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Single-Tap Precoders and Decoders for Multi-User
MIMO FBMC-OQAM under Strong Channel

Frequency Selectivity
François Rottenberg, Student Member, IEEE, Xavier Mestre, Senior Member, IEEE, François

Horlin, Member, IEEE, and Jérôme Louveaux, Member, IEEE

Abstract—The design of linear precoders or decoders for multi-
user (MU) multiple-input multiple-output (MIMO) filterbank
multicarrier (FBMC) modulations in the case of strong channel
frequency selectivity is presented. The users and the base station
(BS) communicate using space division multiple access (SDMA).
The low complexity proposed solution is based on a single tap
per-subcarrier precoding/decoding matrix at the base station (BS)
in the downlink/uplink. As opposed to classical approaches that
assume flat channel frequency selectivity at the subcarrier level,
the BS does not make this assumption and takes into account the
distortion caused by channel frequency selectivity. The expression
of the FBMC asymptotic mean squared error (MSE) in the case
of strong channel selectivity derived in earlier works is developed
and extended. The linear precoders and decoders are found by
optimizing the MSE formula under two design criteria, namely
zero forcing (ZF) or minimum mean squared error (MMSE).
Finally, simulation results demonstrate the performance of the
optimized design. As long as the number of BS antennas is larger
than the number of users, it is shown that those extra degrees
of freedom can be used to compensate for the channel frequency
selectivity.

Index Terms—FBMC, frequency selective channel, MU MIMO.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is the most popular multicarrier modulation

scheme nowadays. It is used for instance in systems such as
WiFi, long term evolution (LTE) or digital video broadcasting
(DVB). OFDM has been very attractive mainly because of
its low complexity of implementation. The introduction of
the cyclic prefix (CP) in OFDM allows for easy channel
equalization. Extension to multiple-input multiple-output
(MIMO) scenarios is straightforward thanks to the OFDM
orthogonality ensured in the complex domain. At the same
time, due to the rectangular pulse shaping of the fast
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Fig. 1. Multi-user MIMO scenario: NU single-antenna users and one base
station with N antennas communicate simultaneously in UL and DL using
space division multiple access.

Fourier transform (FFT) filters, OFDM systems exhibit
very high frequency leakage and poor stopband attenuation.
Furthermore, the use of the CP in OFDM significantly reduces
the spectral efficiency of the system.

In the light of the shortcomings of OFDM, Offset-QAM-
based filterbank multicarrier (FBMC-OQAM) modulation has
been regarded as an attractive alternative. Rather than using
a rectangle pulse in time, FBMC-OQAM uses a pulse shape
which is more spread out in time and has much larger stopband
attenuation [1]. This in turn translates into higher spectral effi-
ciency and relaxed synchronization constraints [2]. Moreover,
it does not require CP overhead, which allows for a larger
spectral efficiency. These advantages come at the expense of
an increase in the system implementation complexity.

Under frequency selective channels, single tap equalization
is sufficient in OFDM to restore the system orthogonality.
The same result occurs in FBMC if the assumption of a
frequency flat channel at the subcarrier level is made, which
is typically verified for mildly frequency selective channels.
However, as the selectivity of the channel increases, FBMC
begins to suffer from inter-symbol interference (ISI) and inter-
carrier interference (ICI) and the orthogonality is progres-
sively destroyed [3], [4]. Many works in the literature have
investigated this problem in the SISO case [4]–[7] and later
on for the MIMO case, see [8] for recent review paper
on the subject. Most of the approaches to mitigate channel
frequency selectivity are based on the design of multi-tap
fractionally spaced equalizers. For instance, in [9], the authors
designed multi-tap decoding matrices following a frequency
sampling design, i.e., they compute the time domain equalizer
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Fig. 2. Per-subcarrier precoding at the transmitter.

coefficients so that its frequency response passes through some
well chosen target frequency points. On the other hand, [10]
proposes a multi-tap filtering solution at both transmit and
receive sides. This problem has also been analyzed in the
MU MIMO context in several works. In [11], the authors
extend the block diagonalization technique to FBMC systems.
Through an iterative algorithm, the work of [12] alleviates the
dimensionality constraint of [11] by allowing designs where
the total number of receive antennas of the users exceeds the
number of transmit antennas at the base station. In [13], [14],
multi-tap precoders and decoders are iteratively and jointly
designed. Moreover, the work originally devised for the SISO
case in [3] and later extended for the MIMO case in [15], [16]
proposes instead a parallel multi-stage processing architecture
at both sides of the communication link. One should however
note that iterative designs, multi-tap filtering and multi-stage
processing increase the complexity of the system.

In this paper, in contrast to most of the proposed approaches
to deal with channel frequency selectivity, we consider the
classical low complexity approach based on one tap per-
subcarrier precoding and decoding matrices. However, the
assumption of a frequency flat channel at the subcarrier level
is not made. A first order approximation of the per-subcarrier
MSE for a general MIMO FBMC-OQAM system, including
the effects of noise, multi-stream interference (MSI), ISI and
ICI, is proposed, relying not only on the channel frequency
response evaluated at this subcarrier but also on its derivatives.
This approximation generalizes the one given in [16] that is
valid only for the ZF case.

Furthermore, we optimize the MSE formula to design
precoders and decoders in a MU MIMO context. As shown
in Fig. 1, we consider a MU MIMO system with one base
station (BS) and multiple single-antenna users that are not
able to cooperate with each other1. The users and the BS are
assumed to use SDMA [17, Chap. 10], i.e., they communicate
simultaneously using the same time and frequency resources.
Taking into account at the same time the MSI, ISI and ICI
caused by channel frequency selectivity during the optimiza-
tion procedure, we show that even with the very simple chosen
structure, one can exploit the degrees of freedom offered by
the extra BS antennas to compensate for the distortion due to

1Note that one could straightforwardly apply the results of this paper to
a point-to-point (PTP) communication link transmitting with pure spatial
multiplexing.

Fig. 3. Per-subcarrier decoding at the receiver.

frequency selectivity. In both the uplink (UL) and downlink
(DL) cases, two design criteria are considered, namely zero
forcing (ZF) or minimum mean squared error (MMSE). From
the asymptotic study at high signal-to-noise ratio (SNR), it is
shown that the first order approximation of the distortion can
be completely removed as soon as the number of BS antennas
is twice as large as the number of users.

The rest of this paper is structured as follows. Section II
details the data model for a general FBMC-OQAM MIMO
transceiver and proposes an approximation of the mean
squared error (MSE) of the system under strong channel
frequency selectivity. Section III optimizes the previously
derived MSE formula for a MU MIMO scenario as a function
of the linear precoder or decoder and under a ZF or a minimum
mean squared error (MMSE) criterion. Section IV validates
the accuracy of MSE approximation and the performance of
the linear precoder and decoder through simulations. Finally,
Section V concludes the paper and appendixes contain the
mathematical proof of previous sections.

A. Notations

Vectors and matrices are denoted by bold lowercase and
uppercase letters, respectively. Superscripts ∗, T and H stand
for conjugate, transpose and Hermitian operators. tr, E, =
and < denote the trace, expectation, imaginary and real parts
respectively. Symbol O

(
M−`

)
denotes a matrix of possibly

increasing dimensions whose entries decay to zero faster than
M−`.

II. MSE FORMULATION FOR GENERAL MIMO
FBMC-OQAM SYSTEM UNDER STRONG CHANNEL

FREQUENCY SELECTIVITY

We will first introduce the system model for a general
MIMO FBMC-OQAM transmission and then give an approx-
imation of the MSE at the output of the transceiver chain.

