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Abstract

This paper focuses on revealed preference tests of the collective model of household con-
sumption. We start by showing that the decision problems corresponding to testing collective
rationality are np-complete. This makes the application of these tests problematic for (in-
creasingly available) large(r) scale data sets. We then present two approaches to overcome this
negative result. First, we introduce exact algorithms based on mixed-integer programming (mip)
formulations of the collective rationality tests, which can be usefully applied to medium sized
data sets. Next, we propose simulated annealing heuristics, which allow for efficient testing of
the collective model in the case of large data sets. We illustrate our methods by a number of
computational experiments based on Dutch labor supply data.

Keywords: revealed preference axioms; rationality; mixed-integer programming; global opti-

mization; simulated annealing.

1. Introduction

The word ‘economics’ stems from the Greek ‘oikos nomein’, which is literally translated as ‘run-
ning the household’. Households form the cornerstone of our society and, as a result, household
consumption decisions drive a huge part of our economy. It is by now well established that the
unitary model, which assumes that households behave as single decision makers, is not adequate to
describe the behavior of households with multiple members. Therefore, as a more useful alterna-
tive, Chiappori (1988, 1992) and Apps and Rees (1988) suggested the collective model of household
consumption. This model explicitly recognizes that households consist of multiple individuals (or
decision makers) with their own (rational) preferences. It assumes that these individuals engage
into intrahousehold bargaining processes that obtain Pareto efficient intrahousehold allocations.
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¶Center for Economic Studies, Campus Kortrijk, Faculty of Economics and Business, KU Leuven, Belgium.

Thomas Demuynck gratefully acknowledges the Fund for Scientific Research - Flanders (FWO-Vlaanderen) for his
postdoctoral fellowship.
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It is well-documented that this collective model provides a better empirical fit of multi-individual
household behavior than the unitary model. See, for example, Fortin and Lacroix (1997); Browning
and Chiappori (1998); Cherchye and Vermeulen (2008); Cherchye, De Rock, Sabbe, and Vermeulen
(2008) and Cherchye, De Rock, and Vermeulen (2009).

To verify the empirical adequacy of a particular consumption model, it is important to come up
with reliable tests that can be applied to household consumption data. These tests check whether
the observed household behavior is consistent with the model predictions; such consistent behavior
is then commonly referred to as “rational” in terms of the model subject to testing. Preferably,
rationality tests avoid all types of ad-hoc choices. From this perspective, the recently developed
revealed preference tests of the collective model are particularly appealing (see Cherchye, De Rock,
and Vermeulen (2007, 2010, 2011a)). These revealed preference tests of the collective model build
on early work of Samuelson (1938, 1948); Afriat (1967); Diewert (1973) and Varian (1982), who
focused on revealed preference tests of the unitary model. Rather than describing a model’s testable
restrictions on observed household behavior in terms of derivatives of certain unobservable functions
(e.g., symmetry of the cross-derivatives of the consumer’s cost function), the revealed preference
approach defines testable implications in terms of finite systems of inequalities that only involve the
household consumption choices that are actually observed (and summarized in terms of prices and
quantities). As such, the approach effectively minimizes the risk of specification error. It avoids that
the collective model is rejected simply because of a wrongly specified functional structure (rather
than a bad empirical fit of the model per se). Interestingly, revealed preference tests not only allow
for deciding which model is the most appropriate one to describe the observed household decisions.
They can also be used to subsequently recover preferences of individual household members, and to
predict household decisions in new situations. Given the very nature of revealed preference tests,
such recovery and counterfactual analyses will not be contaminated by ad-hoc functional choices.

The starting result of the current paper is that the revealed preference tests of the collective
model are NP-complete. Importantly, this contrasts sharply with existing results for the unitary
model, for which polynomial time testing algorithms do exist (see, for example, Varian (1982);
Chung-Piaw and Vohra (2003) and Talla Nobibon, Smeulders, and Spieksma (2012b)). This result
fits into the emerging literature that utilizes insights from computational complexity theory in the
study of economic-theoretical decision problems. We mention here Gilboa and Zemel (1989); Chu
and Halpern (2001); Cechlarova and Hajdukova (2002); Fang, Zhu, Cai, and Deng (2002); Woegin-
ger (2003); Baron, Durieu, Haller, and Solal (2004); Baron, Durieu, Haller, Savani, and Solal (2008);
Brandt and Fisher (2008); Conitzer and Sandholm (2008); Kalyanaraman and Umans (2008); Pro-
caccia and Rosenschein (2008); Galambos (2009); Hudry (2009); Brandt, Fisher, Harrenstein, and
Mair (2010); Deb (2011); Apesteguia and Ballester (2010); Talla Nobibon and Spieksma (2010);
Cherchye, Demuynck, and De Rock (2011b) and Demuynck (2013). Essentially, this trend signals
that testing the collective model tests can become very difficult in the case of large data sets. Given
this first, negative finding, we subsequently propose two practical approaches to apply revealed pref-
erence tests of the collective model to large(r) data sets. First, we develop exact algorithms based
on a mixed-integer programming (MIP) formulation of the revealed preference tests. Cherchye,
De Rock, and Vermeulen (2011a) already introduced similar MIP formulations, and showed that
these formulations are well-suited for meaningfully testing the collective model in practice. As we
will discuss below, our new MIP algorithms are - from a computational viewpoint - substantially
more attractive than the algorithms originally proposed in Cherchye, De Rock, and Vermeulen
(2011a). Specifically, we show that these exact MIP algorithms can be very useful for medium
sized data sets (i.e., datasets consisting of up to 100-150 observations). However, given their mixed
integer programming nature, they become less useful for analyzing large scale data sets. Therefore,
as a second approach, we propose simulated annealing heuristics that solve a global optimization
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formulation of the collective rationality tests.
Our main results are particularly relevant when testing the collective consumption model on

large(r) scale data sets. Importantly, such large data sets are increasingly available, and the use of
revealed preference tests to analyze these data has recently been advocated in the literature. A first
example concerns large scale scanner data sets, which contain information on (many) household-
level purchases collected at checkout scanners in supermarkets. Echenique, Lee, and Shum (2010,
2011) convincingly argue that scanner data are obvious candidates for using revealed preference
insights to better understand household behavior. A second prime example concerns cross-sectional
data gathered for a large number of households (e.g. through national budget surveys). Again, the
use of revealed preference tests to such data allows for meaningfully assessing the empirical validity
of the collective model (see, for example, Cherchye and Vermeulen (2008)). In this study, we will
illustrate this last application for a large set of Dutch labor supply data. By using computational
experiments, we will demonstrate the practical usefulness of both our newly proposed MIP methods
and our specially tailored simulating annealing heuristic.

The rest of our paper unfolds as follows. Section 2 sets the stage by presenting the revealed
preference tests that we focus on. Section 3 establishes our NP-completeness result. Section 4
introduces our mip formulation. Section 5 shows the global optimization formulation, which will
then form the basis for the simulated annealing heuristics that we present in Section 6. Section 7
contains our computational experiments. Section 8, finally, concludes.

2. Setting the stage

We consider households with two decision makers acting in an economy with m commodities or
goods. We assume that these goods can only be consumed privately without externalities, as
opposed to public goods. (However, the algorithms proposed in this paper can be modified to test
rationality of collective households consuming public goods.) Private consumption of a good means
that its consumption by one household member affects the supply available for the other member;
as an example, drinking water can only be consumed privately. Consumption externalities refer
to the fact that one member gets utility from another member’s consumption; for an illustration,
consider a wife enjoying her husband’s nice clothes. Public consumption of a good means that
consumption of that good by one member does not affect the supply available for another member,
and no one can be excluded from consuming it; as an example, a movie watched by both members
of the household is a public good.

We suppose that we have observed n household consumption quantity bundles qt := (qt,1, . . . , qt,m) ∈
Rm+ (non-negative) with corresponding positive prices pt := (pt,1, . . . , pt,m) ∈ Rm++ (t = 1, . . . , n).
The component qt,i (respectively pt,i), for i = 1, . . . ,m, corresponds to the quantity of good i
bought by the household (respectively, the unit price of good i) at the time t of observation. Note
that the scalar product p′q represents the total price of bundle q ∈ Rm+ at the prices p ∈ Rm++.
We denote the set of observations by S := {(pt, qt) : t ∈ N}, where N := {1, . . . , n} and we refer
to S as the data set. For ease of exposition, throughout this paper, we use t ∈ N to refer to the
observation (pt, qt).

For a given observation t ∈ N , a feasible personalized quantity vector
(
x1t , x

2
t

)
is one of the

infinitely many feasible split ups of the observed quantity vector qt into a pair of non-negative vectors
x1t , x

2
t ∈ Rm+ such that qt = x1t + x2t . The true split up of qt, which represents the quantity of each

good effectively consumed by each member in the household, is unobserved. Given the personalized
quantity vectors, we define the personalized consumption data sets by S1 :=

{(
pt, x

1
t

)
: t ∈ N

}
for the first member and S2 :=

{(
pt, x

2
t

)
: t ∈ N

}
for the second member of the household. The

following terminology is well-established, see Varian (1982, 2006).
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Definition 1. Member ` ∈ {1, 2} reveals that he or she directly prefers bundle x`s over bundle x`t
if and only if p′sx

`
s ≥ p′sx`t.

In words, member ` reveals that he or she directly prefers bundle x`s over bundle x`t if ` has chosen
bundle x`s while bundle x`t was affordable and could have been chosen. For ease of exposition, when
this happens, we simply say that member ` directly prefers s over t. Considering the transitive
closure of the direct preference relation leads to the next definition.

Definition 2. Member ` ∈ {1, 2} prefers s over t if and only if there exists a sequence s1, s2, . . . , sk ∈
N , with s = s1 and t = sk, such that ` directly prefers si over si+1, for i = 1, 2, . . . , k − 1.

These notions are used in the definition of the following well-known axioms of revealed prefer-
ence, for households with a single decision maker (see, e.g., Varian (1982)).

Definition 3 (garp). A personalized consumption data set S` (` = 1, 2) satisfies the Generalized
Axiom of Revealed Preference (garp) if and only if, for all observations s and t, when member `
prefers s over t, then p′tx

`
t ≤ p′tx`s.

Definition 4 (sarp). A personalized consumption data set S` (` = 1, 2) satisfies the Strong Axiom
of Revealed Preference (sarp) if and only if, for all observations s and t, when x`s 6= x`t and
member ` prefers s over t, then p′tx

`
t < p′tx

`
s.

Observe that if S` satisfies sarp then it also satisfies garp. One may consider that member ` has
a “rational” consumption behavior if S` satisfies one of these axioms. Testing whether S` satisfies
garp or sarp can be done in time O(n2), using graph theory algorithms (Varian, 1982; Talla
Nobibon, Smeulders, and Spieksma, 2012b).

