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1 Introduction

Motivation Neoclassical rational choice theory departs from the assump-
tion that a decision maker selects among the available alternatives the ones
that are highest ranked according to her preference relation. In general, this
preference relation is assumed to be complete, transitive, stable over time
and stable across different choice environments. The neoclassical model is
not only convenient from a theoretical perspective but it also has strong and
easily verifiable testable implications; e.g. Richter (1966)’s congruence con-
dition. Unfortunately, these testable implications are frequently rejected by
empirical research. A first kind of rejection bears on the property of transi-
tivity. Cyclical choice behavior has been observed by, for example, Tversky
(1969); Loomes, Starmer, and Sugden (1991); Loomes and Taylor (1992)
and Roelofsma and Read (2000). A second kind of refutation pertains to
the concept of contraction consistency (or independence of irrelevant alter-
natives) which requires that the chosen element from a set is also selected
from every subset that contains it (e.g. Seidl and Traub (1996) and Kroll
and Vogt (2008)). A violation of contraction consistency results in, so called,
menu-dependent or context dependent choice behavior.1

As a resolution to these empirical findings several alternative boundedly
rational choice models have been put forward. These models explain choice
behavior by rendering a more realistic and more explicit description of how a
decision maker actually makes choices. An interesting subcollection of these
models explains choice behavior by utilizing multiple rationales (selves). In
this research, we concentrate on several popular models from this collection.
Our two benchmark models are the model of choice by multiple rationales,
introduced by Kalai, Rubinstein, and Spiegler (2002), and the model of
sequential choice by multiple rationales from Manzini and Mariotti (2007).
We infer the computational complexity for verifying consistency of observed
choice behavior with these models, given the number of rationales.

As shown by Apesteguia and Ballester (2009), the sequential choice
model contains several other important choice models as specific cases. In
particular, they demonstrated that both the model of choice by game trees,
from Xu and Zhou (2007), and the model of choice with status quo bias,
from Masatlioglu and Ok (2005) refine the sequential choice model. Inspired
by this result, we also determine the computational complexity of these two
refinements.

1Interestingly, under the full domain assumption, contraction consistency imposes
acyclic choice behavior (see, for example, Suzumura (1983)).
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Our results fit into the recent literature that utilize insights from com-
putational complexity theory in the study of interesting economic subjects.2

Even so, as noted by Apesteguia and Ballester (2010), there is still rela-
tively little work on the relationship between computational complexity and
(bounded) rationality. We contribute to this literature by characterizing the
computational complexity of several well-known choice models. Although
this paper is purely theoretical, our results have also important empirical
consequences. The fact that the verification of a certain choice model is
NP-complete demonstrates that empirical refutation or acceptance of these
models might be extremely difficult.3 The remaining part of this section
motivates the various choice models and summarizes our main contribution.

Choice by multiple rationales The first boundedly rational choice frame-
work that we focus on is the model of choice by multiple rationales, intro-
duced by Kalai, Rubinstein, and Spiegler (2002). The model departs from
the idea that choices are context dependent. More specific, the model of
choice by multiple rationales set forth a collection of rationales (preference
relations) which is said to rationalize the observed choice behavior if each
choice maximizes at least one rationale from the collection. In this way, the
model permits for context dependent choice behavior. Kalai, Rubinstein,
and Spiegler (2002) provide several results relating to the minimal number
of rationales that are needed in order to rationalize a given choice function.
Recently, Apesteguia and Ballester (2010) prove that computing this mini-
mal number of rationales is a difficult problem (i.e. it is NP-complete). In
Section 2 we strengthen this result by establishing that NP-completeness
also arises if we know the number of rationales and if this is larger or equal
than two.

Sequential choice with multiple rationales: The second boundedly
rational choice model is the model of sequential choice by multiple rationales
from Manzini and Mariotti (2007). This model assumes that choices are

2See, among many others, Gilboa and Zemel (1989); Chu and Halpern (2001); Cech-
larova and Hajdukova (2002); Fang, Zhu, Cai, and Deng (2002); Woeginger (2003); Baron,
Durieu, Haller, and Solal (2004); Baron, Durieu, Haller, Savani, and Solal (2008); Brandt
and Fisher (2008); Conitzer and Sandholm (2008); Kalyanaraman and Umans (2008);
Procaccia and Rosenschein (2008); Cherchye, Demuynck, and De Rock (2009); Galambos
(2009); Hudry (2009); Brandt, Fisher, Harrenstein, and Mair (2010); Talla Nobibon, Cher-
chye, De Rock, Sabbe, and Spieksma (2010); Deb (2010) and Apesteguia and Ballester
(2010)

3We refer to the working paper version of this paper (Demuynck, 2010) for a more
thorough discussion on this topic.
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made by solving a sequence of intermediate smaller choices. The model for-
malizes the intuition that the decision maker pursues a step-wise procedure
that gradually constricts the set of viable alternatives. More specifically, the
decision maker is endowed with a fixed number of rationales (preferences)
which are sequentially applied to remove dominated elements from the re-
maining set of alternatives. Manzini and Mariotti (2007) characterize the
choice functions that are sequentially rationalizable by two and three ratio-
nales. Several other researches expand the theory of sequential choice behav-
ior. Houy (2007) characterizes the lists of rationales that lead to nonempty
choice functions or choice correspondences. Apesteguia and Ballester (2009)
examine the choice functions that are sequentially rationalizable by an (ar-
bitrarily long) list of acyclic relations. Garcia-Sanz and Alcantud (2010)
analyze the set of choice correspondences (mutli-valued choice functions)
that can be rationalized by the sequential application of two rationales.

Recently, Apesteguia and Ballester (2009) proved that the model of se-
quential choice contains two other interesting models as special cases. The
first is the model of choice by game trees, introduced by Xu and Zhou (2007).
In this model, different selves (or different decision makers) compete in a
sequential game of perfect information for which the resulting choices con-
form with the sub-game perfect Nash equilibrium of this game. The model
of Xu and Zhou (2007) differs from other game-theory based choice models4

in the sense that it abstains from assuming any knowledge pertaining to
the number of selves (decision makers) or the underlying rules of the game
(i.e. the form of the game tree). In other words, the underlying decision
making process is unknown to the observer. The second special case is the
model of choice with a status-quo bias, characterized by Masatlioglu and
Ok (2005). The status-quo bias model formalizes the idea a decision maker
typically values an alternative more highly when it is the status-quo.5 More
precisely, the model presumes that if the decision maker is confronted with
a choice set without a status-quo, then she simply selects the best alterna-
tive according to her preference ordering. On the other hand, if there is a
status-quo, then this status-quo is overruled only if there is an alternative
that performs better than the status-quo on several criteria. However, if
there is no such alternative, then the status-quo is maintained.