A. General MIMO FBMC-OQAM transmission

Let us consider a MIMO FBMC-OQAM system with NT
and NR antennas at the transmit and receive sides, respec-
tively. The number of real-valued multicarrier symbols is
denoted by 2Ns and the number of streams by S.

Multicarrier modulations divide the transmission band into
multiple narrow bands. If the number of subcarriers, denoted
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by 2M , is large enough with respect to (w.r.t.) the channel
delay spread, a common assumption is to assume that the
channel is approximately frequency flat inside each sub-band
so that precoding (pre-equalization) and decoding (equaliza-
tion) operations can be performed at the subcarrier level. The
block diagrams of the transmitter and receiver are depicted in
Fig. 2 and Fig. 3. At the transmitter, the precoding matrix at
the m-th subcarrier is denoted by A(ωm) ∈ CNT×S . At the
receiver, the decoding matrix at the m-th subcarrier is denoted
by B(ωm) ∈ CS×NR .

The real-valued transmitted symbols denoted by dl,m ∈
RS×1 are first precoded and then FBMC-OQAM modulated
using a prototype pulse p[n] of length Lp. The transmitted
signal at the different transmit antennas, denoted by s[n] ∈
CNT×1, is given by

s[n] =

2Ns−1∑
l=0

2M−1∑
m=0

A(ωm)dl,mpl,m[n]

where pl,m[n] = jl+m

M p[n − lM ]ej
2π
2Mm(n−Lp−1

2 ). We denote
by H(ω) ∈ CNR×NT the channel frequency response matrix.
The signal at the different receive antennas, denoted by r[n] ∈
CNR×1, is given by

r[n] =

+∞∑
b=−∞

H[b]s[n− b] + w[n]

where H[b] = 1
2π

∫ 2π

0
H(ω)ejωbdω is the channel impulse

response which is assumed not to change over the frame
time duration. The column vector w[n] contains the additive
white Gaussian noise samples. The received signal is FBMC-
OQAM demodulated using prototype pulse q[n] of length Lq .
The signal after demodulation and decoding (equalization),
at subcarrier l0 and multicarrier symbol m0, denoted by
xl0,m0

∈ CS×1, may be written as

xl0,m0 = B(ωm0)

Lq−1∑
n=0

r[n]q∗l0,m0
[n]

where ql0,m0
[n] = jl0+m0

M q̃[n − l0M ]ej
2π
2Mm0(n−

Lq−1

2 ) and
where q̃[n] is the reversed version of the receive prototype,
namely q̃[n] = q[Lq − 1 − n]. Finally the estimated symbols
are obtained by taking the real part, i.e., d̂l0,m0

= <{xl0,m0
}.

B. MSE formulation

We define the MSE at the output of the transceiver chain
corresponding to all streams as2

MSE(m) = 2E
(
‖d̂l,m − dl,m‖2

)
= Pd(m) +N0tr

[
B(ωm)B(ωm)H

]
(1)

where N0 is the noise power and the expectation is taken over
transmitted symbols and noise. Since noise and symbols are
uncorrelated, their effect can be separated in the two terms
of (1). The term Pd(m) corresponds to the distortion due to

2Observe that we introduce the factor 2 in order to consider the distortion
of the complex symbols, and not the real ones.

MSI, ISI and ICI. The designs of Fig. 2 and Fig. 3 usually
rely on channel frequency flatness at the subcarrier level.
When the variation of the channel becomes non-negligible, this
assumption becomes inaccurate and distortion will increase
with the appearance of MSI, ISI and ICI (, i.e., the term
Pd(m) increases). To be able to give an analytical expression
of Pd(m), we make the following assumptions:

(As1) The actual precoding and decoding matrices imple-
mented at the m-th subcarrier result from the evaluation of the
functions A(ω) and B(ω) at frequency ωm = 2π(m−1)

2M . The
precoder, decoder and channel frequency response matrices,
A(ω) ∈ CNT×S , B(ω) ∈ CS×NR and H(ω) ∈ CNR×NT , are
twice differentiable functions of the frequency ω on the torus
R/2πZ.

(As2) The prototype pulse p[n] is assumed identical at
transmit and receive sides, so that p[n] = q[n]. It is ei-
ther symmetric or anti-symmetric in the time domain and it
meets the perfect reconstruction (PR) conditions. It has length
2Mκ, where κ is the overlapping factor. Furthermore, p[n]
is obtained by discretization of a smooth real-valued analog
waveform p(t), which is a C∞ ([−Tsκ/2, Tsκ/2]) function, so
that

p[n] = p

((
n− 2Mκ+ 1

2

)
Ts

2M

)
, n = 1, . . . , 2Mκ

where Ts is the multicarrier symbol period. Furthermore, the
pulse p(t) and its derivatives are null at the end-points of the
support, namely at t = ±Tsκ/2.

Thanks to the above assumption, we can define p(r)[n] as
the sampled version of the r-th derivative of p(t), that is

p(r)[n] = T rs p
(r)

((
n− 2Mκ+ 1

2

)
Ts

2M

)
, n = 1, . . . , 2Mκ.

(As3) The real-valued symbols dl,m are independent, iden-
tically distributed bounded random variables with zero mean
and variance Ps/2.

We are now in a position to introduce the main result of
this section.

Theorem II.1. Under (As1)− (As3), the MSE of the com-
plex symbols at the m-th subcarrier can be expressed as

Pd(m) = Pstr
[
(BHA− I) (BHA− I)

H
]

+
2η

(+,−)
1010

(2M)
2 tr

[(
BH′A

) (
BH′A

)H]
+

2η
(+,−)
1010

(2M)
2 <tr

[
(BHA− I)

(
BH′′A

)H]

+
4
(
η
(+,−)
1010 + η

(−,+)
0011

)
(2M)

2 tr
[
= (BHA− I)=T

(
B
(
HA′

)′)]

+
4
(
η
(+,−)
1010 + η

(−,+)
0011

)
(2M)

2 tr
(
=
(
BHA′

)
=T
(
B (HA)

′))
+O

(
M−2

)
, (2)

where η(+,−)1010 and η(−,+)
0011 are pulse-related quantities defined

in Appendix A, ′ and ′′ refer to the first and second derivatives
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and where all frequency-depending matrices are evaluated at
ω = ωm, e.g. A = A(ωm), H′ = H′(ωm)...

Proof. See Appendix A.

Comments: equations (1) and (2) show that the MSE ex-
pression is composed of many terms including the effects
of noise, MSI, ISI and ICI. One may recognize some usual
terms, i.e., the noise term in (1) or the first term of (2)
related to the fact that the channel is not perfectly inverted
(BHA 6= IS). Those two terms would be the only ones
remaining if the channel was frequency flat (H′ = 0) and
the precoder non-frequency selective (A′ = 0). Those are
also the two only terms of distortion in an OFDM system
if the cyclic prefix is longer than the channel length and the
system well synchronized. Furthermore, the dependence of (2)
on H′ and H′′ comes directly from the fact that the channel
variation breaks the FBMC-OQAM orthogonality while the
dependence in the derivatives of the precoder A′ and A′′

shows that the precoding operations on adjacent subcarriers
may influence the MSE at the current subcarrier. Notice that
this effect, also known as intrinsic interference, also occurs if
the channel is non-varying (H′ = 0) but the precoder varies
over the subcarriers (A′ 6= 0).

