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Abstract. Does the information complexity of a function equal its com-
munication complexity? We examine whether any currently known tech-
niques might be used to show a separation between the two notions.
Recently, Ganor et al. provided such a separation in the distributional
setting for a specific input distribution µ. We show that in the non-
distributional setting, the relative discrepancy bound they defined is, in
fact, smaller than the information complexity, and hence it cannot be
used to separate information and communication complexity. In addi-
tion, in the distributional case, we provide an equivalent linear program
formulation for relative discrepancy and relate it to variants of the parti-
tion bound, resolving also an open question regarding the relation of the
partition bound and information complexity. Last, we prove the equiva-
lence between the adaptive relative discrepancy and the public-coin par-
tition bound, which implies that the logarithm of the adaptive relative
discrepancy bound is quadratically tight with respect to communication.

1 Introduction

The question of whether information complexity equals communication
complexity is one of the most important outstanding questions in commu-
nication complexity. Communication complexity measures the amount of
bits Alice and Bob need to communicate to each other in order to compute
a function whose input is shared between them. On the other hand, in-
formation complexity measures the amount of information Alice and Bob
must reveal about their inputs in order to compute the function. Equal-
ity between information and communication complexity is equivalent to a
compression theorem in the interactive setting. It is well-known that a sin-
gle message can be compressed to its information content [Sha48,Fan49]
and here the question is whether such a compression is possible for an
interactive conversation.
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In addition to being a very useful technique for proving lower bounds
in communication complexity, one of the most important applications
of information complexity is to prove direct sum theorems for commu-
nication complexity, namely to show that computing k instances of a
function costs k times the communication of computing a single instance.
This has been shown to be true in the simultaneous and one-way mod-
els [CWYS01,JRS08], for bounded-round two-way protocols under prod-
uct distributions [JRS03,HJMR07] or non-product distributions [BR14],
and also for specific functions like Disjointness [BYJKS04]; some non-
trivial direct sum theorems have also been shown for general two-way
randomized communication complexity [BBCR10]. Since the information
complexity of a function is equal to its amortized communication com-
plexity [BR14], the question of whether information and communication
complexity are equal is also equivalent to whether communication com-
plexity has a direct sum property [BR14,Bra12]. Note that in the case of
deterministic, zero-error protocols, a separation between information and
communication complexity is known for the equality function [Bra12].

Since information complexity deals with the information Alice and
Bob transmit about their inputs, it is necessary to define a distribution on
these inputs. For each fixed distribution µ, we define the distributional in-
formation complexity of a function f (also known as the information cost)
as the information Alice and Bob transmit about their inputs in any pro-
tocol that solves f with small error according to µ [CWYS01,BR14]. The
(non-distributional) information complexity of the function f is defined
as its distributional information complexity for the worst distribution
µ [Bra12]. In this paper we consider the internal information complexity.

Similarly, for the study of communication complexity, one may also
consider a model with a distribution µ over the inputs, and the error
probability of the protocol is taken over this distribution. This is called
a distributional model, and Yao’s minmax principle [Yao83] states that
the randomized communication complexity of f is equal to its distribu-
tional communication complexity for the worst distribution µ, where the
randomized communication complexity of a function f is defined as the
minimum number of bits exchanged, in the worst case over the inputs, for
a randomized protocol to compute the function with small error [Yao79].

One can therefore ask whether the following stronger relation holds: is
the distributional communication complexity equal to the distributional
information complexity for all input distributions µ? A positive answer to
this question would also imply a positive answer to the initial question,
proving the equality of information and communication complexity.



In a recent breakthrough, Ganor et al. [GKR14a,GKR14b] gave an
example of a function f and a distribution µ, for which there is an expo-
nential separation between the distributional information and communi-
cation complexity. Does this settle the question of communication versus
information? First, let us note that the gap, although exponential, is very
small compared to the input size: a log log(n) communication lower bound
and a log log log(n) information upper bound, for inputs of size n. More
importantly, Ganor et al.’s results prove that the distributional informa-
tion and communication complexities are not equal for all distributions µ.

What will be needed to settle the question in the non-distributional
setting? To prove a separation it is necessary to show that the commu-
nication complexity of a specific function is large, while its information
complexity is small. In other words, we need some lower bound technique
which provides a lower bound for communication but not for information.
If we want to prove they are polynomially related, then it is useful to have
formulations that are polynomially related to communication complexity.

