
 

ECARES 
ULB - CP 114/04 

50, F.D. Roosevelt Ave., B-1050 Brussels BELGIUM 
www.ecares.org 

 

 

 

 

 

Mutual Point-winning Probabilities (MPW): 
 a New Performance Measure for Table Tennis 

 
 
 

 
Christophe Ley 

Ghent University 
 

Yves Dominicy 
SBS-EM, ECARES, Université libre de Bruxelles 

 
Wim Bruneel 

Ghent University 
 
 
 
 

 
 

May 2017 
 

 

 

ECARES working paper 2017-23 

 

 



Mutual point-winning probabilities (MPW): a new performance

measure for table tennis

Christophe Ley1, Yves Dominicy2 and Wim Bruneel3
1 Ghent University, Gent, Belgium

christophe.ley@ugent.be
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Abstract

We propose a new performance measure for table tennis players: the mutual point-
winning probabilities (MPW) as server and receiver. The MPWs quantify a player’s chances
to win a point against a given opponent, and hence nicely complement the classical match
statistics history between two players. We shall describe the MPWs, explain the statistics
underpinning their calculation, and show via a Monte Carlo simulation study that our esti-
mation procedure works well. As an illustration of the MPWs’ versatile use, we use it as an
alternative ranking method in two round-robin tournaments of ten respectively eleven table
tennis players that we have ourselves organized.

Key words: Bradley-Terry model, Maximum likelihood estimation, Round-robin tournament,
Sport performance analysis, Strength model

1 Introduction

The use of advanced statistical techniques in sports has become increasingly popular over the
past years. This fact is noticeable both at the highest sport competition level, where several
data analysts get hired by the major professional teams, as well as at the level of scientific
research. Numerous papers have been written about soccer (Groll et al. 2015, Koopman and
Lit 2015, Tutz and Schauberger 2015), tennis (Baker and McHale 2014, Harris 2016), basketball
(Mart́ın-Gonzáleza et al. 2016, Vračar et al. 2016), baseball (Heumann 2016, Peach et al. 2016)
or badminton (Percy 2009, Paindaveine and Swan 2011), to cite but these, and international
scientific research projects such as the “Big Data Analytics in Sports”1 have been created. The
mutual fertilization between the world of sports and academic statistics is undoubtable, and one
of the reasons why sport analytics play such an important role nowadays. We refer the reader
to the webarticle Steinberg (2015) to get insight into this quick development.

Quite surprisingly, the available scientific literature about table tennis is relatively scarce.
To the best of the authors’ knowledge, only two papers have been devoted to the topic, and
both papers have proposed a stochastic analysis of the game. Schulman and Hamdan (1977)
investigated the probabilities of winning a set in the former scoring system (5 services in a row
by each player, first to reach 21 points wins the set, at 20-20 the players take turns in services),

1http://bodai.unibs.it/BDSports/
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while Dominicy et al. (2013) have modelled the match-winning chances in the old as well as the
new scoring system (2 services in a row by each player, first to reach 11 points wins the set, at
10-10 the players take turns in services). Dominicy et al. (2013) have furthermore compared
the two scoring systems and concluded that the change implied (i) a better control of the length
of a match and (ii) an augmentation of the number of crucial points without influencing the
winning probabilities too heavily. Both papers, Schulman and Hamdan (1977) and Dominicy et
al. (2013), are purely theoretical and are not making use of any real data.

The recent surge in computing power has enabled the creation of devices that can collect,
store and transfer increasingly complex and large data sets. We are living in the “Big Data” era
and the strong need to properly analyze these data has even led to the creation of a new research
field called “Data Science” (Diggle 2015, Ley and Bordas 2017). All fields are facing these new
challenges, be it science, business, industry, medicine, politics or sports. Sport analytics have
become essential to competitive teams, but also odd-setters need them for their forecasts, the
fans are greedy of sport statistics, and the media rely on them for their coverage. In the present
paper, we wish to propose a novel strength model for table tennis players that shall be of interest
to all parties.