Given the relationship between the three sequential choice models one

4See, for example, Sprumont (2000), Ray and Zhou (2001), Lee (2009), Galambos
(2009) and Demuynck and Lauwers (2009).

5This effect was first discovered by Samuelson and Zeckhauser (1988). The presence
of a status-quo bias has been repeatedly supported by experimental studies. See, for
example, the paper of Kahneman, Knetch, and Thaler (1991) for an overview.
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could ask the question whether they differ with respect to their computa-
tional complexity. We demonstrate that this is indeed the case. In Section
3 we demonstrate that the issue of rationalizability by sequential choice is
NP-complete as soon as the number of rationales are greater or equal to
three. Further, we show that the issue of rationalizing choice functions by
game trees is also NP-complete but that the problem of rationalizing choice
functions by the status-quo bias model is decidable in polynomial time.

All proofs can be found in Section 4.

2 Choice by multiple rationales

In this section we concentrate on the model of choice by multiple rationales.
In doing so, we also introduce the necessary notation and concepts for the
other sections. Throughout this section, we will try to compare our findings
to the complementary paper of Apesteguia and Ballester (2010).

Preliminaries Take a finite set of alternatives X with cardinality n ∈ N.
We denote by U the collection of all nonempty subsets of X. A choice
function c is a function from a collection of sets D ⊆ U to U such that for all
sets A ∈ D, c(A) ⊆ A. We say that D is the domain of the choice problem
and we call the elements in D the choice sets of the choice problem.

The domain D is binary if it admit all 2 element subsets of X: for all
x, y ∈ X, {x, y} ∈ D. The choice function c is single valued if for all choice
sets A ∈ D, |c(A)| = 1.

Denote by ≽ a binary relation or rationale on X, i.e. ≽⊆ X ×X. We
denote its asymmetric part by ≻.6 The binary relation ≽ is transitive if
for all x, y and z ∈ X, x ≽ y and y ≽ z implies x ≽ z. It is asymmetric if
for all distinct x and y ∈ X, it is not the case that x ≽ y and y ≽ x. Finally,
we say that ≽ is complete (or total) if for all x and y ∈ X we have that
x ≽ y or y ≽ x.

For a choice set A ∈ D and a rationale ≽ on X, we denote by M(A,≽)
the set of maximal elements in A according to ≽. Formally, x ∈ M(A,≽)
if for all y ∈ A it is not the case that y ≻ x.

Computational complexity To be compact, we will only provide a quick
introduction to the concepts of computational complexity, alas at the cost
of accuracy. For a detailed introduction into the theory of computational

6Formally, x ≻ y if x ≽ y and ¬(y ≽ x).
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complexity and NP-completeness in particular, we refer to the seminal work
of Garey and Johnson (1979).

The theory of computational complexity examines how much resources
(time and memory) are needed to solve a given decision problem. Every
decision problem is composed of a collection of instances, which are the
inputs for the problem, and a ‘yes’/‘no’ question, which inquires whether
the instances satisfy a certain property. In other words, a decision problem
maps to each of its instances either a ‘yes’ or a ‘no’ as an output depending
on whether the instance satisfies the property.

The class P of decision problems comprises all problems which are easy
to solve, i.e. they can be solved by an algorithm which computes the solution
in a polynomial number of steps. A second class of problems, denoted by
NP, holds all problems that might be difficult to solve (i.e. it might take
exponential time) but are easy to verify (i.e. a solution can be verified in
polynomial time).

A decision problem that is at least as hard (as difficult) as any other
problem from NP is said to be NP-hard. Finally, a decision problem is
NP-complete if it is both NP-hard and in the class NP. In other words,
an NP-complete problem is among the most difficult problems in the class
NP.

A profound open question in computational complexity (and in all of
mathematics) is whether the class of decision problems in P is equal to the
class of decision problems in NP. By definition, it holds that P⊆ NP. Even
so, it is not known if all problems in NP can be solved in polynomial time.
The general accepted belief is that P̸= NP. The class NP contains many
of the computable real world problems, hence, NP-complete problems are
considered to be computationally intractable (especially for large instances).
As such, all known solution methods applicable to NP-complete problems
suffer from exponential worst time complexity.

Rationalization by multiple rationales To bring in the concept of
rationalization by multiple rationales we depart from a list of complete and
transitive rationales {≽k}k≤K . A choice function c is rationalizable by the
the list {≽k}k≤K if for every choice set A in the domain D we can find at
least one rationale ≽k in this list such that the choice c(A) matches the set
of ≽k-maximal elements in A.

Definition 1 (K-Rationalizable by Multiple Rationales). A list of K tran-
sitive and complete relations {≽k)k≤K , K-rationalizes the choice function c
on the domain D if for all choice sets A ∈ D there exist at least one k ≤ K
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such that:
c(A) = M(A,≽k).

When the number of rationales,K, is equal to one, thenK-rationalizability
by multiple rationales boils down to the problem of rationalizing a choice
function by a single transitive, and complete preference relation. It is well-
known that this problem can be solved in polynomial time (see for example
Apesteguia and Ballester (2010, Observation 1)). The interesting question
is whether this result still binds if we concentrate on settings with more
than a single rationale. Apesteguia and Ballester (2010) prove that com-
puting the minimum number of rationales, K, such that a choice function
is rationalizable by K rationales is an NP-complete problem.

In order to present this result, let us first define the relevant decision
problem. We specify an instance by a triplet (X,D, c) composed of a finite
set of alternatives, X, a domain D of nonempty subsets of X and a choice
function, c, on D. Apesteguia and Ballester (2010) look at the following
decision problem.

Rationalization (RAT): Given an instance (X,D, c) and a number K,
can we find a list of k ≤ K transitive and complete rationales, {≽k}k≤K

such that this list K-rationalizes the choice function c?

Their result is summarized in the next theorem.

Theorem 1 (Apesteguia and Ballester (2010, theorem 2 and corollary 3)).
The decision problem RAT is NP-complete. This NP-completeness result
also holds in the subclass of single valued choice correspondences.

Let us now regard the decision problem when we hold the number of
rationales fixed.

K-rationalization (K-RAT): Given an instance (X,D, c), can we find
a list of K transitive and complete rationales, {≽k}k≤K such that this list
K-rationalizes the choice function c?

