent

orderings in ∆n. To prove that C satisfies the joint congruence axiom, one can apply
Theorem 2 upon the individual choice correspondences C : Sj →→ ∆j, where Sj collects
all the choice sets of the form Sx

j with S running through the collection S. That C is
noncooperative has been argued above (see Definition 4).

Now, suppose that C is noncooperative and satisfies the joint congruence axiom. Then,
each revealed preference relation R̃j is lottery-consistent and extends to an independent
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ordering R∗
j in ∆n (use Theorem 2). We have to check whether for each S in S, for each

x in S, it holds that

x ∈ C(S) if and only if d(x) ∈ M(R∗|d(Sx
j )) for each j in J.

Let x ∈ C(S). As C is noncooperative, it follows that x ∈ C(Sx
j ) for each j in J . Hence,

for each y in Sx
j we have (d(x), d(y)) ∈ R̃j ⊂ R∗

j . It follows that d(x) ∈ M(R∗
j |Sx

j ) for each
j in J .

Finally, let x ∈ S \ C(S) and assume that d(x) ∈ d(S). As C is noncooperative, there
exists at least one player j for which x /∈ C(Sx

j ). Since C is individually decisive, there
exists a y in Sx

j such that y ∈ C(Sx
j ). Therefore (d(y), d(x)) ∈ π̃j ⊂ P ∗

j . It follows that for
player j we have that d(x) /∈ M(R∗

j |d(Sx
i )). 2

This theorem establishes a rule to judge whether or not the hypothesis

H0 : the collective choice correspondence C : S −→→ ∆J is Nash rationalizable

should be rejected. The test is exact in the sense that as soon as the observations conflict
with the axiom of congruence, the null hypothesis is false with certainty. The probability
to reject the hypothesis when it is actually true is zero. Let us apply the test upon the
data (Table 1) presented in Section 1.

Denote x = C(S), x′ = C(S ′), and x′′ = C(S ′′). Let us list the four pure strategy profiles:
(U,L), (U,R), (D, L), and (D, R). We have that d(x) = (0.12, 0.28, 0.18, 0.42).

Use the axiom of noncooperation to conclude that player 1 reveals to (weakly) prefer
(0.4, 0.6) above any other strategy available to him, such as (0.3, 0.7). Let us write y =
(0.3, 0.7)×(0.3, 0.7), and d(y) = (0.09, 0.21, 0.21, 0.49). As such we learn that (d(x), d(y)) ∈
R̃1 TI .

Similarly, d(x′) = (0.168, 0.232, 0.252, 0.348). Since also the strategy (0.42, 0.58) is at the
disposal of player 1, it follows (again, use the axiom of noncooperation) that (d(x′), d(y′)) ∈
R̃1 TI , with d(y′) = (0.2205, 0.3045, 0.1995, 0.2755) ∈ ∆4.

Finally, d(x′′) = (0.25, 0.25, 0.25, 0.25). The available strategy (0.2, 0.8) leads to the distri-
bution d(y′′) = (0.1, 0.1, 0.4, 0.4). The data imply (d(x′′), d(y′′)) ∈ π̃1.

One can check that 2(d(x) − d(y)) + 4(d(x′) − d(y′)) + (d(x′′) − d(y′′)) = 0. Solve this
equation for d(y′′)− d(x′′) and conclude (use Lemma 3) that (d(y′′), d(x′′)) belongs to the
independent and transitive closure of R̃1. This contradicts our extended version of Richter’s
congruence axiom. Therefore, the data reject the hypothesis H0.

We close this section with a discussion of work by Galambos (2005), who obtains a single
condition—labeled I-congruence—for the Nash rationalizability in pure strategies. Define
the binary relation R∗

j in the product strategy space ∆J by (x, y) ∈ R∗
j if (i) the strategies

xi and yi coincide for each i 6= j and (ii) there exists an S in S for which x ∈ C(S). In
the assumption that the axiom of noncooperation holds, the relations R∗

j and R̃j coincide.
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Let R∗
j T I be the transitive and independent closure of R∗

j . We rephrase the I-congruence
axiom as follows. For each choice set S and for each strategy profile x,

if (x, y) ∈ R∗
j T I for each y in Sx

j and each j in N, then x ∈ C (S) .

This I-congruence condition combines the axioms of joint congruence and noncooperation
and therefore provides an alternative rationalizability condition. The above Theorem 3
uses two axioms that represent two separate ideas. The axiom of joint congruence reflects
the idea that each individual, independently of the behavior of his opponents, consults an
independent preference relation. The axiom of noncooperation reflects the idea of the Nash
equilibrium that each individual takes the behavior of the opponents as given.

5 Persistence axioms of Sprumont

In this section we show that the persistence conditions of Sprumont are equivalent to our
conditions for Nash rationalizability (when restricted to the setting of pure strategies).
As such we indicate that our Theorem 3 extends Theorem 2 of Sprumont (2000) to cases
involving mixtures over pure strategies.

