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Abstract—In this paper, the joint support recovery of several
sparse signals whose supports exhibit similarities is examined.
Each sparse signal is acquired using the same noisy linear
measurement process, which returns fewer observations than
the dimension of the sparse signals. The measurement noise
is assumed additive, Gaussian, and admits different variances
for each sparse signal that is measured. Using the theory of
compressed sensing, the performance of simultaneous orthogonal
matching pursuit (SOMP) is analyzed for the envisioned signal
model. The cornerstone of this paper is a novel analysis method
upper bounding the probability that SOMP recovers at least
one incorrect entry of the joint support during a prescribed
number of iterations. Furthermore, the probability of SOMP
failing is investigated whenever the number of sparse signals
being recovered simultaneously increases and tends to infinity. In
particular, convincing observations and theoretical results suggest
that SOMP committing no mistake in the noiseless case does
not guarantee the absence of error in the noisy case whenever
the number of acquired sparse signals scales to infinity. Finally,
simulation results confirm the validity of the theoretical results.
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I. INTRODUCTION

THE recovery of sparse signals, i.e., signals exhibiting a
low number of non-zero entries, acquired through noisy

linear measurements is a central problem in digital signal
processing. This task is further involved when the number
of measurements is lower than the dimension of the signal
to be recovered. Recently, researchers have paid special
attention to this class of problems due to the emergence of
the compressed sensing (CS) field of research [15], which
aims at providing reliable recovery methods of sparse signals
for which the number of measurements is low.
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Before describing our problem, we wish to introduce key
notions. The cardinality of a set A is denoted by |A|. The
notation [n] denotes the set {1, 2, . . . , n} and xj refers to the
j-th entry of x. The support of any vector x ∈ Rn is defined
as supp(x) := {j ∈ [n] : xj 6= 0}. We define s-sparse signals
as vectors whose supports exhibit a cardinality equal to or
less than s. Loosely speaking, a signal x ∈ Rn is said to
be sparse whenever its support is significantly smaller than
the dimension of its space, i.e., |supp(x)| � n. Finally, the
notation A & B means that ∃ c > 0 : A ≥ cB.

A. Objective and signal model

We focus on a scenario where the objective is recovering the
joint support S of K sparse signals xk ∈ Rn (1 ≤ k ≤ K),
i.e., S := supp(X) := ∪k∈[K]supp(xk), observed by means
of a common measurement matrix Φ ∈ Rm×n for which
m < n. The resulting measurement vectors yk ∈ Rm
(1 ≤ k ≤ K) gather the measurements of each sparse signal:
yk = Φxk + ek where ek is an additive noise term. It
is assumed that ek is distributed as N (0, σ2

kIm×m) and
that, for k1 6= k2, ek1 and ek2 are statistically independent.
The vector of the noise standard deviations is denoted by
σ := (σ1, . . . , σK)T.

For the sake of simplicity, Equation (1) aggregates the K
equations yk = Φxk + ek into a single relationship:

Y = ΦX +E (1)

where Y =
(
y1, . . . ,yK

)
∈ Rm×K , X =

(
x1, . . . ,xK

)
∈

Rn×K and E =
(
e1, . . . , eK

)
∈ Rm×K . Note that the

signal models incorporating only one sparse vector are called
single measurement vector (SMV) models while those where
K > 1 sparse signals are measured are referred to as multiple
measurement vector (MMV) models [17].

The MMV signal model above applies to several scenarios.
For example, in [24, Section IV.B], the source localization
problem is studied when using measurements at different
time instants. The signal model describing their problem is
equivalent to Equation (1), where each measurement vector
in Y corresponds to one time instant. In [1, Section 3], the
authors describe jointly sparse signal models comparable
to ours that typically occur in networks of sensors where
a possibly large number of sensing nodes exchange their
measurements of the same object to reconstruct it. In this case,
each individual measurement vector within Y is generated by
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one sensor. Other applications are described in the survey [27].

In this paper, the atoms should be understood as being
the columns of Φ, i.e., {φj}j∈[n] where φj denotes the j-th
column of Φ. Although the notion of atom is typically used
when dealing with dictionaries, we use it here as it simplifies
our discussions. Note that most of the results presented in this
paper assume that all the atoms of Φ have a unit `2 norm.

B. Detailed contribution

Our main contribution is a method to analyze SOMP
in a noisy setting. The principal technical contribution is
an upper bound on the probability that SOMP identifies
incorrect entries, i.e., entries not belonging to S, during a
prescribed number of iterations. Using quantities describing
the reliability of SOMP in the noiseless case, we then show
that the probability of incorrect identification decreases
exponentially with the number of sparse signals K under
the condition that the amplitudes of the sparse signals are
sufficiently high when compared to the noise variances.

We also establish that the guarantee that SOMP correctly
identifies all the entries of the joint support in the absence of
noise is not adequate in noisy scenarios when K tends to ∞.
The development presented in this paper sheds light on this
phenomenon by providing two convincing explanations for
its existence.

As discussed at the end of the paper, an interesting corol-
lary of our upper bound is the asymptotic exact recovery
condition (AERC) for SOMP, i.e., a condition ensuring that
the probability of SOMP failing falls to 0 as K → ∞. The
condition we derive actually also guarantees an arbitrarily
small probability of error for a sufficiently high value of K,
which is a stronger result than the AERC. In particular, our
very final result involves four fundamental quantities:

• The number of sparse signals K, which defines how many
independent measurement channels are available for the
joint recovery.

• The quantity µX(K) := minj∈S
1
K

∑K
k=1 |Xj,k|, which

sets the minimal averaged amplitudes of the coefficients
associated with each atom indexed by the support S.

• The quantity σ(K)2 := (1/K)
∑K
k=1 σ

2
k is the average

noise power on all the K sparse signals (or measurement
channels).

• The quantity ωσ(K) := (1/
√
K)‖σ‖1/‖σ‖2 ∈

[1/
√
K; 1] quantifies how close to a sparse vector σ is.

In particular, if σ is 1-sparse, then ωσ(K) = 1/
√
K

while ωσ = 1 when its entries are identical. In prac-
tice, we prefer working with the upper bound ωσ =
max1≤K<∞ ωσ(K) belonging to (0; 1].

Given the four quantities above, the minimum signal-to-
mean-noise ratio SNRmin is defined as min1≤K<∞

µX(K)
σ(K) . It

is shown that the probability of SOMP committing at least one

error during its first s+ 1 iterations is no more than perr if

K &
1

(α SNRmin − βωσ)2

(
log n+ s log

2e|S|
s
− log perr

)
(2)

where the condition is valid only if SNRmin >
βωσ
α . In partic-

ular, if SNRmin � βωσ
α , then αSNRmin − βωσ ' αSNRmin.

As clarified later on, the term β is upper bounded by
√

2/π
while α quantifies the sensing properties of the matrix Φ as
well as the reliability of SOMP decisions in the noiseless
case. Note that the condition SNRmin >

βωσ
α testifies to the

impossibility of performing correct decisions unless the SNR
is above a certain minimal floor level.

Finally, some numerical simulations validate our methodol-
ogy by showing that the expression appearing in Equation (2)
is accurate up to some numerical adjustments aiming at
tightening large theoretical constants.