Notice that, for the decision problem K-RAT, the number of rationales K
is a parameter in the decision problem. Put differently, there are an infinite
number of decision problems, one for each value of K ∈ N−{0}.7 Of course,
NP-completeness of the decision problem RAT does not inevitably imply
that K-RAT is also NP-complete for all values of K. (This is the case, for

7In fact, if the set of alternatives has size n, there are only n-1 relevant decision problems
that are really relevant. As shown by Kalai, Rubinstein, and Spiegler (2002), no choice
function needs more than such a number of rationales.
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example, when K = 1). However, as the following theorem shows, as soon
as K is greater or equal to two, NP-completeness prevails.

Theorem 2. The decision problem K-RAT is NP-complete for all K ≥ 2.
This NP-completeness result also holds in the subclass of single valued choice
correspondences.

Apesteguia and Ballester (2010, Theorem 4) carry on by considering
the subclass of instances that satisfy the universal domain condition, i.e.
the instances for which D = U , and for which the choice functions are single
valued. They show that in this case, the problem RAT, is quasi-polynomially
bounded, thus, no longer NP-complete.8 Following the same reasoning as
in their proof we can prove that if we restrict the instances to the subclass
that satisfies the universal domain condition, then K-RAT is also quasi-
polynomially bounded. Interestingly, however, this result no longer requires
the choice function to be single-valued.9

3 Sequential choice

Our second choice model is the model of sequential choice by multiple ra-
tionales. This framework departs from a list of asymmetric, not necessary
complete, rationales {≻k}k≤K and enforces each of these rationales sequen-
tially, eliminating in each round the alternatives that are dominated.

Definition 2 (K-Sequential Rationalizability). A choice function c is K-
sequentially rationalizable whenever there exists an ordered list of K asym-
metric rationales {≻k}k≤K , such that, defining recursively,

M0(A) = A,

Mk(A) = M(Mk−1(A),≻k), k = 1, . . . ,K,

we have,

c(A) = MK(A),

for all A ∈ D.

8In particular, they show that RAT is of the order O(nlogn log logn)
9The intuition behind this difference lies in the fact that the problem K-RAT auto-

matically sets an upper bound on the number of rationales that should rationalize the
choice function (i.e. K). On the other hand, for the problem RAT, this upper bound is
not always polynomially bounded in the number of alternatives.
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The intuition is the following. First, the decision maker considers a se-
quence of rationales ≻1, . . . ,≻K . Then for all choice sets A the decision
maker computes the undominated elements of A according to her first ra-
tionale ≻1, M1(A) = M(A,≻1). Next, she looks for the maximal elements
of M1(A) according to her second rationale ≻2. M2(A) = M(M1(A),≻2).
In the third step, she retrieves the undominated elements of M2(A) accord-
ing to the rationale ≻3, M3(A) = M(M2(A),≻3). This routine is applied
sequentially until the last set MK(A) is computed.

In order to keep focussed, we restrict ourselves to rationalizations for
which the resulting choice function is single valued on all binary choice sets,10

i.e. we only look for rationales {≻k}k≤K such that for all binary choice sets
{x, y} ⊆ X: |MK({x, y})| = 1. This implies, among other things, that
the observed choice function must be single valued.11 Now we are ready to
introduce the relevant decision problem.

K-sequential rationalization (K-SR): Given an instance (X,Σ, c), does
there exist a list of K asymmetric relations {≻k}k≤K that provides a K-
sequential rationalization of c?

Before we present the computational complexity result for this decision
problem, we consider two other choice models which refine the sequential
choice model. The first model is the model of rationalization by game trees
introduced by Xu and Zhou (2007). We denote by (G, {≻k}k≤K) an exten-
sive form game with perfect information. It is composed of a game tree G,
that has all the alternatives in X as terminal nodes with the additional re-
striction that each alternative in X occurs once and only once as a terminal
node, and a list of preferences relations {≻k}k≤K for the different players in
the game. It is assumed that these preferences are asymmetric and complete
rationales on X. Let G|A be the reduced tree that retains all the branches
of G leading to terminal nodes in A, and let SPNE(G|A, {≻k}k≤K) be the
unique sub-game perfect Nash equilibrium outcome of this reduced game.

Definition 3 (Rationalizability by game trees). A game (G, {≻k}k≤K) ra-
tionalizes the choice function c on D if for all A ∈ D,

c(A) = SPNE(G|A, {≻k}k≤K).

10This is also the setting in the paper of Manzini and Mariotti (2007).
11If we relax the model to include choice correspondences, then the problem of ratio-

nalization by sequential choice turns out to be NP-complete for all possible values of K.
For a proof of this result, we refer to the to the working paper version of this article
(Demuynck, 2010).
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The next decision problem corresponds to the notion of rationalizability
by game trees.

Rationalization by game trees (RGT): Given an instance (X,D, c),
does there exist an extensive form game (G, {≻k}k≤K) that rationalizes the
choice function c?

The second refinement is the choice model with status-quo bias, intro-
duced by Masatlioglu and Ok (2005). In order to define this concept, it is
necessary to broaden the concept of a choice set. First of all, we introduce
the symbol ⋄ to denote an object that does not belong to the set X. Next,
we define a choice problem by a pair (A, x) where A is a nonempty sub-
set of X and either x ∈ A or x = ⋄. If x ∈ A ∈ U , then the pair (A, x)
refers to the situation of choosing an element from A where the status-
quo is given by the alternative x ∈ A. On the other hand, if x = ⋄,
then (A, x) relates to the problem of choosing an element out of A with-
out a status-quo. We define Dsq as the new domain of choice problems, i.e.
Ds,q ⊆ {(A, x)|A ∈ U and x ∈ A or x = ⋄}.

Definition 4. A choice function c is status-quo biased if and only if there
exist a number q ∈ N, an injective function u : X → Rq and a strictly
increasing map f : u(X) → R such that for all (A, x) ∈ Dsq, if x = ⋄, then:

c(A, ⋄) = argmax{f(u(y))|y ∈ A}

and if x ̸= ⋄, then

c(A, x) =

{
x if for all y ∈ A : u(y) ̸> u(x)

argmax{f(u(y))|u(y) > u(x)} else.

In the absence of a status-quo, i.e. when x = ⋄, the decision maker simply
maximizes the utility function f(u(.)) over the set A. Alternatively, when
a status-quo is present, she maximizes the same utility function, but now
only among the elements that dominate the status-quo in all attributes of
the q-dimensional function u. If there are no such dominating alternatives,
then she retains the status-quo. We can now define the relevant decision
problem for the status-quo bias model.

Status-quo bias (SQB): Given an instance (X,Dsq, c), is the choice func-
tion, c, status-quo biased?