Suppose two players face each other and the result of a match is 3-0 in favor of Player A.
Looking in detail at the match statistics sheet is more revealing: a victory by 11-2, 11-1 and
11-5 shows a clear dominance of Player A, while a victory by 11-9, 11-8 and 13-11 indicates a
relatively close match where Player A was able to win the crucial points. Our new model is
designed to provide two numbers that measure the relative strength of Player A with respect to
Player B. After each game between the same players, these numbers shall be updated. Besides
the classical match results (say A has a record of 5-1 against B), these numbers will reveal how
dominant Player A was when playing against Player B.

In Section 2, we shall describe in detail our measures of relative strength, the MPWs, and
the statistical methods to obtain them. A Monte Carlo simulation study further shows that our
estimation methods are efficient. In Section 3 we illustrate the potential use of MPWs through
two round-robin tournaments that we have ourselves organised with table tennis players from
Belgium. A final conclusion is provided in Section 4.

2 The new performance measure

2.1 Mutual point-winning probabilities (MPW)

We consider a match between Player A and Player B. Each player is assigned two strength
parameters, (pAs, pAr) for Player A and (pBs, pBr) for Player B, where the index s stands for
server and r for receiver. These parameters represent winning probabilities and hence vary
between 0 and 1: pAs is the probability of Player A winning a rally he/she initiates, while pAr

is his winning probability as receiver. Obviously, the parameters of both players are mutually
dependent in the sense that

pAs + pBr = 1 and pAr + pBs = 1.

This explains our terminology of mutual point-winning probabilities, which we abbreviate MPW.
At the end of a match, the server and receiver MPWs provide additional information to the
classical final results and can be averaged over several matches between the two players. Since
the MPWs are probabilities, they allow predicting the outcome of the next match between two
players. Let us illustrate MPWs via a toy example. Suppose that Player A won against Player B
in four sets, 11-3, 11-7, 8-11 and 11-5. Our MPWs would further reveal that pAs = 0.71 and
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pAr = 0.50, hence that Player A won 71% of the rallies he/she initiated and that both players
were equally strong when Player B served. MPWs thus represent a brief and efficient summary
that nicely complements the game statistics.

This probabilistic strength model is a slightly modified version of the popular Bradley-Terry
model for paired comparisons (Bradley and Terry 1952). In our model, we assume that every
rally played is independent of the previous rallies. This assumption is based on findings by
Klaassen and Magnus (2003) who show that, within the framework of tennis, independence of
exchanges yields a good approximation to real games.

2.2 Calculation of the MPWs

We shall estimate the MPWs by making use of a detailed point-by-point result sheet after a
match. Let PiA, respectively PiB, stand for the probability that Player A, respectively Player
B, wins rally i among the total of N rallies needed to complete a match (depending on who
serves, PiA thus equals either pAs or pAr). A particularity of our model is that we assign different
weights wi to each rally, reflecting their respective importances. Indeed, winning a rally at 9-2
is less crucial than at 8-8. The weighting scheme will be detailed below. The resulting overall
likelihood function of our model then takes the form

L =
N∏
i=1

∏
j=A,B

P
yij ·wi

ij (2.1)

where yij equals 1 if Player j has won rally i, and 0 else. We attract the reader’s attention to
the fact that the parsimonious way of writing the likelihood (2.1) is simplified thanks to the
fact that a point is scored on every exchange and that there is a fixed rule of service changes
(contrary to former rules in badminton, for example). The strength parameters (pAs, pAr) and
(pBs, pBr) are then estimated as maximizers of the likelihood function (2.1).