C. Related work

In a SMV setting, full support recovery guarantees for
OMP with bounded noise signals as well as with Gaussian
noises have been proposed in [2]. This work also provides
criteria on the stopping criteria to guarantee that OMP
terminates after having picked all the correct atoms. This
contribution has then been slightly refined in [8] to provide
conditions independent of the particular support that is to be
recovered.

Gribonval et al. have investigated the performance of SOMP
for a problem resembling ours in [21]. Their contribution has
been to provide a lower bound on the probability of correct
full support recovery when the signal to be estimated is sparse
and its non-zero entries are statistically independent mean-zero
Gaussian random variables.

D. Outline

First of all, Section II describes SOMP and related quan-
tities. Technical prerequisites are delivered to the reader in
Section III. In Section IV, we present some results on SOMP in
the noiseless case that will be used afterwards. Then, Section V
provides upper bounds on the probability that SOMP fails to
identify a correct atom at a fixed iteration. These results are
finally exploited in Section VI to deliver usable and easily
interpretable upper bounds on the probability that SOMP in-
cludes at least one incorrect entry to the estimated support for a
prescribed number of iterations. Numerical results presented in
Section VII confirm the validity of our results. The conclusion
then follows. Most of the technicalities are reported in the
Appendix to simplify the presentation in the core of the paper.

E. Conventions

We find useful to introduce the main notations used in this
paper. For 1 ≤ p < ∞ and x ∈ Rn, we have ‖x‖p :=
(
∑n
j=1 |xj |p)1/p and ‖x‖∞ := maxj∈[n] |xj |. With Φ ∈

Rm×n, we define ‖Φ‖p→q as [20, Equation A.8] ‖Φ‖p→q :=
sup‖φ‖p=1 ‖Φφ‖q where 1 ≤ p, q ≤ ∞. In particular, with
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A ∈ Rn×K , ‖A‖∞→∞ is equal to maxj∈[n]
∑K
k=1 |Aj,k| [20,

Lemma A.5]. Unless otherwise specified, every vector is to be
understood as a column vector. Also, for S ⊆ [n], xS denotes
the vector formed by the entries of x indexed within S. In a
likewise fashion, for Φ ∈ Rm×n, we define ΦS as the matrix
formed by the columns of Φ whose indexes belong to S. The
notation S refers to the relative complement of S with respect
to [n]. The Moore-Penrose pseudoinverse of any matrix Φ is
given by Φ+ while its transpose is denoted by ΦT. The range
of any matrix Φ, i.e., the space spanned by its columns, is
denoted by R(Φ). The inner product of two vectors x and
y, written as 〈x,y〉, is given by xTy. The minimum and
maximum eigenvalues of a matrix Φ are denoted by λmin(Φ)
and λmax(Φ), respectively. The probability measure is given
by P while the mathematical expectation is denoted by E.

II. SIMULTANEOUS ORTHOGONAL MATCHING PURSUIT

Many algorithms have been proposed to solve the joint
support recovery problem associated with Equation (1). In
a SMV setting, canonical algorithms include `1-minimization
[5], [16], matching pursuit (MP) [25] and orthogonal matching
pursuit (OMP) [10], [26]. While algorithms relying on `1-
minimization are probably among the most reliable algorithms
designed for compressed sensing problems, they often exhibit
a higher computational complexity than their greedy coun-
terparts, such as MP and OMP [30]. Greedy algorithms are
thus more suited to real time applications. The well-known
algorithms described above for SMV problems admit several
extensions within the MMV framework. Specifically, one of
the most natural generalization of OMP is SOMP [31], which
is described in Algorithm 1.

ALGORITHM 1:
Simultaneous orthogonal matching pursuit (SOMP)

Require: Y ∈ Rm×K , Φ ∈ Rm×n, s ≥ 1
1: Initialization: R(0) ← Y and S0 ← ∅
2: t← 0
3: while t < s do
4: Determine the atom of Φ to be included in the support:

jt ← argmaxj∈[n](‖(R(t))Tφj‖1)
5: Update the support : St+1 ← St ∪ {jt}
6: Projection of each measurement vector onto R(ΦSt+1):

Y (t+1) ← ΦSt+1Φ
+
St+1

Y

7: Projection of each measurement vector onto R(ΦSt+1)
⊥ :

R(t+1) ← Y − Y (t+1)

8: t← t+ 1
9: end while

10: return Ss {Support at last step}

As described in Algorithm 1, SOMP updates the support at
each iteration t by including in the current estimated support
a single atom φjt , whose index is denoted by jt, which
maximizes SOMP metric

‖(R(t))Tφj‖1 =

K∑
k=1

|〈φj , r(t)k 〉|

(steps 4 and 5). In this description of SOMP, r(t)k denotes the
k-th column of the residual matrix R(t) at iteration t. During

steps 6 and 7, each measurement vector yk is projected
onto the orthogonal complement of R(ΦSt+1), denoted by
R(ΦSt+1)⊥. In this way, an atom cannot be picked twice
since, once included in the support, the projection onto
R(ΦSt+1

)⊥ ensures that 〈φj , r(t+1)
k 〉 = 0 if j ∈ St. The

algorithm finishes when the prescribed number of iterations,
s + 1, is attained. We now turn to the description of useful
quantities related to SOMP.

The atoms indexed by the joint support S are referred to
as the correct atoms while the incorrect atoms are those not
indexed by S . The set P(t) contains the

(|S|
t

)
orthogonal

projectors ΦStΦ
+
St

such that St ⊆ S and |St| = t. P (0) is
defined as the zero matrix. Loosely speaking, P(t) is the set
of all the possible orthogonal projectors P (t) at iteration t
assuming that only atoms belonging to S have been picked
previously. Enumerating all the possible orthogonal projection
matrices at each iteration by means of P(t) will be necessary
later on since not knowing the sequence of the atoms picked
by SOMP beforehand requires to consider all the possible
projectors. For each iteration t, we also define

β
(t,P )
j,k := |〈φj , (I − P )Φxk〉| (3)

where P belongs to P(t). The value of β(t,P )
j,k consequently

is the inner product of the j-th atom with the k-th column
of the residual matrix whenever the orthogonal projector at
iteration t is P ∈ P(t) and no noise is present.

We define γ(t,P )
c as the highest SOMP metric obtained for

the correct atoms at iteration t without noise and, similarly,
γ
(t,P )
i is the counterpart quantity for the incorrect atoms

instead:

γ(t,P )
c := max

j∈S

K∑
k=1

β
(t,P )
j,k and γ

(t,P )
i := max

j∈S

K∑
k=1

β
(t,P )
j,k .

(4)
It is also convenient to define two quantities identifying which
are the best correct atom and incorrect atom in the noiseless
case, at iteration t and for the orthogonal projection matrix P :

j(t,P )
c = arg max

j∈S

K∑
k=1

β
(t,P )
j,k and j

(t,P )
i = arg max

j∈S

K∑
k=1

β
(t,P )
j,k

where the subscripts c and i refer to correct and incorrect
atoms, respectively.

III. TECHNICAL PREREQUISITES & NOTATIONS

We now wish to settle key theoretical notions to be used
later on for the actual analysis of SOMP.

