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Abstract

In this paper I incorporate a Schumpeterian mechanism of creative destruction in a standard DSGE

framework. In the model, a sector of forward-looking profit maximizing innovators determines the econ-

omy’s TFP growth rate. I estimate the model with Bayesian methods, and show that models featuring an

endogenous TFP channel can empirically outperform models that exhibit standard, exogenous productivity

dynamics. The paper provides a comprehensive comparative assessment of the impact of the endogenous

TFP channel in an estimated fully-fledged DSGE model. The variance decomposition analysis shows that

endogenous TFP is a powerful channel of transmission of adverse shocks throughout the business cycle. The

estimates suggest that the 35% of the productivity growth rate fluctuations had endogenous origins during

the Great Recession.
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“Are there circumstances in which
changes in aggregate demand can
have an appreciable, persistent
effect on aggregate supply? Prior
to the Great Recession, most
economists would probably have
answered this question with a
qualified "no". [...] This
conclusion deserves to be
reconsidered in light of the failure
of the level of economic activity to
return to its pre-recession trend
in most advanced economies.”

Janet Yellen, October 2016

In contrast with standard models predictions, in most of the developed economies GDP did not recover to its

pre-crisis growth trend after the Great Recession. Hall (2014) shows that in 2013 output in the U.S. was still

13 percent below its trend path from 1990 through 2007, with large drops in physical capital stock, labour force

participation, and total factor productivity. Reinhart and Rogoff (2014) document that in 2014 output was still

highly depressed in several OECD countries. As I show in Fig. 1, in 2017 - 10 years after the beginning of

the crisis - the GDP growth path exhibits no sign of reversion to its pre-crisis trend in many of the developed

economies. While in standard macroeconomic models as Christiano, Eichenbaum and Evans (2005) or Smets

and Wouters (2007), GDP trend is assumed to be linear and unaffectable by temporary demand shocks, these

evidences suggest that the 2008-2011 financial turmoil induced a permanent shift from the potential GDP growth

path in many countries. A considerable number of empirical works supports this hypothesis. Haltmaier (2012)

shows the Great Recession drove on average to a total permanent loss of 3% in terms of output growth amongst

developed economies. Ball (2014) finds that potential output averagely fell by 8.4% amongst OECD economies

during the Great Recession.

In this paper I explore the idea that the stochastic forces which in standard models drive the business cycle,

affect effective and potential output at once. In the model I generate persistent potential output fluctuations by

introducing a Schumpeterian Growth engine in a standard DSGE model. The endogenous growth mechanism

generates a transmission channel from stochastic shocks hitting the economy to the TFP growth path, which is

therefore affected by creative destruction cycles. In the model, standard DSGE theory is thus reconciled with

the traditional endogenous growth literature. The model is based on Smets and Wouters (2007) workhorse,

and embeds a simple and highly tractable endogenous TFP growth mechanism based on Benigno and Fornaro

(2016) forward-looking expectations channel, that connects productivity gains to expected future innovators’

profits. The model exhibits the following features: (i) productivity is driven by research and development

investment; (ii) research and development investment level is determined by the optimizing behaviour of a

sector of innovators; (iii) price and wages dynamics are affected by nominal and real rigidities; (iv) stochastic

shocks to fundamentals stochastically hit the economy.
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FIG.1 REAL GDP BEFORE AND AFTER THE GREAT RECESSION (2008=100)

Sources: BEA, UK Cabinet Office, Eurostat, JP Statistics Bureau

The model is estimated on the US data using Bayesian techniques. For tractability purposes, I do not

explicitly model financial frictions, although the presence of a risk premium shock de facto provides a direct

channel of transmission of adverse financial shock to productivity dynamics, and accordingly, to the whole

economy. When adverse risk premium shocks hit the economy, two different channels are at work. First, agents

discount future consumption at a higher rate, so that innovation profits are less attractive, R&D investment

decreases, and TFP growth rate drops. Second, persistent output slumps decrease agents’ expectations about

future profits, so that, R&D investment decreases and accordingly the TFP growth rate drops.

The modern endogenous TFP literature derives from Comin and Gertler (2006) seminal contribution. This

literature borrows endogenous productivity growth mechanisms from the theoretical endogenous growth litera-

ture of the early 1990s and introduce them into DSGE models. In particular, two contributions are relevant to

understand the current development of the modern endogenous TFP literature: Romer (1990), who introduces

the idea of growth via increase of varieties, and Aghion and Howitt (1992), who develops modern Schumpete-

rian Growth theoretical framework in the spirit of the Schumpeterian idea of creative destruction. The core

mechanism of this paper is inspired by Benigno and Fornaro (2016), who develop a hybrid toy model featuring

elements from both the Zero Lower Bound and the Schumpeterian Growth literature. The Benigno-Fornaro

mechanism stresses the role of innovators future profits expectations in determining the current economic out-

come. Positive expectations about future growth lead to high R&D investment and sustained economic growth,

while adverse expectations lead to a stagnation steady state, characterized by high level of unemployment and

anaemic growth.
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After Comin and Gertler (2006), who combines endogenous mark-ups and the Romer (1990) expanding

variety mechanism into a RBC model, several authors have focused on the integration of endogenous growth

mechanisms in DSGE frameworks. Bianchi and Kung (2014) develop and estimate a DSGE featuring an

endogenous TFP channel that relies on a human capital accumulation mechanism. Queraltó (2015) introduces

financial frictions in an endogenous TFP augmented DSGE model which borrows from Romer (1990) the idea

of growth via firms creation. Guerron-Quintana and Jinnai (2015) propose an endogenous growth DSGE model

featuring a credit channel à la Kiyotaki and Moore (2012). In both Queraltó (2015) and Guerron-Quintana and

Jinnai (2015) adverse shocks on the financial markets can thus result in productivity drops. Anzoategui et al.

