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We discuss the spectral property of unstable dynamical systems in both classical and quantum 
mechanics. An important class of unstable dynamical systems corresponds to the Large Poincare 
Systems (LPS). Conventional perturbation technique leads then to divergences. We introduce meth-
ods for the elimination of Poincare divergences to obtain a solution of the spectral problem analytic 
in the coupling constant. To do so, we have to enlarge the class of permissible transformations, to 
include non-unitary transformations as well as to extend the Hilbert space. A simple example refers 
to the Friedrichs model, which was studied independently by George Sudarshan and his co-workers. 
However, our main interest is the irreducible representations in the Liouville space. In these 
representations the central quantity is the density matrix, and the eigenfunctions of the Liouville 
operator cannot be expressed in terms of the wave functions. We suggest that this situation corre-
sponds to quantum chaos. Indeed, classical chaos does not mean that Newton's equation becomes 
"wrong" but that trajectories loose their operational meaning. Similarly, whenever we have an 
irreducible representation in the Liouville space this means that the wave function description looses 
its operational meaning. Additional statistical features appear. A simple example corresponds to 
persistent interactions in the scattering problem which cannot be treated in the frame of usual 
S-matrix theory. 

1. Introduction 

It is a privilege to part icipate in this symposium 
honor ing George Sudarshan. We met for the first t ime 
at a Solvay meeting in 1961. Tha t is more than thirty 
years ago. Since then our personal and scientific rela-
t ions have become increasingly close. To prepare this 
contr ibut ion, I glanced on George's list of publica-
tions. I knew of course that he was deeply interested 
in Indian culture, metaphysics and philosophy. Still I 
was surprised to find that the number of publicat ions 
dealing with these problems was nearly of the same 
order as for his publications in science proper. This is 
indeed quite unusual . 

George notes [1] 

" M o s t scientists are allergic to metaphysics and 
most metaphysical systems deal with archaic and 
irrelevant science. Perhaps this too is transient. But 
I for one have been a practicing theoretical physicist 
for the past four decades and find no contradict ions 
between my science and metaphysics" 

* Presented at a Workshop in honor of E. C. G. Sudarshan's 
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sity of Texas in Austin, September 15-17, 1991. 
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However, George is not a lone in this view which 
tries to incorpora te philosophy, metaphysics and sci-
ence. He in fact belongs to the t radi t ion of Bol tzmann 
and Schrödinger for w h o m science and philosophy are 
complementary tools to reach a better unders tanding 
of the surprising world in which we happen to live. 

Schrödinger wrote [2] 

" . . . there is a tendency to forget that all science is 
bound up with h u m a n culture in general, and that 
scientific findings even those which at the moment 
appear the most advanced and esoteric and difficult 
to grasp, are meaningless outside their cultural con-
text." 

This is also the point of view of George. Again and 
again he emphasizes tha t science is par t of culture. It 
is a spiritual experience "ak in" to art [3]. Sudarshan 
shares the opinion of Paul Valery for whom on the 
highest level of the creativity there is no difference 
between scientific activity and poetry. In bo th cases 
the mind goes f rom "disorder" to "order". 

It is a fact that we are still living in a world of two 
cultures. Isaish Berlin has clearly decribed the schism 
between science and humani t ies [4]: 
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"The specific and unique versus the repetitive and 
the universal, the concrete versus the abstract , per-
petual movement versus rest, the inner versus the 
outer, quality versus quant i ty , cu l ture-bound versus 
timeless principles, . . . " 

I think Isaish Berlin is right. The main contrast 
between the two cultures lies in the concept of time. It 
is impossible to conceive humanit ies wi thout evolu-
t ionary time. In contrast , the basic laws of physics, be 
they classical, q u an tu m or relativistic, are determinis-
tic and time reversible. It is therefore not astonishing 
that the problem of time plays an impor tan t role in 
scientific work of George Sudarshan. I have specially 
in mind his impor tant contr ibut ion on the so-called 
"Zeno paradox" , on analytical cont inua t ion as well 
as his work on density matrices. It was unavoidable 
that in spite the difference of start ing points there 
would develop points of contact between his work and 
the work of our group. George came f rom q u a n t u m 
field theory, I came f rom physical chemistry and ther-
modynamics. But basically our conclusion was the 
same. In the tradit ional view, irreversibility is the re-
sult of approximat ions , of some "coarse graining" 
which we add to the exact laws of mot ion, be they 
classical or quan tum. We are now forced to give up 
this approach. Indeed, over the last decades we have 
becomes aware of the creative role of time, specially in 
the study of non-equil ibr ium structures as well as in 
the study of classical unstable dynamical systems. It is 
therefore clear that we need now to incorpora te time 
in the basic laws of nature and no more to consider the 
arrow of time as a result of some subjective features. 

