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Abstract—This paper addresses the carrier phase recovery
problem in Offset-QAM-based filterbank multicarrier (FBMC-
OQAM) systems. The combined phase noise coming from the
transmit and receive lasers, is known to induce a phase rotation
of the demodulated symbols at the receiver. Several approaches
have been proposed to recover the phase in FBMC-OQAM
communication systems on optical fiber. Most of them have a
significant complexity and do not make use of all information at
disposal. In this paper, we propose two new estimators, obtained
by minimizing a maximum likelihood (ML) and a maximum a
posteriori (MAP) criteria. They use an error model formulation
which allows to easily use priors on the phase noise statistics.
By linearization of the error, an analytical solution is found for
the phase error, which avoids the need for multiple phase tests.
Simulation results demonstrate the better performance of the
proposed estimators with respect to state of the art solutions in
the low signal-to-noise (SNR) regime and for a small number of
subcarriers.

Keywords—Filter-bank multicarrier, offset QAM, coherent de-
tection, carrier phase estimation

I. INTRODUCTION

Offset-QAM-based filterbank multicarrier (FBMC-OQAM)
has been recently proposed in optical fiber communication
systems [1]–[5]. FBMC-OQAM modulations use a pulse shape
which is well localized in time and frequency, making the sy-
stem more robust against time and frequency variations of the
channel [6]. One of the main advantages of FBMC-OQAM for
optical fiber communication is its increased spectral efficiency.
Indeed, thanks to the very low spectral leakage of its prototype
filter, it is sufficient to insert a very small guard band between
unsynchronized optical laser, which results in a higher spectral
efficiency [5].

Thanks to the recent advents in electronic circuits, digital
signal processing (DSP) is becoming more prevalent in modern
optical coherent systems. The laser phase noise is one of the
crucial impairments in such systems. The phase noise induces
a rotation of the signal after the demodulation process at the
receiver. Carrier phase recovery (CPR) becomes an essential
DSP block in order to recover the transmitted signals. Different
CPR algorithms have already been proposed. Because of the
particular structure of the intrinsic interference inherent to
OQAM modulations, the extension to OQAM systems is not
straightforward. The work of [1] proposed a modified blind
phase search (M-BPS) algorithm which takes advantage of
the OQAM modulation to track the phase variations of the
laser. The M-BPS algorithm tries to find the optimal phase
estimate by performing a certain number of phase trials. The
final phase estimate is given at each multicarrier symbol by the

phase trial that minimizes a certain cost function. The approach
has a significant complexity of implementation, even though
a simplified version has been proposed in [2] with negligible
performance loss. Moreover, in practice, only a finite number
of phase trials can be tested, which induces a discretization
error.

In this paper, we propose two new estimators for the
laser phase noise in optical FBMC/OQAM systems, namely,
a maximum likelihood (ML) estimator and a maximum a
posteriori (MAP) estimator. The novelty of the approach is
plural. Since the phase is assumed to change slowly over time,
the measurement model is formulated as a function of the
phase error with respect to the previous phase estimate. This
allows to easily exploit the known a priori statistics of the
phase noise. By linearization of the system model, closed-
form expressions are found that avoid the need of multiple
phase tests. This decreases the complexity of the algorithm
and at the same time suppresses the discretization error due
to the limited number of phase tests of the M-BPS algorithm.
Furthermore, a part of the intrinsic interference is estimated
based on previous and current decoded symbols. The ML and
MAP estimates are obtained by combining the outputs of all
subcarriers, which makes the system more robust to additive
noise effect. Moreover, the ML and MAP estimators do not
suffer from phase ambiguity problems as opposed to the M-
BPS algorithm. The performance of the proposed estimators
is demonstrated by simulations. It is shown that the proposed
algorithms outperform the state of the art M-BPS algorithm in
the low signal-to-noise ratio (SNR) region and when a small
number of subcarriers used.

A. Notations

Vectors and matrices are denoted by bold lowercase and
uppercase letters, respectively. Superscripts ∗ and T stand for
conjugate and transpose operators. The symbols E, |.|, =
and < denote the expectation, the determinant of a matrix,
imaginary and real parts, respectively. The notation aR and aI
is an alternative notation for the real and imaginary parts of a
respectively.  is the imaginary unit. IN denotes the identity
matrix of size N ×N . ⊗ stands for the Kronecker product.

