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Abstract

A well known result in the theory of binary relations states that a binary relation
has a complete and transitive extension if and only if it is consistent (Suzumura
(1976), theorem 3). A relation is consistent if the elements in the transitive closure
are not in the inverse of the asymmetric part. We generalize this result by replacing
the transitive closure with a more general function. Using this result, we set up a
procedure which leads to existence results for complete extensions satisfying various
additional properties. We demonstrate the usefullness of this procedure by applying
it to the properties of convexity, homotheticity and monotonicity.

1 Introduction

Consider a universal set of alternatives, X, and a binary relation, R, on X, with asymmetric
part P (R). An extension R∗ of R is a binary relation on X for which R ⊆ R∗ and
P (R) ⊆ P (R∗). The concept was initiated by Szpilrajn (1930), who showed that every
transitive relation has an ordering (complete and transitive) extension.

Since then, the concept of ordering extensions has drawn a lot of attention within various
research areas (e.g. Dushnik and Miller (1941), Suzumura (1976), Donaldson and Wey-
mark (1998) and Duggan (1999)). A fundamental contribution to the theory of ordering
extensions is due to Suzumura (Suzumura (1976), theorem 3), who showed that:

A binary relation R has an ordering extension if and only if it is consistent, i.e. if and only
if T (R) ∩ P−1 (R) = ∅, where T (R) is the transitive closure of R.

This paper generalizes Suzumura’s result by replacing the transitive closure, T , with a
more general function F . Theorem 2, in section 2, shows that under certain restrictions
on the function F :
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A binary relation R has a complete extension R′, satisfying R′ = F (R′), if and only if
F (R) ∩ P−1(R) = ∅.
This result allows the use of a uniform procedure which verifies the existence of complete
extensions satisfying various additional properties. The procedure takes the following steps:

i. Construct a function F .

ii. Show that a complete relation R′ equals F (R′) if and only if R′ satisfies some desired
properties, such as convexity, homotheticity, monotonicity or transitivity.

iii. Verify that F satisfies the requirements of theorem 2 in section 2,

iv. Apply theorem 2 to conclude that a relation R has a complete extension R′ = F (R′)
if and only if F (R) ∩ P−1(R) = ∅.

We use this procedure to establish existence results of ordering extensions satisfying the
properties mentioned in step ii above.
In section 2, we introduce notation and basic definitions and derive the main result of the
paper. In section 3, we apply this result to specific properties, i.e. transitivity, convexity,
homotheticity and monotonicity. In section 4, we build a bridge between the revealed
preference literature and our result and in section 5, we present conclusions.

2 The General Extension Result

Consider a universal set X of alternatives. A set R ⊆ X ×X is called a binary relation on
X. We denote the set of all binary relations on X by R. Given a relation R, we define its
inverse R−1 by (x, y) ∈ R−1 if and only if (y, x) ∈ R. The symmetric part of R is given by
R ∩R−1 and is denoted by I (R), the asymmetric part R− I (R) is denoted by P (R) and
the non-comparable part X ×X − (R ∪R−1) by N (R).

A binary relation R is complete if for all x, y ∈ X : (x, y) ∈ R or (y, x) ∈ R. A binary
relation R is transitive if for all x, y, z ∈ X: if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

Definition 1. A relation R′ is an extension of the relation R, denoted R � R′, if R ⊆ R′

and P (R) ⊆ P (R′).

The relation � is symmetric: for all R : R � R, and transitive: if R � R′ and R′ � R′′,
then R � R′′.

Consider a function F : R→ R and let R∗ = {R ∈ R|R � F (R)}. In the next section, we
will present several examples for F . Until then, it may be usefull to think of the transitive
closure1 T as a possible candidate.

We have the following result.

1For a relation R ∈ R, we say that (x, y) ∈ T (R) if there exists elements x1, ..., xn in X such that
x1 = x, xn = y and for all i = 1, ..., n− 1: (xi, xi+1) ∈ R.

2



Lemma 1. Let R ⊆ F (R). Then in order that R ∈ R∗ it is necessary and sufficient that
F (R) ∩ P−1(R) = ∅.

Proof. (→) Let R � F (R) and assume on the contrary that there are elements x and
y ∈ X such that (x, y) ∈ F (R) and (y, x) ∈ P (R). As R � F (R), we must have that
(y, x) ∈ P (F (R)). This contradicts with (x, y) ∈ F (R).

(←) Let R ⊆ F (R) and assume that F (R)∩P−1(R) = ∅. In order to show that R � F (R)
it suffices to demonstrate that P (R) ⊆ P (F (R)). Assume that there are elements x and
y ∈ X such that (x, y) ∈ P (R). From F (R)∩P−1(R) = ∅, we conclude that (y, x) /∈ F (R).
Therefore, (x, y) ∈ P (F (R)) and R � F (R).

Recall from the introduction that Suzumura characterized the set of relations R ∈ R, for
which there exists a complete and transitive relation R′ such that R � R′, by the condition
that T (R) ∩ P−1(R) = ∅.
Likewise, we would like to characterize the relations R ∈ R, for which there exists a
complete relation R′ ∈ R∗ (or equivalently R′ = F (R′)) such that R � R′, by the condition
F (R) ∩ P−1(R) = ∅.

Lemma 2. Let F : R→ R and let R∗ = {R ∈ R|R � F (R)}. If F satisfies the following
conditions:

C1: for every well-ordered chain R0 ⊂ R1 ⊂ ... ⊂ Rα ⊂ ... of relations in R∗, the union⋃
0≤α Rα is also in R∗, and,

C2: for every relation R ∈ R∗ such that N(R) 6= ∅, there exists a non-empty subset T of
N(R) such that R ∪ T ∈ R∗,

then in order for a relation R ∈ R with R ⊆ F (R), to have a complete extension R′ = F (R′)
it is sufficient that F (R) ∩ P−1(R) = ∅.

Before we give the proof, let us first outline the intuition behind the conditions C1 and C2.
Recall from lemma 1 that if R ⊆ F (R), the condition F (R) ∩ P−1(R) = ∅ is equivalent to
the condition R ∈ R∗. The idea is to enlarge R by repeatedly adding elements of N(R),
such that these enlarged relations remain in R∗. This is exactly what condition C2 allows
to do. If X is finite, C2 is sufficient to end up with a complete extension. However, if X
is infinite, this is no longer true. For these cases we added the, rather technical, condition
C1.

Proof of lemma 2. Let Ω be the set {R′ ∈ R∗|R � R′}. By lemma 1, we know that R ∈ Ω.
Consider a well-ordered chain R0 ⊂ R1 ⊂ ... ⊂ Rα ⊂ ... in Ω and consider the relation
B =

⋃
0≤α Rα. We will prove that B ∈ Ω. From condition C1, we know that B is in

R∗, so we are left to show that R � B. Clearly, R ⊆ B. If on the contrary there are
elements x and y ∈ X for which (x, y) ∈ P (R) and (y, x) ∈ B, we have that there must
be a relation Rα in the well-ordered chain for which (y, x) ∈ Rα. This contradicts with
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R � Rα. Conclude that B ∈ Ω. By application of Zorn’s lemma, the set Ω has a maximal
element. Let R′ be such a maximal element.