Apesteguia and Ballester (2009) showed that all choice functions that
are are rationalizable by game trees are also sequential rationalizable; that
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all choice functions that are status quo biased are also rationalizable by
game trees; and that all these inclusions are strict.12 Given this knowledge,
it is of particular interest to see how the computational complexity varies
among these different choice models. The results are given in the following
theorem.

Theorem 3.

• If K ≤ 2, then K-SR is in the class P.

• For all K ≥ 3, K-SR is NP-complete. This result also holds in the
subclass of problems for which the domain is binary and if the ratio-
nalizations are required to be transitive or acyclic.

• RGT is NP-complete. This result also holds if the game tree is re-
stricted to have no more than 3 stages and the number of rationales
(agents) is smaller or equal to two.

• SQB is in the class P.

This theorem clearly shows where the NP-completeness results stops.
First of all, if we restrict the number of rationales to be less than or equal to
two, the issue of rationalization by sequential choice becomes easy to verify.
Next, from the moment where the choice model reduces to the model with a
status-quo bias, the rationalization problem is in P. Interestingly, however,
the confinement from sequential rationalization to the rationalization by
game trees is not sufficient to reduce its complexity.

4 Proofs

4.1 Proof of Theorem 2

We consider a candidate solution of K-RAT to be a list of K transitive and
complete relations. Each of these relations can be described by no more
than n2 elements. As such, every certificate is of polynomial size (for fixed
K). Further, one can verify in polynomial time whether this list rationalizes
the instance. This shows that K-RAT is in NP.

For the second part of the proof, we need to show that a known NP-
complete problem is polynomial time reducible to K-RMR. First, we restrict
ourselves to the case where K = 2. The known NP-complete problem

12To be precise, Apesteguia and Ballester (2009) considered a slightly more restricted
version of the status quo bias model. We refer to their paper for further details.
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that we use for the reduction is ‘Monotone not all equal 3SAT’ (M-NAE-
3SAT).13. An instance of M-NAE-3SAT consists of a finite set of variables
{x1, . . . , xt} and a collection of clauses {C1, . . . , Cr} such that each clause is
composed of three variables. The question corresponding to M-NAE-3SAT
is the following.

Monotone not all equal 3SAT (M-NAE-3SAT): Does there exist an
assignment to the variables x1, . . . , xt (either 1 or 0) such that each clause
contains at least one variable with the value 1 and at least one variable with
the value 0.

Consider an instance of M-NAE-3SAT with a set of variables {x1, . . . , xt}
and a set of clauses {C1, . . . , Cr}. We start by creating the corresponding
instance of 2-RAT.

• For each variable xi (i = 1, . . . , t) we construct two alternatives ai and
āi.

• For each clause Cℓ (ℓ = 1, . . . , r), we construct three alternatives
z1,ℓ, z2,ℓ and z3,ℓ.

Consider the function f from the set of variables zk,ℓ (k = 1, 2, 3 and ℓ =
1, . . . , r) to the set {1, . . . , t}, such that f(zk,ℓ) = i if and only if the k-th
variable in the clause Cℓ is equal to xi. Further, for each k = 1, 2, 3, we
denote by k⊕ 1 the number (k+ 1) mod 3. The construction of the choice
domain D and the choice function c is given in table 1.

Table 1: Instance for 2-RAT

choice domain D choice function c range

{ai, āi} {ai} i = 1, . . . , t
{ai, āi, zk,ℓ} {āi} ℓ = 1, . . . , r; k = 1, 2, 3; i = f(zk,ℓ)
{zk,ℓ, zk⊕1,ℓ, āi} {zk,ℓ} ℓ = 1, . . . , r; k = 1, 2, 3; i = f(zk,ℓ)

Evidently, this construction can be performed in polynomial time.
Next, let us prove that when this problem satisfies 2-RAT, then there

must be a truth assignment that satisfies M-NAE-3SAT. Let ≽1 and ≽2 be
the two rationales that solve the problem 2-RAT. To each choice set in D,

13Monotone-not-all-equal-3SAT can be reduced from the NP-complete problem Not-
all-equal-3SAT (Garey and Johnson, 1979) by replacing all literals of the form (1−xi) by
a variable yi and adding an additional clause of the form {yi, xi, xi}.
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we can correspond a rationale (≽1 or ≽2) that rationalizes the choice made
from this set. It is easy to establish, by asymmetry of ≻1 and ≻2, that for
all i = 1, . . . , t and all zk,ℓ with i = f(zk,ℓ), there are only two mutually
exclusive configurations possible. These are listed in table 2:

Table 2: Configurations 2-RAT

choice sets choice function configuration 1 configuration 2

{ai, āi} {ai} ≻1 ≻2

{ai, āi, zk,ℓ} {āi} ≻2 ≻1

{zk,ℓ, zk⊕1,ℓ, āi} {zk,ℓ} ≻1 ≻2

Now, if configuration 1 prevails for i ∈ {1, . . . , t}, we fix xi = 1 and
if configuration 2 prevails, we set xi = 0. All we need to show is that this
solution provides a ‘yes’ instance of M-NAE-3SAT. Assume, on the contrary,
that there is a clause Cℓ for which all variables are equal to 1. In that case,
we have that z1,ℓ ≻1 z2,ℓ, z2,ℓ ≻1 z3,ℓ and z3,ℓ ≻1 z1,ℓ, contradicting acyclicity
of ≻1. On the other hand, if all variables in Cℓ are equal to zeros we must
have that: z1,ℓ ≻2 z2,ℓ, z2,ℓ ≻2 z3,ℓ and z3,ℓ ≻2 z1,ℓ, contradicting acyclicity
of ≻2. Conclude that M-NAE-3SAT must be satisfied.

Finally, we also need to demonstrate that any ‘yes’ instance of M-NAE-
3SAT corresponds to a ‘yes’ instance of 2-RAT. Towards this end notice
that, from the single-valuedness of c, that it is sufficient to to demonstrate
the existence of two acyclic and asymmetric relations ≻1 and ≻2 such that
for each choice set, A ∈ Σ with b ∈ c(A) either b ≻1 d for all d ∈ F or
b ≻2 d for all d ∈ F . The relations ≻1 and ≻2 can always be extended
to complete and transitive relations in a polynomial number of steps (using
for example a finite analogue of Szpilrajn (1930)’s lemma). We assign ≻1

and ≻2 to the choice sets as presented in table 3, depending on the value of
xi (i = 1, . . . , t) that solve M-NAE-3SAT: In other words, if xi = 1 we set

Table 3: Construction of ≻1 and ≻2

choice sets choice function xi = 1 xi = 0

{ai, āi} {ai} ≻1 ≻2

{ai, āi, zk,ℓ} {āi} ≻2 ≻1

{zk,l, zk⊕1,ℓ, āi} {zk,ℓ} ≻1 ≻2
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ai ≻1 āi, zk,ℓ ≻1 zk⊕1,ℓ and zk,ℓ ≻1 āi and we fix āi ≻2 ai and āi ≻2 zk,ℓ
(given that f(zk,ℓ) = i). On the other hand, if xi = 0 we define ai ≻2 āi,
zk,ℓ ≻2 zk⊕1,ℓ and zk,ℓ ≻2 āi and we set āi ≻1 ai and āi ≻1 zk,ℓ (given that
f(zk,ℓ) = i).