Consider two rallies with respective weights 2 and 6. The latter will, compared to the former,
have three times more impact on the estimation of the strength parameters. We shall now expand
on how we choose the weights wi. They are the sum of the following three importance factors:

• Total points played in a set: we assign distinct importance factors to a point depending
on the number of rallies x played to reach the related score. We propose the following
scheme:

Total Points - Importance Factor =


1 forx < 14
2 for 14 ≤ x < 18
3 for 18 ≤ x.

This scoring reflects well the fact that points played at the beginning of a set have less
importance, as well as rallies at intermediate scores like 9-2.

• Difference in points: In case of tied or very close intermediate scores, the next point is
obviously more important than if the point difference were four or more. Writing d the
absolute point difference, we adopt the following rule:

Difference in Points - Importance Factor =


1 for d ≥ 4
2 for d = 2 or 3
3 for d = 0 or 1.
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Table 2.1: Ten imaginary intermediate scores, ranked according to their importance for the
final match outcome by 29 table tennis players (column Rank) and evaluated according to our
weighting scheme (column Weight).

Intermediate score (sets played, intermediate score) Rank Weight

2-2, 5-5 5 7
0-1,12-11 2 8
2-0, 1-6 7 4
1-0, 2-0 8 4
0-0, 10-7 6 5
1-1, 8-8 4 7
2-2, 11-10 1 9
0-0, 9-1 10 2
2-1, 0-0 9 4
2-1, 9-7 3 7

• Current set: rallies exchanged in the first set are considered less important than rallies in
later sets, especially sets 4 and 5. Writing s for the set currently played, this lead to

Current Set - Importance Factor =


1 for s = 1
2 for s = 2 or 3
3 for s = 4 or 5.

On top of this weighting scheme we add the following two binding rules:

• If the point difference is 8 or more, the final weight wi shall be assigned the minimum of
2.

• As long as the total number of points scored is 4 or less, the weight wi cannot exceed 4
during the first three sets and not exceed 5 during the last two sets.

For the sake of illustration, a score of 5-4 in the fourth set is assigned the weight wi = 1+3+3 = 7.
We stress here that, at the evaluation of the score 5-4, our system does not take into account
how we got to that point. This is totally in line with our assumption of independence between
the different rallies played.

In order to confirm the validity of our weighting scheme, we have asked 29 competitive
table tennis players from Belgium to rank ten imaginary intermediate scores according to their
importance for the final match outcome. Their answers are summarized in Table 2.1. As we
can see, our weighting scheme matches these players’ feelings quite well. This confirms that our
rules are simple, but effective.

2.3 A Monte Carlo simulation study

In this section we show by means of Monte Carlo simulations that our maximum likelihood
estimation procedure effectively works, i.e., that the estimated values are consistent estimates of
the true (unknown) probabilities. To this end, we have simulated 10,000 times entire table tennis
matches for six distinct settings of MPWs: (0.5, 0.5, 0.5, 0.5), (0.5, 0.5, 0.2, 0.8), (0.5, 0.5, 0.8, 0.2),
(0.85, 0.15, 0.25, 0.75), (0.85, 0.15, 0.9, 0.1) and (0.15, 0.85, 0.2, 0.8). These need to be read as
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Table 2.2: Consistency study of our likelihood-based performance model. For each setting of
MPWs (pAs, pAr), we have simulated 10,000 times 1 match respectively 2 matches and recorded
the estimated parameter values. Below are indicated the averaged estimates as well as the Root
Mean Squared Errors (RMSE) for both settings.

True MPWs Estimates 1 Match RMSE Estimates 2 Matches RMSE

(0.5000,0.5000) (0.4845, 0.4951) (0.0683, 0.0662) (0.4975, 0.5000) (0.0467, 0.0467)
(0.5000,0.8000) (0.4845, 0.7935) (0.0668, 0.0547) (0.5048, 0.7863) (0.0504, 0.0443)
(0.5000,0.2000) (0.5082, 0.2056) (0.0673, 0.0575) (0.5131, 0.2034) (0.0559, 0.0424)
(0.8500,0.7500) (0.8438, 0.7375) (0.0676, 0.0767) (0.8512, 0.7277) (0.0492, 0.0680)
(0.8500,0.1000) (0.8618, 0.1111) (0.0357, 0.0342) (0.8485, 0.0959) (0.0295, 0.0245)
(0.1500,0.8000) (0.1580, 0.8060) (0.0394, 0.0453) (0.1481, 0.7979) (0.0310, 0.0342)