The previous axioms can be extended to collective households, as formalized by the following
definitions, where the prefix 2 indicates that we consider households with two decision makers (Cher-
chye and Vermeulen, 2008; Sabbe, 2010; Cherchye, De Rock, and Vermeulen, 2011a).

Definition 5 (2-garp). A data set S is consistent with the collective consumption model 2-garp
if and only if there exist feasible personalized quantities

(
x1t , x

2
t

)
, with x1t + x2t = qt, such that, for

each member `, the personalized consumption data set S` satisfies garp (` = 1, 2).

Definition 6 (2-sarp). A data set S is consistent with the collective consumption model 2-sarp
if and only if there exist feasible personalized quantities

(
x1t , x

2
t

)
, with x1t + x2t = qt, such that, for

each member `, the personalized consumption data set S` satisfies sarp (` = 1, 2).

For ease of exposition, when S is consistent with the collective consumption model 2-garp (re-
spectively 2-sarp), we simply say that S satisfies 2-garp (respectively 2-sarp). Notice that if S
satisfies 2-sarp then it also satisfies 2-garp. Cherchye, De Rock, and Vermeulen (2011a) establish
that 2-garp provides a necessary and sufficient condition for collective rationality, in the following
sense: 2-garp implies that the consumption decisions (taken jointly by both members) result in
Pareto efficient intra-household allocations, whereas any consumption data set S that does not
satisfy 2-garp can be directly interpreted as a Pareto inefficiency (implying collectively irrational
behavior).

In practice, the collective consumption models described above may lead to weak tests, be-
cause they rely on the assumption that we observe only aggregate household consumption. As a
consequence, most consumption data sets S satisfy 2-sarp, and hence 2-garp, and these models
may fail to recognize irrational collective behavior. To strengthen the models, existing assignable
information is often taken into account explicitly (Bourguignon, Browning, and Chiappori, 2009;
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Chiappori, 1988; Cherchye and Vermeulen, 2008; Sabbe, 2010; Cherchye, De Rock, and Vermeulen,
2011a). We say that a good is assignable if, for at least one member in the household, one has
observed a positive quantity of that good consumed by that member, for at least one time t (a
common example of assignable good is clothing (Bourguignon, Browning, and Chiappori, 2009)).
For member ` ∈ {1, 2} and observation t ∈ N , we denote by q`t a known vector of assignable quan-
tities, where we assume that q1t ≥ 0, q2t ≥ 0, and q1t + q2t ≤ qt for all t ∈ N . In the presence of
assignable information, the data set is now represented as S := {

(
pt, qt; q

1
t , q

2
t

)
: t ∈ N}. In the

rest of this paper, we rely on this representation of S; when there is no assignable information, we
set q1t = q2t := 0 for all t ∈ N , where 0 is the zero vector.

The axioms for 2-garp and 2-sarp immediately extend to the setting with assignable informa-
tion, provided that we adopt the following definition.

Definition 7. The pair
(
x1t , x

2
t

)
∈ R2m

+ is a pair of feasible personalized quantities for the data
set S := {

(
pt, qt; q

1
t , q

2
t

)
: t ∈ N} if and only if q1t ≤ x1t , q2t ≤ x2t , and qt = x1t + x2t for all t ∈ N .

In this paper, we investigate the following computational questions: for a given consumption
data set S of a two-member household, (i) does S satisfy 2-garp, (ii) does S satisfy 2-sarp? If
we are given S1 and S2, then the problems reduce to checking whether the personalized quantity
vectors are feasible, and whether S` satisfies garp, or sarp, for ` = 1, 2. These two queries can
be answered in polynomial time. However, the global problems are considerably harder. The
contributions of this paper include:

(1) A proof that testing 2-garp, as well as 2-sarp is np-complete, even when there is no
assignable information.

(2) New mip formulations of the problems.

(3) Global optimization formulations and simulated annealing heuristics for their solution.

(4) Extensive computational experiments on real-world data.

3. Problem statement

We first give a formal definition of the problems in Section 3.1, and we review existing literature
on integer programming models for testing rationality in Section 3.2.

3.1 Problem description

The problems that we study are formally defined as the following decision problems.

Problem 2-garp
Instance: A data set S := {

(
pt, qt; q

1
t , q

2
t

)
: t ∈ N}, where N := {1, . . . , n}.

Question: Do there exist x1t , x
2
t ∈ Rm+ with qt = x1t + x2t and q1t ≤ x1t , q2t ≤ x2t for each observation

t ∈ N such that the sets S` := {
(
pt, x

`
t

)
: t ∈ N} satisfy garp for ` = 1, 2?

Problem 2-sarp
Instance: A data set S := {

(
pt, qt; q

1
t , q

2
t

)
: t ∈ N}, where N := {1, . . . , n}.

Question: Do there exist x1t , x
2
t ∈ Rm+ with qt = x1t + x2t and q1t ≤ x1t , q2t ≤ x2t for each observation

t ∈ N such that the sets S` := {
(
pt, x

`
t

)
: t ∈ N} satisfy sarp for ` = 1, 2?

Thus, an instance of 2-garp (respectively 2-sarp) is entirely defined by the consumption data
set S. Finding out whether an instance satisfies 2-garp, or 2-sarp is difficult:
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Theorem 1. Problem 2-garp and problem 2-sarp are np-complete, even when there is no assignable
information.

Proof: See Appendix A. �

Theorem 1 implies that any method of which the aim is to solve Problem 2-garp or 2-sarp is
likely to experience sharply increasing running times when the number of observations grows.

If there is no assignable information (q1t = q2t := 0, for all t) then any data set S := {
(
pt, qt

)
: t ∈ N}

that satisfies garp (respectively sarp) also satisfies 2-garp (respectively, 2-sarp). Furthermore,
any instance with at most two observations is a yes instance of 2-sarp (and hence of 2-garp), as
evidenced by the personalized quantity vectors x11 := q1, x

1
2 := 0, x21 := 0 and x22 := q2. However,

when assignable information is available, then instances with no answer can be built that consist
of only two observations, for both 2-garp and 2-sarp. As mentioned earlier, checking whether S
satisfies garp or sarp can be performed in time O(n2) (Varian, 1982; Talla Nobibon, Smeulders,
and Spieksma, 2012b).

3.2 Integer Programming approaches towards testing rationality

Over the last decades, several researchers have investigated different approaches to model and to test
the rationality of collective households consumption (Bourguignon, Browning, and Chiappori, 2009;
Cherchye and Vermeulen, 2008; Browning and Chiappori, 1998; Chiappori, 1988, 1992; Cherchye,
De Rock, and Vermeulen, 2010, 2007, 2012, 2011a; Cherchye, De Rock, Sabbe, and Vermeulen,
2008). Some of these approaches extend unitary households revealed preference axioms to collective
households (Cherchye and Vermeulen, 2008; Cherchye, De Rock, and Vermeulen, 2010; Cherchye,
De Rock, Sabbe, and Vermeulen, 2008; Cherchye, De Rock, and Vermeulen, 2007, 2012, 2011a), and
this is also the setting considered in our paper. The objective of the present section is not to provide
an exhaustive list of papers that describe revealed preference axioms for collective households, but
rather to focus on computational methods for testing collective consumption models.

Cherchye, De Rock, Sabbe, and Vermeulen (2008) rely on an integer programming formulation
for testing a variant of the collective model, called Collective Axiom of Revealed Preference; testing
this axiom was later proven to be np-complete by Talla Nobibon and Spieksma (2010). Heuristics
based on a graph-coloring approach are proposed for the same problem by Talla Nobibon, Cherchye,
De Rock, Sabbe, and Spieksma (2011). Deb (2011) proves that testing the “situation-dependent
dictatorship” version of the collective consumption model is np-complete, and he proposes a heuris-
tic based on graph coloring for solving the problem.

Cherchye, De Rock, and Vermeulen (2011a) propose an exact testing procedure based on a
mip formulation for 2-garp. Their formulation uses the binary decision variables y`st defined for
` = 1, 2, and s 6= t ∈ N , with the interpretation that y`st = 1 if member ` prefers s over t. They
also introduce continuous (vectors of) decision variables x`t for ` = 1, 2, and t ∈ N corresponding
with the consumption of member ` in observation t. The constraints of their formulation are given
by:

x1t + x2t = qt, t ∈ N, (1)

x`t ≥ q`t , t ∈ N ; ` = 1, 2, (2)

y`su + y`ut − y`st ≤ 1, s 6= t 6= u 6= s ∈ N ; ` = 1, 2, (3)

p′s
(
x`s − x`t

)
−Msy

`
st < 0, s 6= t ∈ N ; ` = 1, 2, (4)

p′t
(
x`t − x`s

)
+ p′tqty

`
st ≤ p′tqt, s 6= t ∈ N ; ` = 1, 2, (5)

y`st ∈ {0, 1}, s 6= t ∈ N ; ` = 1, 2. (6)
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We refer to the formulation (1)–(6) as F1:2-garp. The first set of constraints (1)–(2) model the
split of the observed quantity vectors into feasible personalized quantity vectors. The constraints (3)
enforce the transitivity of the preference relations modeled by the y`st-variables. The constraints (4)
ensure that y`st takes value 1 when p′sx

`
s ≥ p′sx

`
t; in these constraints, Ms is any constant such

that Ms > p′sqs. The constraints (5) ensure that if y`st = 1, then p′tx
`
t ≤ p′tx

`
s, as required by the

definition of garp. A related formulation for 2-sarp is given in Appendix B.

4. New mixed-integer programming formulations

The formulation F1:2-garp given above involves Θ(mn) continuous variables, Θ(n2) binary vari-
ables, and Θ(n3) constraints (where the Θ-notation indicates the order of growth, up to a constant
factor). For medium-sized data sets, this results in very large formulations which are hard to
solve, as evidenced by our computational experiments; see Section 7. Therefore, we proceed in Sec-
tion 4.2 and Section 4.3 with a description of new, more compact mip formulations for 2-garp and
for 2-sarp. In order to achieve this goal, however, we first need to introduce some interpretations
of garp and sarp in terms of graph theory, which will prove useful in the remainder of the paper.

4.1 Graph interpretation of garp and sarp

All graphs considered in this paper are finite, directed graphs of the form G = (V,A), where V (also
denoted V (G)) is the vertex-set of G and A is its arc-set. A graph G is strongly connected if, for
every pair of distinct vertices i and j ∈ V (G), there is a directed path from i to j and a directed
path from j to i in G. The subgraph of G induced by W ⊆ V is the graph G(W ) = (W,U) where
U consists of all arcs whose endpoints are both in W . A strongly connected component (scc) of
G is an induced subgraph G(W ) of G which is strongly connected and such that W is maximal
with respect to this property. For every directed graph G, the vertex sets of the strongly connected
components of G define a (unique) partition of V (G). We refer to Golumbic (2004) for additional
terminology and concepts.

