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SEPIa, a knowledge-driven algorithm for
predicting conformational B-cell epitopes
from the amino acid sequence
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Abstract

Background: The identification of immunogenic regions on the surface of antigens, which are able to be
recognized by antibodies and to trigger an immune response, is a major challenge for the design of new and
effective vaccines. The prediction of such regions through computational immunology techniques is a challenging
goal, which will ultimately lead to a drastic limitation of the experimental tests required to validate their efficiency.
However, current methods are far from being sufficiently reliable and/or applicable on a large scale.

Results: We developed SEPIa, a B-cell epitope predictor from the protein sequence, which is sufficiently fast to be
applicable on a large scale. The originality of SEPIa lies in the combination of two classifiers, a naïve Bayesian and
a random forest classifier, through a voting algorithm that exploits the advantages of both. It is based on 13
sequence-based features, whose values in a 9-residue sequence window are compiled to predict the epitope/
non-epitope state of the central residue. The features are related to the type of amino acid, its conservation
in homologous proteins, and its tendency of being exposed to the solvent, soluble, flexible, and disordered. The
highest signal is obtained from statistical amino acid preferences, but all 13 features contribute non-negligibly in the
predictor. SEPIa’s average prediction accuracy is limited, with an AUC score (area under the receiver operating
characteristic curve) that reaches 0.65 both in 10-fold cross-validation and on an independent test set. It is nevertheless
slightly higher than that of other methods evaluated on the same test set.

Conclusions: SEPIa was applied to a test protein whose epitopes are known, human β2 adrenergic G-protein-coupled
receptor, with promising results. Although the actual AUC score is rather low, many of the predicted epitopes cluster
together and overlap the experimental epitope region. The reasons underlying the limitations of SEPIa and of all other
B-cell epitope predictors are discussed.

Keywords: Immunoinformatics, Machine learning, Antigen-antibody complexes, B-cell epitopes, Statistical potentials,
Physicochemical properties, Bioinformatics predictor, β2 adrenergic G-protein-coupled receptor

Background
The humoral immune system protects the extracellular
space from foreign objects like bacteria and viruses. A
central role in the immune response is played by anti-
bodies that are secreted by B-cells. These proteins
recognize the disease-causing agents and thereby trigger
their neutralization. The recognition mechanism involves

the binding of antibodies to antigens, which are usually
proteins or polysaccharides from the pathogenic sub-
stances. Epitopes are the regions of the antigen surface
that are bound by the antibodies. The localization and
identification of epitopes, which are targeted by specific
antibodies and are capable of inducing an efficient
immune response, is of utmost importance for the rational
design of potential vaccines [1–3].
We focused in this paper on protein antigens. These are

classified as linear (or continuous) and conformational (or
discontinuous) epitopes, depending on their structure
and interaction with antibodies [4]. Specifically, linear
epitopes consist of amino acids that are contiguous in
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the polypeptide chain, while conformational epitopes con-
tain amino acids that are distant along the sequence but
spatially close in the native structure. Linear epitopes
are often found in peptides and conformational epi-
topes in proteins.
For over 30 years, computational methods have been

developed for facilitating epitope recognition [5]. In the
past, the majority of the in silico methods were focused
on linear epitopes. Most of these approaches are
sequence-based and use amino acid-based propensity
scales, such as hydrophilicity, solvent accessibility, sec-
ondary structure and flexibility; a score derived from the
propensity scales is assigned to each residue, and the
whole sequence is examined for high-scoring window
fragments, which are then predicted as epitopes [6–12].
However, the prediction results of these methods have
only marginally better performances than random selec-
tions [13]. In the last few years, several groups investigated
the combination of multiple amino acid propensity scales
to predict linear B-cell epitopes [14–17] with no signifi-
cant improvement of the prediction success rate. Recently,
not only sequence-based, but also structure-based, amino
acid features have been used in conjunction with machine
learning methods and have been shown to slightly
improve the prediction accuracy of linear B-cell epitope
predictions [14–23].
Although the large majority of B-cell epitopes are

conformational [24], they started to be studied later.
Many groups have analyzed various physicochemical,
structural, and geometrical features of epitopes in order
to determine which of them significantly distinguish
epitope from non-epitope antigen residues [25–29] and
what are the characteristics of antigen-antibody in-
terfaces compared to other protein-protein interfaces
[30–33]. The existing conformational epitope predic-
tion tools were developed by combining such inform-
ative attributes, which are based either purely on the
sequence, or both on the sequence and the structure
[34–39]. More recently, machine-learning techniques
have been used to improve the prediction perform-
ance of conformational epitopes [40–47].
In this study, we describe SEPIa, a conformational epi-

tope prediction method that requires only the amino
acid sequence as input and is based on commonly used
features, but also on new ones. It utilizes a meta-
learning approach, which combines the predictions
obtained with two different classifiers through a voting
procedure and yields a single prediction with improved
accuracy [48].

