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Abstract

We provide a revealed preference analysis of the ‘habits as durables’ model.

This approach avoids the need to impose a functional form on the underlying util-

ity function. We show that our characterization is testable by means of linear

programming methods and we demonstrate its practical usefulness by means of

an application to cigarette consumption using a Spanish household consumption

data set. We find that the ‘habits as durables’ model has better empirical fit in

terms of predictive success compared to the ‘short memory habits’ and life cycle

models.

JEL Classification: C6, D9

Keywords: rational habit formation, rational addiction, revealed preference, in-

tertemporal consumption, habits as durables, short memory habits

1 Motivation

In the literature, there are two main ways to model rational habit formation. The

‘short memory habits’ model departs from the assumption that the instantaneous util-

ity or felicity function depends on a finite number of lagged consumption quantities of

the addictive good. On the other hand, the ‘habits as durables’ model assumes that

all past consumption decisions enter the instantaneous utility function through a single

‘stock of addiction’ variable. By establishing the revealed preference characterization for

the ‘habits as durables’ model, we complement and complete the research by Crawford

(2010) who developed the revealed preference conditions for the ‘short memory habits’

model. As revealed preference characterizations are entirely nonparametric, our analysis

is robust with respect to specification errors. Further, we demonstrate that our results

generalize the revealed preference characterization for the life cycle model, as given by

Browning (1989), and the short memory habits model with one lag. At a practical level,
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we show that our restrictions can be verified using elementary linear programming tech-

niques. An application to a data set drawn from the Encuesta Continua de Presupuestos

Familiares (a Spanish household budget survey) demonstrates the empirical relevance of

our results. We find that the ‘habits as durables’ model has better empirical fit in terms

of predictive success compared to the ‘short memory habits’ and life cycle models.

Models of rational habit formation. Models of rational habit formation — or ra-

tional addiction — offer an behavioral rationale for the seemingly inconsistent behavior

of addictive consumption (see, for example, Pollak (1970) and Spinnewyn (1981) for

early contributions). Not only do these models demonstrate how a genuinely rational

individual can still become addicted, but it also captures and explains addictive related

behavior, such as cold turkey and binges. Models of rational habit formation explain ad-

dictive behavior as the result of a rational decision process. The consumer maximizes his

lifetime utility, taking into account all future consequences of current and past addictive

consumption, e.g. negative health effects.

In the literature, there are two main ways to model rational habit formation: the

‘habits as durables’ model (or had) and the ‘short memory habits model (or smh).

Although the had and smhmodels both explain addictive behavior in terms of a rational

decision process, they differ in some crucial respects. The main difference between the

two models lies in the durability of past addictive consumption. The smh model assumes

that addictive consumption only influences the consumer’s welfare in a limited number of

future periods. In other words, the instantaneous utility or felicity function depends on

current consumption and a finite number of lagged consumption levels of the addictive

good. The had model, initially developed by Becker and Murphy (1988), incorporates

the intertemporal aspect of addiction by defining a ‘stock of addiction’ variable that

enters the instantaneous utility function. The consumer is, as it were, investing in

a stock of addictive substances. The way this stock is formed is very similar to an
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investment problem. Current and past consumption increases the future stock while in

every time period, the stock is depreciated at a fixed rate. In this way, current addictive

consumption potentially influences the consumer’s welfare in all future periods. Below,

we will show that smh model with a single lag (the 1–lag smh model) is in fact a special

case of the had model. However, if the instantaneous utility function in the smh model

depends on the consumption of more than one lagged period, then the smh and the had

models are generally unrelated, i.e. they are independent or non-nested.

The empirical validation of the rational habit formation models —in casu the 1–lag

smh model— has been initiated by Becker, Grossman, and Murphy (1994) who use

the theoretical prediction of this model to estimate the demand for cigarettes. More

precisely, they estimate the demand for cigarettes as a linear function of past, current

and future prices and past and future consumption. It is this last feature that distin-

guishes addictive consumption from regular, nonaddictive consumption. Unlike regular

commodities, the purchase of cigarettes today depends on past consumption as well as

on expected future consumption. Most empirical research since then has followed the

same empirical framework. The rational habits model has been verified for various com-

modities (alcohol, cocaine, caffeine,...) and activities (gambling, cinema, eating, . . . ).2

As stressed by Ferguson (2000), most of the key theoretical predictions of the rational

habit formation model appear to have been confirmed empirically virtually every time

they have been tested.

2See, for example, Chaloupka (1991); Becker, Grossman, and Murphy (1994); Conniffe (1995);

Labeaga (1999); Baltagi and Griffin (2001); Escario and Molina (2001); Fenn, Antonovitz, and Schroeter

(2001); Bask and Melkersson (2003); Wan (2006) and Laporte, Karimova, and Ferguson (2010) for the

case of cigarettes, Grossman, Chaloupka, and Sirtalan (1998); Bentzen, Eriksson, and Smith (1999);

Baltagi and Griffin (2002) and Williams (2005) for alcohol, Grossman and Chaloupka (1998) for the

case of cocaine, Olekalns and Bardsley (1996) for caffeine and Cameron (1999); Yamamura (2009); Sisto

and Zanola (2010) for addictive behavior relating to activities, such as cinema.
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However, the framework of Becker, Grossman, and Murphy (1994) also poses some

difficulties. Baltagi (2007) discusses the possible econometric problems when estimating

the intertemporal demand equations, and Auld and Grootendorst (2004) demonstrate

that most tests of rational habit formation tend to yield spurious evidence in favor

of the model when serially correlated aggregate data is used.3 This spurious evidence

would also explain why in many researches, estimates of the subjective discount rate

are either implausibly high or implausibly low, or even negative.4 Moreover, it should

also be stated that the underlying structural assumptions that are imposed in order to

derive the particular linear functional form for the demand equation are quite strong. In

particular, Becker, Grossman, and Murphy (1994) assume that all nonaddictive goods

can be aggregated into a single numeraire good (such that one can restrict the analysis to

a partial demand system), that the utility function is quadratic, that there are no credit

constraints or capital market imperfections and that the subjective discount rate equals

the interest rate. Finally, most empirical analyses in the literature only focus on the

1–lag smh model, which constitutes only one specific model of rational habit formation.5

Taken together, these assumptions are quite strong and, when imposed simultaneously,

create a very restrictive framework for testing the theory of rational habit formation.

The revealed preference approach. In this paper, we circumvent the need to im-

pose these restrictive (and often unverifiable) assumptions by employing the revealed

preference methodology. This approach, which was introduced by Samuelson (1948),

Houthakker (1950), Afriat (1967); Afriat (1973) and Varian (1982), allows to test for the

existence of a well–behaved utility function that is compatible with observed (addictive)

3This serial correlation would also explain their finding that seemingly nonaddictive goods, such as

milk, are found to be more addictive than cigarettes.