We must still establish that the relations ≻1 and ≻2 are acyclic. Towards
a contradiction, assume that there exist alternatives b1, . . . , bq such that for
each s = 1, . . . , q − 1, bs ≻1 bs+1 and bq ≻1 b1. (The case of a cycle in the
relation ≻2 is similar and is left to the reader.) We distinguish different
cases depending on the the different possible values for b1.

• Case 1. If b1 = ai for some i = 1, . . . , t, then there must exists alter-
natives bq and b2 such that bq ≻1 ai and ai ≻1 b2. This is impossible
as it imposes that both xi = 1 and xi = 0.

• Case 2. If b1 = āi for some i = 1, . . . , t, then there must exist alter-
natives bq and b2 such that āi ≻1 b2 and bq ≻1 āi. Again, this would
imply that both xi = 1 and xi = 0.

• Case 3. If b1 = zk,ℓ for some k = 1, 2, 3 and ℓ = 1, . . . , r, then b2 cannot
be equal to āi because this would bring us back to case 2 (replacing b1
by b2, b2 by b3 and bq by b1.). As such, the cycle under consideration
must be the cycle z1,ℓ ≻1 z2,ℓ, z2,ℓ ≻1 z3,ℓ, z3,ℓ ≻1 z1,ℓ. However, this
restricts all variables in Cl to be equal to one, a contradiction.

Conclude that 2-RAT is satisfied.

Until present, we demonstrated that 2-RAT is NP-complete. To show that
K-RAT is NP-complete for all K > 2 we use an induction argument. We
know that K-RAT it is NP-complete for K = 2. Assume that it is NP-
complete for K = M and consider the case K = M +1. First, we construct
for each instance (X,D, c) of M -RAT, an instance (X ′,D′, c′) of (M + 1)-
RAT.

• For each x ∈ X, we create an alternative x ∈ X ′. Further, we create
two additional alternatives a′, b′ ∈ X ′.

• For each A ∈ D, create the choice set A′ = A ∪ {a′} and impose that
c′(A′) = c(A).

• Create one additional choice set Z = X ′ and impose that c′(Z) = {a′}.

Of course, the instance (X ′,D′, c′) can be constructed in a polynomial num-
ber of steps.
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Next, assume that (≽k)k≤M solves M -RAT. Construct for each i =
1, . . . ,M , the relation ≽′

i=≽i ∪{(x, a′), (x, b′)|x ∈ X ′ − {a′}} ∪ {a′, a′} and
let ≽′

M+1 be an arbitrary (transitive and complete) relation for which a′ is
top ranked among all alternatives. It is clear to see that (≽′

i)i≤M+1 provides
a solution for (M + 1)-RAT, where ≽′

M+1 rationalizes the choice set Z and
≽′

i rationalizes the choice set A′ if and only if ≽i rationalizes the choice set
A.

Finally, let (≽′
i)i≤M+1 provide a solution to (M +1)-RAT and let ≽′

M+1

be the relation that rationalizes the choice function Z. It must be that a′

is top ranked in this relation (this follows from the fact that Z = X ′ and
c′(Z) = {a′}). For any other choice set, A′, it must be that ≽′

M+1 does not
rationalize this set (this is because a′ is in A′ but not chosen). Now, let
≽k (k = 1, . . . ,M) be the relation that is equal to ≽′

k less the comparisons
involving the alternatives a′ and b′. Evidently, ≽k rationalizes the choice set
A if and only if ≽′

k rationalizes the choice set A′. Therefore, it follows that
{≽k}k≤M rationalizes the choice function c.

4.2 Proof of Theorem 3

We split this proof into 4 parts corresponding to the items in the theorem.

4.2.1 If K ≤ 2, then K-SR is in the class P.

We first focus on the case with K = 1. Consider the definition of Weakened
WARP.

Definition 5 (Weakened WARP). A choice function satisfies Weakened
WARP if for all x, y ∈ X and A ∈ D with x ∈ c(A) and y ∈ A− c(A) there
does not exist a set B ∈ D such that y ∈ c(B) and x ∈ B − c(B).

WeakenedWARP was introduced by Ehlers and Sprumont (2008). These
authors show that Weakened WARP characterizes the choice functions that
are rationalizable by an upper-class rule. The following result uses this
property to characterize the instances that satisfy 1-SR.

Proposition 1. An instance (X,D, c) is a ‘yes’ instance for 1-SR if and
only if c is single valued and satisfies Weakened WARP.

Proof. Assume that (X,D, c) is a ‘yes’ instance for 1-SR. Let ≻ rationalize c.
It is easy to see that ≻ is a tournament, i.e. ≻ is complete and asymmetric.
Let us prove that c satisfies Weakened WARP. Let x ∈ c(A) and y ∈ A−c(A)
for some A ∈ D. This implies that ¬(y ≻ x). The relation ≻ is complete,
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hence, it follows that x ≻ y. If, on the contrary, y ∈ c(B) and x ∈ B − c(B)
for some B ∈ D, we see that for all z ∈ B, ¬(z ≻ y), contradicting x ≻ y
and x ∈ B. Conclude that c satisfies Weakened WARP.

For the reverse, let c be a single valued choice function satisfying Weak-
ened WARP and let us construct a rationalization ≻ of c. Consider any two
elements x, y ∈ X. If there is a set A ∈ D such that x ∈ c(A) and y ∈ A,
set x ≻ y. Else, select a random element z ∈ {x, y}. If z = x, fix x ≻ y and
if z = y, set y ≻ x. As we considered every pair of elements, the relation ≻
is complete. Moreover, Weakened WARP implies that ≻ is asymmetric. It
is easy to see that that ≻ rationalizes c.

Weakened WARP can be verified in polynomial time. Therefore, 1-SR
is in the class P. Let us now focus on the decision problem 2-SR. Manzini
and Mariotti (2007) provide a characterization of 2-SR for the case where
the domain D is binary.