In order to show that R′ is complete, assume on the contrary that N(R′) 6= ∅. We can use
condition C2 and conclude that there exists a subset T ⊆ N(R′) for which R′ ∪ T ∈ R∗.
Let us now show that R′ ∪ T ∈ Ω. For this, we must prove that R � R′ ∪ T . Clearly
R ⊂ R′ ∪ T . To show that P (R) ⊆ P (R′ ∪ T ), assume on the contrary that (x, y) ∈ P (R)
and (y, x) ∈ T . This implies that (x, y) ∈ N(R′), in contradiction with P (R) ⊆ P (R′).
Therefore, R � R′ ∪ T and R′ ∪ T ∈ Ω. This contradicts with the maximality of R′.
Conclude that R′ is complete.

We finish the proof by demonstrating that R′ = F (R′). As R′ � F (R′), we immediately
have that R′ ⊆ F (R′). To see the reverse, assume that there are elements x and y ∈ X
for which (x, y) ∈ F (R′). If (y, x) ∈ P (R′), we would derive that (y, x) ∈ P (F (R′)), a
contradiction. Therefore, we must have that (y, x) /∈ P (R′). From completeness of R′, we
conclude that (x, y) ∈ R′. Hence, F (R′) ⊆ R′.

Lemma 3. Let F : R→ R and let R∗ = {R ∈ R|R � F (R)}. If F satisfies the following
condition:

C3: for all R and R′ ∈ R, if R ⊆ R′, then F (R) ⊆ F (R′),

then in order that a relation R ∈ R with R ⊆ F (R), has a complete extension R′ = F (R′)
it is necessary that F (R) ∩ P−1(R) = ∅.

Proof. Let R ⊆ F (R) and assume that R′ = F (R′) is a complete extension of R. Assume,on
the contrary, that there exists elements x, y ∈ X for which (x, y) ∈ F (R) and (y, x) ∈ P (R).
The relation R′ extends R. Therefore (y, x) ∈ P (R′). If we apply condition C3 to, R ⊆ R′,
we derive that F (R) ⊆ F (R′). Hence, (x, y) ∈ F (R′) = R′, a contradiction.

The combination of lemma 1, lemma 2 and lemma 3 leads to the following result.

Theorem 1. Let F : R → R satisfy the conditions C1, C2, C3. Then in order that a
relation R ∈ R with R ⊆ F (R) has a complete extension R′ = F (R′) it is necessary and
sufficient that F (R) ∩ P−1(R) = ∅.

In the remaining part of this section, we will impose restrictions on the function F beyond
C1, C2 and C3. There are several reasons for this. First of all, it allows us to impose a
more familiar structure on F : although the conditions C1, C2 and C3 are fairly general,
they do not correspond to a particular known class of functions. Second, we have been
unable to find any economically interesting applications for which the function F satis-
fies conditions C1, C2 and C3, but not these extra conditions. Finally, imposing these
additional restrictions here allows us to simplify and shorten the proofs in the next section.

Definition 2. The function F is a closure operator if it satisfies condition C3,

C4: for all R ∈ R : R ⊆ F (R), and,
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C5: for all R ∈ R : F (F (R)) ⊆ F (R).

The function F is an algebraic closure operator if, in addition, it satisfies:

C6: for all R ∈ R and all (x, y) ∈ F (R), there is a finite relation R′ ⊆ R such that
(x, y) ∈ F (R′).

Algebraic closure operators are found mainly within the field of algebra whereas closure
operators are found in various fields of mathematics: e.g. topology, set theory, lattice
theory, etc. Let us first show how algebraic closure operators relate to the conditions
C1, C2 and C3.

Lemma 4. Let F : R → R be an algebraic closure operator and let R∗ = {R ∈ R|R �
F (R)}. If F satisfies,

C7: for all R ∈ R, if R = F (R) and N(R) 6= ∅, there exists a non-empty subset T of
N(R) such that R ∪ T ∈ R∗

then F satisfies the conditions C1, C2 and C3.

Proof. The function F is a closure operator, hence it automatically satisfies condition C3.

Let us begin by showing that F satisfies condition C2. First, notice that C4 and C5
together, imply that F (F (R)) = F (R) for all R ∈ R. Consider a relation R ∈ R∗ for
which N(R) 6= ∅.
If R = F (R), we have from F (F (R)) = F (R), that F (R) ∈ R∗. Therefore, in this case,
condition C2 is equivalent to condition C7. If R ⊂ F (R), we consider the set T = F (R)−R.

Again, by F (F (R)) = F (R), we have that R∪T ∈ R∗. The proof is complete if we can show
that T ⊆ N(R). Therefore, assume on the contrary that there are elements x and y ∈ X
such that (x, y) ∈ T and (x, y) /∈ N(R). If (x, y) ∈ R, we derive, from the construction of T ,
that (x, y) /∈ T , a contradiction. Therefore, it must be that (y, x) ∈ P (R). As T ⊆ F (R),
we must also have that (x, y) ∈ F (R). This contradicts R � F (R), i.e. P (R) ⊆ P (F (R)).
Conclude that T ⊆ N(R).

Finally, we need to show that F satisfies C1. Consider a well-ordered chain R0 ⊆ R1 ⊆
... ⊆ Rα ⊆ ... in R∗ and let B =

⋃
α≥0 Rα. We have to show that B ∈ R∗. Applying

condition C4, we derive that B ⊆ F (B). Hence, from lemma 1, we only need to verify
that F (B) ∩ P−1(B) = ∅. Therefore, assume on the contrary that there exists elements x
and y ∈ X for which (x, y) ∈ F (B) and (y, x) ∈ P (B). The closure F is algebraic, hence
there exists a finite subset B′ ⊆ B for which (x, y) ∈ F (B′). Consider a relation Rα in
the well-ordered chain for which B′ ⊆ Rα. The existence of such relation is guaranteed by
finiteness of B′. From condition C3, we know that (x, y) ∈ F (Rβ) for all β ≥ α. Also, from
the construction of B, we know that there is an integer α′ ≥ 0 such that (y, x) ∈ P (Rβ′)
for all β′ ≥ α′. Conclude that (x, y) ∈ F (Rα′′) ∩ P−1(Rα′′) for all α′′ ≥ max{α, α′}. This
contradicts with the assumption that Rα′′ ∈ R∗ for all Rα′′ in the well-ordered chain.

Theorem 1, together with lemma 1 and lemma 4, gives us the following result:
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Theorem 2. Consider an algebraic closure operator F : R → R that satisfies condition
C7. Then a relation R ∈ R has a complete extension R′ = F (R′) if and only if F (R) ∩
P−1(R) = ∅.