follows: in the last setting Player A has a chance of 15% to win a rally that he/she initiates, and
80% winning chance as he/she is the receiver. We have thus considered very diverse situations,
ranging from a totally equalized game over a service-dominated game to a game where one
player dominates his opponent both on service and reception. For each simulated match, we
have estimated the corresponding parameters in our model (2.1). Then, in a second step, we
have considered exactly the same settings but this time we have simulated two matches each
time, in order to illustrate the capacity of our MPWs to be updated after every match. Since
the number of exchanges in two matches is roughly double the amount of a single match, we
expect the resulting estimates to lie closer to their true values. All simulations were carried out
in Matlab; to ensure their replicability, we used the same seed for all simulations. As initial
values for the optimisation procedure we used (0.5, 0.5, 0.5, 0.5) (we tried out other initial values
and the results were very similar).

The simulation results are presented in Table 2.2, where we show the MPWs of Player A.
Whatever the settings considered, the estimation procedure yields good results. As expected,
playing 2 matches improves the precision of our estimators in 9 out of 12 settings.

3 Alternative MPW-based ranking in a round-robin tourna-
ment

In order to appreciate the additional information provided by the MPWs, we have organised
ourselves two round-robin table tennis tournaments, one with strong competitive players and
the other with less strong competitive players. This organisation was simplified thanks to the
contacts of the third author, who is himself a competitive player in Belgium. In what follows
we shall describe the progress of the tournament and data collection (Section 3.1), and analyse
the results for the high-level players (Section 3.2) as well as the low-level players (Section 3.3).
The analysis shall be based on both the classical ranking and an alternative ranking based on
our MPWs.

3.1 Data collection and tournament conduct

We have invited some dozens of randomly chosen competitive table tennis players to participate
in two round-robin tournaments. Twenty-one players responded to this invitation, all are mem-
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Table 3.3: Overview of high-level players taking part in the first organized round-robin tourna-
ment.

Name Ranking Years of experience

AH C4 8
BH C4 10
CH C2 14
DH C0 30
EH C4 21
FH C2 10
GH C4 13
HH C2 9
IH C0 6
JH C0 6
KH C2 15

Table 3.4: Overview of low-level players taking part in the second organized round-robin tour-
nament.

Name Ranking Years of experience

AL E2 9
BL E4 6
CL E0 10
DL E2 6
EL E2 9
FL E4 9
GL E0 9
HL E4 4
IL E4 5
JL E2 9

bers of different official table tennis clubs in West Flanders, Belgium. Ten players are ranked
as E0, E2 or E4, which corresponds to a low local level. Eleven players are ranked as C0, C2
or C4, corresponding to a high local level. An overview of the characteristics of these players
can be found in Tables 3.3 and 3.4. We have anonymised the players’ names and hence refer
to them as Players AH, BH, . . . respectively AL, BL, . . ., where H and L respectively stand for
high- and low-level.

Participants of both groups knew each other, and hence had an idea of their respective
strengths and weaknesses, especially those playing for the same team. Players were aware that
they are participating in a scientific study, because there are no such round-robin tournaments
organised by the Flemish Table Tennis Association (VTTL). They did however ignore the key
scientific questions of this study and were told to play every match like a normal competitive
match. Furthermore, no coaches, fans or participants were allowed to talk with or support the
players during the games.

Both tournaments were organised in a local sports hall of the table tennis club in Zonnebeke,
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Table 3.5: Official ranking of the round-robin tournament played by the high-level players. It
displays the matches won and lost, the sets won and lost and the mutual results between players
that have won an equal amount of matches (sets even ranked).