III. LINEAR PRECODER AND DECODER DESIGN FOR A
MU MIMO SYSTEM

The goal of this section is to optimize the general MSE
formulation of (1), applied to a MU MIMO scenario, as a
function of the linear precoding or decoding matrices. As
shown in Fig. 1, we consider a MU MIMO system with
one base station (BS) equipped with N antennas and NU
users, each one equipped with a single antenna and not able
to cooperate with each other3. The users and the BS are
assumed to use SDMA, i.e., they communicate simultaneously
using the same time and frequency resources. The number of
streams is equal to S = NU with N ≥ NU . The channel
frequency response matrix H(ω) is assumed to be perfectly
known by the BS. For the sake of clarity, H(ω) is denoted by
HDL(ω) ∈ CNU×N when referred to the specific DL scenario
and HUL(ω) ∈ CN×NU resp. in the UL case.

While optimizing the decoder in UL (resp. precoder in DL),
the precoder (resp. decoder) at the other end is fixed to a
real positive power normalization scalar ξ(ω) since the users
cannot collaborate. In the following, a per-subcarrier total
transmit power PT constraint is considered.

tr
[
AAH

]
= PT . (3)

Two design criteria will be investigated, namely the ZF crite-
rion and the MMSE criterion. A summary of the different
designs under study with their corresponding assumptions
is given in Table I. Note that in UL, the users cannot not
precode the streams, so that ξUL(ω) is frequency non-selective.
Conversely, in the DL, the BS pre-equalizes the channel at
the subcarrier level. This processing depends on the channel

3Note that the approach could be generalized to the case where each user
terminal is equipped with multiple antennas, although the extension does not
seem trivial.

frequency response at this subcarrier and hence, the normaliza-
tion factor ξDL(ω) will generally depend on frequency. Finally,
the computation complexity of the proposed designs will be
studied.

A. Zero Forcing Design

For this design, a channel inverting constraint is considered,
namely

BHA = INU . (4)

The channel matrix H is assumed full rank, which is a quite
natural assumption in the considered MU MIMO scenario.
Using (4) and the fact that (BHA)′ = B(HA)′+B′HA = 0,
many terms of the distortion expression of (2) vanish and the
MSE in (1) simplifies to

MSE(m) = αtr
[
(BH′A) (BH′A)

H
]

− (2α+ 2β)tr
[
=(BHA′)=(B′HA)T

]
+N0tr

[
BBH

]
+O

(
2M−2

)
. (5)

where α =
2η

(+,−)
1010

(2M)2
, β =

2η
(−,+)
0011

(2M)2
.

1) Linear Decoder (Multiple Access Channel (MAC), Up-
link): In the UL case, HUL and H′UL ∈ CN×NU correspond
to the tall channel frequency response matrix and its derivative
evaluated at the subcarrier of interest. From the power normal-
ization (3) and channel inversion (4) constraints, the general
solution of the problem can be written in the following form

AZF
UL = ξZFULINU

BZF
UL =

1

ξZFUL

(
H† + B̃PUL

)
where H†UL = (HH

ULHUL)−1HH
UL, PUL = IN −HULH†UL,

ξZFUL =
√
PT /NU and where B̃ is a NU × N matrix to be

optimized. This shows that the decoder can be written as
the left pseudo-inverse of the channel plus a matrix lying
on the left null space of HUL. In the trivial case N = NU ,
the decoder is the inverse of the channel since there are no
extra degrees of freedom. One can check that the second
term of the distortion in (5) is null due to the fact that
=(BZF

ULHUL(AZF
UL)′) = =

(
(ξZFUL)′/ξZFUL

)
INU = 0 with ξZFUL

purely real and frequency non-selective. Therefore, the opti-
mization problem can be turned into the minimization of a
quadratic expression in B̃

min
B̃

α tr
[(

H†ULH′UL + B̃PULH′UL

)
(
H†ULH′UL + B̃PULH′UL

)H]
+
N0NU
PT

tr
[(

HH
ULHUL

)−1
+ B̃PULB̃H

]
. (8)

Setting the derivative of this expression with respect to B̃∗ to
0, we find that the optimum solution is such that

B̃ = −H†ULH′UL

(
H′HULPULH′UL +

N0NU
PTα

INU

)−1
H′HUL

(9)

where we used the matrix inversion lemma.
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TABLE I
SUMMARY OF THE DIFFERENT DESIGNS UNDER CONSIDERATION AND THEIR RESPECTIVE ASSUMPTIONS.

Decoder (Uplink, MAC channel) Precoder (Downlink, BC channel)
AUL = ξULINU , HUL ∈ CN×NU BDL = ξDLINU ,HDL ∈ CNU×N

ZF (BHA = INU ) ξZFUL independent of ω ξZFDL depends on ω

MMSE (BHA 6= INU ) ξMMSE
UL independent of ω ξMMSE

DL depends on ω

2) Linear Precoder (Broadcast Channel (BC), Downlink):
In the DL case, HDL,H

′
DL ∈ CNU×N denote the fat channel

frequency response matrix and its derivative evaluated at the
subcarrier of interest. From the constraints (3) and (4), the
general solution can be written as

AZF
DL =

1

ξZFDL

(
H†DL + PDLÃ

)
BZF

DL = ξZFDLINU

where H†DL = HH
DL(HDLHH

DL)−1, PDL = IN −H†DLHDL

and ξZFDL =

√
tr
(

(HDLHH
DL)−1 + ÃHPDLÃ

)
/PT . As in

the decoder case, the second term of the distortion in (5)
also disappears due to the fact that =((BZF

DL)′HDLAZF
DL) =

=((ξZFDL)′/ξZFDL)INU = 0 with ξ purely real. The optimization
problem then simplifies to

min
Ã

αtr
[(

H′DLH†DL + H′DLPDLÃ
)

(
H′DLH†DL + H′DLPDLÃ

)H]
+
N0NU
PT

tr
[
(HDLHH

DL)−1 + ÃHPDLÃ
]
,

the solution of which is, after applying matrix inversion
lemma,

Ã = −H
′H
DL

(
H′DLPDLH

′H
DL +

N0NU
PTα

INU

)−1
H′DLH†DL.

One can check that the asymptotic MSE of the optimized
precoder and decoder will be exactly the same if the channels
are the Hermitian of one another, i.e. HDL = HH

UL.
3) Asymptotic Study at Low and High SNR: We concentrate

here on the behavior of the optimized linear decoder in the UL
(MAC) channel. Similar conclusions also hold for the precoder
in the DL (BC) channel. We assume that the number of users
NU and the transmit power PT remain constant while we let
N0 go to 0 or +∞ (high and low SNR respectively). At low
SNR (N0 → +∞), the expression in (9) tends to zero (B̃→ 0)
and the optimized decoder converges to

lim
N0→∞

BZF
UL =

1

ξZFUL

H†UL.

As one would expect, when noise power is large, the distortion
caused by channel selectivity is comparatively negligible. The
best thing to do is to use the classical pseudo-inverse of the
channel to combine the signals of each antenna.

At high SNR, assuming that H′UL is of full rank NU , the
decoder converges to a limit that depends on the rank of PUL.
Indeed, two cases must be considered depending on whether
matrix H′HULPULH′UL is invertible or not. One can rewrite
PUL as a function of the singular value decomposition (SVD)
of HUL

HUL =
[
U1 U2

] [
ΣNU×NU 0HN−NU×NU

]H
VH .