Let us start with some remarks on classical theory 
of unstable dynamic systems. 

2. Classical Dynamics 

We would like to show that "chaos" in classical 
dynamics leads to the b reakdown of the concept of the 
trajectory. As well known, classical chaos is related to 
"sensitivity to initial condit ions", that is to the exis-
tence of positive Lyapounoff exponents. As the sim-
plest example let us consider the Bernoulli map: 

x n + 1 = 2 x „ ( m o d i ) . (2.1) 

It can be shown that two neighbour ing points deviate 
exponentailly in time. After n i terations [5] 

The Lyapounoff time is hence tL = l / l og2 . After a 
sufficient time, trajectories become " incomputable" 
whatever the (finite) specification of the initial con-
ditions. The Bernoulli m a p is not invertible, as 
xn + 1 = leads to the a t t rac tor x = 0. But our re-
marks can be easily extended to dynamical systems 
proper (such as K-flows, K for Kolmogoroff , a simple 
example is the baker t ransformat ion [6]). 

As the result of the Lyapounoff divergence it is nat-
ural to turn to a statistical description g (x) in terms of 
the so-called Per ron-Frobenius opera tor U. The 
Bernoulli m a p leads to the relation [5] 

? „ + l = U Qn 

_ 1 

~2 

x + 1 

M a n y propert ies of Q are known. For example 

Qn (*) 1 over [0 ,1] . 

(2.3) 

(2.4) 

Whatever the initial condition, we reach uniformity 
in the future. There is a remarkable analogy between 
chaos and Brownian mot ion (described by a diffusion-
type equation). However, when we turn to spectral 
theory there are also essential differences. 

It is easy to find the eigenfunctions and eigenvalues 
of U. Fo r example we have 

u X — (2.5) 

Therefore (x — is an eigenfunction corresponding to 
the eigenvalue ^ (related to Lyapounoff time). M o r e 
generally it has been shown recently that the right 
eigenfunctions of U are the Bernoulli polynomials 
ß„(x), corresponding to the eigenvalues (|)n [7, 8]. 
Consider then the spectral decomposi t ion of U 

1 
u = Z I <p„> — <<?„ I 

n 

(2.6) 

(<5x)„ = (<5x)0 e n l o g 2 . (2.2) 

This spectral decomposit ion cannot hold in the usual 
Hilbert space of square integrable functions [0,1], as 
U+ is an isometry and therefore the eigenvalues 
should be of module one. This shows that <<pj should 
be distr ibutions which have a meaning with a suitable 
choice of test functions [7, 9]. It is remarkable that 
even in this simple classical problem we have to intro-
duce a "rigged Hilbert space" formalism to include the 
Lyapounoff time in the spectrum. Tasaki and Anto-
niou have shown that the test functions are formed by 
the space of all polynomials [9]. As the result, a <5-func-
tion is not in the domain of test functions. 
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In short, to describe the approach to equil ibrium of 
statistical distr ibutions we have to consider 
smooth functions and we have to go beyond the 
f ramework of classical mechanics based on the con-
cept of trajectories. 

No te also that there exist o ther spectral decomposi-
tions of U (corresponding to o ther spaces) [9]. How-
ever (2.6) is unique in the sense tha t it includes in the 
spectrum the Lyapounoff time responsible for instabil-
ity and chaos. We shall show tha t similar consider-
at ions apply to q u a n t u m mechanics and lead to the 
necessity to extend the f ramework of convent ional 
quan tum theory. 