A. Restricted isometry property and related concepts

Any Φ ∈ Rm×n exhibits the restricted isometry property
(RIP) [5] of order s if there exists a constant δs < 1 such that

(1− δs)‖u‖22 ≤ ‖Φu‖22 ≤ (1 + δs)‖u‖22 (5)

for all s-sparse vectors u. The smallest δs for which Equa-
tion (5) holds is the Rectricted Isometry Constant (RIC) of
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order s. The RIC of order s is theoretically given by δs =
max(Us, Ls) where Us = maxS⊆[n],|S|=s λmax(ΦT

SΦS) − 1

and Ls = 1−minS⊆[n],|S|=s λmin(ΦT
SΦS). The RIC therefore

provides an upper bound on the alteration of the `2 norm of
sparse vectors after multiplication by Φ. Interestingly enough,
δs < 1 implies that ΦS has full column rank for every support
S of size |S| ≤ s since minS⊆[n],|S|=s λmin(ΦT

SΦS) > 0.

B. Lipschitz functions

A function f : RK → R : g 7→ f(g) is called a Lipschitz
function with regard to the `2-norm if and only if

∃L > 0 : ∀x,y ∈ RK , |f(x)− f(y)| ≤ L ‖x− y‖2 (6)

holds. The constant L is then referred to as the Lipschitz
constant. An interesting property of Lipschitz functions is
the following concentration inequality for standard Gaussian
random vectors g [20, Theorem 8.40.]:

P (f(g)− E[f(g)] ≥ ε) ≤ exp

(−ε2
2L2

)
. (7)

This result shows that, for g ∼ N (0, IK×K), f(g) concen-
trates around its expectation and the concentration improves as
L decreases. The similar inequality P(−f(g)+E[f(g)] ≥ ε) ≤
exp(−ε2/(2L2)), where ε > 0, results from the observation
that, if f is Lipschitz, then so is −f .

C. On the folded normal distribution

A recurring distribution in this paper is the folded normal
distribution, which is the absolute value of a normal random
variable. If X ∼ N (β, σ2), then Y = |X| is the associated
folded normal random variable. We often refer to X as the
underlying normal variable. Similarly, the underlying mean
and variances are those of the underlying normal variable.
Note that the expectation of the folded random variable is
always higher than that of its underlying normal random
variable because of the folding of the probability density
function (PDF) occurring for values lower than 0.

IV. RESULTS ON SOMP WITHOUT NOISE

As discussed later on, the reliability of SOMP in the noise-
less case determines which noise levels are unlikely to make
SOMP detect incorrect atoms. In this section, we thus provide
a lower bound on the measure of the noiseless reliability given
by γ

(t,P )
c − γ(t,P )

i , i.e., the quantity that fixes the minimum
gap of the SOMP metrics for correct and incorrect atoms
in the noiseless case. To do so, we assume the existence of
three quantities. The first quantity, denoted by Γ, quantifies
the minimum relative reliability of SOMP decisions:

γ
(t,P )
c

γ
(t,P )
i

≥ Γ > 1 for all t ∈
[
0, s
]

and all P ∈ P(t). (8)

The remaining quantities ψ and τX are entwined and
provide a lower bound on the SOMP metric for the best correct
atom:

γ(t,P )
c ≥ ψτX for all t ∈

[
0, s
]

and all P ∈ P(t). (9)

The quantity ψ = ψ(δ|S|, |S|) typically increases as δ|S|
and |S| dwindle. This property conveys the idea that a small
support size |S| and a measurement matrix Φ endowed with
good CS properties tend to increase the value of γ

(t,P )
c .

Finally, τX is related to the intrinsic energy of the sparse
signals xk prior to their projection by Φ. Therefore, τX
only depends on X . Combining Γ, ψ, and τX yields the
desired lower bound on the absolute reliability of SOMP in
the noiseless case:

Lemma 1. For every t ∈
[
0, s
]

and P ∈ P(t), we have

γ(t,P )
c − γ(t,P )

i ≥
(

1− 1

Γ

)
ψτX .

where Γ, ψ, and τX are defined in Equations (8)-(9).

The following subsections aim at providing evidence for the
existence of Γ, ψ, and τX . In particular, valid expressions are
provided for these parameters in light of previous works in
the literature.

A. A lower bound on SOMP relative reliability

In this section, we briefly discuss the existence of lower
bounds for γ

(t,P )
c /γ

(t,P )
i , i.e., possible expressions for Γ,

quantifying how reliably SOMP distinguishes correct and in-
correct atoms in the noiseless case. In [13], we have proposed
several expressions of Γ that use the RIC and sometimes the
restricted orthogonality constant (ROC), thereby only requiring
to know of the residual support size or, equivalently, the
current iteration number t. For example, we have shown that
γ(t,P )
c

γ
(t,P )
i

≥ (1−δ|S|)
√
|S|−1

δ|S||S|
for all t < |S| and for δ|S| < 1.

Similarly, a bound using the support itself can be obtained by
a straightforward adaptation of the proof of [7, Theorem 4.5],
i.e., γ(t,P )

c

γ
(t,P )
i

≥ 1

‖Φ+
SΦS‖1→1

if ΦS has full column rank. Note

that in both papers, the bounds hold only if correct decisions
have been made during all the iterations preceding t. We will
not get further into the details of such matters as our only
objective here is to provide evidence for the existence of Γ.

B. A lower bound on γ(t,P )
c

We now present a convenient lower bound for γ(t,P )
c and

the associated expressions for ψ and τX .

Lemma 2. Adapted from [12]. If Φ satisfies the RIP with
|S|-th RIC δ|S| < 1, then

γ(t,P )
c ≥ (1− δ|S|)(1 + δ|S|)

1 +
√
|S|δ|S|

min
j∈S

K∑
k=1

|Xj,k|

where γ(t,P )
c is defined in Section II.

This lemma shows that γ(t,P )
c depends on the CS properties

of Φ through the RIC δ|S| while minj∈S
∑K
k=1 |Xj,k|

indicates that the sum of the absolute coefficients of
X associated with each atom also influences γ

(t,P )
c .

Lemma 2 thus provides τX = minj∈S
∑K
k=1 |Xj,k| and

ψ = (1− δ|S|)(1 + δ|S|)/(1 +
√
|S|δ|S|).
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Notice that, without restrictions on the sparse signal matrix
X , nothing can be said about the non-maximum SOMP
metrics for the atoms belonging to the correct support S, i.e., it
might happen that all the SOMP metrics for the correct atoms
are zero except for the highest one among them. As a result,
we only focus on the correct atom index by j

(t,P )
c and the

associated noiseless SOMP metric γ(t,P )
c . A short example is

available in Section A to prove this statement.

V. UPPER BOUNDS ON THE PROBABILITY OF SOMP
FAILING AT ITERATION t

This section provides an upper bound on the probability
that SOMP picks an incorrect atom at iteration t given a
fixed orthogonal projector P ∈ P(t). This time, the derived
results include the noise. First of all, we examine the statistical
distribution of SOMP metric for a single atom in Section V-A.
The desired upper bound will then be derived.