Rank Name Matches won Matches lost Sets won Sets lost Sets even ranked

1 JH 10 0 30 10
2 IH 8 2 28 11
3 DH 7 3 25 14
4 BH 6 4 23 18
5 CH 5 5 21 18 4/3
6 GH 5 5 19 23 4/4
7 EH 5 5 19 22 3/4
8 KH 4 6 21 25
9 HH 3 7 13 26
10 FH 2 8 18 27
11 AH 0 10 7 30

Belgium. The games were played at Stiga Optimum 30 tables, using plastic 40+ mm Xushaofa
balls. Both groups played a round-robin tournament, on two different days. The games were
played in a completely random sequence. The (2,11,3)-scoring system was used, which is the
scoring system of the national and local competitions in Belgium. A toss decided which player
served first at the beginning of each match. Three matches were played simultaneously. Games
were led by a referee, as this is the case in competitions and official tournaments. Those referees
were either volunteers or players of the study. Participants were told they could rest long enough
between the games, so that fatigue could be neglected as much as possible. The players were
aware that each game was recorded by a camera, which allowed us to precisely aggregate the
point-by-point data after the tournament.

3.2 Analysis of the tournament of high-level players

Eleven players formed the high-level group, leading to a total of 55 matches. The final ranking
of the tournament is displayed in Table 3.5. JH played some exciting games and managed to
win them all. IH finished second but lost only one set more than JH. Only AH was not playing
at a high level and lost all matches.

We now analyse the results via our MPWs. For every game played, each player has been given
service and receiver MPWs. In Table 3.6 we indicate the resulting rankings on service as well
as on return. There is a strong correlation between the MPW rankings and the official ranking,
with a Spearman ρ coefficient of 0.855 for service and 0.909 for return. Most remarkably, player
FH is ranked much higher on the service ranking than in the official ranking, which reflects the
fact that he has been playing several close matches and is a good server. This is one of the
aspects where our new performance measure sheds interesting new light on match outcomes.

Since we are in a round-robin tournament, it is sensible to add up these MPWs for every
player and to rank them according to the resulting sums. Moreover, since the service alternates
every two points, both service and return are equally important to distinguish an excellent
player from a good player. Table 3.7 provides the ranking based on the sum of both strengths.
The Spearman correlation with the tournament ranking is 0.909, revealing that the combined
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Table 3.6: Ranking of high-level players based on the MPW on service (left) and on return
(right). The value in brackets shows the ranking of the high-level player in the tournament (see
Table 3.5).

Rank Name MPW on service Name MPW on return

1 IH(2) 0.592 DH(3) 0.553
2 JH(1) 0.581 JH(1) 0.542
3 BH(4) 0.577 IH(2) 0.541
4 CH(5) 0.561 CH(5) 0.492
5 EH(7) 0.555 BH(4) 0.473
6 DH(3) 0.539 KH(8) 0.464
7 FH(10) 0.538 EH(7) 0.457
8 GH(6) 0.504 GH(6) 0.450
9 KH(8) 0.480 FH(10) 0.428
10 HH(9) 0.466 HH(9) 0.410
11 AH(11) 0.437 AH(11) 0.365

Table 3.7: Ranking of high-level players based on the sum of both server and receiver MPWs.

Rank Name MPW Sum

1 IH(2) 1.133
2 JH(1) 1.123
3 DH(3) 1.091
4 CH(5) 1.054
5 BH(4) 1.050
6 EH(7) 1.012
7 FH(10) 0.966
8 GH(6) 0.955
9 KH(8) 0.944
10 HH(9) 0.877
11 AH(11) 0.802
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Table 3.8: Official ranking of the round-robin tournament played by the low-level players. It
displays the matches won and lost, the sets won and lost and the mutual results between players
that have won an equal amount of matches (sets even ranked).

