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Reservoir computing (RC) systems are computational tools
for information processing that can be fully implemented in
optics. Here, we experimentally and numerically show that
an optically pumped laser subject to optical delayed feedback
can yield similar results to those obtained for electrically
pumped lasers. Unlike with previous implementations, the
input data are injected at a time interval that is much larger
than the time-delay feedback. These data are directly coupled
to the feedback light beam. Our results illustrate possible
new avenues for RC implementations for prediction
tasks. © 2017 Optical Society of America
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Reservoir computing (RC) is a brain-inspired concept for in-
formation processing that has been recently demonstrated to
be efficient for solving practical time-dependent tasks [1,2].
RC systems operate by ensuring nonlinear mapping between
the input and the output, thereby allowing a variety of infor-
mation processing through training. To perform well, an RC
system typically requires high dimensionality and nonlinearity.
Traditionally, high dimensionality is obtained by randomly in-
terconnecting a large number of neurons, while the needed
nonlinearity can be implemented through sigmoidal activation
functions. For example, with an ensemble of 16 interconnected
semiconductor optical amplifiers, state-of-the-art performance
has been achieved [3].

Alternatively, state-of-the-art performance also has been ob-
tained by relying on a single dynamical nonlinear node subject
to delayed feedback [4]. This configuration (typically referred
to as the delay-based RC) has the advantage of being easy
to train and to implement experimentally. It has led to several
implementations, even at high processing speeds, using

stand-alone commercial telecommunication components
[5–8]. The main differences between these experiments are
the type of nonlinearity used and how the input matches with
the period of the delay line. In those implementations, the non-
linear response of the reservoir is provided by passive nonlin-
earity such as saturable absorption of a semiconductor mirror
[9–11] or by active devices such as optoelectronic modulators
[5,8], optical amplifiers [3], or semiconductor lasers [7]. These
experiments have been supported by numerical simulations
[8,12–15]. Numerical simulations also have shown that the dif-
ferent modes of multimode lasers subject to optical delayed
feedback can be used independently to process independent
tasks in parallel [16]. In all cases, the readout layer is trained
(using some form of regression) from the state vectors of the
reservoir in response to the training data.

Until now, only one experiment has been dedicated to RC
systems, in which the processing was done from the response
provided by a laser subject to optical delayed feedback [7]. The
laser used in this experiment was an electrically pumped single-
longitudinal-mode laser, and the input data were either electri-
cally injected by modulating the pump current or optically
injected into the reservoir through optical injection using an-
other laser. Note that in other experiments [5,6,8–11], lasers
were used as the light source to supply the reservoir.

In this work, we pursue three different objectives. (i) We
investigate whether a different type of laser subject to similar
delayed feedback can yield similar results to those obtained in
[7]. More precisely, we experimentally and numerically inves-
tigate whether an optically pumped laser can produce similar
results to those of electrically pumped lasers. (ii) In the usual
procedure of RC, the injection times of the input data (i.e., the
inverse of the processing speeds) are close or correspond to the
time delay. In addition, in previous experiments, long time
delays (time delays much larger than the system’s characteristic
time) have been used [4–14,16]. We explore here whether time
delays less than or comparable to the laser relaxation time can
also be suitable for RC systems. This approach is interesting,
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since short delay lines are desirable for on-chip implementa-
tions because they consume less wafer space. The time delays
will typically be fixed during the manufacturing phase for real-
world systems, while the processing speeds can be controlled.
We also investigate the effect of such a change for a fixed time
delay. (iii) Finally, we explore whether the data can be directly
coupled to the feedback light beam instead of using an addi-
tional laser for optically injecting the electrical data into the
reservoir, as is done in [7].

TheRC system can be conceptually divided into three blocks,
which are schematically shown in Fig. 1: an input layer, a
reservoir, and an output layer. The input layer is the stage where
the input data are provided and preprocessed before being in-
jected into the reservoir for their processing. The preprocessing
includes the rescaling of the input signal and its multiplication
by a mask matrixM that defines the coupling weights from the
input to the reservoir. The role of the mask is to ensure the
variability of the signal over the different virtual nodes where
the information is read out. These virtual nodes are formed
by sampling the delay line at a fixed time interval θ. The output
layer is the stage where the different node responses are weighted
and linearly summed up. The optimal values of these weights are
those for which the summation of all the different node
responses always approaches the associated target as closely as
possible. They can typically be determined with an offline train-
ing procedure using digital computers [5–8,11–14] or an online
training procedure using a field-programmable gate array [17].
In our case, the training is done offline. Three time scales are
relevant: the data injection time T d , the feedback time-delay
T , and the mask length given by N θ, where N is the number
of virtual (temporal) nodes. We consider T d � N θ and apply
this same duration during the postprocessing of each data point.