A. On the distribution of ‖(R(t))Tφj‖1
The quantity ‖(R(t))Tφj‖1 =

∑K
k=1 |〈φj , r

(t)
k 〉| ultimately

defines which atom is picked at each iteration. It is therefore
interesting to determine its statistical distribution. We have

K∑
k=1

|〈φj , r(t)k 〉| =
K∑
k=1

|〈φj , (I − P (t))(Φxk + ek)〉|

=

K∑
k=1

|〈φ(t)
j ,Φxk〉+ 〈φ(t)

j , ek〉|

where φ(t)
j := (I−P (t))φj . Let us consider a fixed projection

matrix P (t) = P . It is easy to prove that
〈
(I − P )φj , ek

〉
is

distributed as N (0, (σ
(P )
j,k )2) where

σ
(P )
j,k := ‖(I − P )φj‖2σk ≤ σk (10)

provided that ‖φj‖2 = 1 .We define the related noise standard
deviation vectors

σ
(P )
j := ‖(I − P )φj‖2σ (11)

for each atom. It is thereby possible to replace the term
〈φ(t)

j , ek〉 by σ
(P )
j,k gk where gk ∼ N (0, 1). Moreover,

|〈φ(t)
j ,Φxk〉 + σ

(P )
j,k gk| is distributed as ||〈φ(t)

j ,Φxk〉| +

σ
(P )
j,k gk|. Hence, ‖(R(t))Tφj‖1 is a sum of K folded normal

random variables and, since |〈φ(t)
j ,Φxk〉| = β

(t,P )
j,k , it admits

the same distribution as:

f
(t,P )
j : RK → R : g 7→

K∑
k=1

∣∣∣β(t,P )
j,k + σ

(P )
j,k gk

∣∣∣ . (12)

B. On the probability of SOMP picking an incorrect atom at
iteration t

In this section, we provide a general upper bound on the
probability that SOMP picks an incorrect atom at iteration t
and for a fixed orthogonal projector P ∈ P(t). The idea of
the proof is to notice that if the metrics associated with every
incorrect atom is lower than a real positive number α and

the metric associated with one of the correct atom is higher
than α, then a correct decision will necessarily be made. This
approach is pessimistic in the sense that more than one specific
correct atoms could be picked. Note that, among all the correct
atoms, only the best atom in the noiseless case is considered,
i.e., the atom indexed by j

(t,P )
c . The proof of Theorem 1 is

available in the Appendix.

Theorem 1. For a fixed iteration t, let P ∈ P(t) and
R = (I − P )Y , i.e., R is one of the residuals that could
be generated by SOMP on the basis of Y at iteration t − 1
assuming that only correct atoms have been identified. For
g ∼ N (0, IK×K) and for all α > 0, the probability of SOMP
picking an incorrect atom when running one iteration on R
is upper bounded by

P
[
f
(t,P )

j
(t,P )
c

(g) ≤ α
]

+
∑
j∈S

P
[
f
(t,P )
j (g) ≥ α

]
. (13)

In Theorem 1, we do not assume that R has been generated
on the basis of past iterations of SOMP, i.e., the upper bound
we derive is independent of the way R has been obtained.
Ignoring this precaution would imply that we were able to
upper bound the conditional probability given the event that
SOMP succeeded during the previous iterations, which would
be more involved than what Theorem 1 establishes.

Now that only probabilities of the form P
[
f
(t,P )
j (g) ≥ α

]
and P

[
f
(t,P )
j (g) ≤ α

]
intervene, it is appropriate to find upper

bounds for these probabilities and use them to produce a more
easily interpretable result, i.e., Theorem 2. The idea of the
proof of Theorem 2 is to set the convex combination

α = λE
[
f
(t,P )

j
(t,P )
c

(g)
]

+ (1− λ) max
j∈S

E[f
(t,P )
j (g)], (14)

i.e., express α in Theorem 1 relatively to E
[
f
(t,P )

j
(t,P )
c

(g)
]

and

maxj∈S E[f
(t,P )
j (g)], and then use the concentration inequali-

ties in Section III-B in conjunction with the fact that f (t,P )
j (g)

is Lipschitz (see Lemma 2.1). It has been chosen to set
λ = 0.5 to simplify the final result. A visual interpretation
of Theorem 2 is depicted in Figure 1. For the sake of
simplicity, the figure considers identical noise levels for each
atom (remember that σ(P )

j := ‖(I − P )φj‖2σ so that the
noise may exhibit different powers for each atom in the general
case). The full proofs are available in the Appendix.

Lemma 2.1. Each function f (t,P )
j defined in Equation (12) is

a Lipschitz function whose best Lipschitz constant is ‖σ(P )
j ‖2.

Theorem 2. Let g ∼ N (0, IK×K). For a fixed iteration t,
let P ∈ P(t) and R = (I − P )Y , i.e., R is one of the
residuals that could be generated by SOMP on the basis of Y
at iteration t− 1 assuming that only correct atoms have been
identified so far. Let

∆E(t,P ) := E
[
f
(t,P )

j
(t,P )
c

(g)
]
−max

j∈S
E
[
f
(t,P )
j (g)

]
(15)

and assume ‖φj‖2 = 1 for j ∈ [n]. If ∆E(t,P ) > 0, then
the probability of SOMP making an incorrect decision when
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executing one iteration on R is upper bounded by

(n− |S|+ 1) exp

[
− 1

8‖σ‖22
(∆E(t,P ))2

]
. (16)

V
al
u
e
of

th
e
P
D
F

Other incorrect atom(s)
Best incorrect atom
Other correct atom(s)
Best correct atom

α

λ
0 0.5 1

Fig. 1. Explanation of Theorem 2 – Probability density function of f (t,P )
j (g)

for g ∼ N (0, IK×K) – σ(P )
j1

= σ
(P )
j2

for j1, j2 ∈ [n] – The vertical lines
represent the mean of the folded normal distribution associated with each
atom, i.e. E

[
f
(t,P )
j (g)

]
for the j-th atom – The position of α is obtained for

λ = 0.8 – Only two atoms belonging to S (including the best one) and two
atoms belonging to S (including the best one) are represented for the sake of
clarity.

In Figure 1, it is observed that the mean of the folded normal
distribution and the underlying normal distribution are virtu-
ally equal for sufficiently high values of

∑K
k=1 β

(t,P )
j,k while

a discrepancy is observed for low values, as for the second
incorrect atom in Figure 1. As explained in Section III-C,
taking the absolute value of a normal distribution yields a
folding of the PDF and thereby increases the mean with regard
to the underlying normal distribution. It implies that, for two
atom indexes j1 and j2, γ(t,P )

j1
> γ

(t,P )
j2

is no guarantee for
E
[
f
(t,P )
j1

(g)
]
> E

[
f
(t,P )
j2

(g)
]

where γ(t,P )
j :=

∑K
k=1 β

(t,P )
j,k

denotes the value of SOMP metric for the j-th atom. We
provide two explanations for this phenomenon:
• The noise vectors σ(P )

j may exhibit different `2 norms
for each atom. Thus, even for K = 1, a possibly higher
noise level for the j2-th atom and a sufficiently small gap
γ
(t,P )
j1

− γ(t,P )
j2

might yield E[f
(t,P )
j1

(g)] < E[f
(t,P )
j2

(g)]

even though γ(t,P )
j1

> γ
(t,P )
j2

. Note that this phenomenon
cannot occur for iteration 0 as the noise variances are
necessarily equal in that case since P = 0.