II. SYSTEM MODEL

We consider an FBMC-OQAM system with 2M subcar-
riers. The real-valued transmitted symbols, denoted by dm,l,
are FBMC-OQAM modulated using a prototype pulse g[n] of
length Lg = 2κM where κ is the overlapping factor and with



unit energy. The transmitted signal s[n] ∈ C can be written as

s[n] =

+∞∑
l=−∞

2M−1∑
m=0

dm,lgm,l[n]

where gm,l[n] = θm,lg[n − lM ]e
2π
2Mm(n−lM−Lg−1

2 ) with
θm,l = l+m. To focus on the phase noise impact, we
consider only one polarization mode and we assume that the
chromatic dispersion is perfectly compensated at the receiver.
The received signal, denoted by r[n], is only impacted by phase
noise and additive noise,

r[n] = s[n]eφ[n] + w[n].

The phase noise is modeled as a Wiener process, i.e., φ[n +
1] = φ[n] + ν[n] where ν[n] is an independent real Gaussian
random variable with zero mean and variance σ2

ν = 2π∆ν T
2M

[8]. The parameter ∆ν refers to the combined laser linewidth.
The noise samples w[n] are additive circularly-symmetric
white Gaussian noise samples with zero mean and variance
N0, i.e., w[n] ∼ CN (0, N0). At the receiver, the signal after
demodulation, at subcarrier m0 and multicarrier symbol l0,
denoted by zm0,l0 , may be written as

zm0,l0 =

Lg−1∑
n=0

r[n]g∗m0,l0 [n]

=
∑
l,m

dm,l

Lg−1∑
n=0

gm,l[n]g∗m0,l0 [n]eφ[n] + wm0,l0

where wm0,l0 is the filtered noise. Furthermore, we assume that
the phase noise is slowly varying with respect to the symbol
duration. Hence, the phase noise can be viewed as constant
during one multicarrier symbol transmission,

zm0,l0 ≈ dm0,l0e
φl0 + um0,l0e

φl0 + wm0,l0

where um0,l0 =
∑

(m,l) 6=(m0,l0) dm,ltm,m0,l,l0 with
tm,m0,l,l0 =

∑Lg−1
n=0 gm,l[n]g∗m0,l0

[n]. The symbol um0,l0 is
purely imaginary and is commonly referred to as intrinsic
interference. The equalization is performed by simply
applying a phase correction and real conversion, i.e.,
d̂m0,l0 = <{zm0,l0e

−φ̂l0} where φ̂l0 is the estimate of the
phase noise at multicarrier symbol l0. Accurate estimation of
the phase noise is of crucial importance to avoid leakage of
the intrinsic interference on the symbol of interest.

III. ML AND MAP PHASE ESTIMATORS

Let us assume that an initial phase estimate can be obtained
at the beginning of the transmission. After this initialization
phase, the modem switches in tracking mode and does not use
pilot symbols. Let us denote the estimate of the previous phase
at multicarrier symbol l− 1 by φ̂l−1. We want an estimate of
the current phase φl that we denote by φ̂l.

Since the phase noise is assumed to be slowly varying over
the symbol duration, we propose to estimate the phase error,
defined as εl = φl − φ̂l−1 and its estimate, ε̂l = φ̂l − φ̂l−1,
instead of re-estimating φl from scratch as in [1], [2]. At first,
we perform a rotation of angle −φ̂l−1 on zm,l,

z̃m,l = e−φ̂l−1zm,l
= dm,le

εl + um,le
εl + w̃m,l.

Fig. 1. Illustration of the signal model on the complex plane without additive
noise.

Since the phase noise is assumed to vary slowly, a first
estimation of the symbols dm,l at multicarrier symbol l can
be obtained by taking the real part of z̃m,l and performing a
direct decision. Moreover, thanks to the current and previously
decoded symbols, a part of the intrinsic interference can be
estimated. We re-write um,l as

um0,l0 = u
(1)
m0,l0

+ u
(2)
m0,l0

u
(i)
m0,l0

=
∑

(m,l)∈Ω
(i)
m0,l0

dm,l={tm,m0,l,l0} , i = 1, 2

where u
(1)
m,l corresponds to the intrinsic interference due to

previous and current decoded symbols which can be estimated
based on decisions, i.e., Ω