We finish this section by providing a characterization for closure operators which will
be usefull in the next section. This characterization is well-known, but we prove it for
completeness.

Lemma 5. Assume that F satisfies F (X ×X) = X ×X. Then F is a closure operator if
and only if for all R ∈ R:

F (R) =
⋂
{Q ⊇ R|Q = F (Q)}.

Proof. Let F (R) =
⋂
{Q ⊇ R|Q = F (Q)} for all R ∈ R. To show that F satisfies condition

C4, assume that (x, y) ∈ R. Then, (x, y) ∈ Q for all Q ⊇ R. Hence also for those relations
Q that satisfy Q = F (Q). Therefore (x, y) ∈ F (R). To see condition C3 let R ⊆ R′ and
assume that (x, y) ∈ F (R). Then (x, y) ∈ Q for all Q ⊇ R that satisfy Q = F (Q). As
R′ ⊇ R, we must have that (x, y) ∈ Q′ for all Q′ ⊇ R′ that satisfy Q′ = F (Q′). Hence,
(x, y) ∈ F (R′). To see condition C5, let (x, y) ∈ F (F (R)). Then we have that (x, y) ∈ Q
for all Q ⊇ F (R) that satisfy Q = F (Q). If on the contrary (x, y) /∈ F (R) there must be
a Q′ ⊇ R for which (x, y) /∈ Q′ and Q′ = F (Q′). As Q′ ⊇ R, we derive from condition C3
that F (Q′) ⊇ F (R). Together with Q′ = F (Q′), we derive that Q′ ⊇ F (R). This, however,
contradicts with the assumption that (x, y) ∈ F (F (R)).

Let F satisfy conditions C3, C4 and C5. From C3 and C5, we know that F (R) =
F (F (R)) for all R ∈ R. Hence if (x, y) ∈ Q for all Q ⊇ R that satisfy Q = F (Q), we
must also have that (x, y) ∈ F (R). Therefore

⋂
{Q ⊇ R|Q = F (Q)} ⊆ F (R). To see the

reverse, assume that (x, y) ∈ F (R). By condition C3, we have that (x, y) ∈ F (Q) for all
Q ⊇ R. In particular, this must also hold for all Q that satisfy Q = F (Q). Therefore
F (R) ⊆

⋂
{Q ⊇ R|Q = F (Q)}.

3 Transitive, convex, homothetic and monotonic ex-

tensions

This section applies theorem 2 to several properties. The procedure that we will follow for
any of these properties takes the following steps:

i. Define a function F .

ii. Show that a (complete) relation R′ equals F (R′) if and only if R′ satisfies the desired
properties.

iii. Verify that F is an algebraic closure operator that satisfies condition C7. We do this
in three steps:
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iii.1 Show that F is a closure operator, i.e. F (R) =
⋂
{Q ⊇ R|Q = F (Q)}.

iii.2 Show that the closure operator F is algebraic, i.e. F satisfies condition C6.

iii.3 Show that F satisfies condition C7.

iv. Apply theorem 2 to conclude that a relation R, with R ⊆ F (R), has a complete
extension R′ = F (R′) if and only if R ∩ P−1(R) = ∅.

3.1 Transitive extensions

In this section, we reproduce the result of Suzumura (1976) that every relation has a
complete and transitive extension if and only if it is consistent2.

We begin by introducing some notation and definitions.

Definition 3. A finite sequence s in X of length ns ∈ N is a function

s : {1, ..., ns} → X : i→ s(i).

Let S collect all finite sequences in X. Sometimes, it will be convenient to define the
sequence s ∈ S by the enumeration of its image: s = s(1), ..., s(ns).

For two sequences s1 and s2 ∈ S we can construct the compound sequence s′ ∈ S of length
(ns1 + ns2), given by s′ = s1(1), ..., s1(ns1), s2(1), ..., s2(ns2). We denote this sequence by
s′ = s1 ⊕ s2.

Definition 4. A relation R in X is transitive if for all x, y and z ∈ X:

(x, y) ∈ R and (y, z) ∈ R→ (x, z) ∈ R.

Now, we are ready to apply steps (i)-(iv) mentioned in the introductory paragraph of
section 3. We start by defining the function T .

i. Define the function T

The function T : R→ R is given by (x, y) ∈ T (R) if and only if there is a sequence s ∈ S
such that s(1) = x, s(ns) = y and for all i = 1, ..., ns − 1:

(s(i), s(i + 1)) ∈ R.

In the second step, we relate the function T to the property of transitivity.

ii. For all R ∈ R : R = T (R)↔ R is transitive.

2A relation R is consistent if for any sequence x1, ..., xn of elements in X, if x1 = x, xn = y and for all
i = 1, ..., n− 1: (xi, xi+1) ∈ R, then (y, x) /∈ P (R).
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Proof. (→) Consider a relation R = T (R) and elements x, y and z ∈ X. Consider the
sequence s = x, y, z. If (x, y) ∈ R and (y, z) ∈ R, we can apply the definition of T to the
sequence s and conclude that (x, z) ∈ T (R) = R. Therefore, R is transitive.

(←) Assume that R is transitive. First of all, notice that for all R ∈ R : R ⊆ T (R), i.e.
the function T satisfies condition C4. To see that T (R) ⊆ R, let (x, y) ∈ T (R). From the
definition of T , we know that there exists a sequence s ∈ S such that s(1) = x, s(ns) = y
and for all i = 1, ..., ns − 1, (s(i), s(i + 1)) ∈ R. Let us show that (x, y) ∈ R by induction
on ns. For ns = 2, we immediately have that (x, y) ∈ R. For the induction step, assume
that the property holds for all ns ≤ k and consider the case where ns = k + 1. Consider
the subsequence s′ of s given by s′ = s(1), ..., s(ns − 1). By the induction hypothesis, we
have that (x, s(ns − 1)) ∈ R. Also, by assumption, (s(ns − 1), y) ∈ R. By transitivity of
R, we conclude that (x, y) ∈ R. Hence, R = T (R).

In the third step, we show that T satisfies the conditions of theorem 2.

iii. The function T is an algebraic closure operator which satisfies property C7.

First we show that T is a closure operator.

iii.1 For all R ∈ R : T (R) =
⋂
{Q ⊇ R|Q = T (Q)}.

Proof. (⊆) Let (x, y) ∈ T (R) and assume that Q ⊇ R and Q = T (Q). From the definition
of T , we know that there exists a sequence s ∈ S for which s(1) = x, s(ns) = y and for all
i = 1, ..., ns − 1: (s(i), s(i + 1)) ∈ R. As Q ⊇ R, we have that for all i = 1, ..., ns − 1, also
(s(i), s(i + 1)) ∈ Q. Applying the definition of T to the relation Q and the sequence s, we
see that (x, y) ∈ T (Q). Conclude that (x, y) ∈ Q, hence (x, y) ∈

⋂
{Q ⊇ R|Q = T (Q)}.