Given the personalized consumption data set S` := {
(
pt, x

`
t

)
: t ∈ N} of member `, we build the

directed graph G` =
(
N,A`

)
as follows: Each vertex corresponds to an observation in S`. There

is an arc s → t ∈ A` if and only if s 6= t and p′sx
`
s ≥ p′sx

`
t, that is, if s 6= t and member ` directly

prefers s over t. We refer to G` as the directed graph associated with S`, or as the preference graph
of member `. Let A`scc be the set of all the arcs contained in strongly connected components of
G`, so that G`scc =

(
N,A`scc

)
is simply the union of the strongly connected components of G`. The

following characterizations are direct consequences of Definition 3 and Definition 4, respectively.

Proposition 1. The data set S` := {
(
pt, x

`
t

)
: t ∈ N} satisfies garp if and only if every arc

s→ t ∈ A`scc satisfies p′sx
`
s = p′sx

`
t.

Proposition 2. The data set S` := {
(
pt, x

`
t

)
: t ∈ N} satisfies sarp if and only if every arc

s→ t ∈ A`scc satisfies x`s = x`t.

4.2 New mip formulation for 2-garp

The formulation F1:2-garp decomposes into two parts, with equations (1)–(2) expressing feasibility
of the personalized quantities, and equations (3)–(6) expressing the validity of garp for each of the
personalized consumption data sets S1 and S2. In order to obtain a new formulation for 2-garp,
we focus on the second part and we state yet another alternative characterization of garp.
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Proposition 3. The set S` := {
(
pt, x

`
t

)
: t ∈ N} satisfies garp if and only if there exist U `t ∈ R

for all t ∈ N such that (i) if p′sx
`
s ≥ p′sx`t then U `s ≥ U `t , and (ii) if p′sx

`
s > p′sx

`
t then U `s > U `t .

Proposition 3 is a variant of many similar results where U `t can be viewed as the utility level of
bundle x`t, and the utility levels are consistent with the preference relation of member `; see Varian
(2006, 1982). For the sake of completeness and in order to prepare the ground for our next results,
we provide a self-contained proof of this characterization.

Proof: Suppose that there exist U `t ∈ R, for all t ∈ N , satisfying (i) and (ii), and suppose that
member ` prefers s over t. Thus, according to Definition 2, there exists a sequence s, u, v, . . . , z, t
of observations such that p′sx

`
s ≥ p′sx

`
u, p′ux

`
u ≥ p′ux

`
v, . . . , p′zx

`
z ≥ p′zx

`
t. In view of (i), U `s ≥ U `u ≥

U `v ≥ · · · ≥ U `z ≥ U `t . By (ii), this implies in turn that p′tx
`
t ≤ p′tx

`
s, as required by Definition 3 of

garp.
Conversely, suppose now that S` satisfies garp. Consider the directed graph G` =

(
V,A`

)
asso-

ciated with S`, and let G`1, G
`
2, . . . , G`α`

be the strongly connected components of G` (α` ≤ n). We
can assume that the strongly connected components are indexed from 1 to α` in reverse topological
order, that is, in such a way that every arc of G` goes from a component G`i to a component G`j with

i ≥ j (see, e.g., Ahuja, Magnanti, and Orlin (1993)). Now, for every vertex t ∈ G`, define U `t := it
n ,

where i`t is the index of the strongly connected component that contains t. Then, property (i) is
satisfied by construction. On the other hand, if p′sx

`
s > p′sx

`
t, then s→ t ∈ A`, but Proposition 1

implies that s→ t /∈ A`scc. Hence, arc s → t has its endpoints in two distinct components, and we
conclude that U `s > U `t . �

The utility levels U `t can explicitly be modeled as variables, thereby leading to the following
mip formulation for 2-garp, denoted by F2:2-garp.

(F2:2-garp) x1t + x2t = qt, t ∈ N, (7)

x`t ≥ q`t , t ∈ N ; ` = 1, 2, (8)

U `s − U `t < y`st, s 6= t ∈ N ; ` = 1, 2, (9)

y`st − 1 ≤ U `s − U `t , s 6= t ∈ N ; ` = 1, 2, (10)

p′s
(
x`s − x`t

)
−Msy

`
st < 0, s 6= t ∈ N ; ` = 1, 2, (11)

p′t
(
x`t − x`s

)
+ p′tqty

`
st ≤ p′tqt, s 6= t ∈ N ; ` = 1, 2, (12)

y`st ∈ {0, 1}, s 6= t ∈ N ; ` = 1, 2, (13)

where Ms is a strict upper-bound on p′sqs. The reader should note that in this formulation, contrary
to F1:2-garp, the y`st-variables do not model the (revealed) preferences of member `, but rather
reflect the order imposed by the utility levels: indeed, constraints (9)–(10) imply that, in every
feasible solution, y`st = 1 if and only if U `s ≥ U `t .

We have the following result.

Proposition 4. The consumption data set S :=
{(
pt, qt; q

1
t , q

2
t

)
: t ∈ N

}
satisfies 2-garp if and

only if the domain defined by (7)–(13) is nonempty.

Proof: Suppose that S :=
{(
pt, qt; q

1
t , q

2
t

)
: t ∈ N

}
satisfies 2-garp. Then there exist x1t , x

2
t ∈ Rm+

with qt = x1t + x2t and q1t ≤ x1t , q2t ≤ x2t for each observation t ∈ N such that the consumption sets
S` :=

{(
pt, x

`
t

)
: t ∈ N

}
satisfy garp, for ` = 1, 2. Fix these feasible personalized quantities. For

` = 1, 2, consider the graph G` =
(
V,A`

)
associated with S` and its strongly connected components

G`1, G
`
2, . . . , G`α`

indexed in reverse topological order, as in the proof of Proposition 3. Define the

point (X,Y,U), where the components of X (respectively, Y and U) are x`t (respectively, y`st and
U `t ) and are specified as follows for all s 6= t ∈ N and ` ∈ {1, 2}:
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• x`t is the quantity consumed by member ` in observation t;

• if i`s ≥ i`t then y`st := 1; otherwise y`st := 0;

• U `t :=
i`t
n .

We now argue that the point (X,Y,U) belongs to the domain defined by (7)–(13). Indeed:

Constraints (7)–(8) and (13): These are satisfied by assumption.

Constraints (9)–(10): For s 6= t ∈ N and ` ∈ {1, 2}, if i`s ≥ i`t then y`st = 1 and U `s ≥ U `t ; if i`s < i`t
then y`st = 0 and U `s < U `t . In both cases, (9)–(10) hold since U `t ∈ [ 1n , 1] implies

∣∣U `t − U `s ∣∣ < 1.

Constraints (11): For s 6= t ∈ N and ` ∈ {1, 2}, if p′sx
`
s < p′sx

`
t then (11) is trivially satisfied.

Otherwise, if p′sx
`
s ≥ p′sx

`
t then s → t ∈ A` by construction, hence i`s ≥ i`t and y`st = 1. Therefore

(11) holds.

Constraints (12): For s 6= t ∈ N and ` ∈ {1, 2}, if p′tx
`
s ≥ p′tx

`
t then (12) trivially holds.

Otherwise, if p′tx
`
s < p′tx

`
t then i`s 6= i`t (by Proposition 1) and y`st = 0. Therefore (12) holds, and all

constraints are satisfied.

Conversely, suppose now that (X,Y,U) is in the domain defined by (7)–(13). For ` = 1, 2,
let S` :=

{(
pt, x

`
t

)
: t ∈ N

}
, where x`t are the components of X. We now rely on Proposition 3 to

prove that the personalized consumption sets S` :=
{(
pt, x

`
t

)
: t ∈ N

}
(` = 1, 2) satisfy garp.

If p′sx
`
s ≥ p′sx

`
t then constraint (11) implies that y`st = 1 and hence, in view of constraint (10),

U `s ≥ U `t . On the other hand, if p′sx
`
s > p′sx

`
t then y`ts = 0 by constraint (12), and constraint (9)

implies U `s > U `t . Thus, properties (i) and (ii) hold in Proposition 3, and S satisfies 2-garp. �

Note that, as compared to F1:2-garp, the formulation F2:2-garp involves 2n additional contin-
uous variables, but only Θ(n2) constraints. For large values of n, this is a very significant reduction
in size. One might be tempted to compare the linear programming relaxations of the two formula-
tions F1:2-garp and F2:2-garp. There are, however, two issues that prevent such a comparison to
be meaningful: (i) the y-variables in the two formulations have different interpretations (as men-
tioned above), and, perhaps more importantly, (ii) since Problem 2-garp is a decision problem,
both formulations lack an objective function.

4.3 New mip formulation for 2-sarp

We now extend the previous results by providing a new mip formulation for 2-sarp. This formu-
lation is based on Proposition 5, which is the counterpart of Proposition 3 for sarp.

Proposition 5. The set S` := {
(
pt, x

`
t

)
: t ∈ N} satisfies sarp if and only if there exist U `t ∈ R

for t ∈ N such that (i) x`s = x`t if and only if U `t = U `s , and (ii) if x`s 6= x`t and p′sx
`
s ≥ p′sx

`
t then

U `s > U `t .

Proof: Suppose that there exist U `t ∈ R, for all t ∈ N , satisfying (i) and (ii), and suppose that
member ` prefers s over t, with x`s 6= x`t. Thus, there exists a sequence s, u, v, . . . , z, t of observations
such that p′sx

`
s ≥ p′sx`u, p′ux

`
u ≥ p′ux`v, . . . , p′zx

`
z ≥ p′zx`t. Therefore, U `s ≥ U `u ≥ U `v ≥ · · · ≥ U `z ≥ U `t .

By (i), this implies that U `t < U `s , and again by (ii), we obtain p′tx
`
t < p′tx

`
s, as required by

Definition 4 of sarp.
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Conversely, if S` satisfies sarp, construct U `t as in the proof of Proposition 3. Note that
Property (ii) is satisfied as before. For (i), note that if U `t = U `s , then t and s are in the same
strongly connected component of G`, and hence x`s = x`t by Proposition 2. On the other hand, if
x`s = x`t, then (trivially) x`s is preferred over x`t, and x`t is preferred over x`s by member `, so that s
and t are in the same component of G`, and U `t = U `s . �

Proposition 5 leads to the following mip formulation for 2-sarp, denoted by F2:2-sarp.

(F2:2-sarp) x1t + x2t = qt, t ∈ N, (14)

x`t ≥ q`t , t ∈ N ; ` = 1, 2. (15)

U `s − U `t < y`st, s 6= t ∈ N ; ` = 1, 2, (16)

y`st − 1 ≤ U `s − U `t , s 6= t ∈ N ; ` = 1, 2, (17)

p′s
(
x`s − x`t

)
−Msy

`
st < 0, s 6= t ∈ N ; ` = 1, 2, (18)

1

qs,i

(
x`s,i − x`t,i

)
≤ 2− y`st − y`ts, s 6= t ∈ N ; i = 1, . . . ,m; ` = 1, 2, (19)

y`st ∈ {0, 1}, s 6= t ∈ N ; ` = 1, 2, (20)

where Ms is a strict upper-bound on p′sqs.