In previous work, Kerenidis et al. [KLL+12] showed that almost all
known lower bound techniques for communication also provide lower
bounds for information. More precisely, they studied the relaxed partition
bound and proved that it subsumes all known lower bound techniques,
including the rectangle-based, the norm-based, and the discrepancy meth-
ods, with the notable exception of the partition bound [JK10]. In addition,
they proved that for any distribution µ, the distributional information
complexity can be lower bounded by the relaxed partition bound. Since
their result holds with respect to any distribution, it also holds in the
non-distributional setting. An open question was whether the partition
bound remained a candidate for separating information and communica-
tion complexity, or whether distributional information complexity could
always be lower bounded by the partition bound, for any distribution.

The main question we ask in this paper is whether the techniques
developed in the paper of Ganor et al. can help in proving, or disproving,
the equality of information and communication complexity of a func-
tion f in the non-distributional setting. For their separation, Ganor et
al. introduced a new communication lower bound technique called rela-
tive discrepancy. They showed that for a specific function f and a specific
distribution µ, the relative discrepancy is high, while the distributional
information complexity is low. In this paper, we study how large this
new bound is compared to the other known lower bound techniques, and
whether it can be used to separate information and communication com-
plexity in the non-distributional setting. Our main results are:
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(a) The non-distributional case. The
fact that rdisc is upper bounded by the
prt is given in Theorem 3.
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(b) The distributional case. The equiv-
alence between prt+and rdisc is given
in Theorem 5. The separation given by
Ganor et al. is between IC and rdisc.

Fig. 1: Relation among bounds. CC : comunication complexity; IC : infor-
mation complexity; prt : the partition bound; prt : the relaxed partition
bound; prt+: the LP formulation of the relative discrepancy bound rdisc;
wprt : the weak partition bound. An arrow from one bound to another
indicates that the former is at least as large as the latter.

Result 1: In the non-distributional case, we show that relative discrep-
ancy is bounded above by the relaxed partition bound (Theorem 3). By
the results of [KLL+12], this means that relative discrepancy cannot be
used to separate information and communication complexity.

Result 2: In the distributional case, we provide a clear relation between
relative discrepancy, relaxed partition and partition bound. We give an
equivalent linear program formulation for relative discrepancy (Theo-
rem 5) and show how relative discrepancy and relaxed partition can be
derived from the partition bound by imposing some simple extra con-
straints. This also answers negatively to the open question in [KLL+12]
regarding whether the partition bound is a lower bound on information.

Recently, another type of communication lower bound techniques has
been proposed which use partitions instead of considering just rectan-
gles. Jain, Lee and Vishnoi defined the public coin partition bound, and
showed that its logarithm is quadratically related to the communication
complexity [JLV14]. In addition, Ganor et al. introduced the adaptive rel-
ative discrepancy [GKR14b]. We study the relation between public coin
partition and adaptive relative discrepancy and show the following:



Result 3: For any distribution µ, adaptive relative discrepancy and
public-coin partition bound are equivalent (Theorem 8). This implies
that the logarithm of the adaptive relative discrepancy bound is also
quadratically tight with respect to communication.

In addition to providing a linear program formulation for relative dis-
crepancy and adaptive relative discrepancy, the different variants of the
partition bound have several other advantages. They can be defined for a
wider range of problems, including non-boolean functions and relations;
they have natural interpretations in terms of zero-communication pro-
tocols, a fact which has been succesfully used for relating information
complexity to these bounds [KLL+12] and for recent advances in the log
rank conjecture [GL14]; and they have a natural interpretation in terms
of efficiency and Bell inequalities, which makes them amenable to formu-
lations that lower bound quantum communication complexity [LLR12].

In Section 2 we provide the necessary background and definitions. In
Section 3 we prove that relative discrepancy is less than relaxed partition
(in the non-distributional setting). In Section 4 we consider the setting
with a fixed µ, and compare the partition bound and its variants to the
relative discrepancy bound. In Section 5, we consider the adaptive relative
discrepancy and compare it to the public coin partition bound.