(⊇) Assume that (x, y) ∈
⋂
{Q ⊇ R|Q = T (Q)}. We first show that T (R) is transi-

tive. Consider elements x, y and z ∈ X such that (x, y) ∈ T (R) and (y, z) ∈ T (R).
From the definition of T , we know that there must exist sequences s and s′ ∈ S such
that s(1) = x, s(ns) = y, s′(1) = y, s′(ns′) = z and for all i = 1, ..., ns − 1 and j =
1, ..., ns′ − 1: (s(i), s(i + 1)) ∈ R and (s(j), s(j + 1)) ∈ R. Consider the sequence
s′′ = s(1), ..., s(ns), s

′(2), s′(3), ..., s′(ns′). If we apply the definition of T to this sequence,
we derive that (x, z) ∈ T (R), establishing that the relation T (R) is transitive. Applying
the result from section 3.1.ii, we derive that T (T (R)) = T (R). Therefore T (R) ∈ {Q ⊇
R|Q = T (Q)}. Conclude that (x, y) ∈ T (R).

Next, we show that the closure operator T is algebraic.

iii.2 The function T satisfies condition C6.

Proof. Consider a relation R and an element (x, y) ∈ T (R). From the definition of T ,
we must have that there is a sequence s ∈ S for which s(1) = x, s(ns) = y and for all
i = 1, ..., ns − 1: (s(i), s(i + 1)) ∈ R. Consider the set D = {s(1), ..., s(ns)} and construct
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the relation R′ = R ∩ (D ×D). If we apply the definition of T to the sequence s and the
finite relation R′ we can conclude that (x, y) ∈ T (R′). Therefore, the function T satisfies
condition C7.

Finally, we show that T satisfies condition C7.

iii.3 The function T satisfies condition C7.

Proof. Consider a relation R = T (R) and assume that N(R) 6= ∅. Take an element
(x, y) ∈ N(R) and consider the relation R′ = R ∪ {(x, y)}. Let us show that R′ � T (R′).
The function T satisfies condition C4, hence: R′ ⊆ T (R′). Therefore, by lemma 1, we only
need to show that T (R′)∩ P−1(R′) = ∅. Assume, on the contrary, that there are elements
z and w ∈ X for which (z, w) ∈ P (R′) and (w, z) ∈ T (R′) and consider first the case
where (z, w) 6= (x, y). From the definition of T , we know that there must exist a sequence
s ∈ S such that s(1) = w, s(ns) = z and for all i = 1, ..., ns − 1: (s(i), s(i + 1)) ∈ R′.
Clearly, there is an i such that (s(i), s(i + 1)) = (x, y). Otherwise, we would have that
(w, z) ∈ T (R) = R, contradicting (z, w) ∈ P (R′). Let l be the highest integer such that
(s(l− 1), s(l)) = (x, y) and let f be the smallest integer such that (s(f), s(f + 1)) = (x, y).
Construct the sequence s′ = s(l), s(l + 1), ..., s(ns), s(1), ..., s(f − 1), s(f). If we apply the
definition of T to this sequence, we have that (y, x) ∈ T (R) = R, a contradiction. If
(z, w) = (x, y), we construct the sequence s′ = s(l), ..., s(ns) (if there is no i = 1, ..., ns − 1
for which (s(i), s(i + 1)) = (x, y), we set l = 1). If we apply the definition of T to this
sequence, we have the same contradiction: (y, x) ∈ T (R) = R.

iv. Conclusion

The function T is an algebraic closure operator that satisfies condition C7. We can apply
theorem 2 and conclude that R has a complete and transitive extension if and only if
T (R) ∩ P−1(R) = ∅.

3.2 Convex extensions

In this section, we look for the existence of complete, transitive and convex extensions (see
also Bossert and Sprumont (2001) and Scapparone (1999)). We assume that our universal
space, X, is a convex3 subset of Rn.

For any finite set A ⊆ X, we denote by V (A) the interior of the convex hull spanned by
the elements of A:

V (A) =

{
x ∈ X

∣∣∣∣∣x =
∑
yi∈A

αiyi

}
,

where for all i, αi > 0 and
∑

i αi = 1.

3It is possible to reproduce the results of this section without this condition. However, this would
drastically increase the notational complexity without really adding something fundamental to the analysis.
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The property of convexity has many forms, depending on the additional requirements
imposed on the relation under consideration (e.g. completeness). The definition we will
use is the following:

Definition 5. A relation R is convex if for all finite sets A ⊆ X and all y ∈ X:

• if (yi, y) ∈ R for all yi ∈ A, then for all z ∈ V (A) : (z, y) ∈ R and

• if (yi, y) ∈ R for all yi ∈ A and there is an yj ∈ A for which (yj, y) ∈ P (R), then for
all z ∈ V (A) : (z, y) ∈ P (R).

We are ready to go through the steps (i)-(iv) of the introductory section. We start by
defining the function C.

i. Define the function C

Consider a finite number of sequences s1, ..., sm ∈ S. For an element sj(i), i < nsj , we say
that the set A is compatible with sj(i) if

• A ⊆ {sk(v)|k ∈ {1, ...,m}, v ∈ {1, ..., nsk}} and,

• sj(i + 1) ∈ A.

Given the sequences s1, ..., sm, we denote by A(sj(i); s1, .., sm) the collection of all sets A
which are compatible with sj(i).

To simplify notation, we also write A(sj(i)) instead of A(sj(i); s1, ..., sm).

The function C : R→ R is defined in the following way: Given a relation R ∈ R we have
that (x, y) ∈ C(R) if there exists a finite number of sequences s1, ..., sm ∈ S such that for
all j = 1, ...,m: sj(1) = x, sj(nsj) = y and for all j = 1, ...,m and i = 1, ..., nsj − 1:

• (sj(i), sj(i + 1)) ∈ R or

• there is a set A ∈ A(sj(i)) such that sj(i) ∈ V (A).

We will show that C is an algebraic closure operator which satisfies condition C7, but let
us first show how C relates to the the property of convexity.

ii. If R is complete, then R = C(R) if and only if R is transitive and convex.

Proof. Necessity is straightforward, hence we only show sufficiency.

Assume that the relation R is complete, transitive and convex. As R is convex, we know
that for all finite sets A ⊆ X and all z ∈ V (A), it cannot be the case that:

• (yi, z) ∈ R for all yi ∈ A and (yj, z) ∈ P (R) for at least one element yj ∈ A.

Otherwise, we would conclude that (z, z) ∈ P (R), a contradiction. From completeness of
R, we can rewrite this conditions in the following way:

For all A ⊆ X, if z ∈ V (A) then:
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• there is an yj ∈ A for which (z, yj) ∈ P (R) or (1)

• for all yi ∈ A : (z, yi) ∈ R. (2)

Now, assume that (x, y) ∈ C (R). We need to show that (x, y) ∈ R. From the definition
of C, we know that there must exist a finite number of sequences s1, ..., sm such that for
each sequence j = 1, ...,m: sj(1) = x, sj(nsj) = y and for each i = 1, ..., nsj − 1 either
(sj(i), sj(i + 1)) ∈ R or sj(i) ∈ V (A) for some A ∈ A(sj(i)).

