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Abstract—This paper addresses the design of MSE-optimal
preambles for multicarrier channel estimation under a maximum
likelihood or minimum mean squared error criterion. The derived
optimality condition gives insight on how to allocate the pilots that
compose the preamble. While many papers show that equispaced
and equipowered allocation is optimal, the generalized condition
demonstrates that there exist many different configurations that
offer the same optimal performance. Furthermore, the condition
applies not only to maximum likelihood but also to minimum
mean squared error channel estimation. An application of the
generalized condition in the presence of inactive subcarriers
(virtual subcarriers problem) is shown such that a non equispaced
allocation can achieve the same optimal performance as if an
equispaced one could be used.

Keywords—Multicarrier transmission, channel estimation, opti-
mal pilot allocation.

I. INTRODUCTION

Multicarrier systems aim at dividing a wideband signal
into multiple narrowband signals centered around different
subcarriers [1]. If the number of subcarriers is large with
respect to the delay spread of the channel, each narrowband
channel can be considered as frequency flat, which greatly
simplifies the equalization task at the receiver. It is mainly
for their ability to effectively cope with the channel frequency
selectivity that multicarrier systems have been so popular.

Channel estimation for multicarrier systems has been ex-
tensively studied; see, for instance, [2], [3] for recent re-
view papers concerning channel estimation for orthogonal
frequency division multiplexing (OFDM) or [4] for a review
in offset QAM-based filterbank multicarrier (FBMC/OQAM)
modulations. Specifically, the problem of optimizing the pilot
allocation (including their position in frequency and their
relative power) to minimize the mean squared error (MSE)
of the channel estimate has been addressed in a number of
works. Most of them focus on the case of least squares (LS)
channel estimation, which corresponds to the maximum like-
lihood (ML) estimator under the Gaussian noise assumption
and their main common conclusion is that the pilots should
be equispaced and equipowered [5], [6]. The authors in [7]
extend this result to the MIMO case and show that optimal
pilot sequences are equipowered, equispaced, and phase shift
orthogonal.

Surprisingly, there are only few works addressing optimal
pilot allocation for the minimum mean squared error (MMSE)
estimator, even in the single-antenna case. In [8], the pilot
allocation that maximizes the capacity for a MMSE channel
estimator is shown to also correspond to equipowered, eq-
uispaced pilots. In [9], the authors derive the MSE-optimal
training condition for the MMSE estimator in the context of a
two-way relay OFDM-based network.

Very few papers actually investigate if other pilot configu-
rations also satisfy the optimality condition and therefore offer
the same performance as the equispaced configuration. In this
paper, we find a sufficient and necessary condition for optimal
pilot allocation that holds for both the maximum likelihood
(ML) and the MMSE channel estimators (for a general channel
correlation matrix). It is shown that the condition can be
simplified if the channel taps are assumed uncorrelated. This
result can be seen as generalizing the classical equispaced
pilot configuration. Indeed, it is shown that a much wider
family of pilot allocations may be optimal. Furthermore, the
optimality condition can be directly used to solve the problem
of allocating the pilots in the more realistic (and more chal-
lenging) case where inactive (virtual) subcarriers are present.
The problem of virtual subcarriers is widely studied in the
literature; see, for example, [10] for the single antenna case
and [11] for the multiple antennas case. The originality of the
work presented here is that it gives a methodology for finding
optimal allocations, when the problem is feasible, which attains
the same performance as if no null subcarriers were present.

The rest of the paper is organized as follows. Section II
first serves as a reminder of channel estimation in multicarrier
systems using the ML and the MMSE criteria. Section III de-
rives a general optimality condition for pilot allocation, which
is then simplified for the ML case. The simplified condition
also holds for the MMSE estimator if the channel taps are
assumed uncorrelated. Section IV shows a possible application
of the generalized condition to the virtual subcarriers problem.
Simulation results are presented in Section V. Section VI
concludes the paper.