Rank Name Matches won Matches lost Sets won Sets lost Sets even ranked

1 HL 9 0 27 7
2 DL 8 1 26 14
3 AL 6 3 22 14
4 GL 5 4 19 16 3/2
5 CL 5 4 20 15 2/3
6 JL 4 5 18 20
7 BL 3 6 15 23
8 IL 3 6 16 20
9 EL 2 7 9 21
10 FL 0 9 6 27

information about both service and return MPWs is highly in line with the classical point system.
Again the most remarkable change is Player FH who is ranked 7th according to MPWs, while
he was 10th in the classical ranking. Other position changes like those involving Players IH and
JH or Players CH and BH are based on only minor differences in MPWs. The latter result from
similar numbers of sets won and lost, see Table 3.5. An unsurprising fact is the ranking change
of Player HH, who loses one place in our ranking compared to the official ranking, given that
he only won a low amount of sets. In this respect, the MPW ranking seems even fairer than the
traditional ranking.

3.3 Low-level players

The analysis here follows along the same lines as in the previous section. HL, the winner, was
the best player in the competition conceding only 7 sets in 9 games. FL lost all matches.

The Spearman correlations between the official ranking and the MPW rankings on service,
return, and the sum of both components are respectively 0.806, 0.818 and 0.980. Quite interest-
ingly, this means that the service and return rankings for low-level players differ more from the
official ranking than for high-level players, while the sum of service and return MPWs yields a
nearly identical picture to the official ranking.

The MPW rankings reveal the following insightful facts. Player IL has been the weakest on
the service, but ranked 4th on the receiver ranking. The overall winner, Player HL, dominates
the service ranking by quite some margin, and ranks second as receiver. Players GL and CL,
who could only be distinguished on the official ranking through the number of even ranked sets,
exchange their positions on the combined MPW ranking.

4 Conclusion

We have proposed an alternative performance measure for table tennis: the mutual point-
winning probabilities, abbreviated MPWs. They are based on a statistical strength model whose
parameters are estimated by means of maximum likelihood estimation. Through a thorough
Monte Carlo simulation study we have shown that our estimation procedure works very well.
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Table 3.9: Ranking of low-level players based on the MPW on service (left) and on return
(right). The value in brackets shows the ranking of the low-level player in the tournament (see
Table 3.8).

Rank Name MPW on service Name MPW on return

1 HL(1) 0.597 AL(3) 0.555
2 GL(4) 0.555 HL(1) 0.543
3 CL(5) 0.552 DL(2) 0.541
4 DL(2) 0.543 IL(8) 0.530
5 JL(6) 0.541 CL(5) 0.490
6 AL(3) 0.521 GL(4) 0.468
7 EL(9) 0.504 BL(7) 0.466
8 BL(7) 0.477 JL(6) 0.450
9 FL(10) 0.445 EL(9) 0.416
10 IL(8) 0.440 FL(10) 0.367

Table 3.10: Ranking of low-level players based on the sum of both server and receiver MPWs.

Rank Name MPW Sum

1 HL(1) 1.140
2 DL(2) 1.084
3 AL(3) 1.076
4 CL(5) 1.042
5 GL(4) 1.024
6 JL(6) 0.991
7 IL(8) 0.970
8 BL(7) 0.943
9 EL(9) 0.919
10 FL(10) 0.811
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We have applied our MPWs to two round-robin tournaments that we organized with both
high-level and lower-level competitive table tennis players from Belgium. We draw two main
conclusions from this experiment:

• MPW-based rankings, be it on service, return or the combination of both, are highly in
line with the classical tournament ranking, hence are reasonable performance measures.

• MPW-based rankings offer insightful additional information about the players’ strength,
and they remain easy to read and interpret.

Wrapping up, we believe that MPWs are interesting, easily interpretable and efficient per-
formance measures for table tennis players that can nicely complement the traditional match
statistics and rankings.
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