We then find PUL = U2U
H
2 where U2 is the N ×N −NU

matrix composed of the N −NU left singular vectors of HUL

associated to its zero singular values. It is then straightforward
to see that the rank of PUL is the dimension of the left null
space of HUL,i.e. N − NU . First, if N − NU ≥ NU , matrix
H′HULPULH′UL is full rank and the limit becomes

lim
N0→0

B̃ = −H†ULH′UL

(
H′HULPULH′UL

)−1
H′HUL.

Replacing this expression of B̃ into (8), it can be seen that the
limit of the asymptotic MSE at high SNR will tend to zero.
This means that for twice as many antennas as the number
of served users, we can completely remove the first order
approximation of the distortion caused by channel frequency
selectivity.

As for the case N −NU < NU , using the fact that PUL =
U2U

H
2 , one can reapply the matrix inversion lemma on B̃PUL

in order to show that the limit becomes

lim
N0→0

B̃PUL = −H†ULH′ULH′HULU2

(
UH

2 H′ULH′HULU2

)−1
UH

2 .

In this case, the noise term of the MSE will tend to zero but
the first order approximation of the distortion will only be
partially compensated for.

We can conclude that the optimized ZF decoder and pre-
coder can be written in a compact expression as the pseudo-
inverse of the channel plus a matrix lying on the null space of
the channel. This design can compensate for the degradation
due to channel frequency selectivity and even completely
remove the first order approximation of the distortion for twice
as many BS antennas as the number of served users.

B̂ =
(
HH

UL +
α

2
H′′HUL

)(
HULHH

UL + αH′ULH′HUL +
α

2

(
HULH′′HUL + H′′ULHH

UL

)
+
N0NU
PT

IN

)−1
(6)

Â =

(
HH

DLHDL + αH′HDLH′DL +
α

2

(
HH

DLH′′DL + H′′HDLHDL

)
+
N0NU
PT

IN

)−1 (
jHH

DLΨ + HH
DL +

α

2
H′′HDL

)
(7)
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TABLE II
COMPLEXITY OF CALCULATING THE PROPOSED PRECODERS AND DECODERS.

Decoder (Uplink, MAC channel) Precoder (Downlink, BC channel)

Classical ZF O(2NN2
U +N3

U ) O(3NN2
U +N3

U )

Opt. ZF O(4NN2
U + 4N2NU + 2N3

U ) O(5NN2
U + 4N2NU + 2N3

U )

Classical MMSE O(2N2NU +N3) O(2N2NU +NN2
U +N3)

Opt. MMSE O(5N2NU +N3) O(6N2NU + 3NN2
U + 2N3

U +N3)

B. Minimum Mean Squared Error Design

The previous designs rely on a ZF criterion which restricts
the solution domain. In the following, we do not make
this assumption and we look at the general MMSE design
which will achieve an optimized performance. Indeed, for low
SNR situations or highly selective subchannels, inverting the
channel might strongly degrade the performance. Furthermore,
the channel matrix H does not generally need to be full rank.

1) Linear Decoder (Multiple Access Channel, Uplink): For
the decoder case, due to the power normalization constraint
(3), we impose

AMMSE
UL = ξMMSE

UL INU

BMMSE
UL =

1

ξMMSE
UL

B̂

where ξMMSE
UL =

√
PT
NU

and B̂ = ξMMSE
UL BMMSE

UL is defined
to clarify the following expressions by suppressing the depen-
dence in ξMMSE

UL . Hence, the imaginary terms of the distortion
in (2) again disappear due to (AMMSE

UL )′ = 0 (the precoder
is frequency independent) and the optimization problem takes
the following quadratic form in B̂

min
B̂

MSE(m) = tr
[
(B̂HUL − I)(B̂HUL − I)H

]
+ αtr

[(
B̂H′UL

)(
B̂H′UL

)H]
+ α<tr

[
(B̂HUL − I)(B̂H′′UL)H

]
+
N0NU
PT

tr
[
B̂B̂H

]
.

Setting the derivative of this expression with respect to B̂∗ to
0 yields the MMSE decoder given in (6).

2) Linear Precoder (Broadcast Channel, Downlink): In the
precoder case, due to the normalization constraint, we have

AMMSE
DL =

1

ξMMSE
DL

Â

BMMSE
DL = ξMMSE

DL INU

with ξMMSE
DL =

√
tr[ÂÂH ]
PT

. As opposed to all of the previous
designs, the imaginary terms of the distortion in (2) do not
cancel out. The optimization of those two terms is difficult
due to the dependence in (AMMSE

DL )′. The derivative implies
that the optimization of the precoder of one subcarrier de-
pends on the neighboring subcarriers and the optimization
can no longer be done locally at the subcarrier level, which
increases the problem complexity and is not comparable to
the other designs. Hence, we propose to impose an additional

constraint which cancels the imaginary terms of (2), i.e.,
=(HDLAMMSE

DL ) = 0. This somehow means that we have
a ZF design on the imaginary part of HDLAMMSE

DL and a
MMSE design on its real part. We then have to minimize
the following Lagrangian formulation including the constraint
(via the Lagrange multiplier Ψ)

min
Â

L = tr
[
(HDLÂ− I)(HDLÂ− I)H

]
+ αtr

[(
H′DLÂ

)(
H′DLÂ

)H]
+ α<tr

[
(HDLÂ− I)(H

′′

DLÂ)H
]

+
N0NU
PT

tr
[
ÂÂH

]
+ jtr

[
ΨT (HDLÂ−H∗DLÂ∗)

]
.

Setting the derivative of L with respect to Â to 0 yields
the precoder in (7) where the value of Ψ is fixed thanks to
the constraint =(HDLA) = 0. Denoting X = HH

DLHDL +
α
2

[
HH

DLH′′DL + H′′HDLHDL

]
+αH′HDLH′DL + N0NU

PT
IN , we find

Ψ = −
(
<
(
HDLX−1HH

DL

))−1=(HDLX−1(HH
DL +

α

2
H′′HDL )).

C. Complexity of computation of the proposed precoders and
decoders

Table II gives an order of complexity of computing the pro-
posed optimized designs with respect to classical designs. By

Fig. 4. The optimized MMSE decoder clearly outperforms the classical
MMSE decoder. The asymptotic approximation of the MSE represented in
a solid line matches perfectly the simulated MSE in crosses.
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Fig. 5. SER of the optimized and classical ZF/MMSE decoders and Veh. A
channel model.

Fig. 6. SER of the optimized and classical ZF/MMSE decoder and Veh. B
channel model

classical designs, we mean precoders and decoders that rely on
the hypothesis of channel frequency flatness at the subcarrier
level, i.e., H′(ωm) = H′′(ωm) = 0. For the calculation, only
matrix multiplications and inversions are taken into account
given that they are the most complex operations. It is assumed
that for general matrices D ∈ Cl×m,E ∈ Cm×n,F ∈ Cm×m,
performing matrix multiplication DE has complexity O(lmn)
and matrix inversion F−1 has complexity O(m3). One can
check that the calculation complexity of the optimized designs
remains similar to the classical. Note that the designs in
DL are more complex since they require one more matrix
multiplication for the calculation of ξDL. Furthermore, the opt.
MMSE precoder is slightly more complex than the opt. MMSE
decoder due to the required calculation of Ψ.