(2016) estimate a New Keynesian DSGE model featuring the ZLB and a knowledge diffusion mechanism à la

Comin and Gertler (2006). Finally, this work relates to Ikeda and Kurozomi (2016), who analyse the implications

for optimal monetary policy in an endogenous TFP setup. With Cozzi et al. (2017), this paper represents the

first example of incorporation of a creative destruction mechanism in a DSGE model à la Aghion and Howitt

(1992). This paper contributes to the literature by providing a comprehensive comparative assessment of the

impact of the endogenous TFP channel’s introduction in a fully-fledged DSGE model featuring a rich set of

frictions and stochastic shocks.

2. Introducing an Endogenous TFP in a Standard DSGE

In this section, I describe a medium-sized DSGE model whose core structure is to a large extent based on

Smets and Wouters (2007, henceforth SW). I extend the SW structure to allow for endogenous productivity

dynamics, throughout the introduction of a sector of innovators à la Benigno and Fornaro (2016)1. The rest

of the building blocks are preserved in their original fashion, so that the model here presented nests and

enhance the SW economy. This approach allows for a straightforward comparison with the baseline SW during

empirical exercises. The economy features four different kinds of producers. A final assembler combines a

non-technological good and a continuum of varieties of a technological good to obtain the final good. The

non-technological good is obtained via the aggregation of a continuum of non-technological intermediate goods.

Non-technological intermediate goods are produced out of labour and capital via a Cobb-Douglas technology.

Technological goods are obtained from the non-technological good via a one-to-one production function. On

the non-technological good producers side, I implement a production sector à la SW, while the technological

good producers side is inspired to Benigno and Fornaro (2016). The structure of the economy is illustrated in

Figure 2.

1Differently from Benigno and Fornaro (2016), the model here presented abstracts from the ZLB.
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FIG.2 – STRUCTURE OF THE ECONOMY

2.1 Households

Households maximize an intertemporal utility function with habit formation in consumption Cj,t hours worked

Lj,t bonds Bj,t investment Ij,t and capital utilization Uj,t. As standard in medium scale DSGE exhibiting

wage rigidities, each household is a monopolistically competitive supplier of a differentiated type of labour. I

define h as the habit parameter, Rt as the rate of return of capital, Pt as the price level, Tt as a lump sum

tax, Wh
t as the hourly wage, Kt as the stock of physical capital, ut as the capital stock utilization rate (with

Ks
j,t = uj,t+sKj,t−1), at as the capital stock rental rate, Df

t and Dj
t as the amount of dividend distributed by the

firms and the innovators, δ as the depreciation rate and S as the investment convex adjustment cost function,

where S(1)=1 and S”>0. The households’ intertemporal decision problem can be formulated as:

maxEt

∞∑
s=0

β

[
1

1 − σc
(Cj,t+s − hCt+s−1)

1−σc
]

exp

(
σc − 1

1 + σl
L1+σl
t+s

)
s.t.

Cj,t+s+Ij,t+s+
Bj,t+s

εbtRt+sPt+s
−Tt+s≤Bj,t+s−1

Pt+s
+
Wh
j,t+sLj,t+s
Pt+s

+
Rkj,t+sZj,t+sKj,t+s−1

Pt+s
−a (uj,t+s)Kj,t+s−1 +

Dft+s
Pt+s

+
Djt+s
Pt+s

and Kj,t = (1 − δ)Kj,t−1 + εit

[
1 − S

(
It,j
It−1,j

)]
It,j

εbt is a shock on bonds’ risk premia that might reflect inefficiencies in credit supply or temporary fluctuations

in agents’ risk aversion. εit is an investment specific technology shock, which leads to fluctuations in physical

capital investment adjustment cost. Both εbt and εit follow an AR(1) process in logs such that ln εbt = ρb ln εbt−1+ηbt

and ln εit = ρi ln εit−1 + ηit where ηbt∼N (0, σb) and ηit∼N (0, σi).
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2.2 Final Good Assemblers

A perfectly competitive sector of final good assemblers combines the non-technological good and a continuum

of varieties of the technological good throughout a Cobb-Douglas production function. Technological goods can

be interpreted as patents. By assembling the technological good with a continuum of non-technological goods,

the assembler acquires the right to sell to the final consumers one unit of the non-technological good produced

with the latest vintage of technology. The amount of final good produced in the economy is equal to:

Yt =

(∫ 1

0

Y Tjt
εT−1

εT dj

)αT εT
εT−1 (

Y NT
t

)1−αT
(1)

To simplify the exposition I define a composite technological good as: Y Tt =
(∫ 1

0
Y Tjt

εT−1

εT dj
) εT
εT−1

. Similarly,

the price of the composite technological good can be thus be computed as: PTt =
(∫ 1

0
PTjt

1−εT dj
) 1

1−εT Since

every variety of the technological good is priced with a markup upon the non-technological good the latter

equation boils down to PTt = ξPNT
t , so that Y Tt = αT /ξ(1 − αT )Y NT

t . It is now possible to express aggregate

output as a linear function of the non-technological good production so that:

Yt =
ααTT (ξ − ξαT − αT )1−αT

ξ(1 − αT )
Y NT
t (2)

Accordingly, it is possible to express the aggregate price level as a function of the non technological intermediate

good price level so that:

Pt =
ξ − αT

ααTT (ξ − ξαT − αT )1−αT
PNT
t (3)

The latter expression implies that, after log-linearization, the inflation rate π̂NT
t in the non-technological goods

sector will equal the inflation rate in the final goods sector π̂t, and the aggregate output ŷNT
t will equal the non

technological good output ŷt.