2 Preliminaries

We will use the following notation throughout the paper. The sets X,Y
denote the set of inputs to the two players, and Z denotes the set of pos-
sible outputs. Since the discrepancy-based bounds studied in this paper
apply naturally only to boolean functions, f will usually denote a (pos-
sibly partial) boolean function over X ×Y taking values in Z = {0, 1},
while µ denotes a probability distribution over X×Y. We point out that
the partition-based definitions apply naturally to non-boolean functions,
relations, and bipartite distributions as well, but we do not give the full
definitions in this paper for those settings.

2.1 Information and communication complexity

For any (possibly partial) function f over inputs X × Y, and any ε ∈
(0, 1/2), the communication cost of a protocol that computes f with error
probability at most ε is the number of bits sent for the worst case input.

Definition 1. The communication complexity of f , denoted Rε(f), is the
best communication cost for any protocol that computes f with error at



most ε for any input (x, y). For any distribution µ over the inputs, the
distributional communication complexity of f , denoted Rε(f, µ), is the
cost of the best protocol that computes f with error at most ε, where the
error probability is taken over the input distribution.

For information complexity, we are interested not in the number of bits
exchanged, but the amount of information revealed about the inputs. We
consider the internal information complexity in this paper. Here I(X;Y )
denotes the mutual information between random variables X and Y , and
I(X;Y |Z) is the mutual information conditioned on Z.

Definition 2 (Information complexity). Fix f, µ, ε. Let (X,Y,Π) be
the tuple distributed according to (X,Y ) sampled from µ and then Π being
the transcript of the protocol π applied to X,Y . Then define:
1. ICµ(π) = I(X;Π | Y ) + I(Y ;Π | X)
2. ICµ(f, ε) = infπ ICµ(π), where π computes f with error at most ε
3. IC(f, ε) = maxµ ICµ(f, ε)

2.2 Lower bound techniques

For any family of variables {βx,y}(x,y)∈X×Y and any subset E ⊆ X×Y,
we will denote β(E) =

∑
(x,y)∈E βx,y, and β = β(X×Y). Unless otherwise

specified “∀x, y” means “∀x, y ∈ X × Y”, “∀z” means “∀z ∈ Z”, “∀R”
means “for all rectangles R in X×Y”, and “∀P” means “for all partitions
P of X × Y into labeled rectangles (R, z)”. We also denote by |P | the
size of the partition, that is, the number of rectangles (R, z) it contains.

Following Ganor et al. (making some small changes that do not af-
fect the value of the bound) we define the relative discrepancy bound
rdiscε(f, µ), as follows.

Definition 3 (Relative discrepancy bound [GKR14b]). Let µ be a
distribution over X×Y and let f : supp(µ)→ {0, 1} be a function.

rdiscε(f, µ) = sup
κ,δ,ρxy

1

δ
(12 − κ− ε)

subject to
(
1
2 − κ

)
· ρ(R) ≤ µ(R ∩ f−1(z)) ∀R, z s.t. ρ(R) ≥ δ∑

xy

ρxy = 1

0 ≤ κ < 1

2
, 0 < δ < 1, ρxy ≥ 0 ∀(x, y).

For the non-distributional case, we define rdiscε(f) = maxµ rdiscε(f, µ),
where the maximum is over distributions µ over X×Y, which implicitly
adds nonnegativity and normalisation constraints on µ.



Notice that neither the constraints nor the objective function are linear
in the variables. Throughout our proofs, we will assume that supp(µ) =
supp(f) since this does not change the optimal value.

Using this formulation, Ganor et al. show:

Theorem 1. [GKR14b] Let f : supp(µ) → {0, 1} be a (possibly partial)
function. Then log(rdiscε(f, µ)) ≤ Rε(f, µ).

The relaxed partition bound was introduced by Kerenidis et al. [KLL+12]
who proved that for any function, it is bounded above by its information
complexity. Their results holds also relative to any fixed distribution on
the inputs.5

Definition 4 (Relaxed partition bound [KLL+12]). Let µ be a dis-
tribution over X×Y and let f : supp(µ)→ {0, 1} be a function.

prtε(f, µ) = max
α,βxy

β − αε

subject to : β(R)− αµ(R ∩ f−1(z)) ≤ 1 ∀R, z
α ≥ 0, αµxy − βxy ≥ 0 ∀(x, y),

where R ranges over all rectangles, (x, y) ∈ X ×Y and z ∈ {0, 1}. The
non-distributional relaxed partition bound is prtε(f) = maxµ prtε(f, µ).
For the non-distributional case, we use αx,y instead of αµx,y (which is
not linear if µ is no longer fixed), with αx,y positive but non normalized.