As the benchmark task, we will use the Santa Fe time series
to evaluate the prediction performance of the system. The
Santa Fe data are an intensity time series experimentally re-
corded from a far-IR laser operating in a chaotic state [18].
The goal for this task is to predict the sample one step ahead
in a chaotic time trace before it has been injected into the res-
ervoir computer. The system performance is evaluated by cal-
culating the normalized mean square error (NMSE) between
the predicted value y and the expected value ȳ:

NMSE�y; ȳ� � hjjy�n� − ȳ�n�jj2i
hjjȳ�n�−iȳ�n�hjj2i ; (1)

where n is a discrete time index and ∥:∥ and h:i stand for the
norm and the average over time, respectively. Note that

NMSE � 0 represents a perfect prediction, while NMSE � 1
indicates no prediction at all. Our results will be compared to
those in [7], as it is a similar RC system, which was, however,
built using a different type of laser and a large time delay.

The experimental setup is shown in Fig. 2. It is composed of
a diode-pumped erbium-doped microchip laser with optical
delayed feedback. The microchip laser is a sample provided
by the LETI-CEA laboratory (Technologies Avanckes) [19].
The threshold currents of the diode pump and the microlaser
are I sp ≈ 24.2 mA and I s ≈ 100 mA, respectively. The micro-
chip laser’s stability threshold is close to, but above, its lasing
threshold. The microlaser is bi-mode, which, above I s, emits a
total radiation of a few milliwatts at the wavelengths λ1 ∼
1532 nm and λ2 ∼ 1535 nm, with a side mode suppression
of ≈26 dB. The emitted light has been collected using collimat-
ing lensed fiber with a collection efficiency of ≈50%. To imple-
ment the delayed feedback, the collected light beam is split into
two parts using a 50% optical coupler: one part is directly read
out by a photodiode with 1 GHz bandwidth, while the second
part is connected to port 2 of an optical circular. The circulator
couples light from port 2 to port 3 and from port 3 to port 1
with minimal power loss. The signal at port 3 is delayed by a
single-mode optical fiber of length ≈126 m (i.e., time delay of
∼630 ns). The light beam at the fiber output is split into two
paths. One path passes through a 10 GHz LiNbO3 phase
modulator (PM) (half-wave voltage V π � 5 V, maximum in-
put power 28 dBm). The PM output signal is combined with
the light beam of the second path using a 2 × 2 optical coupler
implementing an intensity modulation of the light beam. One
output port of this coupler is connected to port 1 of the cir-
culator, while the second output port is connected to an optical
spectrum analyzer. Thus, taking into account the losses, about
10% of the collected power is reinjected into the laser.

The original data to be processed are first convoluted with a
random mask that has four discrete values (−1; −0.25; 0.25; 1)
generated randomly with equal probability at a time interval of
θ � 24 ns. The resulting signal is uploaded in a two-channel
arbitrary waveform generator (AWG) (Tektronix AFG3102C,
dual channel, 1 GS/s, 100 MHz), from which it is injected into
the reservoir via the PM rf electrode. The amplitude of the in-
jected signal is rescaled to obtain an optimal contrast of the
modulation at the laser output. In our case, the peak-to-peak
voltage from the AWG was 10 V. The data are recorded using a
digital oscilloscope (LeCroy, 200 MHz, 2.5 GS/s). The AWG is
perfectly synchronized with the oscilloscope so that the original
data and the laser response to these data can be simultaneously
recorded. We experimentally use 1000 steps for training and

Fig. 1. Conceptual scheme of RC based on a nonlinear node (laser)
with delayed feedback.

Fig. 2. Experimental setup. PM, phase modulator; AWG, arbitrary
waveform generator.
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250 steps for testing. The samples are injected at the time in-
terval T d � 2.4 μs, which is 3.8 times larger than the time
delay, i.e., T � 630 ns. This corresponds to a reservoir with
N � T d∕θ � 100 virtual nodes. As such, only ∼N∕3.8 vir-
tual nodes receive an input corresponding to a previous time.