2.3 Non-Technological Good Producers

Final good producers produce a unit of the non-technological good Yt using a continuum of i intermediate goods.

They maximize profits according to the following objective function:

maxPNT
t Y NT

t −
∫ 1

0

PNT
it Y NT

it di

s.t.
∫ 1

0
G
(
Y NT
it

Y NT
t

; εpt

)
di = 1

In the constraint of the optimization problem, G represents is the Kimball (1995) aggregation function, which

guarantees that the demand for the non-technological intermediate good Y NT
t is decreasing in its relative price,

while the elasticity of demand is a positive function of the relative price. G has the properties of being strictly

increasing and concave, with G(1)=1. The stochastic process εpt captures changes in the elasticity of demand

which result in a markup shock and follow an AR(1) process such that ln εbt = ρb ln εbt−1 +ηbt where ηbt∼N (0, σb).
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2.4 Non-Technological Goods Intermediate Producers

The non-technological intermediate good is produced by a sector of firms using labour and capital. Since the

price of the technological good is homogenous amongst the technological good producers, it is always optimal to

adopt the latest vintage of technology, so that all the non-technological goods producers use the same technology

At:

Y NT
it = εutK

αNT
t (AtLt)

1−αNT (4)

The stochastic shock εut captures changes in production efficiency due to changes in capital utilization, which

represents the TFP static component. The shock follows an exogenous process such that ln εut = ρz ln εut−1 + ηut

where ηut ∼N (0, σu). As standard in literature, the intermediate good producers fix prices according to Calvo

pricing with partial indexation. Let P̃NT
it be the newly set price, and Xp

t,s a state variable that assumes value 1

when s = 0 and value Πs
l=1π

ιp
t+l−1π

1−ιp
∗ when s > 0, firms optimize prices according to the following objective

function:

maxEt

∞∑
s=0

ξsp
βsΞtP

NT
t

Ξt+1PNT
t+s

[
P̃NT
it

(
Πs
l=1π

ιp
t+l−1

)
−MC t+s

]
Y NT
t+s

s.t .Y NT
i,t+s = Y NT

t+s G
−1

(
PNT
it Xp

t,s

PNT
t+s

τt+s

)

Let ξp be the probability of being allowed to reoptimize prices, ιp the price indexation coefficient and τt =∫ 1

0
G′
(
Y NT
it

Y NT
t

)
Y NT
it

Y NT
t

di , the Calvo pricing scheme implies the following equation for the aggregate price index:

PNT
t = (1 − ξp)P

NT
it G′−1

[
PNT
it τt
PNT
t

]
+ ξpπ

ιp
t−1π

∗1−ιpPNT
t−1G

′−1

[
π
ιp
t−1π

∗1−ιpPNT
t−1 τt

PNT
t

]
(5)

2.5 Technological Goods Intermediate Producers

Each of the innovators produces patents by employing one unit of the non-technological good. The assumption of

constant elasticity of substitution between technological and non-technological goods implies that each innovator

j employs a fixed share θNT ,j of the non-technological good production in the production of the technological

good. The aggregation of the individual shares θT,j of the non technological good employed by each innovator

j on a continuum from 0 to 1 yields the share of non technological goods output θT devoted to the production

of the technological good, i.e.:

θT =

∫ 1

o

θT,jdj (6)

The oligopolistic market structure à la Benigno and Fornaro (2016), in which one innovator emerges as leader

in every period for each sector j, implies that each patent will be priced with a markup ξ >1 upon the cost of

the final good: PTjt = ξPNT
t . The innovators’ profit thus results to be:

Πjt = PTj,tY
T
j,t − θT,jP

NT
t Y NT

t = θT,j (ξ − 1)PNT
t Y NT

t (7)

The innovation probability depends on the amount of R&D expenditure invested by the innovator j nor-

malized by the value of the intermediate good i. When innovating, each innovators develops a new vintage of
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productive technology Aj,t. I assume constant returns to the R&D on output ratio and I define Z as the convex

R&D investment adjustment cost function, where Z(1)=0 and Z”>0:

µjt = εjt

(
1 − Z

(
Jj,t
Jj,t−1

))
Jj,t
Y Tj,t

(8)

By normalizing R&D investment by output in the innovation probability function, I rule out the R&D scale

effect2. Furthermore, I introduce a shock to R&D investment adjustment cost εjt , which follows an AR(1)

process such that ln εut = ρz ln εut−1 + ηut . Free access to research and development implies that the marginal

cost of an investment in research and development is equal to the expected return of becoming a leader in period

t+1:

Jjt = µjt
Ξt+1

Ξt
EtVt+1 (Πj,t+1) (9)

With some algebra, the no-arbitrage condition yields the optimal amount of R&D investments for the

innovator j :

1 = θT,j (ξ − 1)Et

(
Ξt+1

Ξt

)
EtY

NT
t+1

Y Tj,t
εjt

(
1 − Z

(
Jj,t
Jj,t−1

))
(10)

Being the firms symmetric, every firm will invest the same amount in R&D. This allows us to determine

the aggregate level of R&D investment, where % is a parameter that captures the degree of non-linearity of the

R&D investment adjustment cost function:

Jt
Jt−1

= (1 − 1
θT (ξ−1)

Yt
εjt(EtΞt+1/Ξt)EtYt+1

)1/% (11)

By the law of large numbers, a fraction µt of innovators innovates at every period. This implies that a share

µt of intermediate producers will achieve a gain of productivity γa and εat is a shock to the innovation step -

while the non-innovating sectors will maintain the productivity level of the previous period. The technological

component of TFP will thus evolve according to the following law:

At+1 = (1 − µt)At + µt (1 + γaε
a
t )At (12)

The shock the innovation step εat is a random shock that captures fluctuations in the difference between the

productivity level in t and t+1 and can be represented by an AR(1) process in logs so that ln εat = ρz ln εat−1 +ηat .