Theorem 2 ([KLL+12]). For all µ, boolean functions f over the sup-
port of µ and all ε ∈ (0, 14 ], Ω

(
ε2 log prt2ε(f, µ)

)
= ICµ(f, ε) ≤ Rε(f, µ).

3 Relative discrepancy is bounded by relaxed partition

We show that the non-distributional relative discrepancy is bounded above
by the relaxed partition. This implies that Ganor et al.’s separation
strongly depends on the input distribution. To separate information from
communication without fixing a distribution on the inputs, a technique
stronger than relative discrepancy will be necessary. (See Figure 1a).

Theorem 3. For any function f : X×Y → {0, 1}, and any ε ∈ (0, 2/3),

rdisc3
2 ε

(f) ≤ prtε(f).

5 Compared with the original formulation [KLL+12], there is an implicit change of
variables: we use βx,y here to denote what was αx,y−βx,y in the original notation.



Proof. It suffices to show that for any feasible solution of rdisc, there
exists a feasible solution for prt whose objective value is at least as large.
Let (κ, δ, {ρx,y}x,y, {µx,y}x,y) be a feasible solution of relative discrepancy
for f . Define for any (x, y) ∈ X×Y

αx,y =
1

δ
(12 − κ)ρx,y +

1

δ
µx,y , βx,y =

1

δ
(12 − κ)ρx,y

We show that the relaxed partition constraints are satisfied. First, the
sign constraints on αx,y and αx,y − βx,y are satisfied. Moreover, for any
rectangle R and output z,

β(R)− α(R ∩ f−1(z))

=
1

δ
(12 − κ)ρ(R)− 1

δ
µ(R ∩ f−1(z))− 1

δ
(12 − κ)ρ(R ∩ f−1(z))

(by definition of α and β)

≤ 1

δ
(12 − κ)ρ(R)− 1

δ
µ(R ∩ f−1(z)) (since ρxy ≥ 0 for any (x, y))

There are two cases:

ρ(R) ≥ δ : then 1
δ (12 − κ)ρ(R)− 1

δµ(R ∩ f−1(z)) ≤ 0 ≤ 1 by the relative
discrepancy constraint;

ρ(R) < δ : then 1
δ (12 − κ)ρ(R) − 1

δµ(R ∩ f−1(z)) < (12 − κ) − 1
δµ(R ∩

f−1(z)) ≤ 1
2 ≤ 1.

Finally we compare the objective values. Using the fact that ρ and µ
are distributions, we get α = 1

δ

(
3
2 − κ

)
and β = 1

δ

(
1
2 − κ

)
, so

β − εα =
1

δ

[
1
2 − κ− (32 − κ)ε

]
≥ 1

δ
(12 − κ−

3
2ε)

which is the value of the objective function of rdisc for error 3ε/2.

Remark 1. Notice that our change of variables satisfies an additional con-
straint, that is,

βx,y ≥ 0 for any (x, y) ∈ X×Y. (1)

since ρx,y ≥ 0. We will examine the role of this constraint in Section 4.
It turns out to be a key point in understanding how relative discrepancy
relates to the partition bound and its variants. Also notice that αx,y is
not proportional to µx,y, so this change of variable does not carry over to
the distributional case, since αx,y cannot be written as αµxy.

Combining Theorem 2 and Theorem 3 gives us that relative discrep-
ancy is a lower bound on information complexity.

Corollary 1. For all functions f : X × Y → {0, 1} and all ε ∈ (0, 16 ],
Ω
(
ε2 log(rdisc3ε(f))

)
= IC(f, ε) ≤ Rε(f).



4 The distributional case

We have established in the previous section that relative discrepancy is
bounded above by the relaxed partition bound, which we know provides
a lower bound to information complexity [KLL+12]. Because of the coun-
terexample of Ganor et al. we know that this cannot hold with respect to
a fixed distribution µ [GKR14a,GKR14b]. In this section we study how
the various bounds relate, relative to a fixed distribution µ, and uncover
an elegant relationship between the bounds by adding simple positivity
constraints to the partition bound.