3. Poincare's Divergences 

As we shall be mainly concerned with q u a n t u m 
systems it is impor tan t to start with a Hami l ton ian 
formulat ion. Here Poincare 's classification [10] into 
"integrable" and "non-integrable" systems plays an 
essential role. As Petrosky and I have shown recently, 
this classification applies as well to q u a n t u m systems 
with cont inuous spectrum [11]. Consider a Hamil to-
nian of the form, for a q u a n t u m system 

H = H0 + AV, (3.1) 

where A is a coupling constant . We suppose that the 
eigenfunction | a> and the eigenvalues of H0 are 
known: 

H 0 | a > = ft)Ja>. (3.2) 

H o w can we use this knowledge to construct the ei-
genfunctions and the eigenvalues of / / ? 

H\<pA> = E0L\<p0L). (3-3) 

We would like to find solutions we could expand in 
powers of / to apply per turbat ive techniques. How-
ever, Poincare 's theorem shows that this is impossible 
as the result of divergences due to resonances between 
the unper turbed frequencies <wa. Poincare 's non-inte-
grable systems with cont inuous spectrum and contin-
uous sets of resonances are quite c o m m o n in physics. 
These are the systems we called Large Poincare Sys-
tems (LPS). 

F o r these systems there exists in general no con-
structive spectral theory [12]. It may even be shown 
that the solution of the spectral problem then becomes 
undecidable in the sense of Gödel ' s theory [13]. 

A simple example of L P S is the well-known. 
Friedrichs model in which a discrete state is coupled 
to a field with a cont inuous spectrum. The Hamil to-

nian is of the form (virtual transit ions are neglected) 

H = H0 + / V 

= W l | i > < i | + 2 > j * > < * | + A l K k ( | * > 
k k 

• < 1 | + | 1 > < * | ) . (3.4) 

There exists an exact solution of the spectral problem 
due to Friedrichs [14] 

tf=2>*i4>r><0ri. (3.5) 
k 

The states f rom an o r thonormal and complete 
set. 

The basic property of the Friedrichs solution is that 
the discrete state 11) is eliminated. Only the contin-
uum modes remain. There are, however, a number of 
conceptual difficulties which are due to the fact that 
the Friedrichs solution is not analytic in the coupling 
constant L For / - » O w e obta in 

k 
= X > J * X * | * t f 0 . (3.6) 

We see that x = 0 is a singular point . Whatever 
small the value of X, the discrete state disappears. F o r 
stable states the distinction between "bare states" (the 
eigenfunctions of H0) and "dressed states" (the eigen-
functions of H) is essential. However, for unstable 
states we could only speak of "bare states". This leads 
to strange consequences. As well known, the decay of 
the "bare" state 11) can be subdivided into three peri-
ods [15]: First the Zeno time of the order 1/co, then an 
exponential decay, and finally a long tail. If we identify 
the "bare" particle with the "physical" unstable part i-
cle, we come to a problem: we could indeed distin-
guish young and old particles according to their mode 
of decay. How to reconcile this with q u a n t u m indis-
cernability [16]? 

We come therefore to our central problem. The 
elimination of Poincare 's divergences is necessary to 
obtain a solution of the spectral problem which would 
be analytic in the coupling constant L To do so, we 
have to enlarge the class of permissible t ransforma-
tions, to include non-uni tary t ransformat ions as well 
as to extend the Hilbert space. 

Let us first summarize the results of our approach 
for the Friedrichs model. 

4. Quantum Theory of Non-Integrable Systems: 
Friedrichs Model 

Let us go back to the Friedrichs model (3.4) and 
look for solutions which are analytic in the coupling 
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constant [24] 

(H0 + A V) | <pa> = za | <pa> 

with 

(4.1) 

k a > = l « > + Z zx = a>x+ £ / " z W . (4.2) 
n = 1 n = 1 

This leads immediately to the Poincare 's divergences 

1 
(«)• 1 

<ß\ <"> = 
Uß - + ' % 

^ i f i ^ - 1 ' ) - £w<ß\<p{rn> (4.3) 

To eliminate these divergences we time order the 
q u a n t u m transit ions 

+ £ for 1 *- k , 
— £ for k - 1 , 
— £ for k' <- k . 