4See Auld and Grootendorst (2004, table 1) for an overview of this fact.

5Chaloupka (1991) is a noteworthy exception.
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consumer behavior, without the need to impose any functional structure on this utility

function. In this way, we are able to obtain an exact test of the had model. To our

knowledge, there are only two previous researches that apply the revealed preference

methodology to an intertemporal decision context. First, Browning (1989) considers

the basic life cycle model under the assumptions of perfect foresight and perfect capital

markets. Hence, consumers can lend and borrow at the same interest rate as they please,

implying perfect consumption smoothing over time. Furthermore, he also assumes con-

sumption independence, implying that the instantaneous utility in any given period

depends only on the consumed bundle in this period. As such, this life cycle model is

too restrictive to capture habit formation. An important extension to this basic setting

is given by Crawford (2010), who develops the revealed preference conditions for the

smh model. In this paper, we complement and complete this literature by presenting a

revealed preference characterization of the had model.

Overview. In Section 2, we present the had model as a general intertemporal budget

allocation problem. We also discuss the similarities and differences between the had

model, the smh model and the life cycle model. Furthermore, we show how it is pos-

sible to relax the assumption of perfect capital markets by considering the case where

households are constrained in the amount of money they can transfer (borrow) between

periods. In the final part of this section, we derive the revealed preference characteriza-

tion of the had and we show how it relates to the revealed preference characterizations

of the life cycle and smh models.

In Section 3, we apply our revealed preference conditions to a real life data set. All

tests were conducted on micro panel data drawn from the Encuesta Continua de Pre-

supuestos Familiares. Since our revealed preference conditions are evaluated separately

for each individual household, our tests fully account for interhousehold heterogeneity.

Our results suggest that, for the data set at hand, the had model provides a better
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empirical fit than the 1–lag and 2–lag smh models and the life cycle model in terms of

improved predictive success.

Section 4 concludes the paper and hints at future research. The proofs are in the

appendix.

2 Testable implications of the habits as durables

model

In this section, we present the had model as introduced in the seminal contribution of

Becker and Murphy (1988). In order to keep the notation and the analysis simple, we

focus on the case of a single addictive good. Extensions to multiple addictive good are

presented at the end of Section 3. Subsection 2.1 presents the had model and defines

when a data set is consistent with this model. Subsection 2.2 discusses the life cycle

model and the smh models. Finally, Subsection 2.3 presents the revealed preference

characterization of the considered models.

2.1 The habits as durables model

Consider an individual (or household) who consumes in each period t ∈ N a vector

qt ∈ RK
+ of nonaddictive goods at prices pt ∈ RK

++ and an amount Qt ∈ R+ of an

addictive good at price Pt ∈ R++.
6 We assume that our consumer receives in each

period t an exogenous income Yt ∈ R+, which can be more or less than the consumption

expenditure for this period. If consumption in period t amounts to less than Yt, the

difference is added to savings, yielding a net return of rt between period t and t+ 1. If

current income Yt is insufficient to purchase the demanded bundle, the deficit is borrowed

6We remark that the infinite horizon formulation is not crucial. In fact, assuming a finite time

horizon would lead to the same revealed preference conditions.
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at the same interest rate, with the additional constraint that the borrowed amount in

period t cannot exceed some upper limit bt (i.e. we allow for imperfect capital markets).

If we denote total savings in period t by St, this implies that St ≥ −bt. Note that there

is no need for the value of bt to be identical for different consumers. The special case

without credit constraints is obtained by setting bt sufficiently high for all periods t. The

intertemporal budget constraint for period t ≥ 1 is then determined by the following

equation.

pt qt + Pt Qt + St = Yt + (1 + rt−1)St−1

We take initial savings as given; S0 ≡ S0. Then, given the consumption quantities, the

prices, the income stream and the interest rates, we have that St is fully determined for

all t.

We denote by At, the addictive stock that has been built up by the past consumption

of the addictive good (i.e. Q1, . . . , Qt−1). Further, the had model posits the existence

of a depreciation rate, δ ∈]0, 1] which measures how fast the physical and psychological

effects of past consumption of the addictive good wear off over time. In each time period

t ≥ 2, the addictive stock is then determined by the following equation.

At = (1− δ)At−1 +Qt−1.

If δ ∈]0, 1[, the effects of past consumption decrease progressively as time proceeds. This

becomes more obvious if we solve the linear equation recursively.

At = (1− δ)t−1A1 +
t−1∑
j=1

(1− δ)t−1−jQj.

Observe that we exclude the case where δ = 0, since this would imply that the

effects of past consumption would never wear off (i.e. At could never decrease after once

consuming the addictive good). Evidently, such a case would rule out so-called ‘cold
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turkey’ quitting behavior, which is often observed with addicts who try to get rid of

their harmful addiction by abstaining from the addictive good until the physical and

psychological effects have worn off over time.

Let u(qt, Qt, At) : RK+2
+ → R+ represent the instantaneous utility function of the

consumer. We assume that u is strictly increasing in qt and Qt, continuous and con-

cave in all its arguments. The addictive commodity can either be detrimental for the

individual, such as tobacco or alcohol, but can also be beneficial, such as healthy leisure

expenditures for practicing sports. If the addictive good is detrimental, which we will as-

sume from now on, then u should be decreasing in At.
7 Finally, the had model assumes

that the consumer is endowed with a subjective discount factor, which we represent by

β ∈]0, 1].

Following Browning (1989) and Crawford (2010), we maintain the assumption that

there is perfect foresight concerning future prices, incomes and interest rates. By putting

everything together, the agent chooses her optimal consumption path by solving the

following maximization problem, given an initial stock of addiction A1.

op-had:

max
qt,Qt

∞∑
t=1

βt−1u(qt, Qt, At)

s.t. for all t ≥ 1

ptqt + PtQt + St = Yt + (1 + rt−1)St−1,

At+1 = (1− δ)At +Qt,

St ≥ −bt, and,

S0 = S0, A1 = A1.

The optimization program op-had requires that the consumer takes all future con-

7For a beneficial addictive good, we would have that u is increasing in At.
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sequences of her addiction (e.g. utility losses due to illness or depression, craving or

withdrawal caused by past consumption of harmful substances) into account when de-

ciding on her optimal consumption path. This is the main assumption that makes the

models of rational habit formation different from other models of (irrational) addictive

behavior.