Proposition 6. The consumption data set S :=
{(
pt, qt; q

1
t , q

2
t

)
: t ∈ N

}
satisfies 2-sarp if and

only if the domain defined by (14)–(20) is nonempty.

Proof: The proof is a slight modification of that of Proposition 4. If S satisfies 2-sarp, then
define (X,Y,U) as in the proof of Proposition 4. Since sarp implies garp, we already know that
constraints (14)–(18) and (20) are satisfied. For (19), note that if x`s 6= x`t then necessarily i`s 6= i`t
by Proposition 2. Hence the construction of Y entails y`st + y`ts ≤ 1, so that (19) is satisfied.

Conversely, if (X,Y,U) is a solution of (14)–(20), then again, U satisfies condition (ii) of
Proposition 5. For condition (i), assume that U `s = U `t . Then, due to constraints (16), y`st = y`ts = 1,
and constraints (19) (applied to the pairs (s, t) and (t, s)) imply x`s = x`t. The converse implication
follows from constraints (17) and (18). �

The formulation F2:2-sarp involves the same variables as F2:2-garp, and Θ(mn2) constraints.
In practical applications m is typically much smaller than n (see Section 7), and therefore the new
formulation is more compact than the formulation given in Appendix B.

4.4 Additional comments about the mip formulations

For computational purposes, the formulations F2:2-garp and F2:2-sarp can be improved in a
number of ways. First, it immediately follows from the proofs of Proposition 4 and Proposition 6
that all variables U `s can be restricted to lie between 0 and 1, for all s 6= t ∈ N and ` = 1, 2.
Moreover, a closer examination of these proofs reveals that the constraints (9) and (16), which
involve strict inequalities, can be replaced by the stronger constraints:

U `s − U `t ≤ y`st −
1

n
, s 6= t ∈ N ; ` = 1, 2. (21)

In the sequel, whenever we refer to the mip formulations F2:2-garp and F2:2-sarp, we implicitly
assume that U `s ∈ [0, 1] and that (9) and (16) have been replaced by (21).

After these modifications, both mip formulations still involve the strict inequalities (11) (or (18)),
which are not desirable from the numerical point of view. However, if the domain of F2:2-garp is
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nonempty, then there exists a small positive ε such that the domain remains nonempty when we
replace the constraints (11) by:

p′s
(
x`s − x`t

)
−Msy

`
st ≤ −ε, s 6= t ∈ N ; ` = 1, 2. (22)

Indeed, suppose that (X,Y,U) satisfies all constraints (7)–(13). Fixing the values of y`st (for all
s 6= t ∈ N and ` = 1, 2) in the constraints yields a feasible system of linear inequalities. From
linear programming theory (Chvátal, 1983), we know that there exists a small ε > 0 such that this
system of inequalities remains feasible if we replace the right-hand side of (11) by −ε. Since the
number of possible assignments of binary values to Y is finite, it follows that there is a smallest
value of ε which can be used without affecting the feasibility of F2:2-garp. The same reasoning
applies to the formulation F2:2-sarp. Note that Ms should be at least p′sqs + ε for the previous
reasoning to be valid.

Finally, we end this section by describing a set of cuts (that is, valid inequalities) that can be used
to strengthen the formulations F2:2-garp and F2:2-sarp. Note that, in the proof of Proposition 4,
at least one of y`st and y`ts takes value 1, for all s 6= t ∈ N . This condition actually holds for every
feasible solution, as can be deduced by taking the sum of the constraints (9) respectively associated
with the pairs (s, t) and (t, s). As a consequence, the following inequalities are valid and can safely
be added to each of the formulations F2:2-garp and F2:2-sarp without affecting their feasibility:

y`st + y`ts ≥ 1, s < t ∈ N ; ` = 1, 2. (23)

The effect of these cuts on the solvability of the mip models is investigated in Section 7.

5. Global optimization formulations

The MIP formulations presented in previous sections turn out to be hard to solve for large instances
of 2-sarp and 2-garp. Therefore, we have also developed heuristic algorithms which rely on global
optimization formulations to be presented in Section 5.1. In Section 5.2, we describe a graph-based
representation of solutions and we discuss some of their properties.

5.1 Global optimization formulations for 2-garp and 2-sarp

In the sequel, for ease of exposition, we often use the variables xs := x1s, and we implicitly set
x2s := qs − x1s for all s ∈ N . Consider the box D :=

{
(x1, x2, . . . , xn) : q1s ≤ xs ≤ qs − q2s , ∀s ∈ N

}
corresponding to the set of feasible personalized quantities, and denote by X := (x1, x2, . . . , xn) ∈ D
an arbitrary point in this box. Each such point X can be associated with personalized data sets
S` := {

(
pt, x

`
t

)
: t ∈ N} and with their associated preference graphs G` =

(
N,A`

)
, for ` = 1, 2. Let

Â`scc ⊆ A`scc be the subset of A`scc containing all arcs s→ t ∈ A`scc such that p′sx
`
s 6= p′sx

`
t. Similarly,

let Ã`scc ⊆ A`scc contain all arcs s → t ∈ A`scc with x`s 6= x`t. Note that we have the inclusion
Â`scc ⊆ Ã`scc. Proposition 1 and Proposition 2 are equivalently reformulated as follows.

Proposition 7. The data set S` := {
(
pt, x

`
t

)
: t ∈ N} satisfies garp if and only if Â`scc is empty.

Proposition 8. The data set S` := {
(
pt, x

`
t

)
: t ∈ N} satisfies sarp if and only if Ã`scc is empty.

Let us now introduce the following integer-valued functions on the domain D:

fg (X) = fg (x1, x2, . . . , xn) :=
∣∣∣Â1

scc

∣∣∣+
∣∣∣Â2

scc

∣∣∣ , (24)
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fs (X) = fs (x1, x2, . . . , xn) :=
∣∣∣Ã1

scc

∣∣∣+
∣∣∣Ã2

scc

∣∣∣ , (25)

and consider the unconstrained optimization problems

(G:2-garp) min fg (X)

s.t. X ∈ D,

and

(G:2-sarp) min fs (X)

s.t. X ∈ D.

Proposition 9. The consumption data set S :=
{(
pt, qt; q

1
t , q

2
t

)
: t ∈ N

}
is a feasible instance of

2-garp (respectively, 2-sarp) if and only if the optimal value of problem G:2-garp (respectively,
G:2-sarp) is equal to 0.

Proof: This is immediate in view of Proposition 7 and Proposition 8. �

For each X ∈ D, the functions fs (X) and fg (X) can be evaluated in polynomial time. Note,
however, that they are neither continuous nor convex, so that G:2-garp and G:2-sarp must be
viewed as global optimization problems.

When comparing the formulation G:2-garp with F2:2-garp, we observe that the constraints (7)–
(8) expressing feasibility of the personalized quantities are enforced by X ∈ D, whereas the con-
straints (9)–(13) expressing the validity of garp for each of the personalized consumption data sets
S1 and S2 are transferred to the objective function of G:2-garp. Similar observations apply to
G:2-sarp and F2:2-sarp. Many other objective functions could be substituted for fs (X) and for
fg (X) in G:2-garp and in G:2-sarp. The functions (24) and (25) have been chosen because they
are well-suited for the algorithmic developments described in subsequent sections.

5.2 Graphs associated with a solution

We have seen that every feasible solution X ∈ D can be associated with a unique pair of directed
graphs (G1, G2). But the converse does not hold: Clearly, certain pairs of directed graphs on N
are not associated with any point in D. Moreover, two points X and X′ in D may give rise to
the same pair of graphs (G1, G2). When this is the case, we say that X and X′ are equivalent :
indeed, then, Propositions 7-8 imply that knowledge of (G1, G2) suffices to determine whether the
personalized data sets associated with each of X, X′ satisfy garp or sarp, and we actually have
fg (X) = fg (X′) and fs (X) = fs (X′).

Thus, the pair of graphs (G1, G2) associated with X ∈ D can be viewed as providing an
incomplete, but sufficient, representation of X. The main advantage of this representation is its
combinatorial structure: namely, the number of pairs (G1, G2) is finite, as opposed to the number of
points in D. Therefore, the representation based on graph pairs better lends itself to the application
of local search approaches.

In order to understand what solutions are associated with a given pair of graphs, let us consider
the following decision problem:

Problem pc(G1, G2)
Instance: A data set S = {

(
pt, qt; q

1
t , q

2
t

)
: t ∈ N} and two directed graphs G1 = (N,A1) and

G2 = (N,A2).
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Question: Does there exist a point X ∈ D such that the pair of directed graphs associated with X
is exactly (G1, G2)?

We argue now that problem pc(G1, G2) can be solved in polynomial time. For an (unknown) point
X ∈ D and for each pair s, t ∈ N , s 6= t, of distinct observations, we are going to set up inequalities
of the following type:

lhs[s, t] ≤ p′sxs − p′sxt ≤ rhs[s, t]. (26)

The values of the left-hand side lhs[s, t] and of the right-hand side rhs[s, t] in (26) are set according
to Table 1, where ε is a very small and positive number, and na means non applicable.

Table 1: Values of lhs[s, t] and rhs[s, t] when G1 and G2 are given.

four cases lhs[s, t] rhs[s, t]

s→ t ∈ A1 and s→ t ∈ A2 0 p′sqs − p′sqt
s→ t ∈ A1 and s→ t /∈ A2 max {0, p′sqs − p′sqt + ε} na
s→ t /∈ A1 and s→ t ∈ A2 na min {−ε, p′sqs − p′sqt}
s→ t /∈ A1 and s→ t /∈ A2 p′sqs − p′sqt + ε −ε

We denote by P(G1, G2) the system of n(n−1) constraints of type (26) constructed in this way,
together with all the constraints enforcing assignable restrictions: q1s ≤ xs ≤ qs − q2s , for all s ∈ N .
The system P(G1, G2) involves Θ(mn) continuous variables and Θ(n2) constraints. We have the
following straightforward result.

Proposition 10. For ε sufficiently small, the solutions to the system P(G1, G2) are exactly the
points X ∈ D such that the pair of graphs (G1, G2) is associated with X. In particular, the sys-
tem P(G1, G2) has a solution if and only if the problem pc(G1, G2) has a yes answer, and these
conditions can be tested in polynomial time.

Proof: For all X ∈ D, the inequalities (26) simply express the conditions under which an arc
is either present or absent in each of the graphs G1, G2. Since the system P(G1, G2) is a linear
program, we infer that problem pc(G1, G2) can be decided in polynomial time (Khachiyan, 1979;
Karmarkar, 1984). �

The above analysis requires only minor adaptations to work when G1 and G2 represent partial
preferences. More precisely:

Proposition 11. If E1, F 1, E2, F 2 are subsets of N × N such that E1 ∩ F 1 = E2 ∩ F 2 = ∅, one
can test in polynomial time whether there exists a point X ∈ D such that the graphs G1 = (N,A1)
and G2 = (N,A2) associated with X satisfy E` ⊆ A` and A` ∩ F ` = ∅ for ` = 1, 2.