Methods
Datasets
We constructed a non-redundant data set of 85 of
antigen-antibody complexes, noted S85, from the Immune

Epitope Database (IEDB-3D) [49], which is an updated
and extended version of the one we used earlier [29]. To
increase the number of antigen sequences used for devel-
oping our method, and given that the 3-dimensional (3D)
structure is only required for the identification of epitope
residues, we considered structures with resolution better
than 3 Å, against 2.5 Å in our previous study. The other
criteria remained the same: (i) for complexes represented
by more than one crystal structure, the 3D structure with
the best resolution was chosen; (ii) structures in which the
antibody binds the antigen but involves no residues from
complementarity determining regions (CDRs) were ex-
cluded; (iii) complexes in which the antibody does not
contain both the light and heavy chains were discarded;
(iv) for structures with more than one complex in one
asymmetric unit and no structural difference between
them, only one complex was chosen; and (v) to obtain a
non-redundant data set, the sequences were pairwise
aligned using the ClustalW program [50], and if two
sequences had a sequence identity of more than 70%,
only one was kept. Note that epitopes from similar
antigens were kept if these antigens were in complex
with different antibody CDR sequences. With this pro-
cedure, antibody–antigen complexes were selected and
the corresponding coordinate files were obtained from
the Protein Data Bank (PDB) [51].
Two of the antigens of the S85 dataset have common

epitopes, which are not identified as epitopes in all
antigen-antibody complexes. We defined the S83 set that
contains all 85 antigen chains of S85 except these two.
The lists of antigens of the S85 and S83 sets are given in
Additional file 1: Table S1.
To determine the epitopes, we proceeded as in refer-

ence [29]. We calculated the solvent accessibility values
of the antigen residues without taking the antibody into
account (ACCunbound), using an in-house program [29],
and compared them with the accessibility of antigen
residues in the complex (ACCbound). All antigen residues
with a solvent accessibility variation of 5% at least upon
antibody binding (ACCunbound - ACCbound ≥ 5%) were
considered as epitope residues. The S85 set contains
1,667 conformational B-cell epitope residues and 16,780
other residues. The ratio between epitopes and non-
epitopes is thus almost exactly 1:10.
An independent dataset of 19 antigen sequences [42],

noted S19, was used to evaluate the predictor and to
compare it with other methods; it has already been used
for that purpose in other investigations [42, 45, 52].
These sequences and epitope assignments were taken
from the conformational epitope database (CED) [53].
The epitope residues were here not identified on the
basis of the 3D structure of the complexes, but rather
experimentally, with the help of techniques such as
surface plasmon resonance, ELISA and immunoblotting.
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The ratio between epitope and non-epitope residues
in this set is 1:13, with 407 epitope and 5,192 non-
epitope residues. The members the S19 set are listed
in Additional file 1: Table S2
The sequences from both datasets S85 and S19 were

pairwise aligned using the ClustalW server [50]. None
showed a sequence identity of more than 70%, which is
the identity threshold used for building S85. The two
datasets may thus be considered as independent.

Features
We evaluated 14 sequence-derived features, referred to
as F1–F14. These are:

Amino acid composition
It is well known that certain amino acid types show pref-
erences to be located in epitopes, in non-epitope protein
surfaces, or in the protein core [29]. We used here two
features related to the amino acid composition: the ratio
of the amino acid frequency observed in epitopes and in
the remaining antigen surface (referred to as F1), and
the ratio of the amino acid frequency in epitopes and in
the remaining antigen (F2). These two features were
computed on the S85 dataset. Their values are given in
Additional File 1: Table S3.

Hydrophilicity
A characteristic closely related to the amino acid com-
position is the hydrophilicity. Epitopes are known to be
enriched in charged and hydrophilic amino acids [29].
We used here the hydrophilicity scale of Hopp and
Woods [6] as feature F3.

Secondary structure
As epitopes have been shown to be more often located
in the loop regions of the antigen [29], the predicted
secondary structure was added as feature F4. We used
for that purpose the program NetSurfP [54] that
provides amino acid propensities for being in an α-helix,
β-strand or coil. We also used the program BetaTPred3
[55] that estimates the β-turn propensities in protein
sequences, and tested them as epitope feature F14.