In order to show that (x, y) ∈ R, we construct a sequence s′ = s′(1), ..., s′(ns′) such that
s′(1) = x, s′(ns′) = y and for all i = 1, ..., ns′ − 1: (s′(i), s′(i + 1)) ∈ R. The result
then follows from transitivity of R and the result in section 3.1.ii. Consider the following
algorithm:

1. Initiate s′(1) = s1(1) and set k = 1,

2. if s′(k) = y, we stop. Otherwise, we increase k by one, i.e. k := k + 1,

3. for s′(k − 1) = sj(i), if (sj(i), sj(i + 1)) ∈ R, we set s′(k) = sj(i + 1) and return to
step 2,

4. for s′(k − 1) = sj(i), if sj(i) ∈ V (A) for some A ∈ A(sj(i)), we know from the first
part of the proof that there are two cases to consider:

(a) if (2) holds, we have that (sj(i), sj(i + 1)) ∈ R. Then we put s′(k) = sj(i + 1),
and we return to step 2,

(b) if (1) holds, we have that (sj(i), sw(v)) ∈ P (R), for some element sw(v) in some
sequence sw. Then we put s′(k) = sw(v) and we return to step 2,

The algorithm can only terminate at the value y (step 2). Therefore, the algorithm is
well-defined if it reaches this value after a finite number of steps. If, on the contrary,
the algorithm does not terminate after finite number of steps, then, by finiteness of the
sequences s1, ..., sm, there must be a loop in the sequence s′(1), s′(2), ..., s′(f), ..., s′(l), ....
Suppose that s′(f) and s′(l) correspond to the same element in the same sequence. This
can only occur if the algorithm passes through step 4.b. Therefore, there must be a strict
relation involved, for example (s′(v), s′(v + 1)) ∈ P (R) (with f ≤ v ≤ l). Using transitivity
of R, we can apply the result from section 3.1.ii and conclude that (s′(v + 1), s′(v)) ∈ R, a
contradiction. Consequently, the algorithm must terminate after a finite number of steps,
at the value of y. Conclude that (x, y) ∈ R.

iii. The function C is an algebraic closure operator which satisfies condition C7

We start by showing that C is a closure operator.

iii.1 For all R ∈ R: C(R) =
⋂
{Q ⊇ R|Q = C(Q)}.

11



Proof. It is easy to see that C(X × X) = X × X. Therefore, for all R ∈ R, the set
{Q ⊇ R|Q = C(Q)} is non-empty.

(⊆) Assume that (x, y) ∈ C(R). From the definition of C, we know that there exists
a finite number of sequences s1, ..., sm in S such that for all j = 1, ...,m: sj(1) = x,
sj(nsj) = y and for all i = 1, ..., nsj − 1: (sj(i), sj(i + 1)) ∈ R or there is an A ∈ A(sj(i))
for which sj(i) ∈ V (A). It follows that for every Q ⊇ R, (x, y) ∈ C(Q). Therefore
(x, y) ∈

⋂
{Q ⊇ R|Q = C(Q)}.

(⊇) Let us first show that C(C(R)) = C(R). Evidently C(R) ⊆ C(C(R)). To see the
reverse, consider elements x and y ∈ X and assume that (x, y) ∈ C (C (R)). From the
definition of C, there must be a finite number of sequences s1, ..., sm in S such that for all
j = 1, ...,m: sj(1) = x, sj(nsj) = y, and for all i = 1, ..., nsj − 1 either (sj(i), sj(i + 1)) ∈
C (R) or sj(i) ∈ V (A), where A ∈ A(sj(i)).

For each sequence sj (j = 1, ...,m) and element sj(i) in this sequence, for which (sj(i), sj(i + 1)) ∈
C (R), there must be a finite number of sequences s1

(j,i), ..., s
m(j,i)

(j,i) , such that all these se-

quences start with sj(i), end with sj(i + 1) and for each sequence sv
(j,i) and each nontermi-

nal element sv
(j,i)(w) in this sequence, we have that either

(
sv
(j,i)(w), sv

(j,i)(w + 1)
)
∈ R or

sv
(j,i)(w) ∈ V (A), with A ∈ A(sv

(j,i)(w)).

For each sequence sj (j = 1, ...,m) and element sj(i) in in this sequence, for which sj(i) ∈
V (A) we construct the sequence s1

(j,i) = s1
(j,i)(1), s1

(j,i)(2) with s1
(j,i)(1) = sj(i) and s1

(j,i)(2) =

sj(i + 1).

Let qv
(j,i) be the sequence sv

(j,i) without its last element. Now, for each j = 1, ...,m; each
i = 1, ..., nsj − 1 and each v = 1, ...,mj,i, consider the following compound sequence:

s(j,i,v) = q1
(j,1) ⊕ q1

(j,2) ⊕ ...⊕ q1
(j,i−1) ⊕ qv

(j,i) ⊕ q1
(j,i+1) ⊕ ...⊕ q1

(j,n
sj−2) ⊕ s1

(j,n
sj−1).

Using these sequences in the definition of C, we see that (x, y) ∈ C (R). Hence C(C(R)) =
C(R). Therefore, C(R) ∈ {Q ⊇ R|Q = C(Q)}. Conclude that

⋂
{Q ⊇ R|Q = C(Q)} ⊆

C(R).

Now we show that the closure operator C is algebraic.

iii.2 The function C satisfies condition C6.

Proof. Consider a relation R and assume that (x, y) ∈ C(R). From the definition of C, we
know that there exists a finite number of sequences s1, ..., sm such that for all j = 1, ...,m:
sj(1) = x, sj(nsj) = y and for all i = 1, ..., nsj − 1: (sj(i), sj(i + 1)) ∈ R or sj(i) ∈ V (A)
for some set A ∈ A(sj(i)). Consider the set D = {sj(i)|j = 1, ...,m; i = 1, ..., nsj} and
construct the relation R′ = R ∩ (D ×D). This relation is finite and it is easy to see that
(x, y) ∈ C(R′). Therefore, the function C satisfies condition C6.
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Finally we verify condition C7.

iii.3 The function C satisfies condition C7.