(4.4) 

We use retarded solutions for the transi t ion f rom the 
excited states to the g round state and advanced solu-
tions for the transi t ions f rom the ground state to the 
excited states. This is a special case of the "ie-rule" 
int roduced by George [25] (see also [17]). Analytically 
this corresponds to the rule (4.4). The use of both 
retarded and advanced solutions eliminates Poin-
care's divergence and leads to the eigenstates 

cpl) = N R O - I 
/ K 

T CUi ~z)±iy 
I *> (4.5) 

The symbol -I- means that we have to consider | <p1) 
as defined in the upper complex plane and then con-
tinued analytically till the point (— iy) into the lower 
half plane. We see tha t | ( p ^ is a distr ibution with 
broken time symmetry. In this formula y ~ 1 is the life 
time of the unstable state. In addi t ion to | (p^} we have 
a second eigenfunctions | corresponding to the 
same eigenvalue. Moreover the solution of the eigen-
value problem is given by 

(4.6) 

H\<p1> = (co1-iy)\(piy, <<Pi |H = ((51 -iy)<(pi\, 

H\(pky = cok\ (pky, (Vk | H = cok (äk I. (4.7) 

The eigenfunctions are complete and or thogonal as 
they satisfy the relations 

l<PiX<Pil + E k k X < P k l = 1 , <0/?l<Pa> = < V (4-8) 
k 

We obtain therefore the complex spectral representa-
tion 

H = (cö1 - iy) | cp,> <<?! | + 1 | cpk>((pk | (4.9) 
k 

which should be compared with the Friedrichs repre-
sentation (3.5). The main difference is that the unstable 
state appears in the complex spectral representat ion 
and that the eigenvalue contains bo th the energy w 
and the life time y~ l . The bare eigenstate is in this way 
replaced by one of the two "dressed" eigenstates | ( p ^ 
or | <?!>. 

Each of those two states has a broken time symme-
try as 

and 

iHt 

iHt I 
V i> = <? 

_ icoyt — yt \ 
<P l> 

(4.10) 

(4.11) 

The requirement that the unstable state vanishes in 
our future (for t -> oo) singles out | <pj> as the "physi-
cal" dressed state. 

The impor tan t point is tha t start ing with a Hamil-
tonian H which is invariant in respect to t ime inver-
sion we obtain two complete sets of solutions which 
have a broken time symmetry [26], Irreversibility ap-
pears therefore as a selection principle. The universe is 
less symmetric than it seems to follow f rom the Hamil-
tonian description. This s i tuat ion is reminiscent of 
spontaneous symmetry breaking as it occurs in ferro-
magnetism or in the particle-antiparticle problem. 

O u r method shows that, while s tandard per turba-
tion theory diverges in the "real", it converges in the 
"complex". In short , Poincare 's divergences are lifted 
when dissipation is taken into account . 

We shall not go here into the interesting ma themat -
ical aspects [12]. Obviously the t ransformat ion f rom 
the initial "bare states" |1>, \ k } to the new states 
l<PiXI<P*> is n o t a uni tary one. Also the space in 
which these states live cannot be the usual Hilbert 
space as in this space H, which is a Hermit ian opera-
tor, cannot have complex eigenvalues. Let us ment ion 
that we deal here with the so called "rigged Hilbert 
space" [27, 28] (which admits states with zero norm). 

We see that L P S may have more than one spectral 
representation. As we have seen in Sect. 2, this is also 
true for classical mechanics. 

There is a deep analogy between the Friedrichs 
model and classical chaot ic systems such as the 
Bernoulli m a p studied in Section 2. In bo th cases to 
include temporal characteristics such as Lyapounoff 
time or the q u a n t u m life time into the spectrum we 
have to go beyond the usual Hilbert space and use a 
complex spectral representat ion. 
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The Friedrichs model is soluble. Therefore there is 
no difficulty to describe the evolution of observables, 
and from this point of view nothing new can be ex-
pected. But we can now define states with broken time 
symmetry. We may even introduce a dynamic ana-
logue of Boltzmann's JC-function. This is given by the 
operator [24] 

j r = | 0 i > < 0 i l , (4-12) 

which in conjunction with "test functions" defined in 
the Hilbert space satisfies the inequalities 