Flexibility
Given that epitopes often involve loop regions, flexibility
could be expected to be an informative factor. We used
two programs to predict flexibility from sequence, Dyna-
Mine [56] (F5) and PredyFlexy [57] (F6), which are based
on two different definitions of flexibility. DynaMine
predicts the backbone flexibility at the residue level in
the form of backbone N-H S2 order parameter values; a
value of 1 means a rigid conformation, while a value of 0
means highly dynamic. PredyFlexy is instead based on

root mean square fluctuations (RMSF) obtained from
molecular dynamics simulations.

Intrinsically disordered regions
The tendency of protein sequences of being structured
or unstructured is another feature that could help
distinguishing epitope from non-epitope regions. Two
web servers were used to calculate such regions from
the amino acid sequence. IUPred [58] (F7) predicts
intrinsically disordered regions and ANCHOR [59] (F8)
disordered binding regions.

Energy-like
A novel feature that we introduce here is based on the
statistical potential formalism [60–62] to evaluate the
propensity of a residue to be part of an epitope. The first
“potential”, Δw1, measures the influence of a residue of
type s at position j along the sequence on the epitope/
non-epitope state u (u = E for epitopes and u = N for
non-epitopes) of the residue at position i:

Δw1 ui; sj
� � ¼ −RT ln

F ui; sj
� �

F uið ÞF sj
� � ; ð1Þ

where F are relative frequencies computed from the
learning dataset S85, R is the Boltzmann constant, T the
absolute temperature taken to be room temperature, and
j −w ≤ i ≤ j + w, with w an integer between 0 and 8. The
window size I = 2w + 1 is a parameter that will be
optimized to get the best prediction performances.
The second “potential”, Δw2 , measures the influence

of two residues of types s and s′ at positions j and k
along the sequence on the epitope/non-epitope state u
of the residue at position i:

Δw2 ui; sj; s
0
k

� � ¼ −RTln
F ui; sj; s0k
� �

F uið ÞF sj; s0k
� � ; ð2Þ

with j −w ≤ i ≤ j + w and k −w ≤ i ≤ k + w.
To correct for sparse data, we applied the usual cor-

rection [54–56]:

F ui; sj
� �

F uið ÞF sj
� �→ 1

σ þ n sj
� � σ þ n sj

� � F ui; sj
� �

F uið ÞF sj
� �

 !
;

F ui; sj; s0k
� �

F uið ÞF sj; s0k
� �→ 1

σ þ n sj; s0k
� � σ þ n sj; s

0
k

� � F ui; sj; s0k
� �

F uið ÞF sj; s0k
� �

 !
;

ð3Þ

with n (sj) and n (sj,s′k) the number of residues of these
types in the learning set, and σ = 10. This correction
ensures that the “potentials” tend to 0 when the number
of observations in the data set is too small.
Using these “potentials”, we computed an energy-like

contribution for each residue i in a protein sequence,

Dalkas and Rooman BMC Bioinformatics  (2017) 18:95 Page 3 of 12



which measures their propensity of being an epitope
(u = E) or a non-epitope (u = N):

ΔW1 uið Þ ¼
X

j

Δw1 ui; sj
� �

; ΔW2 uið Þ ¼
X

j;k

Δw2 ui; sj; s
0
k

� �
;

ð4Þ

with j and k in a sequence interval I around residue i.
We consider as feature F9 the sum ΔW(ui) = ΔW1(ui)
+ ΔW2(ui). The values of this feature, for different amino
acids and amino acid pairs, are given in Additional file 2.

Solvent accessibility
As epitopes are located at the protein surface, an indis-
pensable feature is the predicted solvent accessibility.
We used two different programs for that purpose. The
first is NetSurfP [54] (F10), which not only predicts the
secondary structure but also classifies residues in buried
(B) and exposed residues (E). The second (F11) is an
energy-like solvent accessibility predictor that is similar
to the epitope/non-epitope predictor described in Eqs
(1–4) with the state ui of residue i being exposed (u = E)
or buried (u = B). We define a residue to be in the state
E (B) if its solvent accessibility is higher (lower) than 5%.
This quite low percentage was chosen to ensure that all
epitope residues are exposed [29]. The values of this
feature, for different amino acids and amino acid pairs,
are given in Additional file 3.

Solubility
The intrinsic solubility of the amino acid residues in a
sequence is closely related to their propensity of having
a certain solvent accessibility. The solubility per residue
was calculated using the sequence-based version of the
CamSol [63] program (F12).

Evolutionary information
It is a priori not obvious whether epitope residues are
equally conserved during evolution than non-epitope
residues. To analyze this, we evaluated the evolutionary
conservation of the epitope and non-epitope residues
using the position-specific scoring matrix (PSSM) ob-
tained by aligning the target antigen sequence against a
non-redundant set of protein sequences with the PSI-
BLAST [64] tool. The so obtained conservation value
per residue was used as feature F13.