We start with a fixed-distribution version of the partition bound [JK10],
which we define below. It follows easily from the original proof that this
is a lower bound on distributional communication complexity and that it
equals the partition bound in the worst case distribution.

Definition 5 (Partition bound).

prtε(f, µ) = max
α,βxy

β − εα

subject to : β(R)− αµ(R ∩ f−1(z)) ≤ 1 ∀R, z
α ≥ 0.

The distributional bound is prtε(f) = maxµ prtε(f, µ). Going from the
non-distributional setting to a fixed distribution µ, αx,y is replaced by
α · µx,y, that is, {αx,y} is {µx,y} scaled by a factor α.

Theorem 4. ([JK10]) Let f : supp(µ) → {0, 1} be a (possibly partial)
function. Then log(prtε(f, µ)) ≤ Rε(f, µ).

Note that the relaxed partition bound (Definition 4) is obtained from
the partition bound by adding the constraint αµx,y−βxy ≥ 0 for all (x, y).

As suggested in the proof of Theorem 3, we now consider the con-
straint βx,y ≥ 0 for all x, y. Adding this constraint to the partition bound
results in a new bound which we call the positive partition bound.

Definition 6 (Positive partition bound).

prt+ε(f, µ) = max
α,βxy

β − εα

subject to : β(R)− αµ(R ∩ f−1(z)) ≤ 1 ∀R, z
α ≥ 0, βxy ≥ 0 ∀(x, y).

We also define prt+ε(f) = maxµ prt+ε(f, µ), and use αx,y instead of αµx,y.



The weak partition bound is obtained by adding both constraints.

Definition 7 (Weak partition bound).

wprtε(f, µ) = max
α,βxy

β − εα

subject to : β(R)− αµ(R ∩ f−1(z)) ≤ 1 ∀R, z,
α ≥ 0, βxy ≥ 0, αµxy − βxy ≥ 0 ∀(x, y).

We also define wprtε(f) = maxµ wprtε(f, µ).

Because we have added a constraint to a maximisation problem, it is
easy to see that the following holds (see Figure 1b).

Proposition 1. For all f, µ, ε,

wprtε(f, µ) ≤ prt+ε(f, µ) ≤ prtε(f, µ) and wprtε(f, µ) ≤ prtε(f, µ) ≤ prtε(f, µ).

We shall now see that the relative discrepancy bound is equivalent to
the positive partition bound, up to constant factors.

Theorem 5. Let µ be a distribution on X×Y and f be a boolean function
on the support of µ such that either rdiscε(f, µ) ≥ 1 or prt+4ε(f, µ) > 2.
Then for any ε ∈ (0, 1/4),

ε

2
prt+4ε(f, µ) ≤ rdiscε(f, µ) ≤ prt+ε(f, µ).

The proof follows from Lemma 1 and Lemma 2.

Lemma 1. Let 0 < C < 1, 1
1−C ε < ε′ < 1, µ be a distribution on

X ×Y and f be a boolean function on the support of µ such that either
rdiscε(f, µ) ≥ 1 or prt+ε′(f, µ) > 1/C. Then, we have

C · (ε′(1− C)− ε) · prt+ε′(f, µ) ≤ rdiscε(f, µ).

Proof. For the theorem, we just set C = 1
2 and ε′ = 4ε. Let us first

assume that prt+ε′(f, µ) > 1/C. It suffices to show that for any feasible
solution of prt+, there exists a feasible solution for rdisc whose objective
value is at least as large. Let α, βxy be a feasible solution of prt+ε′(f, µ)
achieving value prt+ε′(f, µ) = β − ε′α > 1/C. Note that this implies in
particular that β > 0, and that we also necessarily have α > 0 otherwise
for α = 0 the constraints of prt+would imply β ≤ 1, in contradiction with
prt+ε′(f, µ) = β > 1/C. Let

δ =
1

Cβ
, κ =

1

2
− β

α
(1− C), ρxy =

βxy
β

∀x, y.



We show that the relative discrepancy constraints are satisfied. First, we
obtain from the prt+constraint that for all z and for any rectangle R such
that ρ(R) ≥ δ,

µ(R ∩ f−1(z)) ≥ 1
α(β(R)− 1) = 1

α(βρ(R)− 1) ≥ 1
α(β − 1

δ )ρ(R) = (12 − κ)ρ(R).