Theorem 4 (Manzini and Mariotti (2007)). An instance (X,D, c) with D a
binary domain is a ‘yes’ instance for 2-SR if and only if it satisfies WWE: c
is single valued and if x = c(Si) in a class and x = c({x, y}) then y ̸= c(R)
for all R ∈ D with {x, y} ⊂ R ⊆

∪
i Si.

The property WWE can be verified in a polynomial number of steps.
For our prove, we need to relax the condition of the binary domain. The fol-
lowing proposition is a slight adaptation of Theorem 4 for this more general
case.

Proposition 2. An instance (X,D, c) is a ‘yes’ instance for 2-SR if and
only if it satisfies NB-WWE: c is single-valued and for all x and y in X and
R, T ∈ D, if x ∈ c(Si) in a class and y ∈ c(Vi) in a class, R ⊆

∪
i Si and

T ⊆
∪

i Vi, then not x ∈ c(T ) and y ∈ c(R).

Proof. Necessity is obvious. For sufficiency, notice that it is sufficient to
demonstrate that for every instance (X,D, c) that is a ‘yes’ instance of 2-
SR, there exists a choice function c′ which is single valued on the binary
domain D′ = D

∪
{{x, y}|x, y ∈ X} and for which,

• (X,D′, c′) is a ‘yes’ instance of 2-SR, i.e. (X,D′, c′) satisfies WWE,
and

• c′ agrees with c on the domain D, i.e. for all A ∈ D, c(A) = c′(A).

Now, let us construct such choice function c′. Consider a pair of alternatives
x, y ∈ X for which {x, y} /∈ D. If x ∈ c(Si) for a class and there exist a
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choice set R ∈ D such that y ∈ c(R) and R ⊆
∪

i Si, we impose that
{y} = c′({x, y}). Similarly, if y ∈ c(Vi) for a class and there exist a choice
set T ∈ D such that x ∈ c(T ) and T ⊆

∪
i Vi, we set {x} = c′({x, y}). If

none of above two conditions are satisfied, we pick at random an element
out of {x, y}, say z and we determine c′({x, y}) = {z}. Condition NB-
WWE guarantees that for no pair of alternatives x and y, we have that
both {x} = c({x, y}) and {y} = c({x, y}). It is easily verified that the
instance (X,D′, c′) satisfies WWE.

The condition NB-WWE can be verified in a polynomial number of steps,
hence, 2-SR is in P.

4.2.2 For all K ≥ 3, K-SR is NP-complete.

We construct a certificate of K-SR as be a list of K asymmetric rationales.
Each of this relation can be described by no more than n2 elements. As
such, every certificate is of polynomial size (for fixed K). Further, it is easily
verified that given a list of K rationales, one can verify in polynomial time
whether this list rationalizes the instance. This shows that K-SR is in NP.

For the second part of the proof, we use a reduction from the NP-
complete problem 3SAT. An instance for 3SAT consists of a finite set of
binary variables {x1, . . . , xt} and a finite list of clauses {C1, . . . , Cr}. Each
clause, Cℓ exists of three literals l1,ℓ, l2,ℓ and l3,ℓ and each literal either equals
a certain variable, xi, or its negation, (1− xi). The question corresponding
to 3SAT is the following.

3 satisfiability (3SAT): Does there exist an assignment to the variables
{x1, . . . , xt} (either 1 or 0) such that for every clause Cℓ (ℓ = 1, . . . , r) at
least one literal has the value 1?

Consider an instance of 3SAT with a set of variables {x1, . . . , xt} and a
set of clauses {C1, . . . , Cr}. First we create the instance of K-SR.

• For each variable xi, i = 1, . . . , t, we create two alternatives ai and āi.

• We create 3 other additional alternatives v1, v2 and q.

Consider the function f from the set of elements (k, ℓ) (k = 1, 2, 3 and
ℓ = 1, . . . , r) to the set of alternatives, X, such that f(k, ℓ) = ai if the kth
literal in the ℓ-th clause, Cℓ, equals xi and f(k, ℓ) = āi if the k-th literal in
the ℓ-th clause equals (1−xi). The choice domain, D and the choice function,
c, are given in table 4. Notice that the domain is binary. Obviously, this
instance of K-SR can be constructed in polynomial time.
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Table 4: Instance for K-SR

choice domainD choice function c range

{v1, v2} {v1} (1)
{v1, q} {q} (2)
{v1, ai} {v1} ∀i = 1, . . . , t (3)
{v1, āi} {v1} ∀i = 1, . . . , t (4)
{v2, q} {q} (5)
{v2, ai} {v2} ∀i = 1, . . . , t (6)
{v2, āi} {v2} ∀i = 1, . . . , t (7)
{q, ai} {ai} ∀i = 1, . . . , t (8)
{q, āi} {āi} ∀i = 1, . . . , t (9)
{ai, āi} {ai} ∀i = 1, . . . , t (10)
{ai, aj} {ai} ∀i < j; i, j = 1, . . . , t (11)
{ai, āj} {ai} ∀i, j = 1, . . . , t (12)
{āi, āj} {āi} ∀i < j; i, j = 1, . . . , t (13)
{v1, v2, ai, q} {q} ∀i = 1, . . . , t (14)
{v1, v2, āi, q} {q} ∀i = 1, . . . , t (15)
{v1, ai, āi, q} {v1} ∀i = 1, . . . , t (16)
{v2, ai, āi, q} {v2} ∀i = 1, . . . , t (17)
{v2, f(1, ℓ), f(2, ℓ), f(3, ℓ), q} {v2} ∀ℓ = 1, . . . , r (18)

Next, assume that 3SAT is satisfiable. We prove that we can find a list
of three rationales {≻1,≻2,≻3} that rationalizes the instance of K-SR.

For all i = 1, . . . , t with xi = 1, set v1 ≻1 ai and v2 ≻1 āi. If xi = 0, we
set v1 ≻1 āi and v2 ≻1 ai. These are the only elements in ≻1.

For all i = 1, . . . , t, set ai ≻2 q and āi ≻2 q. These are the only elements
in ≻2. The elements of ≻3 are listed in table 5. Notice that the relations
≻1,≻2 and ≻3 are acyclic and that the rationalization is single-valued. We
could also make them transitive by taking their transitive closure. One can
easily verify that these three relations rationalize the instance.