Proof: In the statement, E` stands for the set of direct preferences that must be present in G`,
whereas F ` stands for the set of preferences that must be absent from G`, for each ` = 1, 2. The
conclusion follows, since the conditions on X can be tested by imposing the inequalities (26) for all
pairs (s, t) ∈ E1 ∪ F 1 ∪ E2 ∪ F 2, and by adapting the rows of Table 1 accordingly. �

6. Simulated annealing algorithm

We present a simulated annealing (sa) algorithm for solving G:2-garp and G:2-sarp. Similar
algorithms have been successfully applied to global optimization problems where the objective
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function is neither continuous nor convex; see, e.g., Dekkers and Aarts (1991); Goffe, Ferrier, and
Rogers (1994); Locatelli (2000).

The sa algorithm implemented in this paper follows the scheme described by Dekkers and
Aarts (1991), and requires the following parameters: A nonnegative real number c, called control
parameter, which is used to determine whether a solution with an objective value worse than
that of the current solution is accepted as the next current solution or not. A positive integer
l representing the length of each Markov chain (sequence of trials), and the function r[0, 1) that
generates uniformly a random value in [0, 1). Finally, stop is a boolean function used to halt the
algorithm. The pseudocode of the sa algorithm is depicted in Algorithm 1, where f

(
X
)

can be
replaced either by fg (X) or by fs (X). Concretely, the algorithm starts from an initial solution X
and a given value of c. The function stop is initialized to “false”. While stop remains false, the
algorithm generates at each iteration a sequence of l trial solutions. Each solution can be set as the
new current solution, depending on whether its objective value is smaller than that of the current
solution or, if not, based on the value of the control parameter c. This procedure is repeated until
either a solution with objective value zero is found, or the function stop takes the value “true”.
Upon termination, the algorithm outputs either ‘yes’ or ‘undecided’. Observe that, since sa is
not an exact optimization algorithm, it may sometimes return ‘undecided’ when running on ‘yes’
instances. This case will be examined in Section 7. We next elaborate on each step of Algorithm 1.

Algorithm 1 Simulated Annealing

1: initialize X := X0, c := c0, and stop := false
2: while stop = false do
3: for i := 1 to l do
4: generate X′ either as a neighbor of X or as a random solution
5: if f

(
X′) = 0 then X := X′, and go to 9

6: else if f
(
X′) < f

(
X
)

then X := X′

7: else if exp

(
f
(
X
)
− f

(
X′)

c

)
> r[0, 1) then X := X′

8: decrease the value of c and update stop
9: if f

(
X
)

= 0 then return “yes”
10: else return “undecided”

6.1 Initialization

We first try to produce an initial solution by successively considering the following procedures P1,
P2, P3. Each of these procedures proceeds by building a pair of directed graphs (G1, G2) that
represent either the full preferences or the partial preferences of the two household members.

P1: Let π : N → {1, 2, . . . , n} be an arbitrary (random) permutation of the set of observations.
We build (G1, G2) as follows: for every pair s 6= t ∈ N , we set s→ t ∈ A1 if and only if π(s) < π(t),
and s→ t ∈ A2 otherwise. The resulting graphs G1 and G2 are tentatively taken to represent the
complete preference graphs of members 1 and 2. Note that they are acyclic. Therefore, if P(G1, G2)
is nonempty then the sa algorithm stops and returns yes: the instance satisfies 2-sarp.

After having tested a number of permutations π, if we have not been able to conclude that the
data set satisfies 2-sarp, then we continue with procedure P2 hereunder, where G = (N,A) is the
directed graph associated with S.
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P2: For every pair s 6= t ∈ N , if s < t and s→ t ∈ A, then we impose s→ t ∈ A1 and s→ t /∈ A2.
Otherwise, if s > t and s → t ∈ A, then we impose s → t /∈ A1 and s → t ∈ A2. Note that we
do not formulate any condition when s → t /∈ A, so that the preference graphs are only partially
determined by these conditions. Proposition 11 can be used to find a point X0 ∈ D such that the
graphs associated with X0 satisfy the imposed conditions, if there is one. Any such point provides
an initial solution for sa.

When P2 fails to provide an initial solution, we turn to the following procedure.

P3: For every pair s 6= t ∈ N , if s > t and s→ t ∈ A, then we impose s→ t /∈ A1 and s→ t ∈ A2.
Once again, any point X0 satisfying these conditions can be used to initialize sa.

Finally, when all three procedures P1, P2, P3 fail, we simply choose X0 := random(), where
random() is a function that randomly generates a point in D. In our numerical experiments, this
function is implemented as follows: for each observation s and for each good i, we set xs,i :=
αq1s,i + (1− α)

(
qs,i − q2s,i

)
, where α is a random value in [0, 1].

This two-step procedure was adopted after some preliminary experiments involving a compari-
son with a purely random initial solution, or with a variant of procedures P2, P3 where the arc-sets
A1 and A2 were extended to their transitive closures. These alternative implementations, however,
did not produce better results than the one described.

We adopt the procedure proposed by Dekkers and Aarts (1991) to initialize the control parame-
ter c: namely, given X0, the initial value c = c0 is chosen large enough so that almost all randomly
generated transitions in D are accepted by sa.

6.2 Neighborhood of a feasible solution and generation of new solutions

In order to describe the neighborhood N (X) of a feasible solution X ∈ D, let (G1, G2) be the pair
of preference graphs associated with X as in Section 5.1. We want the neighbors X′ ∈ N (X) to
be associated with a pair of preference graphs that is different from (G1, G2), since otherwise X
and X′ could be viewed as equivalent, as explained in Section 5.2. Accordingly, we define N (X) as
follows. Let A1

scc and A2
scc denote the arc-sets of the strongly connected components of G1 and G2,

respectively. For each arc s → t ∈ A1
scc ∪ A2

scc, we define a subset Nst(X) of the neighborhood of
X; namely, Nst(X) contains all solutions X′ ∈ D such that the associated pair of directed graphs
(H1, H2), H1 = (N,E1), H2 = (N,E2), satisfies the conditions:

• if s→ t ∈ A1, then A1 \ {s→ t} ⊆ E1, s→ t /∈ E1, and A2 ⊆ E2;

• else, A1 ⊆ E1, A2 \ {s→ t} ⊆ E2, and s→ t /∈ E2.

Finally, the neighborhood of X is N (X) :=
⋃

s→t∈A1
scc∪A2

scc

Nst(X).

The rationale behind this definition is to try to remove arcs s → t from A1
scc ∪ A2

scc, so as to
decrease the value of the objective function (24) or (25). The condition of the form s → t /∈ E`,
where ` ∈ {1, 2}, ensures that (H1, H2) 6= (G1, G2). (More complex neighborhoods could be
designed by considering simultaneously several arcs in A1

scc ∪ A2
scc, but this option has not been

investigated.)
Note that N (X) does not contain X nor any solution equivalent to X. Therefore, there is no

guarantee that N (X) is nonempty. Furthermore, N (X) is described implicitly because its definition
relies on the preference graphs, rather than points in D.
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Given a point X ∈ D and an arc s → t ∈ A1
scc ∪ A2

scc, we can rely again on Proposition 11
to find a point X′st in Nst(X) or to prove that Nst(X) is empty. In our implementation, when we
need to find a point in N (X), we run this procedure over successive choices of s→ t ∈ A1

scc ∪A2
scc,

as prescribed by the local search procedure LS(X) (see Algorithm 2). LS(X) searches within the
neighborhood N (X) for a solution with a better value than X. If it cannot find such an improving
solution, then the algorithm returns the best neighbor found when N (X) is nonempty, and it
returns a random solution otherwise.

Algorithm 2 LS(X)

1: for all s→ t ∈ A1
scc ∪A2

scc do
2: if Nst(X) 6= ∅ then find X′st ∈ Nst(X)
3: if f(X′st) < f(X) then set X′ := X′st and go to 6
4: if N (X) = ∅ then generate X′ := random() randomly and go to 6
5: else let X′st be the best solution found in N (X) and set X′ := X′st
6: return X′

Finally, Step 3 of the simulated algorithm sa can be implemented as follows: given a solution
X, we generate a new solution X′ using either the function random() or the local search procedure.
The choice between these two approaches is governed by the following rule:

X′ :=

{
LS(X) with probability 1− γ,
random() otherwise,

(27)

where γ is a fixed number in the interval [0, 1). Here again, we see that the new solution X′ does
not need to improve the current one and can even be random. This allows sa to diversify the search
and to avoid the traps of local optima.

6.3 Control parameter and stopping criterion

After each iteration of the sa algorithm (characterized by the generation of a Markov chain con-
sisting of l trial solutions), the new value for the control parameter, say c′, is computed based on
the current value c using the following expression (Dekkers and Aarts, 1991):

c′ := c

(
1 +

c log(1 + δ)

3 σ(c)

)
, (28)

where σ(c) is the standard deviation of the objective value of the l solutions in the Markov chain
at c, and δ is a given parameter.

We stop the sa algorithm when either we have found a solution with objective value 0 (and
return “yes”), or the time limit is reached, or the value of c is smaller than a predefined threshold
(and return “undecided”).

6.4 Preprocessing

In this section, we present a few conditions which, when satisfied, allow us to directly conclude
that a given instance of 2-garp or 2-sarp is either a yes-instance or a no-instance. Since 2-sarp
is stronger than 2-garp, we focus on 2-sarp when identifying yes-instances and on 2-garp for
no-instances. We separately consider the cases with and without assignable information.
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Let first S be a consumption data set without assignable information (i.e., q1t = q2t := 0, for all
t ∈ N) and let G =

(
N,A

)
be the directed graph associated with S: each observation in S defines

a vertex, and there is an arc s→ t ∈ A if and only if p′sqs ≥ p′sqt.

Lemma 1. If the vertices of G can be partitioned into two subsets such that each subset induces
an acyclic subgraph, then S satisfies 2-sarp, and hence 2-garp.

Proof: Suppose that N can be partitioned into two subsets N1 and N2 such that each subset
induces an acyclic subgraph. We define personalized quantity vectors as follows. For all s ∈ N1,
we set x1s := qs and x2s := 0, and for all s ∈ N2, we set x1s := 0 and x2s := qs. It is not difficult to
see that the resulting personalized consumption data sets S`, for ` = 1, 2, satisfy sarp, and hence
garp. �

The setting exploited in Lemma 1 is known in economics as situation-dependent dictatorship
because, for each observation, the complete bundle is consumed by one member of the house-
hold (Cherchye, De Rock, and Vermeulen, 2007; Deb, 2011). Note that testing the conditions
stated in Lemma 1 requires testing whether graph G can be partitioned into two acyclic subgraphs,
and the latter problem is known to be np-complete (Talla Nobibon, Hurkens, Leus, and Spieksma,
2012a). We next present two properties that can be checked in polynomial time.