The first order conditions for the problem op-had are stated as follows.8

βt−1∂u(qt, Qt, At)

∂qk
= λtpt,k ∀k ≤ K, t ≥ 1, (A.1)

βt−1∂u(qt, Qt, At)

∂Q
= µt + λtPt ∀t ≥ 1, (A.2)

−βt∂u(qt+1, Qt+1, At+1)

∂A
= −(1− δ)µt+1 + µt ∀t ≥ 1, (A.3)

λt+1(1 + rt) ≤ λt ∀t ≥ 1, (A.4)

At+1 = (1− δ)At +Qt ∀t ≥ 1. (A.5)

Condition (A.1) presents the first order conditions for the private goods qt, where

λt is the Lagrange multiplier for the intertemporal budget constraint. Condition (A.2)

gives the first order condition for the addictive good. The additional term µt on the right

hand side, which is positive for a harmful addictive good and negative for a beneficial

addictive good, gives the marginal effect of Qt on lifetime utility due to the increase in

the stock of addiction. It is the Lagrange multiplier for the stock of addiction equation.

In particular, µt measures the marginal decrease in (future discounted) lifetime utility

due to a marginal increase in the stock of addiction At+1. Given that µt > 0, we see that

the consumer will have a lower consumption of the harmful addictive good compared

to the case where she does not take this negative effect into account. Condition (A.3)

decomposes this marginal (future) welfare loss µt into two components. The first com-

8We omit the necessary transversality conditions as they do not really matter for the remaining

part of this paper.
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ponent, −βt ∂u(qt+1, Qt+1, At+1)/∂A , is the negative welfare effect on the instantaneous

utility u(qt+1, Qt+1, At+1) due to an increase in At+1. The second component, (1−δ)µt+1,

gives the marginal future welfare loss due to the increase in the future stock of addiction

At+2 (caused by the increase in At+1). Next, condition (A.4) gives the intertemporal

optimality condition corresponding to the amount of savings St. Notice that condition

(A.4) holds with equality only if there is no liquidity constraint at period t, i.e. when

St > −bt. Finally, condition (A.5) gives the recursive equation that determines the stock

of addiction.

In order to enhance the intuition behind the two key conditions (A.2) and (A.3), we

define the following discounted shadow prices for the addictive good and the stock of

addiction.

P̃Q
t ≡ βt−1∂u(qt, Qt, At)

∂Qt

∀t ≥ 1,

P̃A
t ≡ βt−1∂u(qt, Qt, At)

∂At

∀t ≥ 1.

The positive variable P̃Q
t gives the discounted marginal utility gain caused by an

increase in the consumption of the addictive good, Qt. The negative variable P̃A
t gives

the discounted marginal utility cost of an increase in the stock of (detrimental) addiction,

At. Then, if we substitute condition (A.2) in (A.3), we obtain the following expression.

P̃A
t+1 = (1− δ)(P̃Q

t+1 − λt+1Pt+1)− (P̃Q
t − λtPt) (1)

This condition can be solved recursively to obtain the following equilibrium condition.

P̃Q
t = λtPt −

∞∑
j=1

(1− δ)j−1P̃A
t+j. (2)

Equation (2) provides the equilibrium condition for an addicted consumer in her choice
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of the optimal quantity Qt. If good Q were not addictive, then the right hand side

of this equation would be equal to λtPt. In other words, for a regular good, rational

behavior requires that the marginal benefit of an additional unit of Qt must be equal to

its marginal cost. This marginal cost is equal to the marginal utility of income, given

by λt, times the prevailing price Pt. However, in the case of detrimental addiction,

the rational consumer should also take into account all future costs incurred by this

marginal increase in Qt. This additional cost is equal to the total utility loss caused

by the increase in all future stocks of addiction (At+1, At+2, . . . ), stemming from this

increase in Qt.

From an empirical perspective, it is nearly impossible to observe the entire stream of con-

sumption bundles. In reality, we only have a subsample of this stream. Our framework

assumes that we observe a finite set of nominal interest rates, nominal prices and con-

sumed quantities D = {(rt,pt, Pt;qt, Qt)}t≤T . We follow Browning (1989) and Crawford

(2010) and define rationalizability of a data set in terms of its consistency with respect

to the first order conditions.

Definition 1 (Rationalizability). The data set D = {rt,pt, Pt;qt, Qt}t≤T is rational-

izable by (or consistent with) the had model if and only if there exist a well-behaved

(sub)differentiable utility function u, numbers δ, β ∈]0, 1], and for all t ≤ T , there ex-

ist numbers µt ≥ 0, λt > 0 and At ≥ 0 such that such that conditions (A.1)-(A.5) are

satisfied.

The above definition states that a data set is consistent with the had model if there

exists a well–behaved instantaneous utility function that satisfies the set of first order

conditions. In other words, the data set is rationalizable if we can find some utility

function which provides a perfect within–sample fit of the observed consumption data.

Consistency is tested separately for each observed household in the sample, relieving the

need to impose additional conditions on interhousehold preference heterogeneity.
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2.2 The short memory habits and life cycle models

For the smh model, the instantaneous utility function depends on the current con-

sumption bundle and on a finite number of lagged consumption quantities of the ad-

dictive good. In other words, the instantaneous utility function can be presented by

u(qt, Qt, Qt−1, . . . , Qt−R). The smh model can be subdivided by the number of lags that

are included in the utility function. If there are R lags, we call this the R–lag smh

model. The set of first order conditions for this model are given by:

βt−1∂u(qt, Qt, . . . , Qt−R)

∂qk
= λtpt,k ∀k ≤ K, t ≥ 1,

(B.1)

βt−1∂u(qt, Qt, . . . , Qt−R)

∂Qt

+
R∑

j=1

βt−1+j ∂u(qt+j, Qt+j, . . . , Qt−R+j)

∂Qt
= λtPt ∀t ≥ 1,

(B.2)

λt+1(1 + rt) = λt ∀t ≥ 1.

(B.3)

Conditions (B.1) and (B.3) are similar to the first order conditions (A.1) and (A.4) for

the smh model. In order to capture the intuition behind condition (B.2), let us define

the following discounted shadow prices:

P̃Q
t ≡ βt−1∂u(qt, Qt, . . . , Qt−ℓ)

∂Qt

∀t ≥ 1,

P̃
Q−j

t ≡ βt−1+j ∂u(qt+j, Qt+j, . . . , Qt−R+j)

∂Qt

∀t ≥ 1; 1 ≤ j ≤ R.
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Then, condition (B.2) can be rewritten as:

P̃Q
t = λtPt −

R∑
j=1

P̃
Q−j

t . (3)

Equation (3) states that at equilibrium, the marginal benefit of an additional increase

in Qt should equal its marginal cost. The left hand side of (3) gives the instantaneous

benefit of a marginal increase in Qt. The first term on the right hand side, λtPt, gives

the additional monetary cost of this increased consumption (in utility terms). The

second part of the right hand side gives the marginal cost on future welfare caused

by the increase in Qt. It is interesting to compare this equilibrium condition with

the equilibrium condition (2) for the had model. Although the two conditions have

a similar structure, they differ in two crucial respects. Both differences relate to the

term that reflects the marginal future welfare cost, i.e. the second part of the right hand

side. First of all, for the smh model, the negative welfare effects involve a finite sum

compared to an infinite sum for the had model. This shows that for the had model,

addictive consumption might influence the welfare in all future periods, while for the

smh model, current addictive consumption only influences future welfare in a limited

number of periods. Second, for the had model, the negative welfare effects propagate

through a single ‘stock of addiction’ variable, At. On the other hand, the smh model

imposes no restrictions on the way that current addictive consumption influences future

utility.