(1)
m0,l0

is the set of indices (m, l)

such that m ∈ {0, ..., 2M − 1}, l ≤ l0 and u
(2)
m,l is the

intrinsic interference due to future symbols, i.e., Ω
(2)
m0,l0

is the
set of indices (m, l) such that m ∈ {0, ..., 2M − 1}, l > l0.
Fig. 1 illustrates the signal model under consideration with no
additive noise (wm0,l0 = 0). Of course, the knowledge of u(1)

m,l
can help to improve the performance but also increases the
complexity of the algorithm due to the necessary computation
of u(1)

m,l. In practice, if the prototype pulse is well localized in
time and frequency, the set Ω

(1)
m0,l0

can be restricted to the close
neighbors of (m0, l0) and the complexity might be decreased
by considering less neighboring symbols in the estimation of
u

(1)
m,l. The complexity-performance trade-off will be further

discussed in Section IV. Note that the symbol dm,l + u
(1)
m,l

can be seen as a kind of pseudo-pilot symbol [9]. However,
it includes only one part of the intrinsic interference and it is
based on direct decisions and not pilots.

Since the phase noise at instant l does not depend on the
subcarrier index, it makes sense to combine all subcarriers
to jointly estimate this phase factor. Moreover, the use of all
subcarriers makes the estimator more robust against the noise
effect. In the following sections, the outputs of all subcarriers
will be considered.

A. ML estimator

The ML estimator of εl is the one that maximizes the
likelihood of the demodulated symbols given εl, based on
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current available decisions,

ε̂ML
l = arg max

εl
f(z̃0,l, ..., z̃2M−1,l|εl).

Since one part of the intrinsic interference, u(2)
0,l , ..., u

(2)
2M−1,l,

cannot be estimated, we will consider it as noise. The distribu-
tion of u(2)

m,l is an intricate combination of the real transmitted
symbols. To simplify the design, we will assume that u(2)

m,l

is normally distributed with zero mean and variance σ2
u, i.e.,

u
(2)
m,l ∼ N (0, σ2

u). Assuming that the transmitted symbols dm,l
are independent and of variance Es/2, the variance σ2

u is given
by

σ2
u =

Es
2

∑
(m,l)∈Ω

(2)
m0,l0

=2 {tm,m0,l,l0} .

Note that depending on the number of neighboring symbols
included in the set Ω

(2)
m0,l0

, the value of σ2
u might change.

In the limit case where Ω
(1)
m0,l0

= ∅, there is no estimation
of the intrinsic interference, i.e., u1 = 0. Fig. 2 plots the
empirical distribution of u(2)

m,l compared to the distribution of a
Gaussian random variable with variance σ2

u. This justifies the
assumption of approximating the distribution u(2)

m,l as Gaussian.
One should remember that u(2)

m,l is purely real. Hence, the
noise statistics are not circularly symmetric. To take this into
account, we rewrite the measurement model at all subcarriers
in an extended all-real form as

z = Cθ + w

where we defined z =
(
z̃R0,l, z̃

I
0,l, . . . , z̃

R
2M−1,l, z̃

I
2M−1,l

)T
,

C =
(
CT

0,l, . . . ,C
T
2M−1,l

)T
, θ = (cos(εl), sin(εl))

T , w =(
w̃T

0,l, . . . , w̃
T
2M−1,l

)T
and

Cm,l =

(
dm,l −u(1)

m,l

u
(1)
m,l dm,l

)
, w̃m,l =

(
−u(2)

m,l sin(εl) + w̃Rm,l

u
(2)
m,l cos(εl) + w̃Im,l

)
.

One can verify that, under previous assumptions, the vector of
real noise samples w is normally distributed with zero mean
and a covariance matrix Rw that depends on εl. In FBMC-
OQAM systems, the prototype pulse, modulated around a

specific time-frequency bin (m, l), overlaps with neighboring
subcarriers and multicarrier symbols. This implies correlation
of the additive noise and the intrinsic interference, i.e., Rw is
not diagonal. Taking into account this interference could help
to average the noise effect. However, this would significantly
increase the complexity of the design. Therefore, we here
choose to neglect inter-carrier correlation. Matrix Rw then
becomes block diagonal, i.e., Rw = I2M ⊗ Rm, with Rm

given by

Rm =

(
N0

2 + σ2
u sin2(εl) −σ2

u sin(εl) cos(εl)

−σ2
u sin(εl) cos(εl)

N0

2 + σ2
u cos2(εl)

)
.

We are now in the position to write the expression of the
likelihood f(z|εl) = f(z̃0,l, ..., z̃2M−1,l|εl),

f(z|εl) =
1√

(2π)4M |Rw|
e−

1
2 (z−Cθ)TR−1

w (z−Cθ).