Feature windows
As the characteristics of a residue are influenced not
only by the residue itself but also by the neighboring
amino acids along the chain, we considered the features
in a sequence window around the targeted residue to
predict the epitope/non-epitope state of the latter. Note
that this effect is already built in the energy-like features.

We considered windows W from 3 to 9-residues centered
on the central residue.

Machine learning
We applied two machine-learning methods to classify
residues as epitopes or non-epitopes on the basis of the
13 features F1-F13. These are the Gaussian Naïve Bayes
[65] and Random Forest [66] algorithms. All the param-
eters of these classifiers were optimized first; in particu-
lar, better performances were achieved using Random
Forest with 100 trees. The predictions of these two basic
classifiers were then combined using a voting algorithm,
based on averages of the predicted probabilities. This
technique tends to balance out the weaknesses of
individual machine-learning classifiers. We used the
implementation of these techniques in the scikit-learn
[67] package.

Imbalanced dataset
One of the difficulties in predicting epitopes is the
strongly imbalanced dataset. Indeed, the number of
epitopes is one order of magnitude smaller than the
number of non-epitopes. All classifiers that use this
dataset for training tend to predict every residue as non-
epitope. We tested several standard techniques to deal
with such imbalanced data. We finally selected a variant
of the SMOTE [68] algorithm, i.e. the SVM SMOTE
algorithm [69]. The SMOTE algorithm proceeds by
oversampling the minority class by creating synthetic in-
stances using a k-nearest-neighbor approach. Similarly,
the SVM SMOTE is an oversampling method that uses a
Support Vector Machines (SVM) classifier to create new
instances of the minority class. This approach was
implemented with the Imbalanced-learn python toolbox
[70], which is compatible with scikit-learn. We opti-
mized the parameters of the radial basis function kernel
in SVM; the parameters achieving the highest scores
were C = 1 and γ = 0.01.
In this way, the size of the original dataset was chan-

ged, leading to roughly the same number of epitope and
non-epitope residues. This procedure was found to be
superior to the common method consisting in dividing
the majority class randomly into N equal parts (N being
equal to the ratio of non-epitopes to epitopes) and
combining each part with the minority class to form N
distinct learning sets.

Performance evaluation metrics
The Kolmogorov-Smirnov (KS) statistic [71, 72] is a
nonparametric test that quantifies a distance (D-value)
between the empirical distribution function of two
samples, as shown in Fig. 1. We used it for analyzing, for
each feature, the difference – if any - between the distribu-
tions observed for epitope and non-epitope residues.
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The performance of the prediction models was mea-
sured by the area under the receiver operating charac-
teristic (ROC) curve (AUC) [73]. This curve is obtained by
plotting the true positive rate (TP) against the false posi-
tive rate (FP) for various threshold values, and illustrates
the performance of binary classifiers.
The prediction performances were evaluated in 10-

fold cross validation on the S85 set, as well as on the
independent test set S19. Note that in the 10-fold
cross validation procedure, the dataset was split be-
fore applying the SVM SMOTE algorithm (see section
“Imbalanced dataset” here above), to avoid introdu-
cing similarities between the training and test sets.
The different classifiers were applied on the same
training and test folds.

Results and discussion
The 14 amino acid-based physicochemical, energy-like,
evolutionary and statistical features F1-F14 described in
Methods were first evaluated separately and then com-
bined to build our B-cell epitope predictor SEPIa.
Importantly, all the features were calculated on the basis
of the sole amino acid sequences of the antigens and do
not require any structural information.

Feature analysis
We first analyzed the 14 features separately, and com-
pared their capacity to distinguish epitope from non-
epitope residues. We used therefore the statistical KS-test,
which involves computing the D-value that corresponds
to the largest vertical distance between the cumulative

Fig. 1 Cumulative distributions for individual features, with the D-value of the KS test indicated (a) Energy-like solvent accessibility feature F11 for
the sequence interval of size I = 7, with a D-value of 0.185; (b) Feature F2 defined as the ratio of the amino acid frequency in epitopes and in the
remaining antigen, with a D-value of 0.177
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distributions of epitope and non-epitope samples com-
puted from the S85 learning set (See Methods and Fig. 1).
Another measure that we used for that purpose is based
on the construction of a prediction model using the
Gaussian Naïve Bayes and Random Forest machine learn-
ing algorithms, and combining them using a voting pro-
cedure, as explained in Methods. The AUC score of this
prediction model, calculated in 10-fold cross validation on
the S85 set, yields another estimation of the informative
power of the individual features.
A novel sequence-based characteristic introduced in

this study in the context of B-cell epitope prediction
consists of the energy-like features ΔW1 (E/N) and ΔW2