Let us define the vectors q̃1t := qt − q2t and q̃2t := qt−q1t , for t ∈ N . Consider the directed graphs
H̃1 =

(
N, Ã1

)
and H̃2 =

(
N, Ã2

)
where there is an arc s → t ∈ Ã1 (respectively, s → t ∈ Ã2) if

and only if p′sq̃
1
s ≥ p′sq1t (respectively, p′sq̃

2
s ≥ p′sq2t ).

Lemma 2. If H̃1 and H̃2 are acyclic, then S satisfies 2-sarp, and hence 2-garp.

Proof: Note that for any pair of feasible personalized consumption sets S` := {
(
pt, x

`
t

)
: t ∈ N},

` = 1, 2, member ` consumes at least q`t and at most q̃`t in each observation t: q`t ≤ x`t ≤ q̃`t .
Therefore, the directed graph G` =

(
V,A`

)
associated with S` is a subgraph of H̃`, and when H̃`

is acyclic, its subgraph G` is also acyclic. This implies that S` (` = 1, 2) satisfies sarp, and hence
garp. �

The next result identifies a condition that leads to a no answer. We consider the directed graphs

H
1

=
(
N,A1

)
and H

2
=
(
N,A2

)
where there is an arc s → t ∈ A1 (respectively, s → t ∈ A2) if

and only if p′sq
1
s > p′sq̃

1
t (respectively, p′sq

2
s > p′sq̃

2
t ).

Lemma 3. If either H
1

or H
2

contains a cycle, then S does not satisfy 2-garp, and hence S does
not satisfy 2-sarp.

Proof: The proof follows a similar reasoning as that of Lemma 2. �

All conditions described by Lemmas 1–3 can be verified in a preprocessing step before the core
of the sa algorithm is executed, as explained in the next section.

7. Computational experiments

We present the real-world data used for our experiments in Section 7.1, we describe some issues
related to the implementation of the algorithms in Section 7.2, and we subsequently discuss com-
putational results in Section 7.3.
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7.1 Data

The algorithms described in this paper are used for testing the rationality of the behavior of
Dutch households. More precisely, we use the data sample presented in Cherchye and Vermeulen
(2008). This sample is based on eleven waves of the DNB Household Survey (formerly known as the
CentER Savings Survey), drawn from 1995 to 2005. Each household consists of a couple, and each
member of each couple is employed, is aged between 25 and 55, and has no child. The goods are
aggregated into three groups: the first group contains goods that are shared by the two members
of the household, the second one contains leisure female goods, and the third one contains leisure
male goods. Natural assignable information supposes that goods in the second group are consumed
exclusively by one member, and goods in the third group are consumed exclusively by the other
member. For ease of exposition, in the rest of this section we simply assume that we have three
goods. We refer to Cherchye and Vermeulen (2008) for additional details about the data.

The complete consumption data set contains more than 500 observations. From this large data
set, we create smaller ones as follows. For each value of n (n ≥ 10), we generate 20 instances, where
each instance contains n randomly-drawn distinct observations. We organize all the instances into
four sets. The first one, denoted data i, contains all the data sets generated for different values of n,
where assignable information is ignored. This corresponds with the setting where each member in
the household can consume any good. The second set of instances, data ii, contains the same
instances as data i, but with assignable information specifying that the second good is consumed
exclusively by one member, whereas the third good is consumed exclusively by the other member.

We create two additional collections of data sets by adding proportional assignable information
q`t,1 on non-assignable good(s) for the instances in data i and data ii. We consider seven different

pairs of proportions (q1t,1, q
2
t,1): (20, 70), (25, 70), (40, 40), (40, 45), (45, 40), (70, 25), and (70, 20).

In the first setting, for instance, the assumption is that member 1 consumes at least 20% of the
first good (q1t,1 = 0.20), whereas member 2 consumes at least 70% of the first good (q2t,1 = 0.70).
The third (respectively, fourth) set data iii (respectively, data iv) contains instances from data i
(respectively, data ii) with at most n = 100 observations. Each instance in data i (respectively,
data ii) gives rise to seven instances in data iii (respectively, data iv), corresponding with the
seven pairs listed above. All the instances described in this section can be found at http://users.
aims.ac.za/~tal/programmingcodes.html

7.2 Implementation issues

In this section, we provide some details related to the implementation of the different solution
approaches. The mip formulations F1:2-garp, F1:2-sarp, F2:2-garp and F2:2-sarp are solved
using cplex 12.4. More precisely, each formulation is turned into an optimization problem by
adding to it one of four alternative objective functions, namely: (obj1) Maximize the consumption
of member 1 (sum of the variables x1t ); (obj2) Maximize the “number of preferences” of member 1
(sum of the variables y1st); (obj3) Maximize the total consumption difference between the two
members (sum of the differences x1t − x2t ); and (obj4) Minimize a constant. We halt the solver
after the first feasible solution is found, and a time limit of 30 minutes is imposed on the computation
time. In these mip formulations, we set ε := 10−6, which is the tolerance value for cplex, and we
use Ms := psqs + 1 in constraints (22). For F2:2-garp and F2:2-sarp, we also consider alternative
implementations that include the cuts describe by equation (23).

For the sa algorithm, a preprocessing phase consists in checking the conditions of Lemma 1–
3. We use the backtracking algorithm proposed by Talla Nobibon, Hurkens, Leus, and Spieksma
(2012a) to investigate whether the vertices of a directed graph can be partitioned into two acyclic
subgraphs (with a time limit of 2 minutes), and we use the topological ordering algorithm (Ahuja,
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Magnanti, and Orlin, 1993) to check whether a directed graph is acyclic. The value of the parame-
ters of the sa algorithm are chosen as proposed (and used) by Dekkers and Aarts (1991): δ := 0.1,
l := 10 and γ := 0.75. The boolean indicator stop takes the value “true” when either c < 10−4 or
when the running time of the algorithm exceeds a limit of 30 minutes. Furthermore, stop is also
set to “true” after 20 iterations of sa without improvement of the objective function. This value
was chosen after some preliminary experiments.

The initial solution is obtained as explained in Section 6.1 by considering ten distinct permu-
tations in procedure P1. We start with the identity permutation and we subsequently consider
nine other randomly generated permutations. Given the preference graphs G1 and G2, we use
cplex 12.4 to check whether P(G1, G2) defines a nonempty domain.

Finally, the local search procedure LS(X) (Algorithm 2) investigates the neighborhoodsNst(X)
successively, starting with the arc s→ t that has the smallest value mst = max{p′sx1s−p′sx1t , p′sx2s−
p′sx

2
t }. It then explores the arc with the second smallest value of mst, and so on. The rationale

behind this choice is that the elimination of an arc s→ t with the smallest value mst is unlikely to
create a new cycle.

7.3 Computational results

All the algorithms presented in this paper have been coded in C using Microsoft Visual Stu-
dio C++ 2010. The experiments were run on a Dell Optiplex 760 personal computer with a
Pentium R processor, 3.16 GHz clock speed and 3.21 gb ram, equipped with Windows XP. All
cpu times are expressed in seconds, and the plots of the average cpu times are smooth Bézier
approximations (Farin, 2006) of the real plots. We compare different implementations of each mip
formulation in Section 7.3.1, and we compare the formulations among themselves in Section 7.3.2.
The best mip formulation is compared to the sa algorithm in Section 7.3.3. Finally, we further
investigate the efficiency of the sa algorithm in Section 7.3.4.

7.3.1 Comparison of different implementations of the mip formulations

We use instances from data i with at most 30 observations to compare four different implemen-
tations of each mip formulation. These four implementations correspond with the four different
objective functions presented in the previous section.

In Figure 1 we plot the cpu time of the two mip formulations for 2-garp. Figure 1(a) shows
the average cpu time of F1:2-garp for each of the four objectives. The first objective (obj1) and
the third objective (obj3) yield the smallest average cpu time, while the remaining two objectives
(obj2 and obj4) lead to considerably higher average cpu time. Figure 1(b) shows the average
cpu time of F2:2-garp for the four objectives. The objective function obj3 leads again to smaller
average cpu time than the other ones, with obj1 a close second. Figure 1(c) displays the average
cpu time of F2:2-garp with the cuts (23), and we observe that the objective functions obj1
and obj3 also dominate the other objectives. Finally, Figure 1(d) plots the best average cpu
time of F2:2-garp for obj3, with and without the cuts (23). Clearly, adding the cuts (23) is
beneficial for the formulation F2:2-garp. Therefore, in the rest of the section, whenever we refer
to the formulation F2:2-garp, we implicitly mean that we include the cuts (23) and that we use
the objective function obj3. The comparison of the mip formulations for 2-sarp yields the same
results: using the objective function obj3 and the cuts (23) leads to the best implementation among
those investigated.
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7.3.2 Comparison of the mip formulations

We now turn to a more extensive evaluation of the alternative formulations F1 and F2 for each of
the problems 2-garp and 2-sarp. In Figure 2, we compare the best implementations of F1:2-garp
and F2:2-garp on instances from data i and data ii. We perform a similar comparison for F1:2-
sarp and F2:2-sarp in Figure 3. With respect both to the average cpu time and to the number
of instances solved to optimality within the time limit (30 minutes), we find that F2:2-garp domi-
nates F1:2-garp, and that F2:2-sarp dominates F1:2-sarp. On average, F2:2-garp (respectively,
F2:2-sarp) solves instances containing two to three times more observations than the instances
that can be solved using F1:2-garp (respectively, F1:2-sarp). When looking at the average cpu
time, we observe that instances of 2-sarp tend to be more difficult than instances of 2-garp with
the same size. This may be due to the constraints (40)–(41) in formulation F1:2-sarp and to
the constraints (19) in formulation F2:2-sarp, which significantly increase the size of these mip
formulations.

(a) Different objectives for F1:2-garp (b) Different objectives for F2:2-garp

(c) Different objectives for F2:2-garp with cuts (23) (d) Comparison of F2:2-garp with and without cuts (23)

Figure 1: Different implementations of the mip formulations for 2-garp.
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7.3.3 Comparison of the mip formulations with the sa algorithm

Figure 4 shows the average cpu time and the number of instances solved within the time limit of 30
minutes by the sa algorithm and the best mip formulations, when applied to instances from data i
and data ii. For 2-garp, the sa algorithm solves instances with size on average twice the size of
instances that can be solved using F2:2-garp, irrespective of whether the instances are drawn from
data i or data ii. On the other hand, for instances of 2-sarp from data ii the sa algorithm solves
instances with size on average twice the size of instances that can be solved using F2:2-sarp. For
instances in data i, that factor increases up to four. Furthermore, for these instances the difference
between the average cpu time required by the sa algorithm for 2-garp and 2-sarp is very small;
this is not the case for the mip formulations.