• For K > 1, and for possibly identical noise vectors σ(P )
j ,

the way the β(t,P )
j,k are distributed for k plays a significant

role. For example, if only one of the K quantities β(t,P )
j2,k

is overwhelmingly greater than the others then very
limited folding will occur on this entry while significant
folding is present on the other ones. Conversely, if the
entries of β(t,P )

j1,k
are more uniformly distributed, then the

overall increase in expectation due to the folding is de-
creased. Thus, depending on the way the K terms β(t,P )

j,k

are distributed for j1 and j2, E[f
(t,P )
j1

(g)] < E[f
(t,P )
j2

(g)]

might hold despite having γ(t,P )
j1

> γ
(t,P )
j2

.

Note that the reason why maxj∈S E
[
f
(t,P )
j (g)

]
cannot be

replaced by E
[
f
(t,P )

j
(t,P )
i

(g)
]

in the definition of ∆E(t,P ) is
similar to the two explanations above.

As stated in the abstract, the two points above provide
convincing explanations of why γ(t,P )

c > γ
(t,P )
i , i.e., success

in the noiseless case, is no guarantee for correct recovery when
K → ∞. Indeed, each random variable (1/K)E

[
f
(t,P )
j (g)

]
concentrates arbitrarily well around its expectation for a suf-
ficiently high value of K. It is therefore to be expected that
asymptotic correct recovery at iteration t and for orthogonal
projector P , i.e., recovery when K → ∞, is ensured if
and only if ∆E(t,P ) > 0. The condition γ

(t,P )
c > γ

(t,P )
i is

actually neither necessary nor sufficient for correct asymptotic
recovery as the phenomena discussed above might benefit
the correct atoms, i.e., the condition is not necessary, or the
incorrect atoms, i.e., the condition is not sufficient. However,
the analyses that follow rely on the conservative assumption
that only the incorrect atoms benefit from the increase of
expectation due to the folding.

VI. UPPER BOUND ON THE PROBABILITY OF SOMP
FAILING DURING THE FIRST s+ 1 ITERATIONS

The final problem to be addressed is to derive an upper
bound on the probability of SOMP picking incorrect atoms
during the first s+1 iterations. In particular, the bound should
not require to know the sequence of orthogonal projectors
intervening at each iteration. To do so, we design a lower
bound for ∆E(t,P ) in Theorem 2 independent of the orthog-
onal projector P ∈ P(t) and that conveys in a simple manner
the impact on SOMP performance of

• The sensing properties of the matrix Φ.
• The absolute reliability of SOMP in the noiseless case,

i.e., γ(t,P )
c − γ(t,P )

i , and the associated lower bound in
Lemma 1.

• The noise variances σ2
k.

Once this bound is obtained, we will show that Theorem 2
yields an upper bound on the probability of failure of SOMP
from iteration 0 to iteration s < |S| included, i.e., an
upper bound on the probability that SOMP picks at least one
incorrect atom during the first s+ 1 iterations.

A. Deriving the lower bound of ∆E(t,P )

In this section, we propose a lower bound for E[f
(t,P )

j
(t,P )
c

(g)]

and an upper bound for maxj∈S E[f
(t,P )
j (g)], that are both

valid for all P ∈ P(t), so that a lower bound for ∆E(t,P ) is
obtained. Exceptionally, the proof is presented in the core of
the paper as doing so gives the reader a better understanding
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of the derivation method. Regarding E[f
(t,P )

j
(t,P )
c

(g)], we have

E
[
f
(t,P )

j
(t,P )
c

(g)
]

=

K∑
k=1

E
[∣∣∣β(t,P )

j
(t,P )
c ,k

+ σ
(P )

j
(t,P )
c ,k

gk

∣∣∣]
≥

K∑
k=1

∣∣∣β(t,P )

j
(t,P )
c ,k

+ σ
(P )

j
(t,P )
c ,k

E [gk]
∣∣∣

=

K∑
k=1

∣∣∣β(t,P )

j
(t,P )
c ,k

∣∣∣ =: γ(t,P )
c

where the inequality results from Jensen’s inequality for con-
vex functions. Unless β(t,P )

j
(t,P )
c ,k

/σ
(P )

j
(t,P )
c ,k

→ 0, the bound above
is not sharp as it discards the gain of expectation resulting from
the folding. Moreover, the triangle inequality provides

E
[
f
(t,P )
j (g)

]
= E

[
K∑
k=1

∣∣∣β(t,P )
j,k + σ

(P )
j,k gk

∣∣∣]

≤
K∑
k=1

∣∣∣β(t,P )
j,k

∣∣∣+

K∑
k=1

σ
(P )
j,k E [|gk|]

where E[|gk|] =
√

2/π and
∑K
k=1 |β

(t,P )
j,k | ≤∑K

k=1 |β
(t,P )

j
(t,P )
i ,k

| = γ
(t,P )
i for j ∈ S. The inequality is

not sharp as it assumes maximum folding, i.e., the folding
obtained if the underlying mean is 0, for all the terms
|β(t,P )
j,k + σ

(P )
j,k gk| while, in the general case, at least one of

the β(t,P )
j,k should be non-zero. Also, the inequality σ(P )

j,k ≤ σk
holds (see Section V-A). As a conclusion, we obtain

∆E(t,P ) ≥ (γ(t,P )
c − γ(t,P )

i )−
√

2

π
‖σ‖1 (17)

where an expression quantifying the absolute reliability of the
decisions in the noiseless case intervenes, i.e., γ(t,P )

c −γ(t,P )
i ,

as well as a penalty depending on the noise standard deviations
for all the K channels, i.e.,

√
2/π‖σ‖1. Using Lemma 1 yields

∆E(t,P ) ≥
(

1− 1

Γ

)
ψτX −

√
2

π
‖σ‖1

where theoretical expressions for Γ, ψ, and τX are discussed
in Section IV. Note that the result only holds whenever Γ > 1
for the theoretical expression that has been chosen. The next
step is to combine the derived lower bound with Theorem 2.

B. An upper bound on the probability of failure of SOMP
during the first s+ 1 iterations

The main difficulty here is to derive the desired upper bound
not knowing the sequence of supports that are chosen during
the first s+1 iterations. To circumvent this issue, all the possi-
ble orthogonal projection matrices P ∈ P(t) are tested while
only one intervenes in practice. This sub-optimal approach
is linked to the fact that P and E are statistically dependent
random variables as the noise contributes to determining which
atom is picked and thus influences the orthogonal projection
matrices. The statistical link between both variables appears to
be difficult to capture and we consequently chose to use this
workaround. This “trick” has been used in similar theoretical

analyses [18], [21] and, to the best of the authors’ knowledge,
a better solution has yet to be found in the literature. The proof
is available in the Appendix.

Theorem 3. Using the quantities Γ, ψ, and τX defined in
Equation (8) and (9), let us consider

∆E :=

(
1− 1

Γ

)
ψτX −

√
2

π
‖σ‖1 (18)

and assume ‖φj‖2 = 1 for j ∈ [n]. If ∆E > 0, then the
probability of SOMP picking at least one incorrect atom from
iteration 0 to iteration s included is upper bounded by

nCs exp

[
− 1

8‖σ‖22
(∆E)2

]
(19)

where Cs :=
∑s
t=0

(|S|
t

) (s≥1)
≤

(
e(|S|+s−1)

s

)s
+ 1.