Let Aj be the set of pure strategies available to player j and let A = A1×A2×· · ·×Am be
the set of all joint pure strategies. When restricted to the pure strategies, the map d from
the space ∆J of strategy profiles to the space d(∆n) of distributions over the pure strategy
profiles remains one-to-one. Observing a (degenerate) distribution in ∆n boils down to
observing the pure strategies selected by the players.

Sprumont (2000) considers the collection S of cartesian products S1 × S2 × · · · × Sm with
∅ 6= Sj ⊂ Aj and studies joint choice correspondences C : S →→ A that are decisive on S.

Such a correspondence C is said to be persistent under expansion if for each S and T in
S it holds that C(S) ∩ C(T ) ⊂ C(S ∨ T ), with S ∨ T the smallest choice set in S that
includes S and T .

Furthermore, C is said to be persistent under contraction if (i) for each S and T in S with
T ⊂ S it holds that C(S) ∩ T ⊂ C(T ) and (ii) for each S and T in S with T ⊂ Sx

j and
C(Sx

j ) ∩ T 6= ∅, it holds that C(T ) ⊂ C(Sx
j ).

The next proposition phrases the equivalence between the two approaches. Of course, this
proposition mutually supports our results and those of Sprumont.

Proposition. Let C : S →→ A be a decisive joint choice correspondence. Then, C is non-
cooperative and satisfies the joint congruence axiom (taking only the transitive closure into
account) if and only if C is persistent under expansion and persistent under contraction.

Proof. First, assume C is noncooperative and satisfies the congruence axiom. Let us check
whether C is persistent under expansion. Let S and T in S. If a ∈ C(S)∩C(T ), then (use
noncooperation) a ∈ C(Sa

j )∩C(T a
j ) for each j in J . Hence, the players reveal (a, b) ∈ R̃j for

each b in Sa
j ∪ T a

j . If for player i in J we have a /∈ C ((S ∨ T )a
i ), then this player reveals to
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strictly prefer some action b (the decisiveness of C implies the existence of such an action)
over a, i.e. (b, a) ∈ π̃i. This contradicts the congruence axiom. Hence, a ∈ C

(
(S ∨ T )a

j

)
for each j in J . Noncooperation implies a ∈ C(S ∨ T ).

We now verify persistence under contraction. Condition (i). Let T ⊂ S and a ∈ C(S)∩T .
Noncooperation implies that each player j selects a from the individual choice set Sa

j .
The congruence axiom implies that each player j selects a from the smaller choice set T a

j .
Conclude that a ∈ C(T ).
Contraction condition (ii). Let T ⊂ Sx

j , b ∈ C(Sx
j ) ∩ T , and a ∈ C(T ). As a consequence,

(a, b) ∈ R̃j. Hence, if this player does not select a from Sx
j , there exists a d in Sx

j such

that (d, a) ∈ π̃j. As b ∈ C(Sx
j ) and d ∈ Sx

j , it follows that (b, d) ∈ R̃j. These observations

contradict the congruence axiom: (a, d) belongs to the transitive closure of R̃j, while
(d, a) ∈ π̃j.

Next, suppose that C satisfies the persistence axioms. Let us check the congruence axiom.
Hence, assume (a, b) belongs to the transitive closure of R̃j with j in J . Denote the sequence
from a to b by a = a1, a2, . . . , ak+1 = b, i.e. we have (a1, a2), (a2, a3), . . . , (ak, ak+1) ∈ R̃j. As
player j is only able to reveal preferences conditional upon a status quo of his opponents,
it must be the case that a1, a2, . . . , ak+1 ∈ Aj × {a−j}, remember that a−j collects the
strategies of j’s opponents. Persistence under contraction (part i) allows us to focus on the
sets S` = {a1, a2, . . . , a`} with ` = 2, 3, . . . , k + 1. One can check that C(S`) ∩ S`−1 6= ∅.
From persistence under contraction (part ii) it follows that C(S`−1) ⊂ C(S`). Therefore,
a ∈ C(Sk+1), and a ∈ C({a, b}). Conclude that (b, a) /∈ π̃j and (a, b) /∈ R̃j.

Finally, we check for noncooperation. Let x ∈ C(Sx
j ) for each j in J . Persistence under

expansion implies x ∈ C(Sx
1 ∨ Sx

2 ∨ . . . ∨ Sx
m) = C(S). And, if x ∈ C(S), then x ∈ C(Sx

j )
for each j (use persistence under contraction). 2

6 Noncooperation versus joint congruence

We show that noncooperation and joint congruence are independent axioms. We provide
two examples. The first observed data set supports noncooperation and conflicts with
joint congruence. The second data set conflicts with noncooperation and supports the
joint congruence axiom.