The growth path of TFP’s structural component will thus by defined by this simple rule:
At+1

At
= 1 + γaε

a
t µt (13)

2.6 Labour Unions and the Labour Packer

As standard in literature a labour union sets wages and sells labour to the labour packer. The labour packer

acquires the differentiated labour services from the workers’ union and supplies labour to the non-technological

intermediate good producers by maximizing the following objective function:

maxWtLt −
∫ 1

o

WitLitdi

s.t .
[∫ 1

0
H
(
Lit

Lt
; εwt

)
di
]

= 1

Wt and Wit are the prices of the composite and the intermediate labour, and H is the Kimball aggregator,

strictly increasing and concave with H(1)=1. The stochastic process εwt captures changes in the elasticity of
2For a discussion of R&D scale effect in endogenous growth models literature, see Jones (1995)
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demand for labour which result in a wage markup shock and follows an exogenous process such that ln εwt =

(1 − ρw) ln εb + ρw ln εbt−1 + θwη
b
t−1 + ηbt where ηwt ∼N (0, σb). Let W̃NT

it be the newly set price, and Xw
t,s a

state variable that assumes value 1 when s = 0 and value Πs
t = πιwt+l−1π*w

1−ι
t when s > 0, the labour unions

optimization problem under Calvo prices with partial indexation assume the following formulation:

maxEt

∞∑
s=0

ξsw
βsΞtWt

Ξt+1Wt+s

[
W̃it

(
Πs
l=1γπ

ιw
t+l−1

)
−Wh

t+s

]
Lt+s

s.t .Lt+s,i = Lt+sH
′−1
(
WitX

w
t,s

Wt+s
τwt+s

)
Let ξp be the probability of being allowed to reoptimize wages, ιw the indexation coefficient the resulting

aggregate wage index is:

Wt = (1 − ξw) W̃tH
′−1
[
Witτ

w
t

Wt

]
+ ξwγπ

ιw
t−1π*

1−ιpWt−1H
′−1

[
γπιwt−1π

1−ιw*Wt−1τ
w
t

Wt

]
(14)

2.7 Government Policies

As standard in literature, the central bank follows a nominal interest rate rule in order to stabilize output and

inflation, such that:

Rt
R* =

(
Rt−1

R*

)ρR [(
πt
π*

) (
Yt
Y *
t

)]1−ρR ( Yt/Yt−1

Y *
t /Y

*
t−1

)ψ
εrt (15)

The stochastic process εrt captures the monetary policy shock and follows an exogenous process such that

ln εrt = ρr ln εrt−1 + ηrt where ηbt∼N (0, σb). The government budget constraint is expressed as:

PtGt +Bt−1 = Tt + Bt
Rt

(16)

Government spending as a ratio of the steady-state output εgt = GT
Y γt is a random shock which captures the

impact of fiscal policy shock and can be described with ln εgt = ρg ln εgt−1 + ρga ln εat + ηgt where ηgt∼N (0, σg).

2.8 Aggregate Resource Constraints

Finally, the aggregate resource constraint assures that the amount of resources produced in the economy equals

the total amount of resources demanded by the agents:

Yt = Ct + It + Jt +Gt + a (ut) K̄t−1 (17)

3. Econometric Approach

I detrend the model by stationarizing all the nominal variables by the structural component of total factor

productivity At, I solve the model by computing a first-order approximate solution around its deterministic

steady state, and finally I estimate the model using Bayesian methods. To decompose the static and the

structural component of TFP growth, I compute the Solow Residuals in log differences as follows:

TFP t
TFP t−1

=
εut
εut−1

(
At
At−1

)1−α

(18)

The first term, εut
εut−1

represents the component of TFP fluctuations due to changes in the efficiency of the

utilization of physical capital, while At
At−1

represents the component of TFP gains determined by the process of
9



technological advancement. I will refer to the first component as the static component of TFP, and to the second

one as the structural component of TFP. The model is estimated using quarterly data from the US economy from

1984q2 to 2007q2. Further analysis, i.e. shock decomposition and forecasting power comparison is conducted

on the sample 2007q3 - 2016q4 using previously estimated parameters. This expedient allows us to circumvent

the limitations implied by the Zero Lower Bound during the period 2007q3 – 2016q4. The database is composed

by 9 time series from 1984q2 to 2016q4: real GDP, consumption, investment, hours worked, real wages, prices,

interest rate and investment in R&D and TFP. The database is constructed following the approach of Smets

and Wouters (2007), with the exception of R&D, TFP and interest rates data. GDP, consumption, physical

capital investment, and R&D are extracted from the Bureau of Economic Analysis database. Consumption

and investment are normalized by the GDP deflator. Inflation is computed as the first difference of the log of

the GDP deflator. Hours worked and real wages are extracted from the Bureau of Labour Statistics database

for the Non-Farm Business Sectors. Hours worked are normalized for the civilian employment. Real wages

are obtained by deflating nominal wages by the GDP price deflator. Aggregate variables are normalized by the

working age population over 16. Total Factor Productivity is measured throughout the utilization adjusted TFP

series from the database of the Federal Reserve of San Francisco. Instead of using the standard Federal Funds