<«P|Jf | f > > 0 , | f > < 0 . (4.13) 
df 

Similar results have been obtained by Sudarshan, 
Chiu and Gorini [29] in their important paper "De-
caying states as complex energy eigenvalues in gener-
alized quantum mechanics". According to Sudarshan 
and his coworkers, their paper was inspired by our 
earlier work in Friedrichs type of models [30]. Sudar-
shan et al. use a more traditional method of analytical 
continuation. The interesting point is that we can ex-
tend our method of time ordering to more general 
situations and show that then the elimination of Poin-
care's divergences forces us to go to an irreducible 
description in terms of density matrices. This is the 
situation we shall consider now. 

5. Irreducible Representations in the Liouville Space 

In the case of Friedrichs-like models the elimination 
of Poincare's divergence is relatively easy as the time 
ordering of the propagators can be performed on the 
level of wave functions. This is no more so in general. 
We may, for example consider scattering. The Hamil-
tonian for two-body scattering is 

H = Z c o k \ k > < k \ + X Z V k k . \ k > < k ' \ (5.1) 
k kk' 

As the result of its symmetry it has no physical mean-
ing to introduce a time ordering between the states 
| /c> and | k'} (in addition this leads to difficulties which 
are discussed in [31]). Also observables such as scat-
tering cross sections cannot be obtained as eigenval-
ues in a spectral theory in the Hilbert space as they do 
not satisfy the Ritz-Rydberg principle: they cannot be 
expressed as differences as it is the case for energy 
levels. 

We turn therefore to a statistical description in 
terms of density matrices q. AS is well known, q satis-

41 

fies the Liouville-von Neumann equation 

do 
i-^ = LHQ with Lh = 77 x 1 — 1 x 77, (5.2) 

where LH is a "superoperator" acting on q (it is the 
commutator with LH). We look then for the spectral 
representation of LH. For integrable systems this is of 
course trivial. The eigenfunctions of L H are products 
of eigenfunctions of 77 and the eigenvalues are differ-
ences of the corresponding energy levels. 

Now as the consequence of (3.1) we can also decom-
pose the Liouville operator: 

LH = L0 + ALV. (5.3) 

For L 0 we can construct a complete set of spectral 
projectors which satisfy the usual conditions 

(V) (V) (V) (V) (V') (V) (V) (v) 

P L 0 = L 0 P , £ P = 1, P P =P Sw, P = P + . (5.4) 
V 

However, as the result of Poincare's divergences the 
corresponding projectors for L H cannot be obtained 
through expansion in A [31, 32]. But, we can obtain a 
complete set of projectors for LH giving up the Her-
miticity conditions and using an appropriate analytic 
continuation (or time-ordering). These satisfy the con-
ditions [31, 32] 

(v) (v) (v) (V) (v') (V) (v) (v) 

n L H = L H I J , £ 7 7 = 1, 77 77 = 77<5VV<, 77^77+. (5.5) 
V 

Our rule of analytic continuation is the natural exten-
sion of the rule used for the Friedrichs model, but now 
in the Liouville space. It can be shown that the dy-
namics (5.2) associated to the Liouville operator can 
be expressed in terms of a "flow of correlations". Con-
sider, for example, and N-body system such as studies 
in kinetic theory. Collisions between uncorrelated 
particles ("vacuum of correlations") lead to two-body 
correlations, subsequent collisions transfer them into 
3-body, 4-body . . . correlations. Our rule is then: tran-
sitions to the higher-order correlations are future-ori-
ented, while transitions to lower-order correlations 
are past-oriented. As shown in [31, 32]. Poincare's 
divergences are eliminated and we obtain well-defined 
expressions for the projection operators (we have 
called subdynamics this approach), 

(V) (V) (v) (v) (v) (v) 

II = (P + C) A (P + D), (5.6) 

where 
(V) (v) (V) (V) (»)(») (v) (v) (v) (v) (v) (V) (V) (V) 