Example 1 (noncooperation but not joint congruence).
Consider a setup with two individuals. Each individual has two pure strategies, a mixed
strategy by player j is denoted by xj = (xj1, xj2) with xj1 + xj2 = 1, j = 1, 2.
The following data (only singleton-selections are involved) are observed:

choice set observed selection

A = {(x1, x2) | 1 ≥ x11 ≥ 0.5, x21 = 0.3},
B = {(x1, x2) | 0.5 ≥ x11 ≥ 0, x21 = 0.4},
D = {(x1, x2) | 1 ≥ x11 ≥ 0.5, 1 ≥ x21 ≥ 0.5},

C(A) = z = ((0.5, 0.5); (0.3, 0.7)),
C(B) = y = ((0.5, 0.5); (0.4, 0.6)),
C(D) = w = ((0.5, 0.5); (0.5, 0.5)).

In addition, we observe C(Az
j) = z, C(By

j ) = y, and C(Dw
j ) = w where j = 1, 2. Hence,
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the axiom of noncooperation is supported. We now argue that the data do violate joint
congruence. Let {z′} = {((0.6, 0.4), (0.3, 0.7))} ∈ Az

1, {y′} = {(0.4, 0.6), (0.4, 0.6)} ∈ By
1 ,

and {w′} = {(0.6, 0.4), (0.5, 0.5))} ∈ Dw
1 .

We have (d(z), d(z′)) ∈ π̃1, (d(y), d(y′)) ∈ R̃1, and (d(w), d(w′)) ∈ R̃1. The equality

d(z′)− d(z) = 2 [d(y)− d(y′)] + [d(w)− d(w′)]

implies that (d(z′), d(z)) belongs to R̃1 TI . Hence, joint congruence is violated. 2

Example 2 (joint congruence but not noncooperation).
We keep the setting and the notation of the previous example. We adjust the set D and
the selection C(D):

choice set observed selection

A = {(x1, x2) | 1 ≥ x11 ≥ 0.5, x21 = 0.3},
B = {(x1, x2) | 0.5 ≥ x11 ≥ 0, x21 = 0.4},
D = {(x1, x2) | 0.5 ≥ x11 ≥ 0, 1 ≥ x21 ≥ 0.5},

C(A) = z = ((0.5, 0.5); (0.3, 0.7)),
C(B) = y = ((0.5, 0.5); (0.4, 0.6)),
C(D) = w = ((0, 1); (0.5, 0.5)).

Furthermore, C(Az
1) = C(Az

2) = z, C(By
1) = C(By

2) = y, and C(Dw
2 ) = w. Finally, the

selection C(Dw
1 ) = {((0.5, 0.5), (0.5, 0.5)} and differs from C(D). Hence, noncooperation is

violated. In order to check the joint congruence axiom, we consider the revealed preference
R̃1 and strict revealed preference π̃1 of individual 1. For example

(d(z), d(z′)) ∈ R̃1 as soon z′ = ((z′1, 1− z′1), (0.3, 0.7)) and 1 ≥ z′1 ≥ 0.5,

and
(d(z), d(z′)) ∈ π̃1 as soon z′ = ((z′1, 1− z′1), (0.3, 0.7)) and 1 ≥ z′1 > 0.5.

We proceed by contradiction and assume that R̃1 and π̃1 do not satisfy the axiom of
joint congruence. Then, there exist finite subsets A′ ⊂ A, B′ ⊂ B, and D′ ⊂ D and
corresponding vectors α, β, and γ of positive real numbers such that∑

zi ∈A′

αi(d(z)− d(zi)) +
∑

yj ∈B′

βj(d(y)− d(yj)) +
∑

wk ∈D′

γk(d(w)− d(wk)) = 0, (3)

where at least one element in A′ ∪ B′ ∪ C ′ is strictly preferred over the corresponding
selection. As both players have two pure strategies, equation (3) lives in R4. We consider
the projection generated by strategy 1 for both players, and the projection generated by
strategy 1 for player 1 and strategy 2 for player 2:∑

i

αi (0.5− zi
1) 0.3 +

∑
j

βj (0.5− yj
1) 0.4 +

∑
k

γk (0.5− wk
1) 0.5 = 0 (4)∑

i

αi (0.5− zi
1) 0.7 +

∑
j

βj (0.5− yj
1) 0.6 +

∑
k

γk (0.5− wk
1) 0.5 = 0. (5)
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Multiply equation (4) by two and subtract equation (5) and obtain:

−
∑

i

αi (0.5− zi
1) 0.1 +

∑
j

βj (0.5− yj
1) 0.2 +

∑
k

γk (0.5− wk
1) 0.5 = 0.

Since zi
1 ≥ 0.5, each term in the previous equation is nonnegative and should be equal to

zero. We obtain a contradiction. The joint congruence condition is satisfied for individual
1. The congruence condition for individual 2 is checked for in a similar way. 2
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