Concerning the first difference, we see that the had model is more general than the

smh model. On the other hand, for the second distinction, the smh model is more gen-

eral. This shows that, in general, the R–lag smh model is independent from the had

model, i.e. they will impose different restrictions on observed consumption behavior.

However, there is one special case for which the two are nested. This occurs when the

instantaneous utility function in the smh model depends on only one lag of the addictive
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good, i.e. the 1–lag smh model. Indeed, if we set δ equal to one in the had model, we

obtain that At coincides with Qt−1, and we immediately see that the had model reduces

to the 1–lag smh model.

The life cycle model can be obtained from the had model by assuming that that the

instantaneous utility function is independent of At. In other words, the life cycle model

assumes that the instantaneous utility function takes on the form u(qt, Qt). The first

order conditions for this model are given by:

βt−1∂u(qt, Qt)

∂qk
= λtpt,k ∀k ≤ K, t ≥ 1, (C.1)

βt−1∂u(qt, Qt)

∂Q
= λtPt ∀t ≥ 1, (C.2)

λt+1(1 + rt) = λt ∀t ≥ 1. (C.3)

Conditions (C.1) and (C.3) are similar to conditions (A.1) and (A.4) for the had model

or conditions (B.1) and (B.3) for the smh model. To compare condition (C.2), let us

again introduce the notation:

P̃Q
t ≡ βt−1∂u(qt, Qt)

∂Qt

∀t ≥ 1,

Then, we can rewrite condition (C.2) as:

P̃Q
t = λtPt. (4)

This condition can readily be compared to the equilibrium conditions for the had model

(equation (2)) and the smh model (equation (3)). The difference with condition (4) lies

in the fact that for the life cycle model, there are not future welfare costs associated
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with an increase in the consumption of Qt.

2.3 Revealed preference characterizations

We are now ready to provide the revealed preference conditions that characterize the

collection of data sets that are consistent with the had model. The proof can be found

in appendix A.

Theorem 1. Consider a finite data set D = {rt,pt, Pt;qt, Qt}t=1,...,T . The following

conditions are equivalent:

• The data set D is rationalizable by the had model.

• For all t ≤ T , there exist positive numbers ut and At, strictly positive numbers λt

and P̃Q
t , a non–positive number P̃A

t and numbers δ, β ∈]0, 1], such that:

ut − uv ≤
1

βv−1

 λvpv (qt − qv) + P̃Q
v (Qt −Qv)

+P̃A
v (At − Av)

 , ∀t, v ≤ T (G.1)

P̃A
t+1 = (1− δ)(P̃Q

t+1 − λt+1Pt+1)− (P̃Q
t − λtPt), ∀t ≤ T − 1 (G.2)

λt+1(1 + rt) ≤ λt, ∀t ≤ T − 1 (G.3)

At+1 = (1− δ)At +Qt ∀t ≤ T − 1 (G.4)

Condition (G.1) is a generalization of the Afriat inequalities for this intertemporal

setting. Condition (G.2) is an immediate translation of expression (1). Finally, condi-

tions (G.3) and (G.4) are obtained from conditions (A.4) and (A.5). It is interesting to

note that by replacing the inequality in condition (G.3) with an equality, we can test

whether the data is consistent with a model without credit constraints. In fact, for our

empirical application, we will make a distinction between the model where the borrow-

ing constraints are possibly binding, i.e. where (G.3) holds with weak inequality and
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the case where these constraints are not binding, i.e. where (G.3) holds with equality.

Also, if we would like to obtain revealed preference conditions for the case where the

addictive good is beneficial, it suffices to impose that P̃A
t is positive for all t. Conditions

(G.2)–(G.4) relate observations from period t to observations from period t + 1. This

means that we only have T − 1 distinct inequalities. In other words, we always lose the

first observation in the revealed preference test of the had model.

Let us now have a look at the two special cases considered in the previous section; the

smh and life cycle models. The definition of rationalizability for these models parallels

Definition 1 for the had model (see also Definition 1 of Crawford (2010) and the first

Definition of Browning (1989)). For the smh model, we obtain the following set of

revealed preference conditions (see also Crawford (2010)).

Theorem 2. Consider a data set D = {rt,pt, Pt;qt, Qt}t=1,...,T . The following conditions

are equivalent:

• The data set D is rationalizable by the smh model with R lags,

• For all t ≤ T , there exist a positive number ut, strictly positive numbers λt and

P̃Q
t and non–positive numbers P̃

Q−j

t (j = 1, . . . , R) such that:

ut − uv ≤
1

βv−1

 λvpv (qt − qv) + P̃Q
v (Qt −Qv)

+
∑R

j=1 P̃
Q−j
v (Qt−j −Qv−j)

 ∀t, v ≤ T −R (G.5)

λtPt = P̃Q
t +

R∑
j=1

P̃
Q−j

t+j ∀t ≤ T −R (G.6)

λt+1(1 + rt) = λt ∀t ≤ T − 1 (G.7)

Condition (G.5) is an Afriat inequality, similar in spirit to (G.1). Condition (G.6) is

a translation of condition (3). If we relax (G.7) to condition (G.3) we can account for

possible binding borrowing constraints in the smh model.
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For the 1–lag smh model (i.e. R = 1), we see that the revealed preference conditions

coincide with the revealed preference conditions for the had model if δ = 1 (with

P̃
Q−1

t = P̃A
t ). As such, we see that the 1–lag smh model is indeed a special case of the

had model. However, for R ≥ 2, the two models are independent in the sense that some

data set might pass the revealed preference conditions for one model but not for the

other.

Finally, observe that conditions (G.5) and (G.6) use observations from R different

time periods. As such, we only retain T −R distinct inequalities, which actually implies

that we lose the first R observations in the revealed preference test of the R–lag smh

model. This provides another difference with the had model where we only lose a single

observation (as with the 1–lag smh model).

In our empirical application, we will focus on the 1–lag and 2–lag smh models, i.e.

the cases where R = 1 and R = 2.

Finally, let us then consider the revealed preference conditions for the life cycle model

(see also Browning 1989).