Rate, I estimate the model by using the Wu-Xia (2015) Shadow Rate, that takes into account unconventional

monetary policy measures and has the advantage of not being constrained at the ZLB with respect to the Federal

Funds rate. Since I estimate the model on 1984q2 - 2007q2 data, during the Great Recession the central bank

operates with the pre-crisis Taylor Rule. The use of the Wu-Xia Shadow Rate does not imply any modification

for the parameter estimates, theoretical moments and contemporaneous cross-correlations, since in absence of

unconventional monetary policies its value coincides with that of the Federal Funds Rate. By contrast the

Wu-Xia Shadow Rate it is more informative with respect to the credit market conditions at the ZLB during

the forecasting exercise and allows for a more realistic historical decomposition analysis. In particular, I show

that by decomposing shock contributions on the ZLB period with previously estimated parameters, the ‘missing

deflation’ puzzle3 disappears. The historical decomposition shows that a strong monetary policy shock - i.e.

the Federal Reserve Quantitative Easing program - is sustaining the price level during the crisis period4. As

standard in the literature, I calibrate one subset of parameters and I estimate the remainder. Concerning the

choice of the subsets of calibrated and estimated parameters, and the prior distribution of the parameters, my

approach does not significantly differ from Smets and Wouters (2007). The only extra estimated parameter I

introduce is %, i.e. the degree of non-linearity of the R&D adjustment cost function, which I set as quadratic

in the priors. The vast majority of the parameters is estimated. The only calibrated parameters are the

physical capital stock quarterly depreciation rate δ=0.025, the steady-state government spending to GDP ratio

(G/Y)*=0.18, the steady-state R&D investment to GDP ratio (J/Y)*=0.038, the steady-state wage mark-up of

the labour union hw=1.5, and the curvature of the Kimball aggregator for the non-intermediate goods and the
3For a detailed discussion of the missing deflation puzzle, see Lindé, Smets and Wouters (2016)
4This finding is not strictly related to the introduction of the endogenous TFP channel as it also holds in absence of an endogenous

TFP mechanism
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labour market, which are both set to 10. Prior distributions are standard and wide, in order to let the data have

the biggest say. In Table 1, I present the estimates for the structural parameters. The estimates are generally

consistent with the literature. Furthermore, I obtain that R&D investment adjustment costs are approximately

quadratic. In Table 2, I present the estimates for the shock processes parameters. Static and structural TFP

shocks, government spending shocks, price and wages mark-up shocks results being highly persistent, while the

risk premium, physical capiral and R&D investment specific technology shock, and the monetary policy shock

are less persistent. Most volatile shocks are the R&D investment specific technology shock and the structural

TFP shock. The price mark-up and monetary policy shock are the least volatile shocks. All the parameters

estimates present a high degree of significance.

TAB. 1 - ESTIMATES OF THE STRUCTURAL PARAMETERS

Parameter Prior Mean Prior StDev Distribution Posterior Mode Pst StDev

ψ 4.00 1.50 NORMAL 5.93 0.96

% 2.00 1.00 NORMAL 2.08 0.34

σ 1.50 0.375 NORMAL 1.34 0.12

h 0.70 0.10 NORMAL 0.69 0.05

ξp 0.50 0.10 BETA 0.66 0.06

ξw 0.50 0.10 BETA 0.53 0.07

σl 2.00 0.75 NORMAL 1.87 0.49

ιw 0.50 0.15 BETA 0.48 0.17

ιp 0.50 0.15 BETA 0.36 0.15

α 0.30 0.05 NORMAL 0.27 0.02

z 0.50 0.05 BETA 0.91 0.04

Φ 1.25 0.15 NORMAL 1.77 0.08

ρrπ 1.50 0.125 NORMAL 2.16 0.19

ρrr 0.75 0.25 BETA 0.82 0.03

ρry 0.125 0.10 NORMAL 0.03 0.02

ρrdy 0.125 0.05 NORMAL 0.10 0.03

g 0.50 0.10 NORMAL 0.54 0.11
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TAB. 2 - ESTIMATES OF SHOCK PROCESSES PARAMETERS

Parameter Prior Mean Prior Stdev Distribution Posterior Mode Pst StDev

ρu 0.50 0.20 BETA 0.95 0.02

ρb 0.50 0.20 BETA 0.40 0.11

ρg 0.50 0.20 BETA 0.90 0.02

ρqs 0.50 0.20 BETA 0.55 0.10

ρm 0.50 0.20 BETA 0.50 0.08

ρπ 0.50 0.20 BETA 0.88 0.05

ρw 0.50 0.20 BETA 0.92 0.03

ρx 0.50 0.20 BETA 0.47 0.06

ρa 0.50 0.20 BETA 0.95 0.01

σu 0.10 2.00 INV GAMMA 0.38 0.04

σb 0.10 2.00 INV GAMMA 0.22 0.02

σg 0.10 2.00 INV GAMMA 0.42 0.03

σinv 0.10 2.00 INV GAMMA 0.41 0.05

σm 0.10 2.00 INV GAMMA 0.10 0.02

σπ 0.10 2.00 INV GAMMA 0.09 0.01

σw 0.10 2.00 INV GAMMA 0.28 0.04

σx 0.10 2.00 INV GAMMA 1.15 0.25

σa 0.10 2.00 INV GAMMA 1.17 0.09

4. Assessing the Impact of the Endogenous TFP Mechanism

In Table 3 I report the theoretical business cycle moments implied by the model described in Section 2. I compare