Notation: Vectors and matrices are denoted by bold low-
ercase and uppercase letters, respectively. Superscripts ∗, T

and H stand for conjugate, transpose and Hermitian transpose
operators. tr, E, = and < denote trace, expectation, imaginary
and real parts, respectively.978-1-5090-1749-2/16/$31.00 c© 2016 IEEE



II. CHANNEL ESTIMATION IN MULTICARRIER SYSTEMS

We consider a multicarrier system with M subcarriers. Let
us assume that the different subchannels can be considered flat
and orthogonal to each other. A preamble of one multicarrier
symbol is transmitted. The preamble vector composed of the
transmitted pilots at the M subcarriers is denoted by d ∈
CM×1. The channel impulse response h ∈ CLh×1 is assumed
to be quasi-static1 and Lh is the channel length. The vector of
samples received after demodulation can be written as

y = DFΣh + η

where F ∈ CM×M is the unitary discrete Fourier trans-
form (DFT) matrix, D = diag(d) ∈ CM×M contains the
vector of transmitted pilot symbols d on its diagonal and
η ∼ CN (0,Cη) is additive Gaussian noise. Moreover, the
noise is assumed to be white, i.e. Cη = σ2IM .2 Σ =(
ILh 0H(M−Lh)×Lh

)H
can be seen either as a selection

matrix of the first Lh columns of F or as a zero padding
matrix that appends M − Lh 0’s to the vector h.

Note that this model fits both an OFDM system if the
cyclic prefix is at least as long as the channel order [2] and
an FBMC/OQAM system if the channel frequency selectivity
is sufficiently mild and the noise correlation is neglected [4].
Then d represents the so-called pseudo-pilots (for fully loaded
preambles) or the pilots (otherwise) [12]–[14].

A. Maximum likelihood channel estimator

We here assume that h is deterministic and unknown. De-
noting by f(y|h) the conditional probability density function
of y given h, the ML estimator of the channel is given by [15]

ĥML = argmax f(y|h)

=
(
ΣHFHPFΣ

)−1
ΣHFHDHy

where P = DHD is a diagonal matrix containing the power of
each pilot on its diagonal. We define p ∈ CM×1 as the vector
containing the power of each pilot, such that pk = |dk|2 and
P = diag(p). One can note that the ML estimator coincides
here with the weighted LS estimator. The MSE is given by

MSEML(P) = σ2tr
[(

ΣHFHPFΣ
)−1]

.

This expression only depends on the power of the transmitted
pilots p and not on their phase, which can be appropriately
chosen for other purposes such as e.g., peak-to-average-power-
ratio (PAPR) reduction [16].

B. MMSE channel estimator

We here consider that h follows a zero mean Gaussian
distribution with correlation matrix denoted by Ch, i.e. h ∼
CN (0,Ch) ∈ CLh×1. The MMSE estimate ĥMMSE is the one

1We assume, as usual, that the channel remains invariant in the duration of
a multicarrier symbol.

2The whiteness of the noise samples makes sense in an OFDM system while
this is a stronger assumption in an FBMC system where correlation exists in
both time and frequency [4].

that minimizes E(‖h−ĥMMSE‖2). It can be shown to be equal
to [15]

ĥMMSE = E(h|y)

=

(
C−1h +

1

σ2
ΣHFHPFΣ

)−1
1

σ2
ΣHFHDHy

and the corresponding MSE is

MSEMMSE(P) = σ2tr
[(
σ2C−1h + ΣHFHPFΣ

)−1]
. (1)

One can check that MSEMMSE(P) ≤ MSEML(P) and they
will eventually converge at high signal-to-noise ratio (SNR),
i.e. when σ2 → 0.