Theorem 3. Consider a data set D = {rt,pt, Pt,qt, Qt}t=1,...,T . The following conditions

are equivalent:

• The data set D is rationalizable by the life cycle model,

• For all t ≤ T there exist a positive number ut, a strictly positive number λt and a

number β ∈]0, 1] such that:

ut − uv ≤
λv

βv−1
[pv (qt − qv) + Pv (Qt −Qv)] ∀t, v ≤ T (G.8)

λt+1(1 + rt) = λt ∀t ≤ T − 1 (G.9)

We see that these revealed preference conditions coincide with the revealed preference

conditions of the had model if P̃A
t = 0 for all t. This effectively imposes that the
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instantaneous utility function does not depend on the stock of addiction. Again, if we

replace condition (G.9) with (G.3) we can allow for binding credit constraints.

3 Empirical application

In this section, we illustrate our revealed preference results by applying it to a data set

drawn from the Encuesta Continua de Presupuestos Familiares. Subsection 3.1 discusses

the methodology employed to verify the revealed preference conditions. In subsection

3.2, we present the data and our results.

3.1 Verification

The set of revealed preference conditions (G.1)–(G.4) is highly nonlinear, and therefore,

difficult to verify. This problem can be solved by conducting a grid search on the values

of δ and β. Since these values are restricted to lie in the interval ]0, 1], a grid search on

these parameters can be done quite efficiently. In practice, we consider 6 evenly spaced

values for β between 0.95 and 1 (β = 0.95, 0.96, . . . , 1), and 4 evenly spaced values of δ

between 0.7 and 1 (δ = 0.7, 0.8, 0.9, 1).9

Now, keeping the values of δ and β fixed, we see that only condition (G.1) remains

nonlinear, where the variables At and Av interact with the variable P̃A
v . This nonlinearity

can be resolved by fixing a value for the initial stock of addiction. Indeed, given the

value of A1, we can use condition (G.4) and the known value of δ to compute At for all

9The considered values of β are quite high because our application deals with quarterly data.

Similarly, the values of δ are reasonably high, which is motivated by the fact that the physical and mental

effects of past tobacco consumption usually wear off fairly quickly (see, for example, Hughes 2007). We

performed several robustness results by considering other ranges for the grid search. Because these did

not significantly change our results, we refrain from presenting these results. However, outcomes for

these alternative scenarios are available upon request.
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values of t ≤ T .

Notice that if we would observe the entire past consumption pattern of the addictive

good, it would actually be possible to reconstruct the value of A1 (given the value of

δ). Unfortunately, our data set does not contain this kind of information. As such,

the initial stock must be estimated by some other means. The single other research in

the literature that deals with the same problem of estimating the stock of addiction is

from Chaloupka (1991). He estimates the stock of addiction by using information on the

number of years that an individual has been smoking and on the average consumption

level over this past period. For this, he uses the identity (with initial value A0 = 0):

Ar =
r−1∑
j=0

(1− δ)r−j−1Qj =
r−1∑
j=0

Qj +
r−1∑
j=0

D(j) + r cov [Qj, D(j)] ,

where D(j) = (1− δ)r−j−1. Then, given that the covariance term is relatively small, Ar

can be approximated using information on the mean of past addictive consumption and

the number of years (quarters) that the individual has been smoking. Unfortunately,

our data set does not contain this kind of information.

Therefore, we propose to estimate A1 in a different way. Consider condition (A.5)

evaluated at t = 1:

A2 = (1− δ)A1 +Q1.

Conditional on the grid search of δ, this condition gives us a single equation in two

unknowns (A1 and A2). Next, define g as the growth rate of the stock of addiction in

the initial period:

A2

A1

= 1 + g

Using this, we find that:

(1 + g) =
A2

A1

= (1− δ) +
Q1

A1
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Solving this in terms of A1 gives:

A1 =
Q1

δ + g

As such, we obtain that the initial stock of addiction can be written as a function of

initial consumption Q1, the depreciation rate δ and the initial growth rate of the stock

of addiction, g. As we do not observe g, we choose to approximate it by assuming that

the growth rate of the stock of addiction is the same over the first two observed periods,

i.e. A3/A2 = A2/A1. Then, we obtain that:

g =
Q2 −Q1

Q1

.

In other words, our assumption is equivalent to the condition that the growth rate of

the addiction stock in the initial observed period equals the growth rate of addictive

consumption in the initial observed period. As a robustness exercise, we conducted a

(small) grid search on g around this benchmark.10

The had, 1–lag smh, 2–lag smh and life cycle models both with and without possible

binding borrowing constraints gives us eight different models to test. For completeness,

we consider one additional ninth model which is frequently used in revealed preference

analysis, namely the static optimization model (see Afriat (1967), Diewert (1973) and

Varian (1982) for and extensive discussion). The static model model assumes that the

consumer maximizes (in each period) her instantaneous utility function subject to the

current period budget constraint. In other words, the individual solves the following

10To be precise, we considered the values [g − 0.1, g, g + 0.1]. Of course, for A1 to be positive, we

only considered values of g such that δ+ g > 0. Together with the grid search on β and δ, this gives us

a maximum of 72 possible combinations of parameters to consider for each test of the had model.

21



problem in each period t:

max
q,Q

u(q, Q) s.t. ptq+ PtQ ≤ Yt

This model coincides with the life cycle model if there are no monetary transfers between

periods, i.e. there is no borrowing or saving. The revealed preference characterization

for this model is given in the following theorem (see Afriat 1967, for a proof).

Theorem 4. Consider a data set D = {pt, Pt,qt, Qt}t≤T . Then the following are equiv-

alent.

• The data set is rationalizable by the static utility maximization model.

• There exist numbers ut and γt > 0 such that for all t and v ≤ T :

ut − uv ≤ γv [pv(qt − qv) + Pv(Qt −Qv)] .

Observe that these Afriat conditions coincide with the testable implications for the

life cycle model when condition (G.9) is discarded (and λt/β
t−1 is replaced by γt).

Although we consider nine distinct models, several of these models are empirically

nested. This nestedness is illustrated by Figure 1. At the top of the figure, we find the

life cycle model which is the strongest (most restrictive) model. In other words, if a

data set is consistent with this model, then it is consistent with all other models. On

the second level, we find the static model, which is weaker than the life cycle model but

unrelated to the smh and had models. Next, the 1–lag smh model is weaker than the

life cycle model but stronger than both the had and 2–lag smh models. Finally, we see

that the had and 2–lag smh models are unrelated. Furthermore, each model (except for

the static one) has a variant with and without credit constraints, the former case being

less restrictive than the latter.
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Figure 1: Logical implication for data consistency with the different models

life cycle

static 1–lag smh

had 2–lag smh

3.2 Application

Our empirical illustration uses the Encuesta Continua de Presupuestos Familiares. This

data set contains detailed information on consumed quantities and prices for a large

sample of Spanish households. We refer to Browning and Collado (2001) and Craw-

ford (2010) for a more detailed explanation of this data set. The observations range

from 1985 until 1997 and are gathered on a quarterly basis. Every new quarter, new

households are participating in the moving panel and others are dropped, with a max-

imum of eight consecutive observations per household. We consider the following 14

nondurable commodity categories: (1) Food and non-alcoholic drinks at home, (2) Al-

cohol, (3) Tobacco, (4) Energy at home, (5) Services at home, (6) Nondurables at home,

(7) Nondurable medicines, (8) Medical services, (9) Transportation, (10) Petrol, (11)

Leisure, (12) Personal services, (13) Personal non–durables, (14) Restaurants and bars.