the implied theoretical models with the theoretical models implied by a benchmark exogenous TFP model and

the empirical models implied by the data from the pre-crisis period (1984q2 - 2007q2) and from the complete

sample (1984q2 - 2016q4). Endogenous TFP increases the volatility, but decreases the mean of all the considered

variables. Overall, the theoretical moments implied by the model are fairly consistent with those implied by the

data. Additionally, I show that, while the exogenous TFP model better approximates the empirical moments

implied by the pre-crisis sample, the endogenous TFP model better approximates the empirical moments implied

by the full sample. Nevertheless, the model tends to attribute an excessive volatility to TFP with respect to

the data. In Figure 2 I report the Root Mean Squared Error (RMSE) for the forecasts computed on the Great

Recession and its Aftermath (2007q2-2016q4) sample using previously estimated parameters. The choice of

using previously estimated parameters allows us to avoid the ZLB estimation bias and allows for a greater
12



parameters’ stability. The endogenous TFP model’s RMSE is represented by the blue solid line, while the

exogenous TFP model’s RMSE is represented by the red dashed line. On the horizontal axis I represent the

forecasting horizon, expressed in quarters. I test the forecasting power of the model from 1 to 8 periods. The

endogenous TFP model is shown to better predict output, inflation, interest rate and hours worked at every

forecast horizons, while there is no clear winner for consumption and wages. Additionally, the model is able to

predict R&D Expenditure and Total Factor Productivity series with good approximation. The results of the

forecasting exercise suggest that the additional information brought by the R&D and the TFP series in the

endogenous TFP model estimation allows to improve the forecasting power of standard models on the Great

Recession.

In the Appendix, I show the impact of the introduction of the endogenous TFP mechanism for the impulse

response functions of the model. The solid blue line represents the dynamic response for the endogenous TFP

model, while the dashed red line represents the exogenous TFP benchmark model. For each observable, both

impulse response functions are computed for 0.1 standard deviations wide shocks. From the comparison of

the two dynamic responses, it is possible to infer the impact of the endogenous TFP channel on the impulse

response functions. Some non-trivial results emerge. The response in terms of TFP is not always procyclical.

This result is mostly due to the denominator effect in the R&D on output ratio, which determines the innovation

probability. When the economy is affected by a random shock, both output and R&D respond. Importantly,

the contraction of R&D does not always imply a contraction in TFP. Since TFP is determined by the R&D on

output ratio throughout the innovation probability, if both output and R&D contract, but output shrinks more

than R&D, R&D on output ratio will increase, hence TFP will rise. R&D adjustment cost in this sense plays

a very important role, by constituting the major source of R&D inertia. When TFP response is procyclical,

the endogenous TFP channel will thus amplify the fluctuations driven by stochastic shocks, viceversa when

TFP reaction is anticyclical, endogenous TFP is smoothing the economy’s fluctuations. Namely, I obtain that

the static TFP shock, the structural TFP shock, the prices and wages mark-up shocks, the monetary policy

shock, and the R&D investment technology shock boost TFP growth, while the risk premium shock and the

investment specific technology shock contract TFP.
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TAB.3 - THEORETICAL VS. EMPIRICAL MOMENTS

Endogenous TFP Exogenous TFP Data (1984q2-2007q2) Data (1984q2-2016q2)

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Output 0,29 0,90 0,42 0,73 0,52 0,54 0,38 0,61

Consumption 0,29 0,72 0,42 0,51 0,60 0,51 0,45 0,60

Investment 0,29 1,75 0,42 1,69 0,55 1,46 0,27 1,84

Hours Worked 0,10 2,35 0,93 2,02 1,40 2,08 -0,85 4,10

Inflation 0,55 0,38 0,59 0,30 0,61 0,23 0,55 0,24

Wages 0,29 0,95 0,42 0,74 0,39 0,68 0,33 0,83

Interest Rate 1,12 0,41 1,32 0,37 1,32 0,60 0,98 0,75

R&D 0,29 0,85 / / 0,37 0,83 0,36 0,90

TFP 0,29 1,31 / / 0,29 0,58 0,23 0,61

FIG.2 - FORECASTING POWER COMPARISON (2007Q2-2016Q4)

On the y-axis: Root Mean Square Forecast Error for output (at the top left), consumption, investment, wages,

inflation, interest rate, hours worked and R&D (on the bottom right). On the x-axis: forecasting horizon. Solid

line represents RMSE for forecasts computed on 2007q3-2016q4 with the baseline SW (2007) model, dashed

line represents RMSE on the same sample for forecasts computed with the model described in Section 2.

Forecasts for both models are computed using previous parameters estimates (on 1984q2-2007q2).
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5. The Sources of Fluctuations in Endogenous TFP Models

The introduction of endogenous TFP also allows to shed light on the sources of the TFP slowdown during the

Great Recession and its Aftermath (2007q3-2016q4). In Tab.4 I show the Unconditional Variance Decomposition

analysis for the 9 observed variables. As in standard models, risk premium and investment specific technology

shocks are key drivers of the economic fluctuations. Additionally, structural TFP, government spending and

R&D investment technology shocks are amongst the most important driver of the business cycle. Monetary

policy shocks have a modest effect, but they have a powerful effect on inflation. This result is in large part

due to the effect of the Quantitative Easing program in sustain of the price level during the Great Recession,

as I will show during the Historical Decomposition. In Tab. 5 I show the Conditional Variance Decomposition

analysis for TFP. The shocks in the first two columns of the table represent TFP’s exogenous component.