A = p n p , CA = QnP, AD = PnQ, (5.7) 
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(V) (V) 

and Q = 1 — P is the projection opera tor o r thogona l 
(V) (V) (v) 

to P. Note that A is diagonal in v, while C corresponds 
to the creation of correlations v' out of v (its matr ix 

(V) (V) 

elements are of the form Cv v) while D corresponds to 
the destruction of correlations v' (its matrix elements 

(V) 

are Dvv). 
In this way the density matrix g is decomposed into 

a sum of independent contributions: 
(v) (v) (v) M (v) (v) (v) 

e (t) = Xng (t) = UP + C) e-,dt A (P + D) g(0), (5.8) 

where 
(V) (V) (v) (v) (v) 

0 = PLH(P + QP 
(V) 

(5.9) 

Each componen t 77 g is a part icular solution of the 
Liouville equat ion (this can be verified by straightfor-
ward derivations). The sum (5.8) provides us with a 
complete set of solutions. The whole t ime-dependence 

(V) 

in (5.8) is in the generators of mot ion 9, which we call 
the "collision operators" . Of special importance is the 
contr ibut ion for v = 0, the "vacuum of correlation": 
(ff) (a) 
n -*• P for /. -» 0 and corresponds then to the evolu-
tion of the diagonal element of g. The usual kinetic 
description (e.g. Fokker-Planck equat ion or Paul i 
master equation) is limited to /7 space. Moreover this 
space contains that asymptotic contr ibut ion to g for 
t ime t -> oo. 

The expression (5.8) is the exact formal solution of 
the Liouville equat ion. To the various collision opera-
tors correspond different time scale. The superposi-
t ion of these time scales leads precisely to the non-
Markoff ian behavior (including the memory terms) 
which are studied in non-equil ibrium statistical me-
chanics. 

Once we have derived the decomposi t ion of g into 
subdynamics, it is easy to go one step further and to 
obta in the spectral decomposit ion of L H . The central 
theorem proved by T. Petrosky and the au thor [31] is 
that the eigenvalues of L H are given by the eigenvalues 

(V) 

of the collision opera tors 9. 
We can in this way solve the eigenvalue problem for 

L P S in the Liouville space. Let us briefly indicate the 
(v) 

result. We obtain right eigenstates | i ^ » and left eigen-
(V) 

states | which satisfy the equat ions 

(v) (v) (v) M (v) (v) 
L „ | F a » = Z a | F a » , « F J L H = Z a « F a | , (5.10) 

where we have (with a normalizat ion constant Nx) 

(5.11) 
(V) (V) (V) (V) 

with 

(V) (V) (v) (V) e | ua» = za | ua» (5.12) 

<I> (V) (V) 

and a similar expression for «F^ | with P + D. 
The relation with subdynamics is provided by the 

relations 

(V) (V) M 
tf = I | F a » « F a | , (5.13) 

where | £ » denotes a "superstate" in the density matrix 
space. 

The impor tan t point is that the eigenvalues and 
eigenstates are analytic in a and can be obtained by a 
per turba t ion method exactly as in the Friedrichs 
model studied in section 4. 

As the result we have therefore 

g(t) = e - a-iLHt Q( 0 ) = 2 > 
v, a 

(V) (v) (v) 
- i Z * ' | F a » « F a | e ( 0 ) » . (5.14) 

The index a refers to possible degeneracy in each sub-
space v. (y) (v) 

No te that the eigenstates | Fa>> and « F a | are now 
density matrices and not wave functions; moreover, a 
is an index corresponding to possible degeneracy in 
subdynamics. 

Fo rmu la (5.14) corresponds to our complex spectral 
theory in the Liouville space. As mentioned in sec-
tion 1, it leads to an irreducible representation of the 
density matrix as the complex eigenvalue Za and the 
eigenfunctions cannot be expressed in terms of wave 
funct ions (then Z a would be the difference between 

(v) 
two eigenvalues and | F^» products of two wave func-
tions). An example we mentioned is precisely the cross 
section. As in the case of the Friedrichs model, the 
eigenfunctions are a complex distribution, and (5.14) 
has to be used with suitable test functions. 