The expressions appearing in Theorem 3 can be deciphered
in the following manner:

• As explained in Section IV, the term (1 − 1/Γ)ψτX
conveys the impact of the reliability of the decisions prior
to the addition of noise.

• Both terms
√

2/π‖σ‖1 and 1/‖σ‖22 convey the negative
influence of the noise on SOMP performance. The phe-
nomena they account for are however different in nature.
The quantity 1/‖σ‖22 translates the spread of the PDF
of each f

(t,P )
j which is characterized by the spread of

the Gaussian-like functions in Figure 1. On the other
hand, the expression

√
2/π‖σ‖1 describes the negative

impact that the noise has on the existing reliability in the
noiseless case, i.e., γ(t,P )

c − γ(t,P )
i in Equation (17). Our

commentary of Theorem 2 thoroughly discusses these
matters.

The next section deals with the understanding of SOMP
performance whenever K increases. In particular, the AERC
mentioned in the introduction will be derived.

C. Probability of failure for increasing values of K

To gain further insight into what Theorem 3 implies when
K increases, we are using the quantities defined in the intro-
duction, i.e., µX(K) := minj∈S

1
K

∑K
k=1 |Xj,k|, σ(K)2 =

1
K

∑K
k=1 σ

2
k, ωσ = max1≤K<∞(1/

√
K)‖σ‖1/‖σ‖2 and

SNRmin := min1≤K<∞
µX(K)
σ(K) . The definition of σ(K)2

implies that ‖σ‖22 = Kσ(K)2. Thus, using the expression
of τX provided by Lemma 2, we obtain

∆E
‖σ‖2

=
√
K

((
1− 1

Γ

)
ψ
µX(K)

σ(K)
−
√

2

Kπ

‖σ‖1
‖σ‖2

)

≥
√
K

((
1− 1

Γ

)
ψSNRmin −

√
2

π
ωσ

)

Hence, ensuring ξ > 0 yields (∆E)2/‖σ‖22 ≥ Kξ2 where

ξ :=

(
1− 1

Γ

)
ψSNRmin −

√
2

π
ωσ. (20)
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As a consequence, under the condition ξ > 0, the probability
that SOMP picks at least one incorrect atom during the first
s+ 1 iterations is upper bounded by

nCs exp

[
−1

8
Kξ2

]
(21)

which indicates that the condition ξ > 0 is sufficient for
asymptotic recovery, i.e., it is a valid AERC. More precisely,
the expression of ξ shows that SNRmin should be sufficiently
high to guarantee the asymptotic recovery. It is also worth
noticing that, for SNRmin → ∞, our result is equivalent
to the exact recovery criterion (ERC) 1 − 1/Γ > 0 in the
noiseless case.

To conclude the technical discussions, we show that, as
long as ξ > 0, there always exists a value of K ensuring an
arbitrary maximum probability of failure for SOMP. Fixing the
maximum probability of failure perr > 0, elementary algebraic
operations show that satisfying K > Kmin(perr) yields a
probability of failure inferior to perr where

Kmin(perr) :=
8

ξ2
log

(
nCs
perr

)
. (22)

The quantity ξ increases with SNRmin so that the number of
sparse signals K needed to achieve a prescribed maximum
probability of failure decreases whenever the SNR improves.

Finally, according to Theorem 3 and for s ≥ 1, we have
Cs ≤

(
e(|S|+s−1)

s

)s
+ 1 .

(
e(|S|+s−1)

s

)s
so that log Cs .

s log e |S|+s−1s < s log 2e|S|
s . Equation (22) now yields

Kmin(perr) .
1

ξ2

(
log n+ s log

2e|S|
s
− log perr

)
,

which suggests that Kmin should scale logarithmically with
1/perr and the number of atoms n and linearly with the number
of iterations to be performed s+ 1.

VII. NUMERICAL RESULTS

A. Objective and methodology

Through numerical simulations, we wish to validate that
our theoretical developments properly describe SOMP perfor-
mance. To do so, we show that performing some adjustments
in Equation (22) enables us to accurately predict the minimum
number of sparse signals K needed to achieve a prescribed
probability of error perr when using SOMP to perform the full
support recovery. More precisely, we consider three parameters
α, β, and γ to be identified so that Equation (22) rewrites

Kmin(perr) :=
8

(α SNRmin − ωσβ)
2 (γ − log perr) . (23)

The parameter α := (1 − 1/Γ)ψ is related to the relative
reliability of SOMP in the noiseless case. In theory, the
quantity β is equal to

√
2/π. However, the theoretical de-

velopment provides values that are not sharp in the general
case (see our discussion in Section VI-A) and possibly even
less for more constrained signal models. Finally, the parameter
γ = log(nC|S|−1) conveys the impact of the number of atoms

n and the number of iterations, i.e., |S| in this case. In practice,
only a few of the n−|S| incorrect atoms have a non-negligible
probability to be picked so that n should be replaced by
n � n − |S|. Also, as we discussed before, C|S|−1 is a
suboptimal term that results from the fact that we considered
all the possible correct supports at each iteration to deduce
the probability of error while, in practice, only one support
out of the numerous possibilities matters. The identification
procedure uses the cost function∑
perr∈Iperr

SNRmin∈ISNR

[√
Kmin(αSNRmin − βωσ)−

√
8(γ − log perr)

]2
where Kmin is obtained by means of simulations, Iperr :=
{0.05; 0.5; 0.9} and ISNR is to be specified afterwards. The
cost function is evaluated for each 3-tuple (α, β, γ) ∈ Iα ×
Iβ × Iγ where each set Iα, Iβ and Iγ consists of 500 uni-
formly distributed points in the intervals [0.1; 1.4], [0;

√
2/π]

and [0; 5], respectively. The 3-tuple (α, β, γ) minimizing the
cost function is then chosen.

B. Simulations signal model

We now describe the signal model we consider to run
the simulations. It is more simple than the general model
described in Section I-A so that SNRmin can be easily
computed. First of all, the noise standard deviation vector
σ has its odd-indexed (even-indexed) entries identical, i.e.,
σ = (σodd, σeven, σodd, σeven, . . . ) where we define rσ =
σeven/σodd. It is then easy to show that ωσ = 1√

2
(rσ +

1)/
√
r2σ + 1 for K even and/or rσ = 1. Furthermore, we

assume Xj,k = εj,kµX (j ∈ S, k ∈ [K]) where µX is
fixed and the {εj,k}j∈[n],k∈[K] are statistically independent
Rademacher variables, i.e., random variables returning either
−1 or 1 with probability 0.5 for both outcomes. Under this
assumption, we have µX(K) = µX for every K.

C. Simulation setup

The sensing matrix Φ has been chosen of size 250× 1000,
i.e., m = 250 and n = 1000, and its columns are the realiza-
tions of statistically independent vectors uniformly distributed
on the unit hypersphere Sm−1 := {φ ∈ Rm : ‖φ‖2 = 1}.
The sensing matrix is identical for all the simulations that
have been conducted. All the simulations will be such that
σ(K) = 1. The reason is that it is always possible to recast
a signal model for which σ(K) = ζ 6= 1 as another one
satisfying σ(K) = 1 while maintaining the value of SNRmin

by multiplying Y by 1/ζ. This multiplication does not affect
SOMP decisions as all the inner products intervening in
SOMP decision metric are equally affected (see step 4 in
Algorithm 1). Note that our results and our Matlab software
are available in [11].