Finally, assume that the instance of K-SR is rationalizable by the list {≻k

}k≤K . We need to show that 3SAT has a solution. We begin by introducing
some new notation. Consider 4 alternatives a, b, c and d. We write ab D cd
if there exist rationales ≻j and ≻k such that a ≻j b, c ≻k d and,

min{i|a ≻i b} ≤ min{i|c ≻i d}.
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Table 5: Construction of ≻1 and ≻2

elements of ≻3 range

(v1, v2)
(q, v1), (q, v2)

(ai, āi) ∀i = 1, . . . , t
(v2, ai), (v2, āi) ∀i = 1, . . . , t
(v1, ai), (v2, āi) ∀i = 1, . . . , t
(ai, aj), (āi, āj) ∀i < j; i, j = 1, . . . , t

(ai, āj) ∀i, j = 1, . . . , t

In other words, we have that ab D cd if the first rationale in the list that
contains (a, b) is not after the first rationale that contains (c, d). Similarly,
we write ab ◃ cd if there exist rationales ≻j and ≻k such that a ≻j b, c ≻k d
and:

min{i|a ≻i b} < min{i|c ≻i d}.

Consider the following lemma:

Lemma 1. If the instance (X,D, c) is a ‘yes’ instance of K-SR then for all
i = 1, . . . , t, either

(v2āi ◃ āiq) (C.1)

or (exclusively),

(v2ai ◃ aiq) (C.2)

Proof. First of all, from (8) and (9) it follows that there must be a ≻j and
≻l in the list such that ai ≻j q and āi ≻l q. From (14) and (15), it follows
that:

(v1ai ◃ aiq) or (v2ai ◃ aiq)

and

(v1āi ◃ āiq) or (v2āi ◃ āiq)

A negation of one of these conditions would imply that {q} ̸= c({v1, v2, ai, q})
or {q} ̸= c({v1, v2, āi, q}).
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From (2) and (5) it follows that there must be a ≻j and ≻l such that
q ≻j v1 and q ≻l v2. Combined with (16) and (17), it follows that:

not [(v1ai ◃ aiq) and (v1āi ◃ āiq)]

and

not [(v2ai ◃ aiq) and (v2āi ◃ āiq)]

The proof is completed by taking those combinations that do not lead to a
contradiction.

Now, consider a solution {≻k}k≤K for the decision problem K-SR and
set xi = 1 if the first case (C.1) of the lemma is satisfied, i.e. (v2āi ◃ āiq)
or equivalently: ¬(v2ai ◃ aiq). On the other hand, we set xi = 0 if (C.2) is
satisfied, i.e. (v2ai ◃ aiq) or equivalently: ¬(v2āi ◃ āiq). Consider a clause
Cℓ with three literals l1,ℓ, l2,ℓ and l3,ℓ. We need to show that for each clause
Cℓ, at least one of its literals hold. Consider the choice:

c({v2, f(1, ℓ), f(2, ℓ), f(3, ℓ), q}) = {v2}.

Then it cannot be the case that:

(v2f(1, ℓ) ◃ f(1, ℓ)q) and (v2f(2, ℓ) ◃ f(2, ℓ)q) and (v2f(3, ℓ) ◃ f(3, ℓ)q)

As such, there must be at least one literals that has a value of one.

4.2.3 RGT is NP-complete.

One can easily verify that RGT is NP. For the reduction, we again use the
NP-complete problem 3SAT

Consider an instance of 3SAT with variables {x1, . . . , xt} and clauses
{C1, . . . , Cr}. First we create the corresponding instance of RGT.

• For each variable xi, i = 1, . . . , t, we create two alternatives ai and āi.

• We create 4 other alternatives y, n, z1 and z2.

Again, consider the function f from the set of elements (k, ℓ) (k = 1, 2, 3
and ℓ = 1, . . . , r) to the set of alternatives, X, such that f(k, ℓ) = ai if
the k-th literal in the ℓ-th clause, Cℓ, equals xi and f(k, ℓ) = āi if the k-th
literal in the ℓt-h clause equals (1 − xi). The choice domain, D and the
choice function, c, are given in table 6.

20



Table 6: Instance of RGT

choice domain D choice function c range

{ai, y, n} {y} ∀i = 1, . . . , t (1)
{āi, y, n} {y} ∀i = 1, . . . , t (2)
{ai, āi, y, z1} {z1} ∀i = 1, . . . , t (3)
{y, z1} {y} (4)
{ai, āi, n, z2} {z2} ∀i = 1, . . . , t (5)
{n, z2} {n} (6)
{f(1, ℓ), f(2, ℓ), f(3, ℓ), y, z1} {z1} ∀ℓ = 1, . . . , r (7)

Observe that this instance can be constructed in polynomial time. Next,
let us show that if this choice function is rationalizable by game trees then
the corresponding 3SAT problem has a solution. For the proof, we will
repeatedly make use of the fact that if c({b, c}) = {b} for all c in a certain
set A, then c({b} ∪A) = {b}.

Observe that for all i = 1, . . . , t, it holds that,

c({ai, y}) = {y} or c({ai, n}) = {n} and,

c({āi, y}) = {y} or c({āi, n}) = {n}.

Otherwise, we would have that either {ai} = c({ai, y, n}) or {āi} = c({āi, y, n}),
which contradicts (1) and (2). Further, we also see that:

c({ai, y}) = {ai} or c({āi, y}) = {āi} and,

c({ai, n}) = {ai} or c({āi, n}) = {āi}.

Otherwise, we would have that either {y} = c({ai, āi, y, z1}) or {n} =
c({ai, āi, n, z2}), which contradicts (3) and (5).

Above two restriction imply that for all i = 1, . . . , t either c({ai, y}) =
{ai} or (exclusively) c({āi, y}) = {āi}. Now, for all i = 1, . . . , t, let xi = 1
if c({ai, y}) = {ai} (or equivalently c({āi, y}) = {y}) and set xi = 0 if
c({ai, y}) = {y} (or equivalently c({āi, y}) = {āi}).

Let us show that this assignment satisfies 3SAT. Consider a clause Cℓ

with literals l1,ℓ, l2,ℓ and l3,ℓ. Then, from c({f(1, ℓ), f(2, ℓ), f(3, ℓ), y, z}) =
{z} and c({y, z}) = {y} (conditions (4) and (7)) it follows that there is at
least one k = 1, 2, 3 such that c({f(k, ℓ), y}) = f(k, ℓ). As such, if f(k, ℓ) =
xi, then xi = 1 and if f(k, ℓ) = 1 − xi, then xi = 0. Therefore, each clause
contains at least one true literal. This shows that 3SAT is satisfiable.