(E/N) (Eq. (4)), which compute the influence of single
amino acids and amino acid pairs, respectively, in a se-
quence interval of I residues centered around a central
residue on the epitope/non-epitope state on this central
residue. To identify the optimal size of I, we first used
the KS-test. For all tested sizes, ranging for I = 3 to 17,
the cumulative distributions of energy values for epitope
and non-epitope residues were found to be significantly
different (P-value < 0.0001). The best size, determined as
the one that gives the largest D-value, is I = 3 and I = 7
almost ex-aequo for ΔW1, and I = 7 for ΔW2. Testing the
informative value of these features on the basis of the AUC
of the prediction model also selects I = 7 as the optimal se-
quence interval size. We hence fixed I = 7, and considered
as feature F9 the sum of the two potentials, ΔW (E/N)
=ΔW1 (E/N) +ΔW2 (E/N). The cumulative distributions
for E/N states obtained from this feature are slightly better
separated than for the individual potentials, with a D-value
of 0.166 and an AUC score of 0.551 (Table 1).
Epitope residues are always located near the surface,

and solvent accessibility is thus obviously an important
epitope characteristic. We introduced an energy-like
feature that compiles solvent accessibility propensities
in much the same way than the energy-like epitope/
non-epitope feature analyzed above. In this case the
state of a residue is surface/buried (S/B) rather than
epitope/non-epitope. The optimal sequence interval size I

was evaluated on the basis of the KS D-value and the
AUC score of the prediction model. Again, I = 7 appears
as the best compromise, both for the feature ΔW1 (S/B)
based on individual amino acid propensities and ΔW2

(S/B) based on pairs of amino acids. The sum of these
two potentials, ΔW (S/B) = ΔW1 (S/B) + ΔW2 (S/B)
with I = 7 is defined as feature F11, and leads to cumu-
lative distributions that are slightly better separated
than the individual ones, with a D-value of 0.185
(Fig. 1), and an AUC score of 0.521 (Table 1).
Note that the other energy-like feature F11, which is

based on the preference of amino acids to be at the
surface or buried, distinguishes better epitopes from
non-epitopes than feature F9, which is based on the
preference of amino acids to be (non-) epitopes. This
apparent discrepancy is due to the fact that the epitope/
non-epitope assignments in the S85 dataset include
more errors than the surface/buried assignments. In-
deed, the latter are obtained from the structure and thus
are basically error-free. The epitope residues are also
correctly assigned, as they are obtained from the struc-
tures of the antigen/antibody complexes. In contrast,
some of the residues assigned as non-epitopes are prob-
ably epitopes in other antigen/antibody complexes. This
obviously induces noise in the epitope learning dataset.
Besides the features F9 and F11, we tested the inform-

ative content of all other features F1-F14. According to the
KS-test, the features F1-F13 differ significantly between the
epitope and non-epitope samples with P-values < 0.05, and
have higher than random AUC scores (see Table 1). Only
the β-turn feature F14 did not show a statistically signifi-
cant difference between epitope and non-epitope residues.
Indeed, the KS-test D-value was found to be equal to 0.028
with a P-value of 0.183, and the AUC score is 0.506. We
thus dropped this feature and kept the 13 features F1-F13
for building the epitope predictor.
The characteristics of a residue are influenced not only

by the residue itself but also by the neighboring residues
along the chain. They are also influenced by the residues
that are in spatial contact, but as we restrict ourselves to

Table 1 Prediction performance of the individual features F1-13 and of their combination (F), for all window sizes W = 0-9, estimated
by the AUC score and evaluated by 10-fold cross validation of the S85 set. The features indicate intrinsically disordered regions (F8 and
F7), flexibility (F5 and F6), evolutionary information (F13), energy-like (F9), secondary structure (F4), solvent accessibility (F10 and F11),
solubility (F12), hydrophilicity (F3), and amino acid composition (F1 and F2)

AUC score for different window sizes W

W F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F

0 0.586 0.574 0.545 0.561 0.517 0.560 0.523 0.519 0.551 0.516 0.521 0.547 0.532 0.644

3 0.591 0.615 0.576 0.533 0.544 0.579 0.543 0.514 0.569 0.548 0.542 0.585 0.547 0.639

5 0.604 0.597 0.579 0.552 0.542 0.580 0.544 0.511 0.580 0.583 0.575 0.588 0.554 0.635