We take tobacco to be the addictive good and, for matters of comparability of empiri-

cal results and sample homogeneity, we will only focus on the subset of households for

which the wife is outside of the labor market and for which we have observations for all

eight quarters. We further restrict the sample to households which have strict positive

consumption for the addictive good in all periods. This procedure still leaves a sizeable

sample of 671 households. Since tobacco is a detrimental good, the variables P̃A
t (and
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P̃
Q−j

t ) are restricted to be non-positive.

Table 1 contains the goodness–of–fit results (i.e. the pass rates), given by the per-

centage of households that pass the revealed preference tests for the nine models under

consideration. The static model fits the data relatively well, and evidently yields the

same results whether we allow for binding borrowing constraints or not. On the con-

trary, the life cycle model is heavily rejected, which is not surprising given the strong

underlying assumptions for this model. By allowing that tobacco consumption has last-

ing utility effects that persist for only one period (i.e. the 1–lag smh model), we are

able to attain a fairly high goodness–of–fit of 74%, but only if we simultaneously relax

the assumption that there are no binding borrowing constraints. The pass rate drops to

26% if we drop this condition. If we further relax the model towards the had model, we

see that the model can rationalize a vast majority of the observed behavior, given that

we allow for the presence of borrowing constraints (87%). Compared to the 1–lag smh

model, the assumption of perfect capital markets appears to be less strong for the had

model, as the pass rate still remains reasonably high if we assume perfect capital markets

(nearly 53%). Finally, the best fit is obtained by the 2–lag smh model which rationalizes

nearly all households in the data set (more than 99% for the case with imperfect capital

markets and 94% for the model without borrowing constraints). Of course, due to the

nestedness of the different models (see Figure 1), it should come as no surprise that the

had and 2–lag smh models outperform the more restrictive life cycle and 1–lag smh

models in terms of goodness–of–fit.
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Table 1: Pass rates and power

static life cycle 1–smh 2–smh had

pass rates
no credit constraints

0.918
0.001 0.259 0.940 0.526

credit constrained 0.051 0.742 0.997 0.869
power

no credit constraints
0.094

0.999 0.774 0.043 0.624
credit constrained 0.960 0.295 0.005 0.211

In order to account for this nestedness, it is crucial to perform a power analysis. The

power of a model is defined as the probability of rejecting the model when this model is

not the true data generating process. The power is computed as the probability that the

revealed preference conditions reject seemingly irrational (or random) behavior. Towards

this end, we consider a power measurement procedure introduced by Bronars (1987),

based on a model of irrational behavior from Becker (1962). For each household, we

simulate 1000 random time series of consumption choices over the eight time periods, by

drawing random consumption shares from the (intertemporal) budget hyperplane. The

power of the model for each household is then obtained as one minus the proportion

of these 1000 randomly generated consumption streams that are consistent with the

rationalizability condition under evaluation.11 Table 1 gives the average power over all

671 households for each considered model. The highest power is obtained for the life

cycle model, which rejects almost all random data sets. Also, the 1–lag smh model has

a reasonably high power for the case with no credit constraints. The had model has a

power of 62% for the setting with no credit constraints and drops to 21% for the model

with credit constraints. The lowest power is obtained for the 2–lag smh model which

fails to reject almost all randomly generated data sets.

Arguably, these numbers only give a concise presentation of the empirical perfor-

11We refer to Andreoni and Harbaugh (2008) for a general discussion on alternative procedures to

evaluate power in the context of revealed preference tests such as ours.
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mance of each model. We present two approaches to improve our ability to assess and

rate models in a more coherent manner. The first approach is to look at the entire

distribution of the household–specific power estimates, which will show us much more

than the averages from Table 1. The second approach will reconcile the empirical per-

formance in terms of pass rates and power into a single measure, which is convenient for

directly comparing different models in terms of overall empirical performance.

Power distribution Table 2 presents the quartiles of the power distribution for our

sample of 671 households, for each considered model. For comparison, we repeat the

pass rates as stated in Table 1. Figure 2 presents the kernel densities of the power

distribution for the 1–lag smh, the 2–lag smh and the had models where there are

no credit constraints and Figure 3 does the same for the models with possible credit

constraints. These give a more detailed overview of how much the discriminatory power

of each model varies between 0 and 1 on the household level. Since the models are

nested, the more general models (i.e. the had and 2–lag smh models) always have lower

power and, thus, a density with higher weight to the left in comparison to the 1–lag

smh model. Similarly, allowing for credit constraints reduces the power of all considered

intertemporal models. These notions are confirmed by looking at the quartile values in

Table 2, and become even more apparent when looking at Figures 2 and 3.

When looking at Figure 2, we notice the power of the 1–lag smh model is centered

around 0.78. The more general had model has a density peak at a slightly lower power

value of 0.62. The power of the 2–lag smh is considerably lower and peaks close to

zero (around 0.04), indicating that this model is very difficult to reject for the data set

at hand.12 These results broadly confirm the basic finding from Table 1, which is that

12For matters of comparison between the habit formation models, we did not include the kernel

density for the power of the static and life cycle models. As already apparent from Table 2, the power

density of the static model has most of its mass around 0.10, while the life cycle model has most mass
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models with higher goodness–of–fit (i.e. pass rate) typically have lower power and vice

versa.

Table 2: Power distribution

pass rate power

Min 1st quart. median 3rd quart. max

static 0.918 0.041 0.083 0.098 0.108 0.141
life cycle
no credit constraints 0.000 0.997 1.000 1.000 1.000 1.000

credit constrained 0.051 0.924 0.954 0.961 0.967 0.980
1–smh
no credit constraints 0.259 0.724 0.764 0.774 0.785 0.816

credit constrained 0.742 0.186 0.259 0.304 0.327 0.376
2–smh
no credit constraints 0.940 0.022 0.038 0.043 0.047 0.063

credit constrained 0.997 0.000 0.003 0.005 0.007 0.018
had
no credit constraints 0.526 0.577 0.613 0.625 0.636 0.669

credit constrained 0.869 0.132 0.190 0.216 0.234 0.280

When we look at the power distribution for the models with borrowing constraints

in Figure 3, we see a qualitatively similar picture. The 1–lag smh model has the highest

power with a distribution centered around 0.3. The peak of the had model is somewhat

lower around 0.22. Finally, the power of the 2–lag smh model again has most of its

mass close to zero. So far, the had and 2–lag smh models outperform the 1–lag smh

model in terms of goodness-of-fit (pass rate), but the opposite is true when looking at

discriminatory power.