D. Results and analysis

We wish to determine whether Equation (23) accurately
predicts SOMP performance provided that the parameters α, β,
and γ are properly identified. To do so, we begin with Monte-
Carlo simulations for the homoscedastic signal model, i.e., for
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rσ = 1, for two different support cardinalities, i.e., |S| = 10
and |S| = 20. For each support cardinality, we identify a 3-
tuple of parameters (α, β, γ) as explained in Section VII-A.
The predictions based on the identified parameters are then
compared against another set of Monte-Carlo simulations for
which rσ varies. For each Monte-Carlo simulation, the support
is chosen at random and the random variables X and E are
statistically independent. Figure 2 plots the results obtained
for the homoscedastic signal model.
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(a) Configuration with |S| = 10 – Identified parameters (with ISNR =
{1.25; 1.5; 1.75}, see Section VII-A): α = 1.0535, β = 0.54045, and γ =
2.0741.
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(b) Configuration with |S| = 20 – Identified parameters (with ISNR =
{1.5; 1.75; 2}, see Section VII-A): α = 1.0535, β = 0.58682, and γ =
2.5451.

Fig. 2. Probability of SOMP comitting at least one error when performing
the joint full support recovery – The continuous curves plot the values of
Kmin predicted by Equation (23) for several values of perr when using
the identified parameters α, β, and γ. The dashed curves correspond to the
numerical level sets for a fixed probability of failure perr corresponding to that
of the associated continuous curve. Note that the color of each curve has no
particular meaning as its only purpose is constrast enhancement. The number
of Monte-carlo cases is equal to 2000 for each 2-tuple (SNRmin,K).

As observed in Figure 2, the fitting of Equation (23) to
the numerical results is satisfactory over the full range of

the simulations. The identification procedure has yielded
values for α slightly higher than 1, which is incoherent with
the theory as the value 1 is obtained whenever Γ → ∞
and δ|S| = 0. Also, the values of β are similar for both
cardinalities of S and are lower than

√
2/π ' 0.7979, as

predicted by the theory. The values of α and β remain high
but the constant 8 in Equation (23) might not be sharp.
In particular, if 8 is replaced by 8/θ, then Equation (23)
provides identical values of Kmin provided that α becomes
α/
√
θ and β is replaced by β/

√
θ. The values obtained

for γ are equal to 2.0741 and 2.5451, which indicates that
nC|S|−1 should be replaced by exp(2.0741) ' 7.9574 and
exp(2.5451) ' 12.7445, respectively. The higher value of γ
for |S| = 20 is coherent with the theory as C|S|−1 increases
with |S|. The values obtained for nC|S|−1 also suggest that
the expression nC|S|−1 is not sharp.

Figure 3 plots the results obtained for |S| = 10 when rσ
increases. While our theoretical developments appropriately
predict that the value of Kmin decreases as the noise standard
deviation vector σ gets sparser, i.e., as rσ increases, our
model is pessimistic with regard to the amplitude of the
improvement of Kmin. We hypothesize that the inequalities
used in Section VI-A are not sharp enough to accurately
predict Kmin on the basis of rσ . The identified parameters
α, β, and γ might also not be optimal.
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Fig. 3. Levels sets of the probability of SOMP comitting at least one error
when performing the joint full support recovery – |S| = 10 – The continuous
curves plot the values of Kmin predicted by Equation (23) for several 2-
tuples (perr, SNRmin) when using the parameters identified in Figure 2a.
The dashed curves correspond to the numerical level sets corresponding to
that of the associated continuous curve. The number of Monte-carlo cases is
equal to 2000 for each 2-tuple (rσ ,K). Only even values of K have been
simulated.

VIII. CONCLUSION

In this paper, a theoretical analysis of SOMP operating in
the presence of Gaussian additive noise has been presented.
It has been shown that the signal to be recovered should be
sufficiently large when compared to the mean noise power over
all the measurement channels to succeed in the support recov-
ery. Assuming this condition is met, the minimum number of
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sparse signals K to be gathered to achieve a prescribed prob-
ability of failure has been derived. An interesting corollary of
the aforementioned results is that ensuring SNR values above
a threshold allows asymptotic recovery, i.e., the probability
of error tends to 0 as K tends to infinity. Finally, numerical
results confirmed the validity of the theoretical developments.

APPENDIX
TECHNICAL PROOFS

A. Lemma 2 example (Section IV-B)

Let |S| ≥ 2, η ∈ S , K = 1, and t = 0. Let us consider
χ := maxj∈S\{η} |〈φj ,ΦSxS〉| = ‖ΦT

S\{η}ΦSxS‖∞, which
is the maximal value of SOMP metric for all the correct atoms
except φη . As ΦSxS = ΦS\{η}xS\{η} + φηxη , we easily
show that

ΦT
S\{η}ΦS\{η}xS\{η} = −ΦT

S\{η}φηxη

implies χ = 0. Thus, enforcing χ = 0 is possible
by setting xS\{η} = −(ΦT

S\{η}ΦS\{η})
−1ΦT

S\{η}φηxη =

−Φ+
S\{η}φηxη , which is a non-zero vector except for patho-

logical cases. As a result, at iteration t = 0, the noiseless
SOMP metric might be non-zero for a single correct atom
only, i.e., φη in this particular example.

B. Proof of Theorem 1

To simplify and shorten notations, we will abbreviate
f
(t,P )
j = f

(t,P )
j (g) in this proof. We will consider that

only the correct atom whose index is j
(t,P )
c has a chance

to be picked. All the other correct atoms could be picked
but the conservative analysis we present does not take into
account this possibility. A sufficient condition to pick an atom
belonging to S at iteration t given the projection matrix P is
thus given by maxj∈S f

(t,P )
j < f

(t,P )

j
(t,P )
c

which is different from

the condition maxj∈S f
(t,P )
j < maxj∈S f

(t,P )
j where all the

correct atoms could be picked. Denoting by E(t,P )
succ the event

occurring when SOMP picks a correct atom at iteration t given
the projection matrix P ∈ P(t), we have

P[E(t,P )
succ ] ≥ P

[
f
(t,P )

j
(t,P )
c

> max
j∈S

f
(t,P )
j

]
.

Let α > 0, then the event f (t,P )

j
(t,P )
c

> maxj∈S f
(t,P )
j is implied

by (maxj∈S f
(t,P )
j < α) ∩ (f

(t,P )

j
(t,P )
c

> α) so that a new lower
bound is given by

P[E(t,P )
succ ] ≥ P[(max

j∈S
f
(t,P )
j < α) ∩ (f

(t,P )

j
(t,P )
c

> α)]

= 1− P[(max
j∈S

f
(t,P )
j ≥ α) ∪ (f

(t,P )

j
(t,P )
c

≤ α)]

where the second line is obtained by considering the comple-
mentary event of that of the previous line. Using the union
bound yields

P[E(t,P )
succ ] ≥ 1−

(
P
[
f
(t,P )

j
(t,P )
c

≤ α
]

+ P
[
max
j∈S

f
(t,P )
j ≥ α

])
.