O u r spectral representat ion (5.14) describes the ap-
proach equilibrium and gives a microscopic meaning 
to entropy [31]. 

There are still many mathematical problems which 
deserve closer examinations. The collision operators 
(v) 
9 are non-Hermi t ian opera tors and we do not know 
a priori which kind of spectral decomposit ion they 
admit . Fo r simple examples (i.e. corresponding to di-
lute gases) the eigenvalue problem is studied in text-
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books (see e.g. Balescu [33]). As Petrosky has shown, 
we may then use (5.11) to obtain the explicit form of 
the eigenfunctions of the Liouville equation [34]. It is 

(V) 

interesting to note that the operator C acting on non-
equilibrium eigenfunctions of the collision operator 

(v) 
| u2» leads to long-range correlations. This gives the 
dynamical basis for the coherent processes which are 
observed in non-equilibrium systems (see e.g. Nicolis 
and Prigogine [35]). 

Let us summarize our conclusions: In spite of Poin-
care's divergences, LPS become "integrable" through 
the introduction of a complex spectral representation 
in the Liouville space. As in the case of the Friedrichs 
model this involves non-unitary transformations and 
the introduction of a "rigged Liouville space". 

We obtain in this way a description with broken 
time symmetry (again the solutions are less symmetric 
than the Liouville equation). But the main point is 
that our description is irreducible: it refers to the den-
sity matrix and cannot be expressed in terms of wave 
amplitude. 

6. Quantum Chaos 

Situations such as the Friedrichs model still remain 
in the frame of traditional quantum theory. We use a 
complex spectral theory bit the central quantity re-
mains the wave function. The situation changes dra-
matically when we go to more general situations such 
as scattering or interactions between fields (in the lan-
guage of kinetic theory we have then to consider both 
"loss" and "gain" terms). We have then to introduce 
irreducible representations in the Liouville space [31]. 
That means that the central quantity becomes then 
the density matrix and no more the wave amplitude. 
As the result, additional statistical features appear. We 
may speak here of "quan tum chaos" by analogy with 
classical chaos. Classical chaos does not mean that 
Newton's equation become "wrong" but that trajecto-
ries loose their operational meaning. We expect that 
the situation would be similar in quan tum theory: 
whenever we have an irreducible representation in the 
Liouville space this means that the wave function de-
scription looses its operational meaning. This be-
haviour marks the limits of orthodox quantum theory. 

In classical dynamics chaos is associated with sensi-
tively to initial conditions [36]. In quan tum mechanics 
they prevent us from starting with a well-defined wave 
function. But whenever we have an irreducible repre-

sentation in the Liouville space, the wave function is 
transformed into a density matrix. 

The mechanism of this collapse of the wave func-
tion as the result of Poincare's divergences has been 
studied by Petrosky and the author for scattering 
problems [37-39]. Let us summarize briefly the con-
clusions. The collapse appears for situations corre-
sponding to persistent interactions, that means for 
problems which cannot be treated in the frame of the 
usual S-matrix theory. The basic assumption of the 
S-matrix theory is that we can introduce well-defined 
"in" and "out" states. A typical example is two-body 
scattering involving a localized wave packet. But in 
general this assumption is not satisfied. We may con-
sider initial conditions corresponding to a plane wave 
and leading therefore to persistent interactions or 
three-body scattering (for free incident particles). Re-
scattering leads to divergences [40, 41]. 

In all these examples the wave function becomes 
ill-defined when we use a time-dependent description 
(they admit no well-defined limit for t -*• oo). This is 
due to resonances between bras and kets in the Hilbert 
space description. In contrast, our theory gives us an 
unambiguous expression for the density matrix. In our 
approach cross sections are given by the eigenvalues 
of the Liouville operators and are finite, while the 
usual quantum mechanical approach leads to diver-
gences for the three-body scattering. 

These are rather elementary examples. The main 
point is that free fields and interacting fields lead to 
dramatically different descriptions. Interacting fields 
belong to the category of LPS. We have already con-
sidered some simple examples such as the interactions 
of the conformal degree of freedom in general relativ-
ity with a scalar massive field. This leads to the insta-
bility of the quantum Minkowski vacuum and to irre-
versible processes leading both to the appearance of 
space-time curvature and matter [42]. 