III. OPTIMALITY CONDITION FOR CHANNEL
ESTIMATION

This section aims at deriving a sufficient and necessary
condition for pilot allocations that solve the following pilot
allocation problem subject to a training power constraint:

min
p

MSEML/MMSE(P) s.t. tr [P] = PT . (2)

First, using the fact that the function f(A) = tr
[
A−1

]
is a

convex function for Hermitian positive definite matrices A [17,
Problem 3.18], it is trivial to check that MSEMMSE(P) (and
hence MSEML(P) since it is a special case of the latter) is a
convex function of the power allocation P. One can then find
the optimality conditions of (2) by using the well known KKT
conditions [17]. We first form the Lagrangian that includes
the training power and the positiveness of the pilot powers
constraints,

L(P, µ, α1, . . . , αM ) = tr

[(
C−1h +

1

σ2
ΣHFHPFΣ

)−1]

+ µ (tr [P]− PT )−
M∑
k=1

αkpk

Setting the derivative of L(P, µ, α1, . . . , αM ) with respect to
each diagonal element of P to zero, we find the following
conditions
dL

d[P]kk
= 0 k = 0, 1, ...,M − 1 (3)

µ = eHk
1

σ2
FΣ

(
C−1h +

1

σ2
ΣHFHPFΣ

)−2
ΣHFHek + αk

where ek is the k+1-th column of the M×M identity matrix
and the values of αk, k = 0, 1, . . . ,M − 1 are fixed by the
M equations αkpk = 0, αk ≥ 0. This set of equations gives
the conditions under which a certain allocation P is optimal,
i.e. that the matrix on the right hand side has equal diagonal
elements of value µ and the value of µ is set to meet the
transmit power constraint.

Optimal values of P can be efficiently computed directly by
minimizing (2) using algorithms for classical convex problem
solving. However, this does not give any better intuitive idea
of optimal solutions. In the following, we show an alternative
necessary and sufficient condition that characterizes the op-
timal power allocations for the ML case. The condition also



holds for the MMSE case under the (common) assumption that
the channel taps are uncorrelated, i.e. Ch is a diagonal matrix
with elements Ch = diag(λ1h, . . . , λ

Lh
h ).

Proposition III.1. Under the previous assumptions and non
correlation of the channel taps, any pilot allocation p ∈ RM×1+
is optimal in the sense of the minimum MSE for the ML and
the MMSE estimators under a training power constraint if and
only if (iff) p satisfies

√
MΣHFHp =

(
PT
0

)
. (4)

Proof: The matrix FHPF is circulant and has thus equal
diagonal elements that we denote by x. Given the training
power constraint, the value of x is independent of the structure
of P and always equals

tr
[
FHPF

]
=Mx

x =
PT
M

where we used the cyclic trace property and the fact that
tr [P] = PT . The matrix ΣHFHPFΣ is the upper left Lh×Lh
submatrix of FHPF and therefore has diagonal elements equal
to x. Using the fact that for a positive definite matrix A, the
following inequality [15, p. 65] holds,

tr
(
A−1

)
≥

Lh∑
i=1

a−1ii (5)

where aii is the i-th diagonal element of A and equality holds
iff A is diagonal, (1) can be lower bounded by

MSEMMSE(P) ≥
Lh∑
l=1

(
1

λlh
+

1

σ2

PT
M

)−1
(6)

where equality holds iff ΣHFHPFΣ is diagonal. This con-
dition can be rewritten as

[ΣHFHPFΣ]l,m =
1

M

M−1∑
k=0

pke
j 2π
M k(l−m)

=

{
PT
M if l = m

0 if l 6= m

where l = 0, 1, . . . , Lh − 1 and m = 0, 1, . . . , Lh − 1.
ΣHFHPFΣ is a Toeplitz Hermitian matrix. Then, it is
sufficient to impose that its first column is 0 except for its
first entry, i.e.

M−1∑
k=0

pke
j 2π
M kl = 0 ∀l = 1, 2, . . . , Lh − 1

which means that the inverse Fourier transform of the power
allocation should be zero at indexes between 1 and Lh − 1 or
in matrix form,

√
MΣHFHp =

(
PT
0

)
.

To conclude, if p satisfies (4), ΣHFHPFΣ is diagonal and
reaches the lower bound in (6) and hence, p is optimal. In
the other direction, if p is optimal, the lower bound in (6)

Fig. 1. Two examples of optimal allocation: equispaced and equipowered
allocation and full equipowered allocation.

should be satisfied and ΣHFHPFΣ has to be diagonal (by
(5)), which is achieved only if (4) is satisfied. The previous
derivations can be particularized to the case of the ML estima-
tor setting C−1h = 0 and the same result holds. This concludes
the proof.