It remains to show that κ and δ satisfy the necessary constraints. For δ,
we have δ > 0 by definition and δ = 1

Cβ ≤
1

Cprt+ε′ (f,µ)
< 1.

For κ, we have by definition κ < 1
2 since β > 1/C > 0 and C < 1. Let

us also recall that we have proved above that

µ(R ∩ f−1(z)) ≥ (12 − κ)ρ(R)

for any z and any rectangle such that ρ(R) ≥ δ. Using the full rectangle
(where ρ(X × Y ) = 1 > δ) we have that

µ(f−1(z)) ≥ 1
2 − κ

for all z. Summing over both values of z, we get 1 ≥ 1−2κ, that is κ ≥ 0.
Finally we compare the objective values:

1
2 − κ− ε

δ
=
(
β
α(1− C)− ε

)
Cβ

≥ C
(
ε′(1− C)− ε

)
(β − ε′α),

where the last inequality holds since β − ε′α > 0 implies β/α > ε′.
Note that the argument so far did not require rdiscε(f, µ) ≥ 1. There-

fore, the only case that remains to be considered is when rdiscε(f, µ) ≥ 1
and prt+ε′(f, µ) ≤ 1/C. In that case, we have

rdiscε(f, µ) ≥ 1 ≥ Cprt+ε′(f, µ) ≥ C
(
ε′(1− C)− ε

)
prt+ε′(f, µ),

hence the lemma also holds.

Lemma 2. Let µ be a distribution on X×Y and f be a boolean function
on the support of µ. Then

rdiscε(f, µ) ≤ prt+ε(f, µ).

Proof. It suffices to show that for any such feasible solution of rdisc, there
exists a feasible solution for prt+ whose objective value is at least as large.
Let κ, δ and {ρxy}xy be a feasible solution for the relative discrepancy
bound. Let

α =
1

δ
, βxy =

1
2 − κ
δ

ρxy ∀x, y.



We first show that this yields a feasible point. By definition, we have
α ≥ 0 and βxy ≥ 0 for all x, y. Moreover, for any rectangle R such that
ρ(R) < δ, we immediately have

β(R)− αµ(R ∩ f−1(z)) ≤ β(R) =
(12 − κ)

δ
ρ(R) < 1,

so the constraint is satisfied. For any rectangle R such that ρ(R) ≥ δ, the
first constraint in the relative discrepancy bound implies that(

1
2 − κ

)
· ρ(R) ≤ µ(R ∩ f−1(z)) ∀z,

Therefore, we have for such rectangles

β(R)− αµ(R ∩ f−1(z)) ≤
1
2 − κ
δ

ρ(R)− 1

δ
(12 − κ)ρ(R) = 0,

so the constraint is also satisfied.
It remains to compare the objective values. We have

β − εα =
1
2 − κ
δ
− ε

δ
=

1
2 − κ− ε

δ
.

Revisiting the non-distributional case Once we have defined all these vari-
ants of the partition bound, we can revisit the non-distributional case. For
the change of variables in the proof of Theorem 3, we have noted that
the constraint βxy ≥ 0 holds ∀(x, y) (see Inequality 1). This shows that,
in the non-distributional case, relative discrepancy is, in fact, no larger
than the weak partition bound, i.e. rdiscε(f) ≤ wprt2

3 ε
(f).

One can prove Theorem 3 in a different way: First, by Lemma 2, for
any distribution µ, rdiscε(f, µ) ≤ prt+ε(f, µ). Then, we can use the fact
that in the non-distributional case, the positive partition bound is no
larger than the weak partition bound (the reverse is true by definition).

Lemma 3. For any function f : X×Y → {0, 1}, and any ε ∈ (0, 1/2),

prt+ε(f) ≤ wprt ε
2
(f) +

ε

2
.

Proof. Let αx,y, βx,y be a feasible solution for prt+, and consider the fol-
lowing assignment for wprt: α′x,y = αx,y + βx,y, β′x,y = βx,y. The con-
straint on rectangles is still satisfied, and the added positivity constraint
α′x,y − β′x,y = αx,y ≥ 0 is also satisfied. Finally, the objective function for
wprt with error ε

2 is β′− ε
2α
′ = β− ε

2β−
ε
2α ≥ β− εα−

ε
2 (where we have

used the constraint on R = X×Y ), as claimed.