Predictive success Up to now, we have focused our empirical assessment on the pass

rates and discriminatory power of the various models. How can we reconcile both (often

inversely related) performance measures into a single index, such that they can be used

as a reliable criterion for comparing different but possibly nested models? Beatty and

at 1.
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Figure 2: Kernel density of power for models with no credit constraints
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Crawford (2011) suggest a measure which is based on an original idea of Selten (1991).

The measure is called predictive success and is defined in terms of pass rate and power

in the following way:

predictive success = pass rate − (1− power)

Beatty and Crawford (2011) show that this measure has an interesting axiomatic

characterization which provides a convincing theoretical foundation.13 The measure

takes on values between −1 and 1. Negative values of predictive success (i.e. low pass

rate together with low power) suggest that the model is rather inadequate for describing

observed consumer behavior, since it is at least as good at explaining random behavior.

On the other hand, positive values (i.e. high pass rate together with high power) point

to a potentially useful model that is able to reject irrational behavior while explaining

the actual observed behavior. Table 3 presents the quartiles for the predictive success

of all models, together with the mean across all households. Notice that it is possible

to measure predictive success for every household separately (with the pass rate being

13We do not give a formal definition of these axioms here, but refer to the study of Beatty and

Crawford for a detailed discussion.
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Figure 3: Kernel density of power for models with credit constraints
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either 1 or 0).

It appears that, based on Selten’s criterion, the had model without credit con-

straints provides, on average, the best fit with a mean predictive success of 0.15, which

is significantly higher than any other model considered. Furthermore, if we look at the

models with credit constraints, we see that the quartile values reveal a similarly good

performance of the 1–lag smh and the had models.

For clarity and comparison, Figure 4 shows the densities for the models with perfect

capital markets, and Figure 5 shows the models in the case where we allow for possible

credit constraints.14

If we look at Figure 4, we see that the 2–lag smh model has a high and narrow peak

close to zero. This seems to indicate that the restrictions of the 2–lag smh model are

too weak when imposed on our sample of tobacco addicted consumers. The 1–lag smh

14Graphical results for the static and life cycle models are again omitted. Predictive success for the

life cycle model peaks highly around 0 whether or not we allow for credit constraints. For the static

model, we observe a large peak around 0.10, with a smaller peak close to -1 for the households that

were not consistent with the model.
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Table 3: Distribution of predictive success

mean quartiles

min 1st quartile median 3rd quartile max

static 0.012 -0.955 0.075 0.095 0.108 0.141
life cycle

no credit constraints 0.000 -0.003 0.000 0.000 0.000 0.000
credit constrained 0.011 -0.076 -0.045 -0.038 -0.032 0.971

1–lag smh
no credit constraints 0.033 -0.274 -0.233 -0.218 0.748 0.812

credit constrained 0.037 -0.795 -0.639 0.265 0.314 0.376
2–lag smh

no credit constraints -0.017 -0.967 0.037 0.042 0.047 0.063
credit constrained 0.002 -0.995 0.003 0.005 0.007 0.018

had
no credit constraints 0.150 -0.421 -0.374 0.598 0.627 0.669

credit constrained 0.080 -0.854 0.175 0.206 0.229 0.267

model without credit constraints has a small peak at 0.78 and a higher peak around

−0.22, which was not apparent from Table 3. The had model has a larger (wider) peak

at 0.63 and a smaller peak around −0.38. Hence, even under the strict assumption

of perfect capital markets, the had model manages to adequately capture the rational

behavior of a sizeable subset of households.

For the 1–lag smh model which allows for borrowing constraints, we observe a broad

peak around 0.3 and a somewhat smaller peak at −0.7 in Figure 5. The distribution

of the had model with binding borrowing constraints has one peak around 0.22 and a

small peak at −0.8. Again, the 2–lag smh model has most mass close to zero.

Since we can identify the subset of households located in the rightmost peak, the had

model can be used to adequately describe the behavior of this set of households, and

predict outcomes in new market situations (e.g. changing commodity prices, incomes,

interest rates, tobacco excises,. . . ). In order to find out whether there are (observable)

individual characteristics that can significantly explain whether or not the individual is

consistent with any specification of the had model, we estimated a probit model of the
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Figure 4: Kernel density of predictive success for models with no credit constraints
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pass rate with respect to several observable characteristics.15 Unfortunately, very few

coefficients were (statistically) significant. As a sole exception, we found that the pass

rate of the had model with credit constraints was significantly and positively related to

the age of the family head. We do not have an intuitive explanation for this finding.16

Multiple addictive goods As a final exercise, we consider an extension of the dif-

ferent rational habit formation models for multiple addictive goods. Considering our

empirical setting, we choose alcohol to be our second addictive good. For the had

model, the extension to two addictive goods requires the introduction of a second stock

of addiction for alcohol, Aa
t , and a second depreciation rate, δa. Denoting by Qa

t the

15Our data set provides information on age of the family head and age difference with the other

partner, education and occupation of the family head, number of children in various age categories and

housing tenure. Detailed results from these estimates are available from the authors upon request.

16However, somewhat related, Chaloupka (1991) finds some evidence that younger and less educated

individuals tend to have a higher rate of time preference (i.e. a lower beta), implying they do not fully

internalize the future costs of current addictive consumption.
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Figure 5: Kernel density of predictive success for models with credit constraints
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consumption of alcohol in period t, we obtain the following ‘investment’ equation.

Aa
t+1 = (1− δa)Aa

t +Qa
t

Of course, the addition of a second addictive good requires an adjustment to the instan-

taneous utility function, which now takes into account the negative influence of Aa
t on

the level of utility. This utility function can be represented by u(qt, Qt, At, Q
a
t , A

a
t ). We

refer to Appendix .1 for a statement of the necessary and sufficient revealed preference

conditions for this more general model. For the R–lag smh model, the introduction of

a second addictive good changes the instantaneous utility function to take on the form

u(qt, Qt, . . . , Qt−R, Q
a
t , . . . , Q

a
t−R). Introducing a second addictive good to our data set

produces the results in Table 4.17 Again, we see that the had outperforms the 1–lag

smh and 2–lag smh model in terms of (mean) predictive success.

17We restricted our data set to households that have strict positive consumption for both alcohol

and tobacco for all eight observations. This restricts the sample to 137 households.
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Table 4: Results for multiple addictive goods

Pass–rate power predictive success

1–lag smh
no credit constraints 0.824 0.133 -0.043

credit constrained 0.993 0.014 0.007
2–lag smh

no credit constraints 1.000 0.000 0.000
credit constraints 1.000 0.000 0.000

had
no credit constraints 0.963 0.204 0.167

credit constraints 0.985 0.178 0.163

What can we learn from all this? First of all, our application shows that from an

empirical point of view, the models of rational habit formation are much more realistic

than the standard life cycle model, whose testable implications are to strong for our data.