The result of Proposition III.1 and the following remarks
can be related to the work in [16] which takes also the CP
energy and PAPR into account. However, the approach in
[16] is only concerned with the LS estimator whereas here
the MMSE case is also addressed. Some remarks related to
Proposition III.1:
• It is straightforward to see that condition (4) will

satisfy (3) if particularized to the ML case (C−1h = 0)
and to the MMSE case with non correlated taps
(C−1h = diag( 1

λ1
h
, . . . , 1

λ
Lh
h

)).

• If Ch is diagonal, the optimal pilot allocation is inde-
pendent of the power delay profile (PDP) λ1h, . . . , λ

Lh
h

and the noise level σ2.
• Condition (4) imposes that the inverse Fourier trans-

form (IFT) of the pilot allocation should only have
zero coefficients between indexes 1 and Lh− 1 while
the coefficient at index 0 represents the training power.
This can somehow be seen as a requirement that
p should not vary too slowly over the subarriers,
except for the average value which represents the total
training power. For instance, adding a cosine wave of
frequency 2πl

M (and of amplitude such that the power
allocation remains positive) to an optimal allocation
will not affect the optimality if l > Lh−1. Moreover,
every optimal pilot allocation can be cyclically rotated
arbitrarily in the frequency domain since this would
simply correspond to multiplying by a complex ex-
ponential in the other domain, not affecting condition
(4).

• There may be an infinite number of pilot allocations
depending on Lh and M . Two classical allocations
(see Fig. 1) are first the sparsest equispaced and
equipowered allocation. Define L̃h as the smallest
integer that divides M and such that L̃h ≥ Lh. Then,
the sparsest allocation is given by pk = PT

L̃h
,∀k =

0, M
L̃h
, . . . , (L̃h− 1)M

L̃h
which is optimal since its IFT

will have all elements at indexes smaller than L̃h equal
to 0 (with L̃h ≥ Lh) except for the first one. A
second is the full equipowered pilot allocation, i.e.
pk = PT

M ,∀k = 0, 1, . . . ,M − 1 since its IFT is a
delta at 0. Furthermore, let us denote the two last
power allocations p1 and p2 ∈ RM×1+ respectively.
Then, the convex combination p3 = 0.5(p1 + p2) is
an optimal allocation too.



IV. APPLICATION IN THE VIRTUAL SUBCARRIERS
PROBLEM

In typical systems, a frequency mask should be respected
imposing a limited out-of-band radiation. To ensure that the
spectrum respects the mask, it is usual to keep a number of
subcarriers inactive at the edges of the band. Furthermore, in
LTE-like systems, the time-frequency resources are "boxed"
into different physical channels that may be transmitted si-
multaneously [18]. All of this imposes constraints on the
possible pilot locations. Due to those multiple constraints, an
equispaced pilot allocation may not always be possible, which
complicates the problem [10], [11]. We here show that thanks
to our generalized condition, optimality can still be reached
in certain situations, which means that we can reach the same
performance as if an equispaced or full equipowered allocation
was possible.

Let us consider a system where no pilots can be transmitted
at certain frequencies, i.e. pk = 0,∀k ∈ K where K is the set of
inactive subcarriers. The number of remaining pilot positions
is denoted by N = M − |K| and pf ∈ RN×1 is a vector
made of the powers transmitted at those available subcarriers.
Taking the virtual subcarriers into consideration, the optimality
condition can then be rewritten as

Apf = b s.t. pf ∈ RN×1+ (7)

where A =
√
MΣHFHS, b =

(
PT
0

)
and S ∈ RM×N is

formed by an identity matrix IM where we removed the |K|
columns corresponding to the virtual subcarriers frequencies.
The constraint ensures that any element of pf is real and
greater than or equal to 0. Note that too many or badly
placed virtual subcarriers may increase the ill-conditionning
of the channel sensing [12]. In that case, there may not exist
a solution to (7), i.e. an allocation that can still reach the
optimal MSE. Finding a possible solution to (7) can be seen
as a classical feasibility problem in the linear programming
literature [19, Chap. 10]. Solving (7) is similar to finding an
initial feasible point of a linear program. This can be solved
efficiently in polynomial time outputting either a feasible point
or the infeasibility of the problem.