Note that the change of variables in the proof of Theorem 3 is just the
composition of the two changes of variables in Lemma 2 and Lemma 3.
It is also now clearer how the distributional and the non-distributional
settings differ. We know that it cannot be the case that prt+ε(f, µ) ≤
wprtε(f, µ) for fixed distribution, since Ganor et al. provide a counterex-
ample. We can also see that for this specific change of variable, by setting
α′x,y = αx,y + βx,y, α

′
x,y cannot be written as αx,y = αµx,y, as we would

need in the distributional case, since it is a combination of α and β.

Negative relative discrepancy We have shown that for any µ, the rela-
tive discrepancy is equivalent to the positive partition bound by setting
ρ proportional to β. One might ask what happens to the relative discrep-
ancy bound if the positivity constraint on ρx,y is relaxed? Recall that
in the partition bound, the positivity constraint on βx,y is removed, so
using essentially the same proof, we can show that this “negative relative
discrepancy” bound is equivalent to the partition bound.

5 Adaptive relative discrepancy is equivalent to the
public coin partition

Recently, two new lower bound techniques for communication have been
introduced that involve partitions instead of just rectangles. First, the
public coin partition bound, whose logarithm is polynomially related to
randomized communication complexity ([JLV14]).

We give below a distributional version of the public-coin partition
bound. Note that this is a simplified definition with respect to the orig-
inal one by means of removing redundant variables and constraints in
the primal formulation, taking the dual of the resulting expression, and
replacing αx,y by αµx,y, where the distribution µ is fixed:

Definition 8 (Public coin partition bound [JLV14]).

pprtε(f, µ) = max
α,β

β − εα

subject to : β −
∑

(R,z)∈P

αµ(R ∩ f−1(z)) ≤ |P | ∀P

α ≥ 0, β ≥ 0

The authors proved the following result (that we restate only for
boolean functions in the context of this paper), that we extend to the
distributional setting



Theorem 6. ([JLV14]) Let f be a (possibly partial) boolean function over
X×Y, µ any distribution and ε ∈ (0, 1/2). Then,

log(pprtε(f, µ)) ≤ Rε(f, µ) ≤
(

log pprtε/2(f, µ) + log
1

ε
+ 2

)2

The second bound is the adaptive relative discrepancy bound of Ganor
et al., which can be expressed (with some minor changes that do not affect
the optimal value) as follows:

Definition 9 (Adaptive relative discrepancy [GKR14b]).

ardiscε(f, µ) = sup
κ,δ,ρPx,y

1

δ

(
1

2
− κ− ε

)
subject to :

(
1

2
− κ
)
ρP (R) ≤ µ(R ∩ f−1(z)) ∀P, ∀(z,R) ∈ P s.t. ρP (R) ≥ δ

ρP = 1 ∀P
0 ≤ κ < 1

2 , 0 < δ < 1, ρPx,y ≥ 0 ∀P,∀(x, y).

Then ardiscε(f) = maxµ ardiscε(f, µ).

Notice again that this is not a linear program. Also, the total weight ρP

does not depend on P . It is clear that a solution for the relative dis-
crepancy bound provides a solution for the adaptive relative discrepancy
bound. Moreover, Ganor et al. have proven the following result.

Theorem 7. ([GKR14b]) Let f : supp(µ)→ {0, 1} be a (possibly partial)
function. Then log(ardiscε(f, µ)) ≤ Rε(f, µ).

We show that the two bounds are equivalent up to constant factors.

Theorem 8. For any distribution µ, any function f : supp(µ) → {0, 1}
and ε ∈ (0, 14) such that either ardiscε(f, µ) ≥ 1 or pprt4ε(f, µ) > 2,

ε

2
pprt4ε(f, µ) ≤ ardiscε(f, µ) ≤ pprtε(f, µ)

Once we have expressed the public coin partition bound as in Definition 8,
the equivalence proof is similar to the proof of Theorem 5 and follows from
the following two lemmata (one for each inequality).

Lemma 4. For any 0 ≤ C < 1 and any 1
1−C ε < ε′ < 1 such that either

ardiscε(f, µ) ≥ 1 or pprtε′(f, µ) > 1/C, we have

C(ε′(1− C)− ε)pprtε′(f, µ) ≤ ardiscε(f, µ).