IV. SIMULATION RESULTS

The following simulations first aim at demonstrating the
accuracy of the derived asymptotic MSE expression in prac-
tical situations. Secondly, they validate the performance of
the optimized precoders and decoders w.r.t. classical precoder
and decoder designs. A FBMC-OQAM system is considered
with 2M = 128 subcarriers and subcarrier spacing 15kHz
as in LTE. The channels are randomly drawn from the ITU
Vehicular A or B channel model, i.e. a mildly or highly

frequency selective channel respectively. Furthermore, they
remain constant during the frame transmission (quasi-static
assumption). The Phydyas prototype pulse with overlapping
factor κ = 4 is used in the simulations [18]. This pulse does
not fully satisfy the PR constraints but is of the near-perfect-
reconstruction (NPR) type. Given that it almost fulfills PR
constraints, the derived MSE expression (1) remains a very
good approximation of the distortion, as will be shown in the
following.

Fig. 4 shows the MSE of the classical and optimized MMSE
decoders for a specific channel realization. The channel model
simulated is the Vehicular B channel. The BS is assumed to
have N = 4 antennas serving NU = 2 users and the SNR of
the system is 25dB. One can first check that the simulated
MSE (in cross markers) perfectly matches the theoretical
approximation (in solid line) of (1). Furthermore, in the high
SNR regime considered here, the classical MMSE decoder is
limited by the distortion induced by the channel frequency
selectivity. On the other hand, the optimized MMSE decoder
uses the two extra antennas to cancel the distortion, giving a
clear gain of performance.

In Fig. 5 and Fig. 6, the symbol error rate (SER) for the
classical and optimized decoders are plotted for a fixed number
of users NU = 3 and different number of BS antennas N .
The signal constellation is a 16-QAM. In Fig. 5, the Veh. A
channel model is considered and the classical decoders can
achieve the same performance as the optimized ones. This
comes from the fact that the assumption of an approximately
flat channel inside each subchannel is accurate. On the other
hand, in Fig. 6, the Veh. B channel model is considered, i.e.,
a highly selective channel. The SER saturates very quickly
with a classical decoder while the optimized ZF or MMSE
decoder can compensate for the distortion as the number of BS
antennas N grows and the SER therefore saturates at higher
SNR. In the case NU = 3, N = 6, the SER does not even
saturate in the considered SNR range since the BS has twice
as many antennas and can completely remove the first order
approximation of the distortion. This is in accordance with the
asymptotic study at high SNR conducted in Section III-A3. As
expected, the MMSE designs outperform the ZF designs, and
this gain is larger for a small number of BS antennas. Indeed,
as the number of BS antennas increases, the interference can
be better handled and the regularization gain of the MMSE
decoder is reduced.

In Fig. 7, a 4-QAM constellation and the Veh. B channel
model are considered in the UL. The proposed decoder designs
are compared with a 3-tap frequency sampling equalizer that
follows the design of [9] with target frequency points chosen
according to a ZF criterion. One can check that the 3-tap
equalizer has a gain of performance relative to the proposed
designs for the same antenna configuration. Note however that
the multi-tap design has a much larger complexity in terms
of hardware implementation and calculation of the equalizer
coefficients. Moreover, it adds a reconstruction delay to the
demodulation chain.

Fig. 8 has exactly the same simulation parameters as Fig. 7
but for the DL. One can check that the performance of the
ZF precoder in DL is similar to the decoder one in UL. Note
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Fig. 7. SER of the optimized and classical ZF/MMSE decoder and a 3-tap
frequency sampling equalizer.

Fig. 8. SER of the optimized, classical ZF/MMSE precoder.

that the SER performances of the precoder and decoder might
differ. Indeed, even though the MSE expression is dual in UL
and in DL, the distribution of the per-stream SER might differ
due to the correlation of the noise arising in UL but not in DL.
Moreover, due to the ZF constraint on =(HDLAMMSE

DL ) = 0,
the optimized MMSE precoder performs slightly worse than
the classical MMSE precoder at low SNR.

V. CONCLUSION

This paper investigated the design of optimized FBMC-
OQAM precoders and decoders for a MU MIMO scenario
highly selective channel. The asymptotic expression of the
MSE of a FBMC transceiver was recalled, simplified and
generalized. Optimizing the MSE expression, expressions of
the optimized linear precoder and decoder were found under
either a ZF criterion or a MMSE criterion. As soon as the BS
has more antennas than the number of users, the optimized
structures use those extra degrees of freedom to compensate
for the distortion induced by channel frequency selectivity.
From an asymptotic study at high SNR, it was shown that
the first order approximation of the distortion can even be
completely removed if the BS has at least twice as many

antennas as the number of users. Simulation results have
demonstrated the accuracy of the new asymptotic expression
of the distortion as well as the performance of the optimized
precoders and decoders.

APPENDIX A
DISTORTION EXPRESSION

In this appendix, we are interested only in the intrinsic
distortion caused by the FBMC signal itself in the presence of
channel frequency selectivity. Since the additive noise samples
are assumed to be uncorrelated with the signal of interest, we
will assume a noise-free received signal. In order to derive the
distortion expression, we will first define different notations
and recall one Lemma of [16].

We define yp,ql0,m0
∈ CS×1 as

yp,ql0,m0
=

2Ns−1∑
l=0

2M−1∑
m=0

dl,m

Lq−1∑
n=0

pl,m[n]q∗l0,m0
[n].

The symbols yp,ql0,m0
can be seen as the complex demodu-

lated samples at subcarrier m0 and multicarrier symbol l0,
before de-staggering, if the real-valued symbols streams dl,m
are FBMC/OQAM modulated using a prototype pulse p[n]
and demodulated using a prototype pulse q[n] and for an
ideal channel, i.e., H(ω) = IS . Moreover, if p and q are
perfect reconstruction (bi-orthogonal) pulses, one will have
dl0,m0

= <(yp,ql0,m0
).

As detailed in Section II-A, to compensate for the effect of
the channel, a single-tap precoding matrix A(ω) and decoding
matrix B (ω) are used, operating at the per-subcarrier level.
At the transmitter, the symbols dl,m are precoded by matrix
A(ωm). At the receiver, the equalized symbols are denoted
by xp,ql0,m0

= B(ωm0)zp,ql0,m0
where zp,ql0,m0

are the demodulated
symbols at the receiver before decoding, i.e.,

zp,ql0,m0
=

Lq−1∑
n=0

r[n]q∗l0,m0
[n].

Note that one does not necessarily have <(xp,ql0,m0
) = dl0,m0

even if B (ω) H (ω) A (ω) = IS (and if no additive noise
is present) due to the fact that the FBMC-OQAM orthogo-
nality does not hold anymore if the channel is not exactly
flat. However, this will hold approximately if all frequency-
depending quantities, B (ω) ,H (ω) ,A (ω), are sufficiently
flat as functions of ω provided that B (ω) H (ω) A (ω) = IS .
Our objective is to find an approximate expression for the
associated error. This was already done in [16] but for the
special case of ZF (channel inversion), i.e.,

B (ω) H (ω) A (ω) = IS .

We here extend and greatly simplify the formula derived in
[16] to the general case of non channel inversion, i.e.,

B (ω) H (ω) A (ω) 6= IS .

To derive the result of Theorem II.1, we will use the
following result, proven in [16]. We will basically assume that
all frequency depending quantities are smooth functions of ω
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and that the prototype pulses are sampled versions of smooth
analog waveforms, namely, (As1)-(As3).