Overall, the sa algorithm is effective for solving large instances of 2-garp and 2-sarp, with
or without assignable information. We mention that by ignoring the time limit when running the
sa algorithm we have found that the initial real-world consumption data set (with more than 500
observations) satisfies 2-sarp, and hence 2-garp. The good results achieved by the sa algorithm

(a) cpu time for data i (b) Number of instances solved in data i

(c) cpu time for data ii (d) Number of instances solved in data ii

Figure 2: Comparison of the mip formulations F1 and F2 for 2-garp

.

21



should not conceal the fact that it is a heuristic and that there may exist consumption data that
are consistent with 2-garp or 2-garp for which the sa algorithm does not find a feasible solution
(with objective function value of zero), even though such a solution exists. This phenomenon is
evaluated in the next section.

7.3.4 Effectiveness of the sa algorithm

In this section, we first evaluate the effectiveness of the sa algorithm for solving 2-garp instances
from data iii and data iv. The assumption underlying these experiments is that the consideration
of proportional assignable information will: (1) increase the difficulty of the instances and (2) turn
some “yes” instances from data i and data ii into “no” instances. We use a time limit of five
minutes when applying the sa algorithm.

Figure 5 displays the average cpu time and the number of yes instances found by the mip
formulation F2:2-garp and the sa algorithm. From Figure 5(b), we observe that the sa algorithm
identifies almost all the yes instances in data iii, except five. The plot focuses on instances with

(a) cpu time for data i (b) Number of instances solved in data i

(c) cpu time for data ii (d) Number of instances solved in data ii

Figure 3: Comparison of the mip formulations F1 and F2 for 2-sarp

.
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(a) 2-garp for data i (b) 2-garp for data i

(c) 2-garp for data ii (d) Number of instances solved

(e) 2-sarp for data i (f) Number of instances solved

(g) 2-sarp for data ii (h) Number of instances solved

Figure 4: Comparison of the best mip formulations and the sa algorithm.

more than 80 observations; for smaller values of n, the sa algorithm and F2:2-garp find exactly
the same number of yes instances. The average cpu time of the sa algorithm is clearly smaller than
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that of F2:2-garp as shown in Figure 5(a). For instances from data iv, the sa algorithm fails to
identify 28 yes instances out of a total of 10,724 yes instances. (Note that for each value of n, there
are 140 instances. For two instance sizes, n = 77 and n = 98, the sa algorithm fails to identify
two yes instances. For the remaining value of n, the sa algorithm either finds the same number of
yes instances as the mip formulation F2:2-garp or only finds one less than the mip formulation.)
Figure 5(c) indicates that the average cpu time of the sa algorithm increases significantly, and
even exceeds that of the mip formulation F2:2-garp for large values of n. This is mainly due to
the increasing number of no instances present in data iv, some of which force the sa algorithm to
run until the time limit. Overall, we conclude from Figure 5 that the sa algorithm is efficient for
identifying yes instances of 2-garp.

Similar results are reported for 2-sarp in Figure 6. In this case, F2:2-sarp could not solve most
of the larger instances (say, with n > 50) in data iii within the time limit of 5 minutes. As a result,
many yes instances were not correctly identified by this approach, which explains the observations
in Figures 6(a)-6(b).

To summarize, the sa algorithm can solve much larger instances than the mip formulations,
and seldom outputs ‘undecided’ when ‘yes’ is the correct answer.

(a) cpu time for data iii (b) Number of instances solved in data iii

(c) cpu time for data iv (d) Number of instances solved in data iv

Figure 5: Comparison of the number of yes instances of 2-garp found by F2 and by sa.
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8. Conclusion

We consider the problem of testing whether household behavior involving multiple decision makers
is consistent with the Generalized Axiom of Revealed Preference (GARP), and the Strong Axiom
of Revealed Preference (SARP). More concretely, we consider the collective consumption models
called 2-garp and 2-sarp, which are extensions of garp and sarp to households with two de-
cision makers. The models allow for so-called assignable information, meaning that information
concerning consumption of individual members of the household can be taken into account.

We prove that it is NP-complete to test these two models, even if there is no assignable in-
formation. Next, based on a particular characterization of garp relying upon utility levels, we
propose new mip formulations for these models. The resulting formulations have significantly less
constraints than the previous models from literature. Also, we propose an intricate simulated
annealing (SA) heuristic, which is based on a representation of a continuous solution space as a
solution space with a combinatorial structure.

Finally, to test the formulations and the sa heuristic, we have conducted extensive compu-
tational experiments. These experiments reveal the following basic insights. Firstly, the exact

(a) cpu time for data iii (b) Number of instances solved in data iii

(c) cpu time for data iv (d) Number of instances solved in data iv

Figure 6: Comparison of the number of yes instances of 2-sarp found by F2 and by sa.
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algorithms based on our new mip formulations are effective for solving medium-size instances of
both 2-garp and 2-sarp. More specifically, all instances with up to 120 observations in case of
2-garp, and 60 observations in case of 2-sarp, are solved within ten minutes. These results are
a huge improvement compared to the results that correspond to previous models from literature.
Secondly, the sa heuristic is able to solve even larger instances of our problems: instances of up
to 300 observations are solved within half an hour. Moreover, it happens only very rarely that the
SA-heuristic does not identify a Yes-instance as such.

Arguably, testing rationality is only a first step in the analysis of household consumption data.
Next steps involve recovery and counterfactual analysis, which also raises challenging issues from a
computational point of view. We anticipate that the methods and models proposed here can also
play a supporting role in this other context.

Appendix

A. Proof of Theorem 1

We argue in the introduction that 2-garp and 2-sarp belong to the class NP. To complete the
proof of Theorem 1, we show that 2-garp and 2-sarp are at least as hard as a known np-complete
problem. Below, we prove this result for 2-garp and we show how it can be modified to hold for
2-sarp. We proceed in two steps: First, we build a polynomial-time reduction from an intermediary
problem (that we call 2-budget) to 2-garp. This reduction implies that the problem 2-garp is
at least as hard as 2-budget. Subsequently, we build a reduction from the problem of testing the
Collective Axiom of Revealed Preference (carp) to 2-budget, which shows that 2-budget is at
least as hard as carp. Because the problem carp is np-complete (Talla Nobibon and Spieksma,
2010) and 2-budget belongs to the class NP, we infer that 2-budget is also np-complete and
hence that 2-garp is np-complete.

For ease of exposition, because we do not use assignable information in this proof we simplify
the notation by ignoring the vectors containing assignable information. The decision problems
2-budget and carp are defined next.

Problem 2-budget:
Instance: A set A := {ast : s, t ∈M} of |M |2 positive numbers.
Question: Do there exist non-negative numbers a1st and a2st for all s, t ∈M such that:

1. we have a1st + a2st = ast for all s, t ∈M ;

2. if there exist a sequence s, u, v, . . . , w, t ∈ M and ` ∈ {1, 2} satisfying a`ss ≥ a`su, a`uu ≥ a`uv,
. . . , a`ww ≥ a`wt then a`tt ≤ a`ts.

The problem 2-budget belongs to the class NP. Indeed, suppose that we are given a1st and a2st
for all s, t ∈ M ; we can easily check that there are all non-negative and satisfied 1.; that is:
a1st + a2st = ast for all s, t ∈M . To verify 2., we proceed as follows. For each `, we build a directed
graph G` =

(
M,A`

)
where each node corresponds with a unique i ∈ M and there is an arc from

node s to node t (s → t ∈ A`) if and only if a`ss ≥ a`st. Furthermore, we compute the subgraph
G`scc =

(
M,A`scc

)
of G` consisting of the union of all the strongly connected components of G`. The

condition 2. is satisfied if and only if every arc s→ t ∈ A`scc satisfies a`ss = a`st. Because all these
steps are completed in polynomial time, we conclude that 2-budget belongs to the class NP.

Problem carp:
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Instance: A consumption data set S := {
(
pt, qt

)
: t ∈ T}, where T := {1, . . . , T}.

Question: Do there exist two binary relations H1
0 and H2

0 (and hence their transitive closures H1

and H2) that satisfy for all s, t, t1, t2 ∈ T:

Rule 1: if p′sqs ≥ p′sqt then sH1
0 t or sH2

0 t;

Rule 2: if p′sqs ≥ p′sqt and tH`1 s then sH`2
0 t, with `1 6= `2 for `1, `2 ∈ {1, 2};

Rule 3: if p′sqs ≥ p′s (qt1 + qt2) and t1H
`1 s then sH`2

0 t2, with `1 6= `2 for `1, `2 ∈ {1, 2};

Rule 4: if p′sqs > p′sqt then either ¬
(
tH1 s

)
or ¬

(
tH2 s

)
;

Rule 5: if p′sqs > p′s(qt1 + qt2) then ¬
(
t1H

1 s
)

or ¬
(
t2H

2 s
)
;

where ¬
(
sH` t

)
means that s is not in relation with t with respect to H`. Talla Nobibon and

Spieksma (2010) prove that carp is an np-complete problem. Furthermore, their proof remains
valid even if for all s 6= t 6= u 6= s ∈ T, we have p′sqs 6= p′sqt and p′sqs 6= p′s (qt + qu).

Reduction from 2-budget to 2-garp

Given an instance A := {ast : s, t ∈M} of 2-budget, we build an instance S := {(pt, qt) : t ∈ N}
of 2-garp with n = |N | := |M | observations over m := |M | goods. For observation t, the price
of good t is 1 whereas that of the remaining goods is ε, where ε is a very small positive number.
Therefore pt := (ε, . . . , ε, 1, ε, . . . , ε), where 1 is the tth component of that vector. The quantity
vector qt is the solution to the system of equations:

Pqt = At, (29)

where P is the n× n matrix of stacked (row) price vectors, i.e.

P :=



1 ε ε ε . . . ε ε
ε 1 ε ε . . . ε ε
ε ε 1 ε . . . ε ε
...

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

. . .
...

...
ε ε ε . . . ε 1 ε
ε ε ε . . . ε ε 1


and A′t := (a1t, a2t, . . . , am,t), for t = 1, . . . , n := |M |. The quantity vector qt is well defined if
and only if equation (29) has a solution whose components are non-negative. We use the following
result to prove that this is indeed the case.

Theorem 2 ( Walters (1969)). Let B̄ be a non-negative invertible matrix with a positive diago-
nal D > 0 and let ȳ > 0 be a positive vector. Let B := D−1B̄ and y := D−1ȳ. If 0 < 2y −By then
2y −By ≤ x ≤ y, where x := B−1y.