Noting that |Rw| = (N0

2 (N0

2 +σ2
u))2M which does not depend

on εl and that R−1
w = I2M ⊗R−1

m is block diagonal with

R−1
m =

(
N0

2 + σ2
u cos2(εl) σ2

u sin(εl) cos(εl)

σ2
u sin(εl) cos(εl)

N0

2 + σ2
u sin2(εl)

)
N0

2 (N0

2 + σ2
u)

,

the maximum likelihood estimator is given by

ε̂ML
l = arg max

εl
log f(z̃|εl)

= arg max
εl
−1

2
(z−Cθ)TR−1

w (z−Cθ)

where we removed the constant term of the log-likelihood
that does not depend on εl. After several mathematical ma-
nipulations and keeping only the terms that depend on εl, the
expression simplifies to

ε̂ML
l = arg max

εl
L1

L1 = −σ
2
u

2

2M−1∑
m=0

<{z̃m,le−εl}
(
<{z̃m,le−εl} − 2dm,l

)
+
N0

2

2M−1∑
m=0

<
{
z̃m,l

(
dm,l − u(1)

m,l

)
e−εl

}
.

The two terms in the above expression have an intuitive
meaning. The maximization of the first term, proportional
to −σ2

u tends to find the rotation εl such that, after taking
the real part, the contribution due to remaining intrinsic
interference disappears and the symbol dm,l is recovered, i.e.,
<{z̃m,le−εl} = dm,l. The maximization of the second term
aims at finding the value of εl that aligns the observations
z̃m,l with the “partial” pseudo-pilots dm,l + u

(1)
m,l, especially

when the additive noise power N0 is large. This problem is
not trivial to optimize due to the non polynomial dependence
in εl. One idea would be to test different phase trials, evaluate
the likelihood and keep the best test, as it was done in [1], [2]
but using a different metric. However, this would significantly
increase the complexity of the algorithm. Moreover, the fact
that in practice, only a finite number of phase trials can be
tested induces a discretization error.

In order to reduce the complexity, we derive a closed-form
solution. Due to the fact that εl is close to zero, the term e−εl



can be well approximated by the first order Taylor expansion
given by e−εl ≈ 1−εl. Note that this assumption makes sense
due to the slowly varying nature of the phase noise. We will
further show, through simulations, that the error induced by
this linearization is negligible and does not impact the system
performance. This leads to

ε̂ML
l ≈ arg max

εl
−σ

2
u

2

2M−1∑
m=0

(<{z̃m,l(1− εl)})2

+ σ2
u

2M−1∑
m=0

(<{z̃m,l(1− εl)}) dm,l

+
N0

2

2M−1∑
m=0

<
{
z̃m,l

(
dm,l − u(1)

m,l

)
(1− εl)

}
,

which is a quadratic expression in εl. We finally obtain

ε̂ML
l ≈

∑
m(z̃Im,l(

N0

2 + σ2
u)dm,l − z̃Rm,l

N0

2 u
(1)
m,l − σ2

uz̃
R
m,lz̃

I
m,l)

σ2
u

∑
m(z̃Im,l)

2
.

Hence, the current phase can be estimated as φ̂l = φ̂l−1 + ε̂ML
l

and the symbols dm,l can be re-estimated using this update of
the phase.

B. MAP estimator

The ML estimator does not use the a priori distribution
of εl. In practice, the transmit and receive lasers are known.
Hence the linewidth can be estimated and we can use this
knowledge to improve the estimation. The MAP estimator of
εl is given by

ε̂MAP
l = arg max

εl
f(z|εl)f(εl). (1)

Assuming that the previous phase estimate is close to the actual
phase, we can approximate εl = φl− φ̂l−1 by εl ≈ φl−φl−1.
Under this assumption, εl is normally distributed with zero
mean and variance σ2

ε = Mσ2
ν = π∆νT , i.e.,

f(εl) =
1√

2πσ2
ε

e
− ε2l

2σ2ε , log f(εl) = D − ε2l
2σ2

ε

,

where D is a constant that does not depend on εl. Taking the
logarithm of the expression in (1), the MAP estimator of εl is
the solution of