Lemma 1. Under assumptions (As1)-(As3), we have

zp,ql0,m0

=
R∑
k=0

R−k∑
k′=0

(−j)k+k′

(2M)k+k′k!k′!
H(k)A(k′)yp,q

(k)

l0,m0
(k′) +O(M−R)

where

yp,q
(k)

l0,m0
(k′) =

k′∑
r=0

k′!

r!(k′ − r)!
(−1)ryp

(r),q(k+k
′−r)

l0,m0

and where p(r), q(r) are the sampled versions of the r-th
time domain derivatives of the original prototype pulses.
Superscript (k) denotes the m-th order derivative of the
corresponding frequency dependent quantity, which always is
evaluated at subcarrier m0 (here and in the following of the
appendix).

A direct application of the above lemma for R = 2 allows
us to write

xp,ql0,m0
= BHAyl0,m0

− j

2M
ε1 −

1

2(2M)2
ε2 +O(M−2)

(10)

where we have defined

ε1 = B (HA)
(1)

yp,q
(1)

l0,m0
−BHA(1)yp

(1),q
l0,m0

ε2 = B (HA)
(2)

yp,q
(2)

l0,m0
− 2B

(
HA(1)

)(1)
yp

(1),q(1)

l0,m0

+ BHA(2)yp
(2),q
l0,m0

At this point, force p = q so that the same prototype pulse is
used at both transmitter and receiver. We define the distortion
error associated with the complex-valued symbols as4

Pd(m) = 2E
(
‖<(xp,ql0,m0

)− dl0,m0‖2
)
. (11)

We now need to define some pulse-related quantities. Given
two generic pulses, p, q of length 2Mκ and let P and Q denote
two 2M × κ matrices obtained by arranging the samples of
the respective pulses in columns from left to right. We will
define

R(p, q) = P ~ J2MQ

S(p, q) = (J2 ⊗ IM ) P ~ J2MQ

where ~ denotes row-wise convolution, ⊗ denotes Kronecker
product, IM (resp. JM ) are the identity (resp. exchange)
matrices of order M . Given four generic pulses p, q, r, s, we
define

η± (p, q, r, s)

=
1

2M
tr
[
U+R (p, q)RT (r, s) + U−S (p, q)ST (r, s)

]
η∓ (p, q, r, s)

=
1

2M
tr
[
U−R (p, q)RT (r, s) + U+S (p, q)ST (r, s)

]
4Note that this definition is in accordance with equation (1) when noise is

absent.

where U± = I2 ⊗ (IM±JM ). In order to simplify the nota-
tions, given four integers m,n, r, s, we will define η(+,−)mnrs =
η±
(
p(m), p(n), p(r), p(s)

)
.

Assuming that the pulse has PR properties (As2) so that
dl0,m0

= <(yp,ql0,m0
), we can obtain an asymptotic expression

for this distortion by simply inserting (10) in (11) for p = q
and by using the fact that [3, Appendix B]

E
(
<(yp

(m),q(n)

l0,m0
)<T (yp

(r),q(s)

l0,m0
)
)

= η(+,−)mnrs IS

E
(
=(yp

(m),q(n)

l0,m0
)=T (yp

(r),q(s)

l0,m0
)
)

= η(−,+)
mnrs IS

E
(
<(yp

(m),q(n)

l0,m0
)=T (yp

(r),q(s)

l0,m0
)
)

= 0.

The resulting expression can be more compactly expressed
by using the fact that η(+,−)mnrs = η

(+,−)
rsmn , η(+,−)mnrs = η

(+,−)
nmsr ,5 as

established in Lemma 2 of Appendix B. Furthermore, if we
assume that the prototype pulse is either symmetric or anti-
symmetric, one can establish that η(+,−)0000 = η

(−,+)
0000 , η(+,−)0001 =

η
(−,+)
0001 , η(+,−)0101 = η

(−,+)
0101 and η

(+,−)
0020 = η

(−,+)
0020 , a fact that

is proven in Lemma 3 of Appendix B. If, additionally, the
prototype pulse meets the PR conditions, we can guarantee
that η(+,−)0001 = 0 as established in Lemma 4 of Appendix B.

Using all this, together with the fact that

tr
[
<(X)<T (Y) + =(X)=T (Y)

]
= <tr

[
XYH

]
tr
[
=(X)<T (Y)−<(X)=T (Y)

]
= =tr

[
XYH

]
for any complex valued matrices X, Y of appropriate dimen-
sions, we see that

Pd(m) = 2ξ0,m +
2

(2M)
2 ξ2,m +O

(
M−2

)
(12)

where we have defined

ξ0,m = η
(+,−)
0000 tr

[
(BHA− I) (BHA− I)

H
]

ξ2,m = η
(+,−)
1010

(
tr
[
BHA(1)

(
BHA(1)

)H]
+tr
[
B (HA)

(1)
(
B (HA)

(1)
)H])

− η(+,−)2000

(
<tr
[
(BHA− I)

(
BHA(2)

)H]
+<tr

[
(BHA− I)

(
B (HA)

(2)
)H])

+ 2η
(+,−)
0011 tr

[
< [BHA− I]<T

[
B
(
HA(1)

)(1)]]
+ 2η

(−,+)
0011 tr

[
= [BHA− I]=T

[
B
(
HA(1)

)(1)]]
− 2η

(+,−)
1001 tr

[
=
[
B (HA)

(1)
]
=T
[
BHA(1)

]]
− 2η

(−,+)
1001 tr

[
<
[
B (HA)

(1)
]
<T
[
BHA(1)

]]
and where all frequency-depending matrices are evaluated at
ω = ωm.

It is easy to see that, thanks to the PR property of the
prototype pulse, we will have η(+,−)0000 = Ps/2, where we recall

5Obviously, the same identities hold if (+,−) is replaced by (−,+).
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that Ps is the power of the complex constellation symbols.
Therefore, the asymptotic distortion power depends on six
different pulse-related quantities, which present some non-
trivial interrelationships. To establish these interrelationships,
we invoke again Lemma 3 of Appendix B. In particular, the
relationships in (17)-(18) allow us to establish[

η
(+,−)
1001 − η

(−,+)
1001

]
−
[
η
(+,−)
0011 − η

(−,+)
0011

]
= 0 (13)

η
(+,−)
0011 + η

(+,−)
1010 = 0. (14)

We can find further equivalences between the different pulse
quantities by considering here the asymptotic domain as
M →∞ together with the fact that the prototype pulse is, by
assumption, a sampled version of a smooth analog waveform.

Indeed, applying the result in Proposition B.1, Corollary 1
and Lemma 6 in Appendix B together with the fact that the
prototype pulse is symmetric and PR compliant, we obtain

η
(+,−)
2000 − η

(+,−)
0011 + η

(+,−)
1010 − η

(−,+)
1001 = O(M−1) (15)

η
(+,−)
0011 − η

(+,−)
2000 = O(M−2). (16)

We may consider the system of equations formed by
(13),(14),(15) and (16). Denoting α = η

(+,−)
1010 and β = η

(−,+)
0011 ,

we can express the system of equations as
1 −1 −1 0
0 0 1 0
0 −1 −1 1
0 0 1 −1



η
(+,−)
1001

η
(−,+)
1001

η
(+,−)
0011

η
(+,−)
2000

 =


−β
−α
−α
0

+O(M−1)

so that we can conclude that
η
(+,−)
1001

η
(−,+)
1001

η
(+,−)
0011

η
(+,−)
2000

 =


−β
α
−α
−α

+O(M−1)

Using this in (12) we obtain (2).