21



Finally, consider a solution to 3SAT. We need to show that the corre-
sponding choice function is rationalizable by game trees. We construct the
following three stage game, with two players (see also figure 1):

Figure 1: Game tree

1

z1

L

2

1

n

ℓ

1

y

r

M

z2

R

{ai|xi = 1}
∪{āi|xi = 0}

{āi|xi = 1}
∪{ai|xi = 0}

Stage I Player 1 has three strategies: L(eft), M(iddle) or R(ight). If she
chooses L, then the game ends with the outcome z1. If she picks R,
then the game ends with the outcome z2. If she opts for strategy M,
the game proceeds to stage II.

Stage II Player 2 has two strategies ℓ(eft) or r(ight) both of which lead to
a third stage.

Stage III Depending on the choice of player 2 in stage II, player 1 faces
the following strategies which lead to a final outcome in X:

• If player 2 has chosen ℓ then player 1 can either choose a strat-
egy that leads to outcome n or she may choose for each element
in the set {ai|xi = 1} ∪ {āi|xi = 0} a strategy leading to the
corresponding outcome.
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• If player 2 has chosen r the second strategy then player 1 can
either choose a strategy that leads to outcome y or she may choose
for each element in the set {āi|xi = 1} ∪ {ai|xi = 0} a strategy
leading to the corresponding outcome.

We define the acyclic and asymmetric relations ≻1 and ≻2 as in table 7,
depending on the specific value of xi. Of course, these acyclic comparisons

Table 7: Construction of ≻1 and ≻2

xi = 1 xi = 0 unconditional

n ≻1 ai n ≻1 āi n ≻1 z2
y ≻1 āi y ≻1 ai y ≻1 z1
z1 ≻1 ai z1 ≻1 āi
z2 ≻1 āi z2 ≻1 ai

ai ≻2 y āi ≻2 y y ≻2 n
āi ≻2 n ai ≻2 n

can be extended to complete, asymmetric and transitive preference relations.
It is easy to verify that these preference relations, together with the game
tree defined above, rationalize the choice function.

4.2.4 SQB is in the class P

Before we start the proof, we need to define several rationales. We begin
with the rationale ≽1.

x ≽1 y if and only if there is a pair (A, y) ∈ Dsq with

y ̸= ⋄ such that x ∈ c(A, y).

Let ≽1,t be the transitive closure of ≽1.
14 Now, define the rationale ≽2 by

x ≽2 y if and only if one of the following three conditions hold.

1. x ≽1,t y.

2. There is a pair (A, z) ∈ Dsq with z ̸= ⋄ such that x ∈ c(A, z), y ∈ A
and y ≽1,t z.

14Formally, x ≽1,t y if there exist a (possibly empty) sequence of alternatives x1, . . . , xn

such that x = x1, xn = y and for all i = 1, . . . , n− 1: xi ≽ xi+1.
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3. There is a pair (A, ⋄) ∈ Dsq such that x ∈ c(A, ⋄) and y ∈ A.

Let ≽2,t be the transitive closure of ≽2. Finally, we define the rationale
≽3 by the conditions that x ≽3 y if and only if one of the following three
conditions hold.

1. x ≽1,t y.

2. There is a pair (A, z) ∈ D with z ̸= ⋄ such that x ∈ c(A, z), y ∈
A− c(A, z) and y ≽1,t z.

3. There is a pair (A, ⋄) ∈ D such that x ∈ c(A, ⋄) and y ∈ A− c(A, .).

The following lemma provides necessary and sufficient conditions for
status quo bias rationalizability.

Lemma 2. The choice function c is status quo rationalizable if and only if:

≽1 is acyclic. (D.1)

If y ≽1,t x and y ∈ A, then for all (A, x) ∈ D with,

x ̸= ⋄ : x /∈ c(A, x).
(D.2)

If x ≽2,t y then it is not the case that y ≽3 x. (D.3)

If x ≽1,t y then it is not the case that y ≽2 x. (D.4)

Proof. necessity. By construction, we have that x ≽1 y implies u(x) >
u(y), x ≽2 y implies f(u(x)) ≥ f(u(y)) and x ≽3 y implies f(u(x)) >
f(u(y)). The four conditions D.1-D.4 follow immediately.

sufficiency. By condition (D.1), the relation ≽1,t is asymmetric and tran-
sitive. A such, we can use Szpilrajn (1930)’s lemma to show that it has a
complete, asymmetric and transitive extension. Denote by Σ the finite set
of all these transitive, asymmetric and complete extensions. A result from
Dushnik and Miller (1941) shows that,

≻1,t =
∩
≻∈Σ

≻ . (1)

Each relation in the finite set Σ can be represented by an injective func-
tion u≻ : X → R. Let u be the function X → R|Σ| that stacks all these
functions. Observe that u(x) > u(y) if and only if x ≽1,t y. This constructs
the function u.

Now, let us focus on the construction of the function f . From the def-
initions, it follows that ≻2⊆≽3. As such, condition (D.3) implies that ≽2
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is consistent.15 From Suzumura (1976, theorem 3) it follows that ≽2 has a
complete and transitive extension. Further, condition (D.4) together with
the definition of ≽2 shows that ≽2 extends the relation ≽1. Therefore, the
complete and transitive extension of ≽2 also extends ≽1. This extension
can be represented by a function from X to R, say g. Also, it is possible
to write g as a function of u, because u(x) = u(y) (which implies x = y)
implies g(x) = g(y). Let f(u(.)) be this function. It follows that u(x) > u(y)
implies g(x) > g(y), hence, f(u(.)) is strictly increasing. Let us now show
that the functions u and f rationalize the choice function.

If y ∈ C(A, ⋄) we have that, by construction, y ≽2 x for all x ∈ A,
hence f(u(y)) ≥ f(u(x)). If x ∈ c(A, x) and, on the contrary, there is an
alternative y ∈ A such that u(y) > u(x), we also have that y ≽1,t x. This
violates condition (D.2). If y ∈ c(A, x) with y ̸= x, then, by definition,
y ≻1 x. Then, if, on the contrary, there is a z ∈ A, with u(z) > u(x) (i.e.
z ≽1,t x and f(u(z)) > f(u(y)), we must have, by definition, that z ≽2 y.
However, this violates the fact that f was derived from an extension of ≽2,
i.e. f(u(z)) > f(u(y)) implies ¬(y ≽2 z).

The construction of the relations ≽1, ≽2 and ≽3 can be performed in
polynomial time. The construction of the transitive closures ≽1,t and ≽2,t

can also be established in polynomial time (using, for example, the algorithm
by Warshall (1962)). Finally, the verification of the four conditions in the
lemma can also takes a polynomial number of steps. As such, the problem of
deciding whether a choice function is rationalizable by a status-quo biased
choice rule is in P.
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