Overall, by aggregating the static and the structural TFP components contributions, exogenous TFP shocks

account for the 65% of the productivity fluctuations. This suggests that data do not reject the endogenous TFP

hypothesis, since the 35% of TFP fluctuations are generated by the endogenous TFP mechanism. Furthermore,

although I do not show it in the paper, if one allows for a non-linear innovation probability with wide priors, the

estimated coefficient is close to 1. In other words, the data suggest the presence of a linear relationship in terms

of R&D/output to TFP, despite the Bayesian estimation setup leaves the data free to suppress the endogenous

TFP channel by setting the posterior equal to 0. Finally, in the Appendix I show the results of the Historical

Decomposition of the observed variables. Several findings emerge. First, the R&D efficiency shock is identified

as the main driver of the TFP slowdown during the Great Recession and its Aftermath. Throughout the effect of

the endogenous TFP transmission channel, the R&D efficiency shock propagates to all the other variables. Hours

worked and interest rates are severely affected by the endogenous TFP channel. As in standard models, the

risk premium shock is the main responsible of the sharp 2008-2009 output and consumption contraction, while

the investment efficiency shock is the main responsible of the investment contraction. Finally, the introduction

of the Wu-Xia (2016) Shadow Rate allows us to solve the missing deflation puzzle. In standard DSGE as Smets

and Wouters (2007) unrealistic price mark-up shocks sustaining the price level are typically identified by the

models to justify the absence of a sharp deflation during the Great Recession. By making use of the Wu-Xia

(2016) Shadow Rate this anomaly disappears. As I show in the inflation historical decomposition, the estimates

indicate that a strong monetary policy shock is sustaining the price level during the Great Recession. These

results suggest that the Quantitative Easing Program of the Federal Reserve was highly effective in sustaining

the price level during the ZLB binding period.
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TAB.4 - UNCONDITIONAL VARIANCE DECOMPOSITION

Struct

TFP

Static

TFP

Risk

Pr

Govt

Spend

Inv

Tech

Mon

Pol

Price

Markup

Wage

Markup

R&D

Tech

GDP 23.82 4.73 18.12 17.88 12.07 3.07 2.54 1.15 16.62

Cons 9.79 2.10 43.19 2.39 1.30 10.87 5.62 6.65 18.08

Inv 23.82 0.24 5.83 3.61 51.91 1.35 3.07 0.48 9.71

Labour 20.83 9.83 6.07 2.86 9.23 4.65 9.07 15.79 21.66

Inflation 9.47 2.30 1.91 1.54 5.02 27.54 28.23 17.47 6.51

Wages 13.46 0.88 3.20 1.13 1.95 5.35 11.87 45.54 16.61

IntRate 17.93 5.97 5.51 3.03 12.21 8.35 12.34 12.51 22.15

R&D 5.73 0.91 5.72 1.52 1.88 5.04 2.27 1.34 75.59

TFP 52.65 12.30 3.85 2.66 4.00 3.60 2.87 2.16 15.91

6. Concluding Remarks

In this paper I develop a New Keynesian Dynamic Stochastic General Equilibrium model featuring a creative

destruction based mechanism of endogenous TFP growth. I estimate the model with U.S. data (1984q2-2007q2)

using Bayesian methods, and I use the estimated parameters to perform several empirical exercises on the Great

Recession and its Aftermath (2007q2-2016q2). I show the model to empirically outperform a benchmark version

of the model that does not feature an endogenous TFP channel in a forecasting exercise with previously estimated

parameters during the Great Recession. Additionally, the theoretical moments implied by the estimates of the

model are fairly consistent with the empirical moments. The variance decomposition analysis suggests that

the 35% of the productivity fluctuations of the economy are endogenous. Consistently with Bianchi and Kung

(2014), the analysis highlights the role of R&D investment efficiency shocks in driving the endogenous component

of TFP fluctuations during the Great Recession and its Aftermath. Finally, I show that the introduction of the

creative destruction mechanism has non-trivial effect on the impulse response functions and can exacerbate or

smooth the dynamic responses to adverse shocks according to TFP behaviour. The analysis raises a number of

considerably relevant questions concerning the optimal policies to adopt under endogenous TFP determination

assumptions. In particular, further research is needed to understand how monetary policy should react to

counter adverse shocks affecting the productivity level and the implication of the presence of an endogenous

TFP channel on the optimal inflation target. I hope that this paper contributed to highlight the salience of

incorporating endogenous productivity dynamics in General Equilibrium models and provided tools for a better

understanding of the causes of the post-crisis productivity slowdown.

16



Bibliography:

Aghion, P. & Howitt, P. 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric

Society, vol. 60(2), pages 323-51, March.

An, S. & Schorfheide, F. 2007. "Bayesian Analysis of DSGE Models", Econometric Reviews, Taylor &

Francis Journals, vol. 26(2-4), pages 113-172.

Anzoategui, D. & Comin, D. & Gertler, M. & Martinez, J. 2016. "Endogenous Technology Adoption and

R&D as Sources of Business Cycle Persistence," NBER Working Papers 22005, National Bureau of Economic

Research, Inc.

Ball, L. 2014. “Long-term damage from the Great Recession in OECD countries”, National Bureau of

Economic Research, working paper, n° 20185, mai.