7 0.600 0.603 0.570 0.558 0.541 0.580 0.545 0.495 0.580 0.590 0.609 0.591 0.548 0.640

9 0.614 0.619 0.593 0.560 0.533 0.579 0.557 0.525 0.553 0.569 0.586 0.570 0.550 0.646

Values in bold correspond to the optimal window sizes for each feature
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sequence-based features, we cannot consider them. We
tested the information gain obtained with sequence
windows W between 3 to 9 residues. Note that these
windows are related to the sequence intervals considered
for the two energy-like features F9 and F11, for which
the optimal value was I = 7. These intervals are consid-
ered in the feature construction, whereas the windows
are used at the level of the prediction. We tested varying
window sizes W in designing the predictor for all
features including F9 and F11.
The results of the AUC scores, computed in 10-fold

cross validation, are given in Table 1 for the different
window sizes and the 13 individual features. For 7 out of
the 13 features, the optimal value is W = 9. We thus
selected this window size.
The 13 features are ranked as a function of increasing

AUC in Fig. 2 (for W = 9). The best individual features
are F1, F2 and F3, and are related to the amino acid
composition. The best one, F2, is equal to the ratio of
amino acid frequencies in epitopes and in the remaining
antigen, and reaches an AUC of 0.62. The second best,
F1, is the ratio of the amino acid frequency in epitopes
and in the remaining antigen surface, and has an AUC
of 0.61. The third best feature, F3, is hydrophilicity, with
an AUC score of 0.59. The energy-like epitope/non-epi-
tope feature F9, which is based on more complex
combinations of amino acid propensities, is slightly less
performing, with an AUC of 0.55. Note that it is higher
(0.58) for W = 5 and 7.
The next best features are related to the solvent ac-

cessibility prediction, which is obviously an important
factor since epitopes are at the protein surface. The best
of these is the energy-like accessibility feature F11, with

an AUC of 0.59, followed by the solvent accessibility
feature F10, based on NetSurfP predictions, with an
AUC of 0.57. The related feature F12, solubility, also
presents an AUC of 0.57.
The flexibility features F5 and F6 also carry some in-

formation. F6, obtained from the RMSF computed from
molecular dynamics simulations, shows an AUC of 0.58,
while F5, obtained from backbone N-H S2 order param-
eters, is only slightly above random, with an AUC of
0.53. This reflects the observations that epitope residues
are usually positioned in flexible regions. Similarly, epi-
topes are more often localized in loop regions than in
helices and strands; the predicted secondary structure,
feature F4, has an intermediate AUC of 0.56. The related
features F7 and F8, based on the prediction of intrinsic-
ally disordered regions, have AUC values in the same
range: 0.56 and 0.53, respectively.
The last feature, F13, which is based on evolutionary

sequence conservation, has a low AUC of 0.55: epitope
regions are slightly less conserved than other regions,
but the difference is small.
Overall, the analysis of the individual features in-

dicates that all the tested attributes possess a weak to
medium ability of differentiating epitope from non-
epitope residues.

SEPIa predictor
We combined the 13 tested features to set up the final
predictor, called SEPIa. The algorithm used is the same
as for the individual features, a combination of Gaussian
Naïve Bayes and Random Forest algorithms using a
voting procedure (see Methods). Note that even those
features that are only slightly better than random carry

Fig. 2 Prediction performance of the individual features F1-13 and of their combination (F), estimated by the AUC and evaluated by 10-fold cross
validation of the S85 set, using a sequence window size W = 9. The bold horizontal line indicates the level of random prediction. From least to
best performing: intrinsically disordered regions (F8 and F7), flexibility (F5 and F6), evolutionary information (F13), energy-like (F9), secondary
structure (F4), solvent accessibility (F10 and F11), solubility (F12), hydrophilicity (F3), and amino acid composition (F1 and F2)
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some information. Indeed, their elimination decreases
the prediction score.
The results obtained in 10-fold cross validation pro-

cedure on the S85 set are given in Table 1 for window
sizes W = 0-9 (column F). The best AUC scores are
obtained for W = 9, like for the individual features. They
reach 0.65, which is small but significant increase with
respect to the individual features. Indeed, the best
feature, F2, reached only 0.62. The gradual improvement
of the overall performance upon sequential addition of
the features is given in Table 2.
Two of the antigens of the S85 training set have

residues that are epitopes in some antigen-antibody
complexes and non-epitopes in others. As most such
common epitopes have been found related to auto-
immunity [74], we removed these antigens from the S85
set, and trained another model on this restricted set S83
(Additional file 1: Table S1). The AUC obtained in 10-
fold cross validation is equal to 0.65, and is thus identi-
cal to that obtained from the full dataset. We thus chose
to keep the SEPIa predictor obtained with the complete
S85 training set.
We also tested the SEPIa predictor on S19, an inde-

pendent dataset of 19 antigen sequences [42], whose
epitope assignment was made on the basis of experimen-
tal (non-structural) data (see Methods), and which is
here used for comparison with other methods (see next
section). The results on this test set were quite similar
to those obtained from S85, as shown in Table 3: the
window size 9 appears to be the best, and the AUC score
reaches 0.65. The agreement between the results ob-
tained from these two independent datasets increases
their confidence level.