Since the event maxj∈S f
(t,P )
j ≥ α is equal to ∪j∈S

[
f
(t,P )
j ≥

α
]
, using the union bound a second time yields

P
[

max
j∈S

f
(t,P )
j ≥ α

]
≤
∑
j∈S

P
[
f
(t,P )
j ≥ α

]
.

Noticing that the probability of SOMP failing at iteration t is
equal to 1− P[E

(t,P )
succ ] concludes the proof.

C. Proof of Lemma 2.1

We consider two arbitrary vectors x,y ∈ RK . Using
sequentially the triangle inequality, the reverse triangle in-
equality, and the Cauchy–Schwarz inequality yields∣∣∣f (t,P )

j (x)− f (t,P )
j (y)

∣∣∣
=

∣∣∣∣∣
K∑
k=1

(∣∣∣β(t,P )
j,k + σ

(P )
j,k xk

∣∣∣− ∣∣∣β(t,P )
j,k + σ

(P )
j,k yk

∣∣∣)∣∣∣∣∣
≤

K∑
k=1

∣∣∣∣∣∣β(t,P )
j,k + σ

(P )
j,k xk

∣∣∣− ∣∣∣β(t,P )
j,k + σ

(P )
j,k yk

∣∣∣∣∣∣
≤

K∑
k=1

σ
(P )
j,k |xk − yk| =

〈
σ

(P )
j , (|xk − yk|)k∈[K]

〉
≤ ‖σ(P )

j ‖2‖(|xk − yk|)k∈[K]‖2 = ‖σ(P )
j ‖2‖x− y‖2.

The quantity ‖σ(P )
j ‖2 is thus a valid Lipschitz constant and

it is also the best one since setting x = 1.5 σ
(P )
j and y =

0.5 σ
(P )
j saturates the inequality as β(t,P )

j,k ≥ 0 for all k ∈ [K].

D. Proof of Theorem 2

For better readability we will omit the dependence on g and
abbreviate f (t,P )

j = f
(t,P )
j (g). Since f (t,P )

j is Lipschitz with
a Lipschitz constant L equal to ‖σ(P )

j ‖2, the concentration
inequalities in Section III-B yield, for ε > 0,

P
(
f
(t,P )
j ≥ E[f

(t,P )
j ] + ε

)
≤ exp

(−ε2
2L2

)
,

which rewrites (with α := E[f
(t,P )
j ] + ε)

P
(
f
(t,P )
j ≥ α

)
≤ exp

(
− 1

2L2

(
α− E[f

(t,P )
j ]

)2)
provided that α > E[f

(t,P )
j ]. Similarly, using the concentration

inequality obtained for −f (t,P )
j yields

P
(
f
(t,P )
j ≤ α

)
≤ exp

(
− 1

2L2

(
E[f

(t,P )
j ]− α

)2)
where α := E[f

(t,P )
j ]− ε < E[f

(t,P )
j ].

As suggested by Figure 1, the value of α is chosen in be-
tween maxj∈S E

[
f
(t,P )
j

]
and E

[
f
(t,P )

j
(t,P )
c

]
where the assumption

∆E(t,P ) > 0 guarantees that the latter is strictly higher than
the former. Consequently, if j corresponds to the best correct
atom, then the second concentration inequality is used since
E[f

(t,P )
j ] > α. Conversely, the first concentration inequality
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will be used for incorrect atoms. We now consider the convex
combination

α = λE
[
f
(t,P )

j
(t,P )
c

]
+ (1− λ) max

j∈S
E
[
f
(t,P )
j

]
= (1− λ)E

[
f
(t,P )

j
(t,P )
c

]
+ λmax

j∈S
E
[
f
(t,P )
j

]
where λ = 1− λ. Thus, we obtain

P
(
f
(t,P )

j
(t,P )
c

≤ α
)
≤ exp

−
(
E[f

(t,P )

j
(t,P )
c

]− α
)2

2‖σ(P )

j
(t,P )
c

‖22


= exp

− λ
2

2‖σ(P )

j
(t,P )
c

‖22

(
∆E(t,P )

)2 .

For j ∈ S, we obtain

P
(
f
(t,P )
j ≥ α

)
≤ exp

−
(
α− E[f

(t,P )
j ]

)2
2‖σ(P )

j ‖22


≤ exp

−
(
α−maxj̃∈S E[f

(t,P )

j̃
]
)2

2‖σ(P )
j ‖22


= exp

(
− λ2

2‖σ(P )
j ‖22

(
∆E(t,P )

)2)
where the second inequality holds because we have α >

maxj̃∈S E[f
(t,P )

j̃
] ≥ E[f

(t,P )
j ] for every j ∈ S. A less sharp

upper bound is obtained for both inequalities by remembering
that ‖σ(P )

j ‖2 ≤ ‖σ‖2. Setting λ = λ = 0.5 and combining
Theorem 1 with the derived inequalities for j = j

(t,P )
c and

j ∈ S conclude the proof.

E. Proof of Theorem 3

The event E(t,P )
succ occurs whenever SOMP picks a correct

atom at iteration t given the projection matrix P ∈ P(t). Con-
sidering all the possible orthogonal projectors P ∈ P(t) from
iteration 0 to iteration s included, we have Cs =

∑s
t=0

(|S|
t

)
possible orthogonal projectors. If SOMP succeeds in choosing
a correct atom for all the possible orthogonal projectors at
each iteration, then we know that correct decisions will occur
at each iteration. Thus, defining E(s)

succ as the event occurring
whenever SOMP is successful during the first s+ 1 iterations,
we have

P[E(s)
succ] ≥ P

 s⋂
t=0

⋂
P∈P(t)

E(t,P )
succ

 = 1−P

 s⋃
t=0

⋃
P∈P(t)

E
(t,P )
fail


where the event intervening in the R.H.S. is the complemen-
tary event of that of the preceding expression. In particular,
E

(t,P )
fail is the event occurring when SOMP picks an incorrect

atom at iteration t given the orthogonal projector P ∈ P(t).
The union bound yields

P

 s⋃
t=0

⋃
P∈P(t)

E
(t,P )
fail

 ≤ s∑
t=0

∑
P∈P(t)

P[E
(t,P )
fail ].

Therefore, if E(s)
fail is the probability of failure of SOMP during

the first s + 1 iterations, we have P[E
(s)
fail] = 1 − P[E

(s)
succ] ≤∑s

t=0

∑
P∈P(t) P[E

(t,P )
fail ] where Theorem 2 yields

P
[
E

(t,P )
fail

]
≤ (n− |S|+ 1) exp

[
− 1

8‖σ‖22
(∆E(t,P ))2

]
.

The lower bound for ∆E(t,P ) derived in Section VI-A pro-
vides

∆E(t,P ) ≥
(

1− 1

Γ

)
ψτX −

√
2

π
‖σ‖1.

Using the inequality n− |S|+ 1 ≤ n, noticing that the upper
bound of P[E

(s)
fail] has become independent of t and P and

remembering that |P(t)| =
(|S|
t

)
conclude the first part of the

proof. Regarding the inequality on Cs, we have [22, Appendix

A],
∑s
t=1

(|S|
t

)
≤
(|S|+s−1

s

)
as well as

(|S|
t

)
≤
(
e|S|
t

)t
. Thus,

we easily obtain

Cs = 1 +

s∑
t=1

(|S|
t

)
≤ 1 +

(
e(|S|+ s− 1)

s

)s
.
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