V. SIMULATION RESULTS

Fig. 2 shows an example of the virtual subcarriers problem.
The simulation parameters are M = 128 subcarriers, a channel
length Lh = 10 and the following sets of subcarriers, [0,5],
[22,30], [43,48], [57,65], [123,M-1] are inactive, i.e. they
cannot be used for training. The feasibility problem of (7)
was solved using the Matlab function linprog and the solution
is plotted in Fig. 2.

Following the IEEE 802.11a standard [20], the number of
subcarriers is fixed to M = 64, 12 of which are inactive
due to the DC frequency and the edge guard bands, i.e.
K = {0}

⋃
[27, 37]. With these constraints, the problem in (7)

remains feasible for a channel length up to Lh = 5, which is
shown in Fig. 3. Note that no equispaced and equipowered
allocation could reach the same result since in that case,
L̃h = 8, which would require a pilot spacing of M

L̃h
= 8

subcarriers, not possible with the given frequency mask.
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Fig. 2. Due to system constraints, a large part of the band can not be allocated
for training. However, there is still a feasible optimal allocation.
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Fig. 3. Application of the generalized optimality condition to the
IEEE802.11a standard frequency mask requirements.
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Fig. 4. Comparison of the ML and MMSE estimators with optimal pilot
allocation and uncorrelated channel taps.

To model the correlation matrices of the channel, we first
define the matrix Λh = diag(λ1h, . . . , λ

Lh
h ). Second, we define

the matrix R whose (i, j) element equals [R]i,j = r|i−j| with
r < 1 the correlation coefficient.

In Fig. 4, the performance of the optimal pilot allocation
with the ML and MMSE estimators of Fig. 4 is plotted. For
both estimators, the power allocation is optimized so as to
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Fig. 5. Comparison of optimal allocation for ML and MMSE estimators,
with correlated channel.

meet (4). A uniform PDP, i.e. λlh = 1
Lh

, and an uncorrelated
exponentially decaying delay profile is considered, i.e. λlh =

α10
− 2(l−1)

Lh such that tr [Λh] = 1 and Ch = Λh in both cases.
As expected, the MMSE estimator outperforms the ML one
and the gap decreases at high SNR. The performance gap is
larger for the exponentially decaying PDP than for the uniform
PDP. This comes from the larger regularization effect of C−1h
in (1) for the exponentially decaying PDP.

Fig. 5 refers to the case of correlated channel. In that
case, condition (4) is only sufficient in the ML case but not
anymore for the MMSE estimator and should be replaced by
condition (3). However, solving (3) requires an iterative convex
optimization algorithm. We then aim at checking how far from
optimality is a preamble that only meets (4), as the correlation
of the channel increases. The channel covariance is defined
as Ch = R1/2ΛhR

1/2 with Λh defined as the exp. decaying
PDP in Fig. 4. In Fig. 5, for r = 0.2, one can see that the gap
between the true optimal pilot allocation (which meets (3)) and
the sub-optimal which only meets (4) is negligible. For a higher
correlation (r = 0.7), a gap at low SNR is obserbed, which
reduces very quickly as the SNR increases. This suggests that
even in correlated channels, an allocation that only meets (4)
is very close to optimality, especially at high SNR values.

VI. CONCLUSION

In summary, this paper addressed optimal pilot allocation
for multicarrier systems for channel estimation under the ML
and MMSE criteria. The optimality conditions for a general
channel correlation matrix are given and further simplified for
uncorrelated channel taps. The obtained condition generalizes
the commonly adopted equispaced pilot configuration, allow-
ing for a much wider family of optimal allocations. This proves
useful in practice, where null (virtual) subcarriers are present
as well. The reported simulation results demonstrated the value
of the optimality condition in such a context. This paper was
concerned with single antenna systems. Extending these results
to the multiple antennas case is a possible subject of future
research.
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