The SEPIa prediction model, obtained with the
scikit-learn package, is available as a file SEPIa.zip in
Additional file 4. It needs as input the sequence of
the target protein, and the 13 features computed on it.

Comparison with other methods
Several other B-cell epitope prediction methods have
been developed, of which a certain number have been
tested on the S19 set, while trained on an independent
set. These are: Zhangbound and Zhangunbound [45],
Zhengbound and Zhengunbound [52], CBTOPE [75],
EPCES [76], Epitopia [41], DiscoTope [34], BPredictor
[43], SEPPA [39], and EPSVR [42]. The former five use
the amino acid sequence as sole input, whereas the last
six also use the 3D structure. The AUC scores obtained
by these methods are given in Table 4; they are taken
from the original articles and from [45].
With its AUC score of 0.65, SEPIa appears to slightly

outperform the other methods. The second best
sequence-based method, CBTOPE, has an AUC of 0.61.
Note, however, that the S19 dataset is too small for these
score differences to be statistically significant.Table 2 Increase of the prediction performance upon sequential

addition of features. The window size is W = 9, and the AUC score
is evaluated in 10-fold cross validation on the S85 dataset

Feature combination AUC score

F1 0.619

F1 + F2 0.624

F1 + F2 + F10 0.629

F1 + F2 + F10 + F11 0.630

F1 + F2 + F10 + F11 + F12 0.631

F1 + F2 + F9 + F10 + F11 + F12 0.631

F1 + F2 + F6 + F9 + F10 + F11 + F12 0.636

F1 + F2 + F3 + F6 + F9 + F10 + F11 + F12 0.636

F1 + F2 + F3 + F6 + F9 + F10 + F11 + F12 + F13 0.637

F1 + F2 + F3 + F6 + F9 + F10 + F11 + F12 + F13 + F7 0.640

F1 + F2 + F3 + F6 + F9 + F10 + F11 + F12 + F13 + F7 + F4 0.644

F1 + F2 + F3 + F6 + F9 + F10 + F11 + F12 + F13 + F7 + F4 + F5 0.644

F1+ F2+ F3+ F6+ F9+ F10+ F11+ F12+ F13+ F7+ F4+ F5+ F8 0.646

The largest AUC score is indicated in bold

Table 3 Prediction performance of the combination of features
as a function of the window size, estimated by the AUC score
and evaluated on the S19 test set

Window size AUC score

0 0.643

3 0.639

5 0.635

7 0.640

9 0.646

The best score is indicated in bold

Table 4 The performance of different epitope prediction servers,
estimated by the AUC score and evaluated on the S19 test set

Category Method AUC

Sequence- based Ensemblebound [52] 0.579

Zhangbound [45] 0.600

Zhangunbound [45] 0.601

Ensembleunbound [52] 0.604

CBTOPE [74] 0.607

SEPIa 0.646

Structure-based EPCES [75] 0.569

EPITOPIA [41] 0.572

DiscoTope [34] 0.579

BPredictor [43] 0.587

SEPPA [39] 0.589

EPSVR [42] 0.606

The largest score is indicated in bold
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The structure-based methods do not perform better than
the sequence-based methods. The best one, EPSVR, has an
AUC of 0.61. This can seem surprising, given that consider-
ing the 3D structure obviously adds information. However,
in this case, the predictors focus on surface residues only
and classify them into epitope and non-epitope regions.
Therefore, the scores of the sequence- and structure-based
predictors cannot be compared: the former distinguish
epitope residues out of all surface and core residues, and
the latter epitope residues out of surface residues only.