APPENDIX B
SOME PROPERTIES OF THE QUANTITIES η

(+,−)
mnrs

In this appendix, we provide some identities on the quan-
tities η(+,−)mnrs , η(−,+)

mnrs that will clearly simplify the expression
for the asymptotic distortion derived above. We will begin by
presenting some properties that hold exactly for all values of
M .

A. Non-asymptotic properties

Let us begin with general properties that hold regardless of
whether the pulses are symmetric or not.

Lemma 2. By the definition of the η± (p, q, r, s), and regard-
less of the pulse symmetries, we have

η± (p, q, r, s) = η± (r, s, p, q)

and
η± (p, q, r, s) = η± (q, p, s, r) .

The same identities hold if ± is replaced by ∓ everywhere.

Proof. Indeed, the first result is a consequence of the fact that

(
U±R (p, q)RT (r, s)

)T
= R (r, s)RT (p, q) U±(

U±S (p, q)ST (r, s)
)T

= S (r, s)ST (p, q) U±

whereas the second one follows from the identities

R (p, q)RT (r, s) = J2MR (q, p)RT (s, r) J2M ,

S (p, q)ST (r, s) = (I2 ⊗ JM )S (q, p)ST (s, r) (I2 ⊗ JM )

and the definition of U±.

Sometimes, it is useful to consider a relationship between
quantities of the type η± and η∓. In order to obtain such
relationships, we impose that the pulses are either symmetric
or anti-symmetric in the time domain.

Lemma 3. Assume that all the pulses p, q, r, s are either
symmetric or anti-symmetric in the time domain. Let s(p) be
defined so that s(p) = 0 if the pulse p has even symmetry and
s(p) = 1 if the pulse is anti-symmetric. Then, we can write

(−1)
s(p) [

η±(p, q, r, s)− η∓(p, q, r, s)
]

+ (−1)
s(r) [

η±(r, q, p, s)− η∓(r, q, p, s)
]

= 0 (17)

and also

(−1)
s(p) [

η±(p, q, r, s) + η∓(p, q, r, s)
]

± (−1)
s(p) [

η±(p, q, s, r)− η∓(p, q, s, r)
]

= (−1)
s(s) [

η±(s, q, r, p) + η∓(s, q, r, p)
]

(18)

In particular, for the specific case where p = r we have

η±(p, q, p, s) = η∓(p, q, p, s).

Finally, if q = s and the pulses p and r have the same type
of symmetry, we have

η±(p, q, r, q) = η∓(p, q, r, q).

Proof. Let us denote by R1(p, q) and R2(p, q) the upper and
lower matrices of R(p, q), and equivalently for S1(p, q) and
S2(p, q). Let P denote a 2M×κ matrix obtained by arranging
the pulse p[n] in columns, and let P1 and P2 respectively
denote the matrices obtained by selecting the M upper and
lower rows of P respectively. By the symmetry of p[n], we
know that

P1 = (−1)s(p)JMP2J2κ−1.

On the other hand, we can prove that, for any four matrices
A,B,C and D of dimensions M × κ, the diagonal entries
of (A ~ BJκ) (C ~ DJκ)

T
JM are equal to the diagonal

entries of JM (C ~ JMB) (A ~ JMD)
T . This shows that,
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using pulse symmetry,

tr
[
R1 (p, q)RT1 (r, s) JM

]
= tr

[
JM (JMP1 ~ Q2) (JMR1 ~ S2)

T
]

= (−1)
s(p)+s(r) tr

[
(P2Jκ ~ Q2) (R2Jκ ~ S2)

T
JM

]
(∗)
= (−1)

s(p)+s(r) tr
[
JM (S2 ~ JMP2) (Q2 ~ JMR2)

T
]

= (−1)
s(p)+s(r) tr

[
JM (P2 ~ JMS2) (R2 ~ JMQ2)

T
]

= (−1)
s(p)+s(r) tr

[
JMS1 (p, s)ST1 (r, q)

]
= (−1)

s(p)+s(r) tr
[
JMS1 (r, q)ST1 (p, s)

]
(19)

where the identity in (∗) follows from the above convolution
result. Equivalently, we will obviously have

tr
[
R2 (p, q)RT2 (r, s) JM

]
= (−1)

s(p)+s(r) tr
[
JMS2 (r, q)ST2 (p, s)

]
and the two above identities directly prove (17). Regarding
the identity in (18), it follows easily from the above iden-
tities together with the fact that JMRi (p, q) = R3−i (q, p),
JMSi (p, q) = Si (q, p), i = 1, 2, and the fact that

tr
[
R1 (p, q)RT2 (r, s) JM

]
= (−1)

s(p)+s(r) tr
[
R1 (r, q)RT2 (p, s) JM

]
tr
[
S1 (p, q)ST2 (r, s) JM

]
= (−1)

s(p)+s(r) tr
[
S1 (r, q)ST2 (p, s) JM

]
which can be established following the same approach as in
(19). The last two identities in the statement of the lemma are
obtained as special cases of (17).

We finalize the description of the non-asymptotic properties
of the η±(p, q, r, s) with a result that will be useful whenever
two of the pulses meet the perfect reconstruction conditions.

Lemma 4. Assume that the two pulses p, q meet the perfect re-
construction conditions, and that r and s are either symmetric
or anti-symmetric in the time domain and have the opposite
symmetry. Then η±(p, q, r, s) = 0.

Proof. Since p, q have PR conditions, we know that
U−S (p, q) is an all-zero matrix whereas U+R (p, q) has
zeros everywhere except for the central column, which is filled
with 1s. Therefore, we are able to write

η±(p, q, r, s) =
1

2M

2Mκ∑
n=1

r[n]s[2Mκ− n+ 1] = 0

where the last equality follows from the fact that r and s have
the opposite symmetry.

B. Asymptotic properties

Let us now consider some properties of the η±(p, q, p, s)
that are obtained by assuming that the pulses are sampled
versions of a smooth analog waveform. In other words, we
assume that p[n], q[n], r[n] and s[n] are sampled versions of

the waveforms p(t), q(t), r(t) and s(t) respectively, according
to the properties in (As2). This means that we can express

p[n] = p

((
n− N + 1

2

)
Ts

2M

)
where p (t) has the usual properties in (As2). The same holds
for the rest of the pulses.

Let us denote pm[n] the m-th polyphase component of p[n],
which can be expressed as

pm[n] = pm

((
n− 1

2

)
Ts

2M

)
where pm(t) is the m-th section of p(t), namely

pm(t) = p
(
t−
(
m+

κ

2
− 1
)
Ts

)
which has support [0, Ts]. The definition of pm(t) is only valid
for m = 1, . . . , κ, but we will consider pm(t) = 0 for values
of m outside this range. The same definitions carry over to
the other pulses, namely q, r and s.

With all these definitions, we are now in a position to estab-
lish the first asymptotic result associated with η±(p, q, p, s).
The following result asymptotically relates the original quan-
tity η±(p, q, p, s) with an equivalent definition that is con-
structed using the analog waveforms instead of the sampled
ones.