Proof. Let R = C(R) and assume that N(R) 6= ∅. We have to find a nonempty subset T of
N(R) such that R∪T ∈ R∗. Let (x, y) ∈ N(R) and consider the relation R′ = R∪{(x, y)}.
We will show that R′ � C(R′). By condition C4: R′ ⊆ C(R′). Using lemma 1, we know
that we can finish the proof if we show that P−1(R′) ∩ C(R′) = ∅. Now, assume on the
contrary that there are elements z and w ∈ X for which (z, w) ∈ P (R′) and (w, z) ∈ C(R′)
and consider first the case where (z, w) 6= (x, y).
From the definition of C, we know that there exists a finite number m of sequences
s1, ..., sm ∈ S such that for all sequences sj: sj(1) = w, sj(nsj) = z, and for i = 1, ..., nsj−1
either (sj(i), sj(i + 1)) ∈ R′ or sj(i) ∈ V (A) for some A ∈ A(sj(i)). If for all sj(i)
where (sj(i), sj(i + 1)) ∈ R′ also (sj(i), sj(i + 1)) ∈ R, then (w, z) ∈ C (R) = R. This
contradicts with (z, w) ∈ P (R′). Therefore, there must be at least one sj(i) for which
(sj(i), sj(i + 1)) = (x, y).

For any sequence sj (j = 1, ...,m) there are two cases to consider.

i. There is an i = 1, ..., nsj − 1 for which (sj(i), sj(i + 1)) = (x, y).

ii. There is no i = 1, ..., nsj − 1 for which (sj(i), sj(i + 1)) = (x, y).

As argued above, the set of sequences that fall under case 1 is not empty. Furthermore, for
all sequences sj that fall under case 1 and for all i = 1, ..., nsj−1 for which (sj(i), sj(i+1)) =
(x, y) there are again two cases to consider:

1.1 There is a v ≥ i such that (sj(v), sj(v + 1)) = (x, y).

1.2 There is no v ≥ i such that (sj(v), sj(v + 1)) = (x, y).

For each sequence sj under case 1 and for each i ∈ {1, ..., nsj − 1} under case 1.1, we
consider the smallest integer w > i such that (sj(w), sj(w + 1)) = (x, y) and we construct
the sequence:

sj(i + 1), sj(i + 2), ..., sj(w − 1), sj(w). (1)

For each sequence sj under case 1 and for each i ∈ {1, ..., nsj − 1} under case 1.2, we
consider the smallest integer w ≥ 0 such that (sj(w), sj(w + 1)) = (x, y) and we construct
the sequence:

sj(i + 1), ..., sj(nsj), sj(1), ..., sj(w − 1), sj(w). (2)

Consider a sequence sk that falls under case 1. Assume that l is the largest integer for which
(sk(l), sk(l)) = (x, y) and assume that f is the smallest integer such that (sk(f), sk(f+1)) =
(x, y).
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For each sequence sj that falls under case 2, we construct the sequence:

sk(l + 1), ..., sk(nsk), sj(1), sj(2), ..., sj(nsj), sk(1), sk(2), ..., sk(f). (3)

Applying the definition of C to the finite number of sequences that are constructed by
(1), (2) and (3), we see that (y, x) ∈ C(R) = R, a contradiction. The proof for the case
where (z, w) = (x, y) is very similar and is left to the reader.

iv Conclusion.

We see that the function C is an algebraic closure operator which satisfies condition C7.
If we apply theorem 2 to the function C, we can conclude that a relation R has a convex,
transitive and complete extension if and only if C(R) ∩ P−1(R) = ∅.

3.3 Homothetic extensions

In order to define the concept of homotheticity, we assume that our universal set X is a
subset of Rm. Further, we assume that X is a cone, i.e., if x ∈ X, then for all α ∈ R++ :
αx ∈ X, where R++ is the set of strict positive reals. For two elements x and y ∈ X, we
say that x ≥ y if every coordinate of x is at least as large as every corresponding coordinate
of y. We write x > y if x ≥ y and x 6= y.

Definition 6. A relation R is homothetic if for all elements x and y ∈ X and all α ∈ R++

(x, y) ∈ R↔ (αx, αy) ∈ R.

It turns out that homotheticity is a lot easier to analyze together with monotonicity:

Definition 7. A relation R is monotonic if

x ≥ y implies (x, y) ∈ R.

In this section, we look for the necessary and sufficient conditions such that a relation R
has a complete, transitive, homothetic and monotonic extension.

We start by defining a function H.

i. Define the function H.

The function H is defined as, (x, y) ∈ H (R) if there is a sequence s ∈ S such that s(1) = x,
s(ns) = y and for all i = 1, ..., ns − 1:

• s(i) ≥ s(i + 1) or

• there is an αi ∈ R++, such that (αis(i), αis(i + 1)) ∈ R.

In the second step we relate the function H to the properties of homotheticity and mono-
tonicity.

ii. For all R ∈ R : R = H(R)↔ R is transitive, homothetic and monotonic.
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Proof. That R = H(R) implies that R is transitive, homothetic and monotonic is straight-
forward. To see the reverse, assume that R is transitive, homothetic and monotonic. It
is easy to see that H satisfies condition C4: for all R ∈ R, R ⊆ H(R). Therefore, we are
left to show that H(R) ⊆ R. Let (x, y) ∈ H(R). This implies that there is a sequence
s ∈ S such that for all i = 1, ..., ns − 1, s(i) ≥ s(i + 1) or there is an αi ∈ R++ such that
(αis(i), αis(i + 1)) ∈ R. The relation R is monotonic and homothetic, so we have that for
all i = 1, ..., ns − 1, (s(i), s(i + 1)) ∈ R. Using transitivity of R and applying the result
from subsection 3.1.ii we see that (x, y) ∈ R.

iii. The function H is an algebraic closure operator which satisfies condition
C7.

We start by showing that H is a closure operator.

iii.1 For all R ∈ R : H(R) =
⋂
{Q ⊇ R|Q = H(Q)}.

Proof. From condition C4: H(X ×X) = X ×X. This implies that {Q ⊇ R|Q = H(Q)}
is non-empty for all R ∈ R.

(⊆) Let (x, y) ∈ H(R). From the definition of H, we know that there exists a sequence
s ∈ S for which s(1) = x, s(ns) = y and for all i = 1, ..., ns − 1, s(i) ≥ s(i + 1) or there is
an αi ∈ R++ such that (αis(i), αis(i + 1)) ∈ R. From the definition of H, we immediately
have that for all Q ⊇ R, (x, y) ∈ H(Q). Therefore (x, y) ∈

⋂
{Q ⊇ R|Q = H(Q)}.

(⊇) Let us first show that H(R) is transitive, homothetic and monotonic. To see tran-
sitivity, assume that there are elements x, y and z ∈ X such that (x, y) ∈ H(R) and
(y, z) ∈ H(R). Then there are sequences s and s′ ∈ S such that s(1) = x, s(ns) =
s′(1) = y, s′(ns′) = z, for all i = 1, ..., ns − 1: s(i) ≥ s(i + 1) or there is an αi > 0
for which (αis(i), αis(i + 1)) ∈ R and for all j = 1, ..., ns′ − 1: s′(j) ≥ s′(j + 1) or
there is an αj > 0 for which (αjs

′(j), αjs
′(j + 1)) ∈ R. Consider the compound sequence

s′′ = s(1), ..., s(ns), s
′(2), ..., s′(ns′). If we apply the definition of H to the sequence s′′, we

have that (x, z) ∈ H(R). Hence, H(R) is transitive.