Case study
To test the performance of the SEPIa predictor, we
applied it on the human β2 adrenergic G-protein-
coupled receptor (β2AR), which was co-crystallized with
an antigen-binding fragment (Fab) and solved by X-ray
crystallography (PDB ID: 2R4R) [77]. Due to its low
resolution of 3.4 Å, it was excluded from the learning set
S85. Its sequence identity with the antigens from the S85
learning set is below 20%, which makes it a good case

study. Several sequence regions are absent in the X-ray
structure: the C-terminus, the three extracellular loops
and the third intracellular loop. Comparative modeling
with the help of the SwissModel [78] server was used to
build a complete structural model of β2AR, using the
2R4R structure as a template. The structure of the
complex is depicted in Fig. 3.
The epitope residues were assigned from the structure

of the antibody-antigen complex as described in Methods.
There are 12 epitope residues, depicted in red and blue in
Fig. 3. The predictions obtained with SEPIa involve 29
epitope residues (in green and blue). Only 4 epitopes are
both predicted and observed (blue). Hence, the number of
correctly predicted epitopes is TP = 4, of correctly pre-
dicted negatives TN= 272, of incorrectly predicted epi-
topes FP = 8, and of incorrectly predicted non-epitopes FN
= 28. The AUC score on this test protein is equal to 0.77.
Although the score is quite low, it is worth looking in

more detail at the predictions shown in Fig. 3. Six
residues that are incorrectly predicted as epitopes are

Fig. 3 Predicted and observed epitope residues in the human β2AR receptor. The predicted epitope residues are in green, the observed epitopes
are in red, and the residues that are both predicted and observed as epitopes are in blue. Above: amino acid sequence, with the modeled loop
regions in italic and underlined. Below: structure of β2AR co-crystallized with a Fab fragment, shown as ribbons with predicted and observed epitopes
in sticks; β2AR is colored in light purple with modeled regions in light pink, Fab heavy chain in dark gray and Fab light chain in light gray
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actually very close to the binding interface. Adding the 4
correctly predicted epitopes yields a total of 10 residues
that overlap the actual epitope region of 12 residues.
The 18 other incorrectly predicted epitopes are all but
one situated in loop regions at the protein surface; the
fact that SEPIa does not predict epitopes in the core –
on the basis of the sole amino acid sequence - is in itself
already a positive result. Moreover, the other incorrectly
predicted epitopes do not form clusters of interacting
residues, except in one region. Note that some of these
incorrectly predicted epitopes could very well corres-
pond to epitopes in another complex, with another anti-
body, as discussed above.

Conclusions
The identification of immunogenic regions on antigen
proteins provides the basis for the rational design of
potential vaccines. In this study, we have developed the
SEPIa conformational epitope predictor, which is based
on the amino sequence alone. It uses a voting algorithm
for combining the predictions of two classifiers, a Gaussian
Naïve Bayes and a Random Forest classifier. This procedure
tends to alleviate the weaknesses of the individual models.
Thirteen amino acid-based features were exploited in the
predictor. Some of them are directly linked to the amino
acid sequence and describe the frequency, physicochemical
properties, and evolutionary conservation of the amino acid
residues. The others are sequence-based predictions of
different features, in particular the epitope state, solvent
accessibility, secondary structure, flexibility, and disorder.
The values of all these features in a sequence window of 9
residues are taken into account to predict whether or not
the middle residue is an epitope. Our method achieves an
AUC score of 0.65 in 10-fold cross validation on the learn-
ing dataset. Almost the same performance is obtained on
an independent dataset, on which other predictors have
also been tested.
Strikingly, the performance of the SEPIa predictor,

albeit limited, outperforms other methods. Moreover,
its application to a test protein, β2AR, demonstrated
its usefulness. First, many of the predicted epitope
residues in this protein are either correctly predicted
or spatially close to the experimentally determined epi-
tope residues. Furthermore, most incorrectly predicted
epitope residues are located in loops – and could thus
be assumed to correspond to different, not yet identi-
fied, epitopes -, and/or do not cluster together in
space – which could allow to mark them as unlikely
epitopes. This last characteristic opens new perspec-
tives for proteins of known or modeled structure,
which involves combining the predicted epitope resi-
dues that are close in space into epitope clusters, with
the largest clusters being more likely to correspond to
true epitope regions.

Finally, we would like to underline two difficulties
which all epitope predictors are faced with, and which
limit their performances. The first is the noisy learning
dataset, due to the fact that some residues marked as
non-epitopes are in fact epitopes in other antigen-
antibody complexes. The second is the strong imbalance
between the number of epitope and non-epitope resi-
dues, which impedes high-performance machine learn-
ing. The last is related to the observation that proteins
can exist and be stable without being recognized by
antibodies. This implies that the properties of epitope
residues are not very different from those of other
surface residues, and increases the complexity of the
prediction issue.
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Additional file 2: Values of the epitope/non-epitope energy-like feature
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Additional file 3: Values of the solvent accessibility energy-like feature
F11. (ZIP 129 kb)

Additional file 4: SEPIa prediction model, implemented using the
scikit-learn package. (ZIP 3901 kb)
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