Lemma 5. Under the above assumptions, we can write

η±(p, q, r, s) = η̄±(p, q, r, s) +O(M−2)

where

η̄±(p, q, r, s)

=

2κ−1∑
`=1

κ∑
m=1

κ∑
n=1

A(`,m,n) [p, q, r, s]±B(`,m,n) [p, q, r, s]

and where A(`,m,n) [p, q, r, s] and B(`,m,n) [p, q, r, s] are
defined as:

A(`,m,n) [p, q, r, s]

=
1

Ts

∫ Ts

0

pm(t)q`−m+1(Ts − t)rn(t)s`−n+1(Ts − t)dt

+
1

Ts

∫ Ts
2

0

pm(t)q`−m+1(
Ts
2
− t)rn(t)s`−n+1(

Ts
2
− t)dt

+
1

Ts

∫ Ts

Ts
2

pm(t)q`−m+1(
3Ts
2
− t)rn(t)s`−n+1(

3Ts
2
− t)dt

and

B(`,m,n) [p, q, r, s]

=
1

Ts

∫ Ts
2

0

pm(t)q`−m+1(Ts − t)rn(
Ts
2
− t)s`−n+1(

Ts
2

+ t)dt

+
1

Ts

∫ Ts

Ts
2

pm(t)q`−m+1(Ts − t)rn(
3Ts
2
− t)s`−n+1(t− Ts

2
)dt

+
1

Ts

∫ Ts
2

0

pm(t)q`−m+1(
Ts
2
− t)rn(

Ts
2
− t)s`−n+1(t)dt

+
1

Ts

∫ Ts

Ts
2

pm(t)q`−m+1(
3Ts
2
− t)rn(

3Ts
2
− t)s`−n+1(t)dt.
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Proof. The proof is a direct consequence of the definition of
η±(p, q, r, s) and the Riemann integral. Details are omitted
due to the space constraints.

The above lemma allows us to express η±(p, q, r, s) as
a function of integrals of the analog waveform sections
pm(t), qm(t), rm(t), sm(t). This turns out to be very conve-
nient for the following result, which provides an asymptotic
relationship among different η±(p, q, r, s) with respect to the
derivatives of the corresponding pulses.

Proposition B.1. Under the above assumptions and defini-
tions, we can write

η± (p′, q, r, s)− η± (p, q′, r, s) + η∓ (p, q, r′, s)

− η∓ (p, q, r, s′) = −
[
U∓R (p, q)RT (r, s) U±

]
1,1

−
[
U∓R (p, q)RT (r, s) U±

]
M+1,M+1

−
[
U±S (p, q)ST (r, s) U∓

]
1,1

−
[
U±S (p, q)ST (r, s) U∓

]
M+1,M+1

+O(M−1) (20)

Proof. Consider the definition of A(`,m,n) [p, q, r, s] and
B(`,m,n) [p, q, r, s]. These terms consist of a number of inte-
grals of a differentiable function on a compact interval of the
positive real axis. Hence, we can use the fundamental theorem
of calculus to write

η̄± (p′, q, r, s)− η̄± (p, q′, r, s) + η̄∓ (p, q, r′, s)

− η̄∓ (p, q, r, s′) =
2κ−1∑
`=1

φ`

where

φ` = µ` (Ts, 0) ξ` (Ts, 0)− µ` (0, Ts) ξ` (0, Ts)

± [µ` (Ts, 0)− µ` (0, Ts)] ξ` (Ts/2, Ts/2)

± µ` (Ts/2, Ts/2) [ξ` (0, Ts)− ξ` (Ts, 0)]

+ µ` (Ts/2, 0) ξ` (Ts/2, 0)− µ` (0, Ts/2) ξ` (0, Ts/2)

+ µ` (Ts, Ts/2) ξ` (Ts, Ts/2)− µ` (Ts/2, Ts) ξ` (Ts/2, Ts)

∓ µ` (Ts/2, 0) ξ` (0, Ts/2)± µ` (0, Ts/2) ξ` (Ts/2, 0)

∓ µ` (Ts, Ts/2) ξ` (Ts/2, Ts)± µ` (Ts/2, Ts) ξ` (Ts, Ts/2)

and where we have defined

µ` (t1, t2) =
κ∑

m=1

pm(t1)q`−m+1(t2)

ξ` (t1, t2) =
κ∑

m=1

rm(t1)s`−m+1(t2).

Now, according to Lemma 5 we can replace each term
η̄± (p, q, r, s) by the corresponding η± (p, q, r, s) up to an error
of order O(M−2). Therefore, it suffices to prove that the right
hand side of (20) is equal to

∑2κ−1
`=1 φ` + O(M−1). But this

follows directly from the fact that

µ` (Ts, 0) = [R2 (p, q)]M,` +O(M−1)

µ` (0, Ts) = [R1 (p, q)]1,` +O(M−1)

µ` (Ts/2, Ts/2) = [R1 (p, q)]M,` +O(M−1)

= [R2 (p, q)]1,` +O(M−1)

µ` (0, Ts/2) = [S2 (p, q)]1,` +O(M−1)

µ` (Ts/2, 0) = [S2 (p, q)]M,` +O(M−1)

µ` (Ts, Ts/2) = [S1 (p, q)]M,` +O(M−1)

µ` (Ts/2, Ts) = [S1 (p, q)]1,` +O(M−1)

and equivalently for ξ`, replacing p, q with r, s. This concludes
the proof of the proposition.

The application of the above proposition may prove to be
difficult due the presence of the term on the right hand side
of (20), which is difficult to interpret. The following corollary
establishes that under PR conditions, this term is zero.

Corollary 1. Under the above assumptions and definitions,
if (r, s) are PR-compliant and p, q are symmetric or anti-
symmetric but have the opposite symmetry, we can write

η+ (p′, q, r, s)− η+ (p, q′, r, s) + η− (p, q, r′, s)

− η− (p, q, r, s′) = O(M−1).

Proof. It follows from the PR conditions that U−S (r, s)
is an all-zero matrix, whereas U+R (r, s) contains zeros
everywhere except for the central column, which is filled with
1s. Proposition B.1 therefore establishes that

η+ (p′, q, r, s)− η+ (p, q′, r, s) + η− (p, q, r′, s)

− η− (p, q, r, s′) = [R (p, q)]2M,κ − [R (p, q)]1,κ

+ [R (p, q)]M,κ − [R (p, q)]M+1,κ +O(M−1)

and the result follows from symmetry.

Before we conclude this appendix, we introduce another
asymptotic result that will prove useful in the situation where
two of the pulses meet the PR conditions.

Lemma 6. Under the above definitions and hypotheses, as-
sume additionally that p and q are perfect reconstruction
pulses and that the analog waveforms r, s and r′, s′ are zero
at the extreme of their support. Then, we can write

η± (p, q, r′, s)− η± (p, q, r, s′) = O(M−2)

Proof. We know that U−S (p, q) is an all zero matrix whereas
the entries of U+R (p, q) are all zero except for the cen-
tral column, which is filled with ones. This means that
tr
[
U+S(p, q)S(r, s)T

]
= 0 and

1

2M
tr
[
U+R(p, q)R(r, s)T

]
=

1

2M

2Mκ∑
n=1

r[n]s[2Mκ− n+ 1]

=
1

Ts

∫ κTs

0

r(t)s(κTs − t)dt+O(M−2)



1053-587X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2016.2621722, IEEE
Transactions on Signal Processing

ROTTENBERG et al.: SINGLE-TAP PRECODERS AND DECODERS FOR MULTI-USER MIMO FBMC-OQAM 13

where the last identity follows from the Riemann integral
definition. Therefore, since

1

Ts

∫ κTs

0

r′(t)s(κTs − t)dt−
1

Ts

∫ κTs

0

r(t)s′(κTs − t)dt

= r(κTs)s(0)− r(κTs)s(0) = 0,

we obtain the result.
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