To show homotheticity, assume that (x, y) ∈ H(R) and let β > 0. From the definition of
H, we know that there is a sequence s ∈ S such that s(1) = x, s(ns) = y and for every
i = 1, ..., ns − 1: s(i) ≥ s(i + 1) or there is an αi ∈ R++ for which (αis(i), αis(i + 1)) ∈ R.
Consider the sequence s′ = βs(1), βs(2), ..., βs(ns). If s(i) satisfies s(i) ≥ s(i + 1), then
s′(i) ≥ s′(i + 1), and if s(i) satisfies (αis(i), αis(i + 1)) ∈ R we can construct α′i = αi

β
> 0,

to derive that (α′is
′(i), α′is

′(i + 1)) ∈ R. Therefore (βx, βy) ∈ H(R). Conclude that H(R)
is homothetic.

Finally, it is easy to see that H(R) is monotonic.

From the result in subsection 3.3.ii, we derive that H(H(R)) = H(R). Therefore H(R) ∈
{Q ⊇ R|H(Q) = Q}. Conclude that

⋂
{Q ⊇ R|Q = H(Q)} ⊆ H(R).
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Now we show that the closure H is algebraic.

iii.2 The function H satisfies condition C6.

Proof. Consider elements x and y ∈ X for which (x, y) ∈ H(R). From the definition of
H, we know that there exists a sequence s ∈ S for which s(1) = x, s(ns) = y and for all
i = 1, ..., ns − 1, s(i) ≥ s(i + 1) or there is an αi ∈ R++ for which (αis(i), αis(i + 1)) ∈ R.
Let D = {s(1), s(2), ..., s(ns)} and consider the relation R′ = R ∩ (D × D). It is easy to
see that R′ is finite and that (x, y) ∈ H(R′). Therefore H satisfies condition C6.

Finally, we show that H satisfies condition C7.

iii.3 The function H satisfies condition C7.

Proof. Assume that R = H(R) and let (x, y) ∈ N(R). Consider the relation R′ = R ∪
{(x, y)}. We prove that R′ ∈ R∗. From condition C4 and lemma 1, we know that this is
equivalent to the condition that H(R′) ∩ P−1(R′) = ∅. Therefore, assume on the contrary
that (z, w) ∈ P (R′) and (w, z) ∈ H(R′). From the definition of H, we know that there
exists a sequence s ∈ S for which s(1) = w, s(ns) = z and for all i = 1, ..., ns − 1:
s(i) ≥ s(i + 1) or there is an αi ∈ R++ for which (αis(i), αis(i + 1)) ∈ R′.

If for all i = 1, ..., n − 1 for which (αis(i), αis(i + 1)) ∈ R′ also (αis(i), αis(i + 1)) ∈ R,
then (w, z) ∈ H (R) = R, a contradiction. Hence, there must be at least one i = 1, ..., n−1
such that (αis(i), αis(i + 1)) = (x, y).

From finiteness of s, it follows that there is a number q ∈ N and a finite set I = {β1, ..., βq}
of elements in R++ such that for all i = 1, ..., q − 1:

(
1
βi

y, 1
βi+1

x
)
∈ H (R) = R, and(

1
βq

y, 1
β1

x
)
∈ H (R) = R. Consider the smallest value from the set I, say βj. If j > 1,

by homotheticity of R, we get
(
y,

βj−1

βj
x
)
∈ R and by monotonicity,

(
βj−1

βj
x, x

)
∈ R. By

transitivity of R, we derive that (y, x) ∈ R, a contradiction. If j = 1, we have that(
y, βq

β1
x
)
∈ R and

(
βq

β1
x, x

)
∈ R. Again by transitivity: (y, x) ∈ R, a contradiction.

Conclude that H satisfies condition C7.

iv. Conclusion.

The function H is an algebraic closure operator that satisfies condition C7. We can apply
theorem 2 to the function H and conclude that a relation R has a homothetic, monotonic,
complete and transitive extension if and only if H(R) ∩ P−1(R) = ∅.
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3.4 Monotonic extensions

The last part of this section focusses on the properties of monotonicity and strict mono-
tonicity. Again, we assume that X is a subset of Rm.

We recall from definition 7 that a relation R is monotonic if for all x, y ∈ X:

x ≥ y → (x, y) ∈ R.

Definition 8. A relation R on X is strict monotonic if R is monotonic and for all x, y ∈
X:

x > y implies (x, y) ∈ P (R) .

Given a relation R, we define the relation R̄ as:

R̄ = R ∪ {(x, y) |x ≥ y} .

Consider a function F : R → R and assume that F is an algebraic closure operator that
satisfies condition C7, e.g. the function T or C.

In this section, we will characterize the relations R which have a complete and (strict)
monotonic extension R′ = F (R′).

We begin by defining the function F̄ .

i. Define the function F̄ .

For any function F : R→ R, we can define the function F̄ such that for all R ∈ R:

F̄ (R) = F
(
R̄

)
.

Let us now show how F̄ relates to the property of monotonicity.

ii. R = F̄ (R) if and only if R is monotonic and R = F (R)

Proof. (→). To show that R is monotonic, observe first that R ⊆ R̄. Furthermore, we
have that, by condition C4: R̄ ⊆ F̄ (R) = R. If x ≥ y, immediately (x, y) ∈ R̄, hence also
(x, y) ∈ R. To see that R = F (R), we first notice that by condition C4: R ⊆ F (R). Now,
we have that R ⊆ R̄, and F satisfies C3, hence F (R) ⊆ F̄ (R) = R. From this F (R) ⊆ R
and we are done.
(←). Let R = F (R) and assume that R is monotonic. Clearly, R ⊆ F (R). Monotonicity
implies that R = R̄. If we combine this with R = F (R), we derive that R = F (R̄) =
F̄ (R).

iii. The function F̄ is an algebraic closure operator that satisfies condition C7.

iii.1 For all R ∈ R : F̄ (R) =
⋂
{Q ⊇ R|Q = F̄ (R)}.
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Proof. Clearly F̄ (X ×X) = X ×X. Therefore, the set {Q ⊇ R|Q = F̄ (Q)} is not empty.

As F is a closure operator, we know that F (R̄) = {Q ⊇ R̄|Q = F (Q)}. Therefore, it
suffices to show that {Q ⊇ R|Q = F̄ (Q)} = {Q ⊇ R̄|Q = F (Q)}.
(⊆) Let R′ ∈ {Q ⊇ R|Q = F̄ (Q)}. From section 3.4.ii, R′ is monotonic and R′ = F (R′).
From monotonicity: R′ ⊇ R̄. Conclude that R′ ∈ {Q ⊇ R̄|Q = F (Q)}.
(⊇) Let R′ ∈ {Q ⊇ R̄|Q = F (Q)}. As R′ ⊇ R̄, we have that R′ is monotonic. Together
with R′ = F (R′), we know from section 3.4.ii that R′ = F̄ (R′). Conclude that R′ ∈ {Q ⊇
R|R′ = F̄ (R′)}.

iii.2 The function F satisfies condition C6.