ε̂MAP
l = arg max

εl
L2

L2 = −σ
2
u

2

2M−1∑
m=0

<{z̃m,le−εl}
(
<{z̃m,le−εl} − 2dm,l

)
+
N0

2

2M−1∑
m=0

<
{
z̃m,l

(
dm,l − u(1)

m,l

)
e−εl

}
− ε2l

2
σ2

MAP.

where σ2
MAP =

N0
2 (

N0
2 +σ2

u)

σ2
ε

. If, as in the derivations of the
ML estimator, we use the first order approximation of e−εl ,
we obtain

ε̂MAP
l ≈

∑
m(z̃Im,l(

N0

2 + σ2
u)dm,l − z̃Rm,l

N0

2 u
(1)
m,l − σ2

uz̃
R
m,lz̃

I
m,l)

σ2
u

∑
m(z̃Im,l)

2 + σ2
MAP

.

One can see that the MAP estimator expression is very close
to the ML estimator. Intuitively, the parameter σ2

MAP adjusts
the estimation depending on the linewidth of the laser. If the
linewidth is small, σ2

ε will be low as well and σ2
MAP will be

high, which will decrease in the end the value of the estimate.
This makes sense since we have the a priori knowledge that εl
is low and we should then penalize large values of εl. Finally,
the current phase noise is estimated as φ̂l = φ̂l−1 + ε̂MAP

l
and the symbols dm,l are re-estimated using this update of the
phase. Note that, the ML and MAP estimators do not suffer
from ambiguity problem [10] as could be the case for the
M-BPS algorithm, which can recover the phase only up to a
multiple of π.

Note that in the case where no part of the intrinsic
interference is estimated, the MAP estimator simplifies to

ε̂MAP
l,u(1)=0 ≈

(N0

2 + σ2
u)
∑
m z̃

I
m,ldm,l − σ2

u

∑
m z̃

R
m,lz̃

I
m,l

σ2
u

∑
m(z̃Im,l)

2 + σ2
MAP

,

where σ2
u should be re-computed based on the new neig-

hborhood defined by Ω
(2)
m0,l0

. One can see that the estimator
ε̂MAP
l,u(1)=0

has a very low complexity of implementation.

IV. SIMULATION RESULTS

This sections aims at validating the performance of the
proposed estimators through simulations. We will assume a
laser linewidth ∆ν of 1 MHz and a bandwidth of 30 GHz,
which corresponds to a sampling period T

2M of 33 ps. Note
that since the bandwidth is fixed, if we increase the number
of subcarriers 2M , the symbol period T is increased as well.
As a consequence, the system becomes more sensitive to the
laser phase noise since the phase has experienced a larger
variation during one symbol duration. To take that into account,
we define the normalized bandwidth as the product of the
combined linewidth and symbol duration, i.e., ∆νT . In the
simulations, the theoretical curve of a system without phase
noise is also plotted, as a benchmark. The prototype filter used
in the simulations is the Phydyas filter [11] with overlapping
factor set to four.

In Fig. 3, the symbol error rate (SER) is simulated for
FBMC-OQAM systems using different implementations of the
proposed estimators. A 4-OQAM and a 16-OQAM constella-
tions are considered. The ML curve corresponds to the derived
ML estimator denoted by ε̂ML

l , based on the linearization of
e−εl and where u(1)

m,l is estimated based on all current and pre-
viously decoded symbols. The MAP curve corresponds to the
derived MAP estimator denoted by ε̂MAP

l which is very similar
to the ML estimator but includes the a priori distribution of
the phase noise. As can be seen, the MAP estimator does not
provide a high gain with respect to the ML estimator, except at
very low SNR for the 4-OQAM constellation. Furthermore, the
MAP curve with u(1) = 0 corresponds to the MAP estimator
with no estimation at all of the intrinsic interference, denoted
by ε̂MAP

l,u(1)=0
. Note that this estimator is less complex and

achieves the same performance as the the estimator ε̂MAP
l .

Therefore, we conclude that estimating part of the intrinsic
interference is not really useful and should be avoided to
decrease the estimation complexity. In the following, we only
consider the MAP estimator ε̂MAP

l,u(1)=0
since it achieves the best

trade-off between performance and complexity.
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TABLE I. COMPLEXITY OF THE ALGORITHMS IN TERMS OF REAL
MULTIPLICATIONS AND DECISIONS. B IS THE NUMBER OF PHASE TESTS.

Real multiplications Decisions

M-BPS 4MB 2MB

MAP, u(1) = 0 18M + 4 4M
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Fig. 4. Comparison of the proposed MAP estimator with the state of the art
M-BPS algorithm as a function of the SNR.