Figure 3 shows the temporal profiles of the original data
(black) and the laser response at the photodiode output (red)
for two values of the diode-pumped currents with one close to
the threshold (I � 120 mA) and another far away from the
threshold (I � 220 mA). For I � 120 mA, the microlaser
emits a low power, and therefore the fraction of the signal
(i.e., about 10% of the collected power) to be reinjected into
the laser is small. In this case, the dynamical response of the
laser to the input signal may also be limited, since the feedback
light beam is the one carrying the input data. For I � 220 mA,
the beam fraction driving the data is larger. The laser response is
quite similar to the input signal. These laser output signals are
used to optimize the readout weights. The prediction error rate
NMSEs obtained for the two cases were ≈0.4 and ≈0.07 for
I � 120 mA and I � 220 mA, respectively. To demonstrate
that the nonlinearity of the laser is necessary for this compu-
tation, we have also optimized the weights directly from the
AWG’s output signals. We obtained a prediction error rate
NMSE of≈0.7. This significantly worse performance shows that
the eventual nonlinearity caused by out-of-bandwidth operation
of the AWG does not already allow for reservoir computing.

To identify the most suitable parameter regimes for which
the system can successfully predict a chaotic input signal one
time step ahead in the future, we show in Fig. 4 the system
performance expressed by the NMSE as a function of the diode
pump rate μ � �I − I sp�∕�I s − I sp�. For each value of μ, we run
the experiments six different times and record for each run a
time trace of 5 ms at the output of the photodiode. The sam-
pling rate at the oscilloscope is 2 ns. The NMSE values shown
are the mean values over the runs. For low pump rates μ, large
NMSE values are obtained, indicating worse performance. This
degradation is due to noise, which is dominant for small laser
output powers [the signal-to-noise ratio (SNR) is small in this
case]. This noise is mainly readout noise from the photodiode.
For large values of μ (i.e., large laser output signals), the SNR is
large and the influence of the readout noise can be minimized.
For such cases, we obtain the lowest NMSE of 0.12� 0.04 at
μ ≈ 2.58 (note that for clarity, the error bars are not plotted),
while a lowest NMSE of 0.108 was obtained in [7] for the

same task. The performance of the two systems is therefore
similar, although we consider a time delay comparable to
the laser’s relaxation oscillation time τRO [note that τRO ≈
�γγe�μ − 1��−1∕2 ≈ 750 ns at μ ≈ 2.5].

For real-world applications, the delay length would be fixed
during the manufacturing phase of the device, while the length
of the mask could be independently varied by changing, for
example, the temporal node’s separation. To demonstrate this
fact, we show in Fig. 4(b) the NMSE values for different values
of θ when N and μ are kept fixed to 100 and 2.5, respectively.
The optimal value lies around θ � 24 ns. These are therefore
the values of θ for which the optimal coupling between the
virtual nodes is obtained.

For further insights, we performed numerical simulations
using the model of the diode-pumped erbium microchip laser
subject to optical delayed feedback introduced in [20,21]. The
relavant variables of the model are the slow-varying complex
envelope of the electric field Em�t� associated with the longi-
tudinal mode m (with m � 1; 2) and its corresponding carrier
number Nm�t�:
_E1;2 �

1

2
�Bg1;2N 1;2 − γ�E1;2�

iα
2
BN 1;2

� η

2
�1� ei�S�t�−ω1;2δT ��E1;2�t −T �eiω1;2T � ξ1;2�t�;

_N 1;2 � γe�Np −N 1;2�� gBN 1;2�jE1;2j2� ρjE2;1j2�� ζ1;2�t�;
where the parameters are the Einstein coefficient B, the decay
rate of the population inversion γe , the pumping rate γeN p,
the laser cavity decay rate γ, the linewidth enhancement factor
α, the feedback rate η, the time delay T, the cross-saturation
parameter ρ, and the solitary laser frequency for mode m,
ωm. S�t� is the signal that results from the convolution between
the original data to be processed and the mask. The noise is
modeled as the Langevin forces ξ1;2�t� and ζ1;2�t�, which
describe the quantum fluctuations of the laser population and
the radiation field. These forces are defined as having a zero mean
value and white-noise-type correlation functions hξi�t�ξ	j �t 0�i �
Dδij�t − t 0� and hζi�t�ζ	j �t 0�i � Dγγeμδij�t − t 0�∕B for
i; j � 1; 2, where D is the spontaneous emission factor.