Proof. Let (x, y) ∈ F̄ (R). Then from the definition of F̄ , we have that (x, y) ∈ F (R̄).
As F satisfies condition C6, we know that there exists a finite subset R′ of R̄ such that
(x, y) ∈ F (R′). As R′ ⊆ R̄′, we derive from condition C3 that (x, y) ∈ F (R̄′) = F̄ (R′).
Conclude that F̄ satisfies condition C6.

iii.3 The function F̄ satisfies condition C7.

Proof. Let R = F̄ (R) and assume that N(R) 6= ∅. As R ⊆ R̄ and R̄ ⊆ F (R̄) = R we
have that R = R̄. Application of condition C7 to the function F shows the existence
of a set T ⊆ N(R) for which R ∪ T � F (R ∪ T ). Clearly, R ∪ T = R ∪ T . Therefore
F (R ∪ T ) = F (R ∪ T ) = F̄ (R ∪ T ). This implies that R ∪ T � F̄ (R ∪ T ).

iv. Conclusion.

We know that F̄ is an algebraic closure operator that satisfies condition C4. Therefore,
from theorem 2, we know that a relation R has a complete and monotonic extension
R′ = F (R′) if and only if F̄ (R) ∩ P−1(R) = ∅.
We can derive a similar result regarding the property of strict monotonicity:

If F is an algebraic closure operator satisfying C7, then a relation R has a strict monotonic
and complete extension R′ = F (R′) if and only if P−1(R) ∩ F̄ (R) = ∅ and for all y > x:

(x, y) /∈ F̄ (R).

Proof. (←) Notice first that P−1(R) ∩ F̄ (R) = ∅ is a necessary condition to have a mono-
tonic and complete extension R′ = F (R′), so that it is also necessary to have a strict
monotonic and complete extension R′ = F (R′). Second, if on the contrary y > x and
(x, y) ∈ F̄ (R), we have by condition C3 and R ⊆ R′, that (x, y) ∈ F (R′) = R′, a contra-
diction.

(→) Assume that F̄ (R) ∩ P−1(R) = ∅ and for all y > x, (x, y) /∈ F̄ (R). From the first
result in this section, we know that F̄ (R) has a complete extension R′ = F̄ (R′) which is
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also an extension of R. We now show that R′ is strict monotonic. Consider two elements
x and y ∈ X for which x > y. We have that (x, y) ∈ F̄ (R) and (y, x) /∈ F̄ (R). Therefore,
(x, y) ∈ P (F̄ (R)). From F̄ (R) � R′, we conclude that (x, y) ∈ P (R′), hence R′ is strict
monotonic.

4 F-rationalizability

Let X be a universal set of alternatives and let Σ be a set of nonempty subsets of X. A
choice function K is a correspondence

K : Σ→→ X : S → K (S) ⊆ S,

such that for all S ∈ Σ, K (S) is non-empty. We assume that this function contains the
notion of transitivity, i.e. for all R ∈ R, if (x, y) ∈ T (R), then (x, y) ∈ F (R).

Definition 9. A choice function K is said to be F -rationalizable if there exists a complete
relation R∗ = F (R∗), such that for all S ∈ Σ:

K (S) = {x ∈ S |(x, y) ∈ R∗ for all y ∈ S } ,

i.e. the elements chosen from S are top-ranked according to R∗.

Given a choice function K, we define the revealed preference relation Rv by (x, y) ∈ Rv if
there is a set S ∈ Σ such that x ∈ K (S) and y ∈ S. If also y /∈ K (S), we say that x is
strictly revealed preferred to y and write (x, y) ∈ Pv.

We can now give the characterization result for F -rationalizability.

Theorem 3. If the function F satisfies property C1, C2 and C3 then a choice function
K is F -rationalizable if and only if Rv ∩ P−1

v = ∅.

Proof. First of all, notice that by R ⊆ T (R) and T (R) ⊆ F (R), we have that F satisfies
condition C4: for all R ∈ R : R ⊆ F (R).

(→) If K is F -rationalizable, there exists a complete relation R∗ such that R∗ = F (R∗), and
x ∈ K (S) implies that (x, y) ∈ R∗ for all y ∈ S. As T (R∗) ⊆ F (R∗), we have that R∗ is
also transitive. Now, assume on the contrary that there is an element (x, y) ∈ F (Rv)∩P−1

v .
It is easy to see that Rv ⊆ R∗, hence, by condition C3, we have that F (Rv) ⊆ F (R∗) = R∗.
So (x, y) ∈ R∗. Now, as (y, x) ∈ Pv, there is a S ∈ Σ such that y ∈ K (S) and x ∈ S−K (S).
Let us show that we must have that (y, x) ∈ P (R∗).

From Rv ⊆ R∗, we have that (y, x) ∈ R∗. If on the contrary also (x, y) ∈ R∗, then by
transitivity of R∗, (x, z) ∈ R∗ for all z ∈ S, which implies, from rationalizability of K, that
x ∈ K (S). This concludes the contradiction.

(←) To see the reverse, let F (Rv) ∩ P−1
v = ∅. It is easy to see that this implies that

Pv = P (Rv). Hence, by lemma 1 and condition C4: Rv � F (Rv). By theorem 2, Rv has
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a complete extension, R∗ = F (R∗). Let us show that R∗ rationalizes F . If x ∈ K (S),
by definition (x, y) ∈ Rv for all y ∈ S and hence (x, y) ∈ R∗ for all y ∈ S. On the other
hand, if x /∈ K (S), by non-emptiness of K, there must be an y ∈ S such that y ∈ K (S).
By definition: (y, x) ∈ Pv = P (Rv). As R∗ is an extension of Rv, we must have that
(y, x) ∈ P (Rv), hence not (x, y) ∈ R∗ for all y ∈ S.

This result is immediately applicable to the functions T, C, H, T̄ and C̄ defined in section
3.

5 Conclusion

In this paper, we discussed the existence of complete extensions satisfying additional prop-
erties. Our main result, theorem 1, states that: if F satisfies conditions C1, C2, C3, then
a relation R ⊆ F (R) with R ⊆ F (R), has a complete extension R′ = F (R′) if and only if
F (R) ∩ P−1(R) = ∅.
Then, we added additional structure on the function F and showed (cfr theorem 2) that if
F is an algebraic closure operator that satisfies condition C7, then a relation R ∈ R has a
complete extension R′ = F (R′) if and only if F (R) ∩ P−1(R) = ∅.
We demonstrated the usefullness of these result by providing characterizations for the
existence of complete extensions satisfying the properties of transitivity, convexity, ho-
motheticity and monotonicity. Finally, we showed how it can be used within a choice
theoretical framework to derive interesting rationalizability results.
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