In Fig. 4 and Fig. 5, the SER of an FBMC-OQAM system
using the proposed MAP estimator ε̂MAP

l,u(1)=0
is compared to

the state of the art M-BPS algorithm, as detailed in [2]. The
M-BPS algorithm is here implemented with a number of phase
tests B set to 20. The complexity of those two algorithms is
compared in Table I. One can see that the proposed estimator
uses about 4 times less real multiplications and 10 times less
decisions than the M-BPS algorithm (for B = 20).

Fig. 4 compares the two methods as a function of the
SNR. Again, two constellation sizes are considered, namely,
a 4-OQAM and a 16-OQAM. The results show that M-BPS
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Fig. 5. Comparison of the proposed MAP estimator with the state of the art
M-BPS algorithm as a function of the normalized linewidth.

performs significantly worse at low SNR level, especially for
a higher constellation size. At medium and high SNR values,
the performances of the two algorithms are equivalent. The
worse performance of the M-BPS algorithm at low SNR can
be explained by the M-BPS metric, which is obtained based on
the assumption of a high SNR regime. On the other hand, the
proposed MAP estimator does not make that assumption and
performs well at low SNR. Furthermore, it does not suffer from
the discretization error due the limited number of phase tests of
the M-BPS algorithm. It can also use its a priori information
on the phase error to improve the phase noise estimation. On
top of that, the complexity of the MAP estimator is drastically
reduced.

Fig. 5 compares the proposed MAP estimator and the
M-BPS algorithm as a function of the normalized linewidth
for fixed SNR values. For the 16-OQAM constellation, the
SNR is fixed to Es/N0 = 15 dB while for the 4-OQAM
constellation, the SNR is fixed to Es/N0 = 10 dB. To
better understand the figure, one should remember that the
transmission bandwidth is fixed and hence the ratio T

2M . This
means that, if the normalized linewidth ∆νT = ∆ν T

2M 2M
increases, the number of subcarriers 2M has increased as well,
as indicated in the upper x axis of Fig. 5.

It can readily be seen in Fig. 5 that the M-BPS algorithm
performs very poorly for low normalized linewidth. This comes
from the fact that the number of subcarriers is low and
the noise effect is not well averaged by the algorithm. As
the normalized linewidth increases, and hence the number of
subcarriers, the M-BPS starts to perform better. On the other
hand, the MAP estimator performs well at low to moderate
normalized linewidth since it does not make any assumption
on the working SNR regime.

Furthermore, for high normalized linewidth values, the
performance of the two algorithms begins to decrease. This
comes from the fact that the basic assumption that the phase
is constant during one multicarrier symbol transmission is not
true anymore. One can see that the MAP estimator is more



sensitive and is outperformed for high normalized linewidth
by the M-BPS algorithm. One could think that the degrada-
tion comes from the linearization error of the approximation
e−εl ≈ 1 − εl. To show the impact of this error, we plotted
a MAP curve with no linearization, which achieves exactly
the same performance as the MAP estimator. This curve is
obtained by computing the MAP criterion for a high number
of phase tests and keeping the best phase test. Therefore, we
explain the worse performance of the MAP algorithm by the
fact that the algorithm first estimates the current real symbols
by performing a direct decision using the estimate of the phase
at the previous multicarrier symbol, which is not the case
for the M-BPS algorithm. In other words, the algorithm is
limited by the propagation of the decision errors. One could
avoid it by changing our algorithm and considering the current
multicarrier symbol as an unknown random variable too and
try a different number of phase trials. For each phase test, we
would perform a direct decision and compute the a posteriori
probability and keep the best test, as in the M-BPS algorithm
but using a different cost function. Of course, this would
increase the complexity.

V. CONCLUSION

Two estimators have been proposed for carrier phase re-
covery in optical FBMC-OQAM systems. The first one was
obtained by maximization of the likelihood of the demodulated
signal while the second one was found by maximizing the
a posteriori distribution of the received signal. For both
estimators, a closed form expression was derived, based on
a first order approximation of the signal model, which leads
to a significant reduction of complexity with respect to state of
the art solutions. The impact of estimating part of the intrinsic
interference based on previous and current decoded symbols
was studied. It was shown through simulations that it does not
provide significant gain of performances. Simulation results
have also shown that the proposed estimators outperform state
of the art solution in the low SNR regime and for a small
number of subcarriers.
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