From the experiments, we have retrieved the parameters
γ � 53.66 μs−1, γe � 0.217 μs−1, and ρ � 0.43. We also
consider other parameters from [20,21]: B � 122.1, α � 1,
η � 0.3 μs−1, g � 0.95, Np � μγ∕B, ωmT � 0, ωmδT �
−0.9π, and D � 10−4. We numerically use 3000 steps in the
data set for training and 1000 other steps for testing. For each
value of μ, we run the simulations 10 different times and record
for each run the laser output as jE�t�j2 � jE1�t� � E2�t�j2.

Fig. 3. Original data (black) and the corresponding experimental
recorded signal of the laser response read by the photodiode (red)
for the diode pump current (a) I � 120 mA and (b) I � 220 mA.
The amplitudes of the input data and the laser response have been
rescaled with the maximum value in each case. The laser response sig-
nal has been shifted for clarity.

Fig. 4. Prediction error NMSE as a function of (a) the pump rate μ
for a virtual node separation of θ � 24 ns, (b) θ for μ � 2.5.
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Additional Gaussian white noise is added to jE�t�j2 to model
the readout noise from the photodiode. Thus, the weights are
optimized from jE�t�j2 � Doutξout�t� instead of jE�t�j2, where
Dout is the noise amplitude and ξout�t� is the Gaussian white
noise with zero mean and correlation hξout�t�ξ	out�t 0�i �
δ�t − t 0�. Dout � 0 refers to noiseless photodetectors. We
choose Dout � 4, as it is the value for which numerical and
experimental SNRs, calculated as SNR � 10 log10�hjE�t�j2i∕
hDouti�, are similar. The SNR is ≈10 dB at μ � 1.2 and
≈26 dB at μ � 2.5. The value of Dout is kept fixed for the rest
of the work in this Letter.

The numerical obtained NMSE values as a function of the
pump rates are also shown in Fig. 4 in comparison with the
experimental values. Again, the error bars are not plotted. In
both cases, excellent agreement is found between experimental
and numerical results. In particular, it is confirmed that because
of noise, the system performance strongly degrades for small val-
ues of μ [see Fig. 4(a)], and also for high processing speeds [see
Fig. 4(b)].We obtain, for example,NMSE ≈ 0.43 for θ � 6 ns,
although all theN virtual nodes are connected through the feed-
back to nodes in the previous state for this θ. Note that for fixed
N , the processing speed increases with decreasing θ. By compar-
ing the NMSE values obtained from a system with (circles) and
without readout noise (diamonds), we find that the degradation
of the NMSE for low values of μ is mainly due to the readout
noise. Through numerical simulations, we have also found that
calculating the weights from jE1�t�j2 or jE2�t�j2 (i.e., consid-
ering only one mode) yields similar results to calculations using
jE1�t� � E2�t�j2. This is not surprising, since the mode spacing
is large, such that the heterodyne signal is outside the detection
bandwidth of the system. In this case, the choice of amonomode
or bimode laser is not important.

The memory capacity of the system may decrease when
only a fraction of the virtual nodes are connected through the
feedback to the previous input states. To demonstrate this fact,
we compare in Fig. 5(a) the simulated results of the memory
function (calculated from a uniformly distributed random signal
drawn in the interval �−0.5; 0.5�) when N∕3.8 virtual nodes
(squares) and when all N virtual nodes (circles) are connected
to nodes in a previous state considering θ � 24 ns and
μ � 2.5. Effectively, it is seen that the memory slightly decreases
for N∕3.8 virtual nodes connected to nodes in a previous state.
The decreasing slope of the memory is also slow in this case.
However, the calculation of the NMSE shows that these changes

in the memory do not significantly degrade the system perfor-
mance for one-step-ahead prediction [Fig. 5(b)]. However, the
low memory in Fig. 5(a) suggests that this system may not be
suitable for some tasks requiring large memory capacity.

In conclusion, we have experimentally and numerically
shown that diode-pumped erbium-doped microchip lasers sub-
ject to optical feedback can be used to implement RC systems
for prediction tasks. Using a Santa Fe time series as a bench-
mark, we found a best prediction error similar to that obtained
with a similar system having a long time delay [7], but our sys-
tem used of a short time delay. Our results also have shown that
even multimode lasers with large mode spacing can be used.
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