Benigno, G. & Fornaro, L. 2016. "Stagnation Traps," CEPR Discussion Papers 11074

Bianchi, F. & Kung, H. 2014. "Growth, Slowdowns, and Recoveries," NBERWorking Papers 20725, National

Bureau of Economic Research, Inc.

Brandt, L. & Van Biesebroeck, J. & Zhang, Y. (2012). "Creative accounting or creative destruction? Firm-

level productivity growth in Chinese manufacturing," Journal of Development Economics, Elsevier, vol. 97(2),

pages 339-351.

Campbell, J. 1998. “Entry, Exit, Embodied Technology, and Business Cycles”, Review of Economic Dynamics

Volume 1, Issue 2, April 1998, Pages 371-408

Christiano, L. Eichenbaum, M. Evans, C. 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to

Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February

Comin, D. & Gertler, M. 2006. "Medium-Term Business Cycles," American Economic Review, American

Economic Association, vol. 96(3), pages 523-551, June.

Cozzi et al. 2017. “How Much Keynes and How Much Schumpeter? An Estimated Macromodel of the US

Economy”, Mimeo

Furceri, D. & Mourougane, A. 2012. "The effect of financial crises on potential output: New empirical

evidence from OECD countries," Journal of Macroeconomics, Elsevier, vol. 34(3), pages 822-832.

Gordon, R. 2012. "Is U.S. Economic Growth Over? Faltering Innovation Confronts the Six Headwinds,"

NBER Working Papers 18315, National Bureau of Economic Research, Inc.
17



Guerron-Quintana, P. & Jinnai, R. 2014. "Liquidity, trends, and the Great Recession," Working Papers

14-24, Federal Reserve Bank of Philadelphia.

Hall, R. E. 2014. "Quantifying the Lasting Harm to the U.S. Economy from the Financial Crisis", NBER

Working Paper No. 20183

Haltmaier, J. 2012. "Do Recessions Affect Potential Output?" Federal Reserve Board - International Finance

Discussion Paper, 1066.

Ikeda, D. & Kurozumi, T. 2014. "Post-Crisis Slow Recovery and Monetary Policy," IMES Discussion Paper

Series 14-E-16, Institute for Monetary and Economic Studies, Bank of Japan.

Jones, C. 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of

Chicago Press, vol. 103(4), pages 759-784, August.

Lindé, J. & Smets, F. & Wouters, R. 2016. "Challenges for Central Banks´ Macro Models", Working Paper

Series 323, Sveriges Riksbank.

Liu, L. 1993. “Entry-exit, learning, and productivity change: Evidence from Chile”, Journal of Development

Economics Volume 42, Issue 2, December 1993, Pages 217-242

Oulton N. & Sebastià-Barriel, M. (2013), “Long and short-term effects of the financial crisis on labour

productivity, capital and output”, Bank of England Working Paper, n° 470, January 2013.

Queraltó, A. 2015 "A Model of Slow Recoveries from Financial Crises" Federal Reserve Board International

Finance Discussion Paper

Reinhart, C. & Rogoff, K. 2014. "Recovery from Financial Crises: Evidence from 100 Episodes," American

Economic Review, American Economic Association, vol. 104(5), pages 50-55, May.

Romer, P. 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago

Press, vol. 98(5), pages S71-102, October.

Smets, F. & Wouters, R. 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach,"

American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.

Wu, J. and Xia, F. "Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound",

Journal of Money, Credit, and Banking, 2016, 48(2-3), 253-291.

Yellen, J. 2016. “Macroeconomic Research After the Crisis”, Remarks at the 60th Annual Economic Confer-

ence, Federal Reserve Bank of Boston.

18



Appendix

A. Impulse Response Functions

Solid Black line = Endogenous TFP, Dashed Blue Line = Exogenous TFP

DYNAMIC RESPONSE TO A RISK PREMIUM SHOCK

DYNAMIC RESPONSE TO A STATIC TFP SHOCK

DYNAMIC RESPONSE TO A GOVERNMENT SPENDING SHOCK
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DYNAMIC RESPONSE TO AN INVESTMENT SPECIFIC TECHNOLOGY SHOCK

DYNAMIC RESPONSE TO A MONETARY POLICY SHOCK

DYNAMIC RESPONSE TO A PRICE MARK-UP SHOCK
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DYNAMIC RESPONSE TO A WAGE MARK-UP SHOCK

DYNAMIC RESPONSE TO A R&D INVESTMENT TECHNOLOGY SHOCK

DYNAMIC RESPONSE TO A STRUCTURAL TFP SHOCK
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B. Historical Decomposition of the Observed Variables

during the Great Recession and its Aftermath (2007q3 – 2016q4)

OUTPUT HISTORICAL DECOMPOSITION (1=2007Q3 - 38=2016Q4)

CONSUMPTION HISTORICAL DECOMPOSITION (1=2007Q3 - 38=2016Q4)

INVESTMENT HISTORICAL DECOMPOSITION (1=2007Q3 - 38=2016Q4)
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HOURS WORKED HISTORICAL DECOMPOSITION (1=2007Q3 - 38=2016Q4)

INFLATION HISTORICAL DECOMPOSITION (1=2007Q3 - 38=2016Q4)

WAGES HISTORICAL DECOMPOSITION (1=2007Q3 - 38=2016Q4)
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INTEREST RATES HISTORICAL DECOMPOSITION (1=2007Q3 - 38=2016Q4)

R&D HISTORICAL DECOMPOSITION (1=2007Q3 - 38=2016Q4)

TFP HISTORICAL DECOMPOSITION (1=2007Q3 - 38=2016Q4)
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