7. Bohr and Einstein 

We believe that our irreducible spectral representa-
tion in the Liouville space marks a noticeable advance 
over conventional quantum theory. The main reasons 
are the following: 

1) it leads to solutions which have a broken time 
symmetry and therefore allow the introduction of 
irreversibility on the microscopic level; 
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2) it includes in the spectrum observables such as 
cross sections, life times associated to dissipative 
process; 

3) it leads to a constructive perturbation approach 
for the solution of the spectral problem. 

Finally irreducibility means that the central quan-
tity is now the density matrix (and no more the wave 
functions). This marks the appearance of quantum 
chaos. 

In the traditional perspective, adopted both in clas-
sical and quantum theory, stable systems were consid-
ered the rule and unstable the exception. We have now 
to reverse this perspective. 

This brings us back to the epistemological problem 
of quantum mechanics and specially to the problem of 
measurement to which George Sudarshan has made 
important contributions [15]. As well known, the main 
epistemological difficulty associated with measure-
ment is the transition from "potentiality" to "actual-
ity". Is then the world to be understood as asking for 
an observer which would actualize its potentiality? 
This would lead to a subjective description of nature 
which was the main reason why Einstein refused to 
accept quantum mechanics. 

Bohr also was against any subjective interpretation 
of quantum mechanics. This is why he requested the 
apparatus to be described in classical terms. In our 
approach the answer is simple: The apparatus must be 
an unstable dynamical system leading to an irre-
ducible representation in the Liouville space. As the 
result we deal directly with probabilities and not with 
wave functions. While wave functions have no classi-
cal analog, quantum probabilities have [37], 

Our solution of the measurement paradox satisfies 
as well the second well-known Bohr's requirement: 
measurement must lead to irreversible effects. Of 
course these two requirements are not independent, as 
dissipation is the result of resonances which lead to 
instability. 

Measurement is a way of communication with na-
ture. Communicat ion requires a common time con-
cept; this common time concept arises from secular 
terms, from dissipation. In this way instability, and as 
the consequence quantum chaos, appears at the very 
roots of the possibility of our communication with the 
quantum world. 

In addition it is not only the measurement appara-
tus which has to be described in terms of irreducible 
density matrix, but in general also the system which is 

measured. Schrödinger's cat is a living being, and life 
cannot be dissociated from irreversible processes. 
Therefore the microscopic description of Schrödin-
ger's cat is from the start in terms of irreducible den-
sity matrices. 

It is customary to refer to the famous debate be-
tween Bohr and Einstein which took place at the 5th 
Solvay conference in Brussels in 1927. Bohr was right, 
but at the time of formulation of quantum theory, 
dynamic instability and chaos were outside the per-
spective of normal physics. These concepts appear 
now as essential to insure the self-consistency of quan-
tum theory. But Einstein was right also when he 
claimed that the quan tum mechanics of his time could 
not be the final form of quantum theory. 

Would it be too presumptuous to speculate that 
Einstein could adhere to this view? After all, the sub-
jective features of or thodox quan tum mechanics are 
now eliminated. Poincare's divergences are a mathe-
matical fact independent of any observer. They lead us 
to a new form of quan tum theory and ultimately force 
us to accept a view of reality which incorporates insta-
bility and dissipation in our basic description of na-
ture. 

I believe that George Sudarshan would agree with 
the American philosopher Ivor Leclerc who in his 
monograph "The Nature of Physical Existence" has 
written [43]. 

"Once again, as in the seventeenth century, the 'phi-
losophy of nature' must not only be brought into 
the forefront, but the recognition of its intrinsic rel-
evance to and need by the scientific enterprise must 
be restored. Then it will be seen that there are not 
two independent enterprises, science and philoso-
phy, but one, the inquiry into nature, having two 
complementary and mutually dependent aspects." 

As in the seventeenth century, our picture of the 
universe is undergoing a drastic change. In periods 
like that we have to go beyond the traditional frag-
mentation between science and philosophy. The scien-
tific achievements of George Sudarshan provide an 
excellent illustration for the fruitfulness of such a 
global approach. 
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