Second, we find that (at least for our data set) the restrictions imposed by the 2–lag smh

model are very weak in the sense that almost all ‘random’ behavior can be rationalized

by this model. On the other hand, the had model (with or without credit constraints)

performs rather well compared to the other models of rational habit formation in terms

of higher predictive success. The adequacy of the specification may be correlated with

specific household characteristics. Unfortunately, our data did not allow us to identify

which characteristics matter. Finally, from a more general perspective, we believe that

our application convincingly shows the practical usefulness of the revealed preference

approach for assessing the validity between several models of intertemporal decision

making in a real life setting.

4 Conclusion

We developed a revealed preference methodology for assessing the validity of the had

model as it was introduced by Becker and Murphy (1988). By generalizing the intertem-
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poral consumption dependence underlying addictive behavior, our revealed preference

characterization extends the life cycle model of Browning (1989) and the 1-lag smh

model of Crawford (2010). Moreover, we relax the assumption of perfect capital markets

by allowing consumers to be credit constrained to some (unobserved) extent. We ap-

plied our tests on a sample of Spanish households to look whether consumers addicted

to detrimental goods such as tobacco can still be considered as rational. The empirical

analysis shows that the life cycle model is heavily rejected by the Spanish panel data.

When rational habit formation is added to the model and, additionally, the possibility

of credit constraints is introduced, we notice an improved empirical fit of these more

general models. We complemented our analysis by calculating discriminatory power for

the different models, and find that the higher pass rates of the had model compared to

the 1–lag smh model cannot be entirely attributed to the generality or permissiveness

of this model, since the tests do not lack in power. Based on the measure of predictive

success that was suggested by Selten (1991) and Beatty and Crawford (2011), we find

that an additional and nontrivial subset of households can be rationalized by extending

the life cycle and 1–lag smh model towards the more general had framework. On the

other hand, including more lags to the smh model does not seem to provide a better fit

when evaluated in terms of power and predictive success.

We see different avenues for follow-up research. First of all, it might be possible to

use our framework to investigate which household characteristics drive the consistency

with the had model. However, this would require a data set with richer information on

household characteristics.

Second, in order to keep our application focused, we concentrated on characterizing

the revealed preference conditions and testing consistency of household data with these

conditions. This implies that we only considered ‘sharp’ rationality tests in the sense

that a given household passes the test, which means that the behavior is consistent with
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the model, or the model is rejected and the household is considered irrational. On the

other hand, Varian (1990) asserts this rather extreme notion could be attended to by

investigating to what extent a so–called irrational household is not a perfect optimizer, by

allowing for a small optimization error to enter the testable restrictions. The inclusion

of such an optimization error into the had model could easily be done by modifying

condition (G.1).

Third, given that observed behavior is consistent with the had a natural next ques-

tion pertains to the recovery and identification of the underlying decision model that

rationalizes the observed behavior, and to forecast behavior in new situations. We refer

to Crawford (2010) who investigated such issues in the case of the smh model.

Finally, future research could focus on relaxing several assumptions of our model. The

perfect foresight assumption, which is maintained throughout this paper, is potentially

too restrictive when imposed over longer periods of time. Also, our model assumes that

household behavior can be represented by the maximization of a single utility function.

However, most considered households from our empirical application consist of multiple

individuals. We leave it up to future research to extend our approach towards a setting

that explicitly allows for multiple (addicted) members within the same household.18

18See, for example, Mazzocco (2007) and Adams et al. (2011) for collective characterizations of

intertemporal consumption models, who still maintain the assumptions of consumption independence

and perfect capital markets.
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Appendix

A. Proof of Theorem 1

(necessity) The function u is concave, hence for all t and v ≤ T ,

u(qt, Qt, At)− u(qv, Qv, Av) ≤
∂u(qv, Qv, Av)

∂q
(qt − qv)

+
∂u(qv, Qv, Av)

∂Q
(Qt −Qv) +

∂u(qv, Qv, Av)

∂A
(At − Av)

Here
∂u(qv, Qv, Av)

∂q
,
∂u(qv, Qv, Av)

∂Q
and

∂u(qv, Qv, Av)

∂A
are suitable subdifferentials of

the function u(qv, Qv, Av). Setting u(qt, Qt, At) = ut for all t, together with the first

order conditions (A.1)–(A.5), establishes the necessity part.

(sufficiency) Consider a subset τ of observations and sum condition (G.1) across all

observations within this subset. This gives

0 ≤
∑
v,t∈τ

(
1

βv−1

[
λvpv(qt − qv) + P̃Q

v (Qt −Qv) + P̃A
v (At − Av)

])
.

This is a cyclical monotonicity condition (see Rockafellar 1970, theorem 24.8). This

condition implies that there exists a concave utility function u, increasing in q and Q

and there exist positive numbers λt such that

∂u(qt, Qt, At)

∂q
=

1

βt−1
λtpt,

∂u(qt, Qt, At)

∂Q
=

1

βt−1
P̃Q
t ,

∂u(qt, Qt, At)

∂A
=

1

βt−1
P̃A
t .

Together with conditions (G.2)-(G.4) and taking into account condition (1), we obtain

conditions (A.1)-(A.5).
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B. Revealed preference conditions for multiple addictive goods

The following presents the revealed preference characterization for the had model with

two addictive goods. We denote by P a
t the price of the second detrimental addictive

good and by Qa
t its quantity.

Theorem 5. The following statements are equivalent:

• The data set D = {rt,pt, Pt, P
a
t ,qt, Qt, Q

a
t }t≤T is rationalizable by the had model

with two addictive goods.

• There exist numbers β, δ, δa ∈]0, 1] and for all t ≤ T there exist positive numbers

ut, At, A
a
t , strict positive numbers P̃Q

t , P̃Qa

t , λt and negative numbers P̃A
t , P̃Aa

t such

that for all t, v ≤ T :

ut − uv ≤
1

βv−1


λvpv (qt − qv) + P̃Q

v (Qv −Qt)

+P̃A
v (At − Av) + P̃Qa

v (Qa
t −Qa

v)

+P̃Aa

v (Aa
t − Aa

v)

 , (H.1)

P̃A
t+1 =(1− δ)(P̃Q

t+1 − λt+1Pt+1)− (P̃Q
t − λtPt), (H.2)

P̃Aa

t+1 =(1− δa)(P̃Qa

t+1 − λt+1P
a
t+1)− (P̃Qa

t − λtP
a
t ) (H.3)

λt+1(1 + rt) ≤λt, (H.4)

At+1 =(1− δ)At +Qt, (H.5)

Aa
t+1 =(1− δa)Aa

t +Qa
t . (H.6)
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