Proof. For the theorem, it is enough to take C = 1
2 and ε′ = 4ε. Let

us first assume that pprtε′(f, µ) > 1/C. It suffices to show that for any
feasible solution of pprt, there exists a feasible solution for ardisc whose
objective value is at least as large. Consider α ≥ 0, β ≥ 0 a feasible
solution of pprtε′(f, µ) such that β − ε′α > 0. Note that this implies in
particular that β > 0, and that we also necessarily have α > 0 otherwise
for α = 0 the constraints of pprt would imply β ≤ 1, in contradiction
with pprtε′(f, µ) = β > 1/C. Let

vz,R = 1 + αµ(R ∩ f−1(z)), ρP (R) =
vz,R
v(P )

δ =
1

Cβ
, κ =

1

2
− β

α
(1− C)

where z is the only output label such that (R, z) ∈ P and v(P ) =∑
(R,z)∈P vz,R. Observe that for any P , ρP is a distribution since vz,R ≥ 0

and it is normalized.
Note that by the first pprt constraint, we have for all P

v(P ) =
∑

(z,R)∈P

vz,R = |P |+
∑

(z,R)∈P

αµ(R ∩ f−1(z)) ≥ β. (2)

First, we check that the ardisc constraint is satisfied. We have succes-
sively:

µ(R ∩ f−1(z)) =
1

α
(vz,R − 1) (by definition of vz,R)

=
1

α

(
ρP (R)v(P )− 1

)
(by definition of ρP )

≥ 1

α

(
ρP (R)β − 1

)
(since v(P ) ≥ β, see (2))

Hence if ρP (R) ≥ δ (otherwise, there is no constraint to satisfy in ardisc),

then −1 ≥ −ρP (R)
δ and we have

µ(R ∩ f−1(z)) ≥ 1

α

(
β − 1

δ

)
ρP (R)

≥
(

1

2
− κ
)
ρP (R) (by definitions of κ and δ)

We check now the constraints on δ and κ:

– for δ: δ > 0 by definition and δ = 1
Cβ ≤

1
Cpprtε′ (f,µ)

< 1 by assumption.



– for κ: κ < 1
2 by definition and κ ≥ 0 by summing ardisc’s main

constraint for R = X×Y over both values of z.

Finally for the objective values, we can easily verify that :
1
2 − κ− ε

δ
=
(
β
α(1− C)− ε

)
Cβ ≥ C

(
ε′(1− C)− ε

)
(β − ε′α),

where the last inequality holds since β − ε′α > 0 implies β/α > ε′.
It remains to consider the case where ardiscε(f, µ) ≥ 1 and pprtε′(f, µ) ≤

1/C. In that case, we have

ardiscε(f, µ) ≥ 1 ≥ Cpprtε′(f, µ) ≥ C
(
ε′(1− C)− ε

)
pprtε′(f, µ),

hence the claim also holds.

Lemma 5. ardiscε(f, µ) ≤ pprtε(f, µ)

Proof. It suffices to show that for any such feasible solution of ardisc,
there exists a feasible solution for pprt whose objective value is at least
as large. We define

α =
1

δ
, β =

1
2 − κ
δ

.

We show that this yields a feasible point. The ardisc constraint implies
for all (R, z) ∈ P :(

1

2
− κ
)
ρP (R) ≤ µ(R ∩ f−1(z)) + δ

(
1

2
− κ
)
.

Summing over the (R, z) ∈ P gives(
1

2
− κ
)
−

∑
(R,z)∈P

µ(R ∩ f−1(z))− δ
(

1

2
− κ
)
· |P | ≤ 0.

Dividing by δ and using the definitions of α and β, we obtain

β −
∑

(R,z)∈P

αµ(R ∩ f−1(z)) ≤ (12 − κ)|P | ≤ |P |,

so the constraint is satisfied. It remains to compare the objective values.
We have

β − εα =
1
2 − κ
δ
− ε

δ
=

1
2 − κ− ε

δ
.

Combining Theorem 6 and Theorem 8 we have

Corollary 2. For any µ, f : supp(µ)→ {0, 1} and ε ∈ (0, 18),

log(ardiscε(f, µ)) ≤ Rε(f, µ) ≤
(

log ardiscε/8(f, µ) + 2 log
1

ε
+ 6

)2
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