We show that the hypotheses of Theorem 2 hold. By taking the matrix B̄ = P, it has a
positive diagonal and it is invertible (for an appropriate value of ε). Each component of the vector
ȳ′ := (a1t, a2t, . . . , am,t) is positive. Because D = I we have D−1 = I, which implies that y = ȳ
and B = B̄. Therefore, 2y − By = 2y − Py and for ε small enough, we have 2y − Py > 0.
Theorem 2 implies that qt := x = B−1y = P−1y is a solution of (29) with positive (and hence
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non-negative) components. This completes the description of the instance S of 2-garp, which is
built from A := {ast : s, t ∈M}. Note that this construction is completed in polynomial time.

We now argue that S satisfies 2-garp if and only if A := {ast : s, t ∈ M} is a yes instance
of 2-budget. On the one hand, suppose that S satisfies 2-garp. There exist x1t , x

2
t ∈ Rm+ with

qt = x1t + x2t , for each t ∈ N , such that for ` = 1, 2, the set S` :=
{(
pt, x

`
t

)
: t ∈ N

}
satisfies garp.

We define a1ts := p′tx
1
s and a2ts := p′tx

2
s, for all s, t ∈M . Note that because x1t , x

2
t ∈ Rm+ for all t ∈ N ,

we infer that each a`ts (for ` = 1, 2 and s, t ∈ M) is non-negative. We now prove that a`ts (` = 1, 2
and s, t ∈M) satisfy the conditions defining 2-budget.

1. For s, t ∈M we have a1ts + a2ts = p′tx
1
s + p′tx

2
s = p′t

(
x1s + x2s

)
= p′tqs = ats.

2. Let us suppose that there exist a sequence s, u, v, . . . , w, t ∈ M and ` ∈ {1, 2} such that
a`ss ≥ a`su, a`uu ≥ a`uv, . . . , a`ww ≥ a`wt. These inequalities imply that member ` prefers s over t
because a`ij := p′ix

`
j . If we would have a`tt > a`ts then that will mean that p′tx

`
t > p′tx

`
s. Together

with the previous observation, we will have that member ` prefers s over t and p′tx
`
t > p′tx

`
s.

This will contradict the fact that S` := {
(
pt, x

`
t

)
: t ∈ N} satisfies garp. Therefore, a`tt ≤ a`ts

and hence A := {ast : s, t ∈M} is a yes instance of 2-budget.

On the other hand, we suppose that A := {ast : s, t ∈M} is a yes instance of 2-budget and
we want to show that S satisfies 2-garp. Let a1st, a

2
st for s, t ∈ M be a solution to the instance of

2-budget. We define x1t and x2t to be solutions to the following system of equations:

Px1t = A1
t , t = 1, . . . ,m, (30a)

and

Px2t = A2
t , t = 1, . . . ,m, (30b)

where the transpose of A`t is given by
(
a`1t, a

`
2t, . . . , a

`
m,t

)
for ` = 1, 2. There exist solutions to (30a)

and (30b) because P is invertible. Furthermore, from the proof of Theorem 2 we infer that these
solutions are non-negative, which implies that x1t and x2t are well-defined.

We now prove that each set S` :=
{(
pt, x

`
t

)
: t ∈ N

}
(for ` = 1, 2) satisfies garp. If that was

not the case then there will exist two distinct observations s and t such that a member ` prefers
s over t and p′tx

`
t > p′tx

`
s. This would mean that there exists a sequence s, u, v, . . . , w, t ∈ M such

that p′sx
`
s ≥ p′sx

`
u, p′ux

`
u ≥ p′ux

`
v, . . . , p′wx

`
w ≥ p′wx

`
t and p′tx

`
t > p′tx

`
s; in other words, a`ss ≥ a`su,

a`uu ≥ a`uv, . . . , a`ww ≥ a`wt and a`tt > a`ts. This will contradict the fact that we have a yes instance of
2-budget. Therefore, each S` := {

(
pt, x

`
t

)
: t ∈ N} (` = 1, 2) satisfies garp and hence S satisfies

2-garp. This completes the first part of the proof: 2-garp is at least at hard as 2-budget.

Modifications for 2-sarp

For 2-sarp, we adapt the definition of 2-budget by replacing condition 2. by the following:

2’. if there exist a sequence s, u, v, . . . , w, t ∈ M and ` ∈ {1, 2} satisfying a`ss ≥ a`su, a`uu ≥ a`uv,
. . . , a`ww ≥ a`wt then a`tt < a`ts.

It is not difficult to see that the reduction described in the previous section is still valid when we
replace 2-garp by 2-sarp.
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Reduction from carp to 2-budget

We consider an instance S :=
{(
pt, qt

)
: t ∈ T

}
(where T := {1, . . . , T}) of carp satisfying

p′sqs 6= p′sqt and p′sqs 6= p′s (qt + qu), for all s 6= t 6= u 6= s ∈ T. These restrictions have no im-
pact on the complexity of carp; see Talla Nobibon and Spieksma (2010). We build an instance
A := {aij : i, j ∈M} of 2-budget as follows. The set M is defined by:

• for each t ∈ T, there are three elements t0, t1, and t2 in M ;

• for s, t ∈ T with s < t, there are two elements o(s; t) and o(t; s) in M ;

• for s, t, u ∈ T with s < t < u, there are three elements o(s; t, u), o(t; s, u), and o(u; s, t) in M .

Hereinafter, o(s; t, u) and o(s;u, t) refer to the same element in M . In total, the set M contains
3T+T (T − 1)+T (T − 1) (T − 2) /2 ≡ O

(
T 3
)

elements, which is polynomial in T . We now specify
the value of aij , for all i, j ∈M .

1. For t0, t1, and t2 corresponding with the same observation t ∈ T, we have:
at0,t0 := 3, at0,t1 := 2, at0,t2 := 2,
at1,t0 := 1, at1,t1 := 3, at1,t2 := 1,
at2,t0 := 1, at2,t1 := 1, at2,t2 := 3.

2. For all s 6= t ∈ T, we have:
as0,o(s;t) := 0.5; furthermore, if p′sqs > p′sqt then ao(s;t),o(s;t) := 2 and ao(s;t),t0 := 1.

3. For all s 6= t 6= u 6= s ∈ T, we have:
as0,o(s;t,u) := 0.5; and

if p′sqs > p′s(qt + qu) then ao(s;t,u),o(s;t,u) := 3, ao(s;t,u),t0 := 1, and ao(s;t,u),u0 := 1.

4. For all the values that are not yet specified, we set aij := 1 if i = j and aij := 10 otherwise.

This completes the construction of the instance A := {ast : s, t ∈M} of 2-budget. Note that this
construction is achieved in polynomial time. We now make the following observation.

Claim 1. If the above set A is a yes instance of 2-budget then any feasible solution a1ij and a2ij
for all i, j ∈M is such that for all s 6= t 6= u 6= s ∈ T and ` ∈ {1, 2}, we have a`s0,s0 > a`s0,o(s;t) and

a`s0,s0 > a`s0,o(s;t,u).

Proof: From the values of aij for all i, j ∈ M , we observe that for all s ∈ T we have as1,s1 >
as1,s2 + as1,s0 ; this means that any split a1ij and a2ij of aij satisfying a1ij + a2ij = aij , for all i, j ∈M ,

will satisfy a1s1,s1 + a2s1,s1 >
(
a1s1,s2 + a1s1,s0

)
+
(
a2s1,s2 + a2s1,s0

)
. This implies that:

a1s1,s1 > a1s1,s2 and a1s1,s1 > a1s1,s0 (31a)

or

a2s1,s1 > a2s1,s2 and a2s1,s1 > a2s1,s0 . (31b)

Similarly, from the inequality as2,s2 > as2,s1 + as2,s0 we conclude that

a1s2,s2 > a1s2,s1 and a1s2,s2 > a1s2,s0 (32a)
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or

a2s2,s2 > a2s2,s1 and a2s2,s2 > a2s2,s0 . (32b)

By applying the same reasoning to as0,s0 > as0,o(s;γ) + as0,s1 , where γ is either a single observation
or a pair of two distinct observations, we arrive at the conclusion that:

a1s0,s0 > a1s0,o(s;γ) and a1s0,s0 > a1s0,s1 (33a)

or

a2s0,s0 > a2s0,o(s;γ) and a2s0,s0 > a2s0,s1 . (33b)

Finally, the inequality as0,s0 > as0,o(s;γ) + as0,s2 implies that

a1s0,s0 > a1s0,o(s;γ) and a1s0,s0 > a1s0,s2 (34a)

or

a2s0,s0 > a2s0,o(s;γ) and a2s0,s0 > a2s0,s2 . (34b)

On the one hand, suppose that (31a) holds; that is a1s1,s1 > a1s1,s2 and a1s1,s1 > a1s1,s0 . Observe

that if (32a) holds; that is: a1s2,s2 > a1s2,s1 and a1s2,s2 > a1s2,s0 , then we have a1s1,s1 > a1s1,s2 and

a1s2,s2 > a1s2,s1 , which contradicts the fact that A is a yes instance of 2-budget. Therefore, (32a)

does not hold. A similar reasoning allows to conclude that (33a) does not hold. Therefore, both
(32b) and (33b) are satisfied. However, (32b) implies that (34b) does not hold (using the same
reasoning as before). We conclude that if (31a) holds then both (33b) and (34a) hold, and Claim 1
is true.

On the other hand, if (31b) holds then neither (32b) nor (33b) hold (using the same reasoning
as before), which imply that both (32a) and (33a) hold. Because (32a) holds, (34a) does not hold.
We then conclude that both (33a) and (34b) hold; this implies that Claim 1 holds. �

We now argue that A := {aij : i, j ∈M} is a yes instance of the problem 2-budget if and
only if S :=

{(
pt, qt

)
: t ∈ T

}
is a yes instance of carp. On the one hand, we suppose that A is

a yes instance of 2-budget. There exist a1ij and a2ij for all i, j ∈ M that satisfy the conditions

defining 2-budget. We build the hypothetical relations H1
0 and H2

0 as follows: for all s 6= t ∈ T,
sH1

0 t (respectively sH2
0 t) if and only if there exists a sequence u, v, . . . , w ∈ M such that the

inequalities a1s0,s0 ≥ a1s0,u, a1u,u ≥ a1u,v, . . . , a1w,w ≥ a1w,t0 (respectively a2s0,s0 ≥ a2s0,u, a2u,u ≥ a2u,v,

. . . , a2w,w ≥ a2w,t0) hold. Furthermore, we set sH1 s and sH2 s for all s ∈ T. The binary relations

H1
0 and H2

0 are well-defined because all the possible pairs of observations in T are considered. We
now verify that the rules defining carp hold for H1

0 and H2
0 .

Rule 1: Let s 6= t ∈ T such that p′sqs > p′sqt. This implies that ao(s;t),o(s;t) > ao(s;t),t0 and
therefore, either a1o(s;t),o(s;t) > a1o(s;t),t0 or a2o(s;t),o(s;t) > a2o(s;t),t0 . Claim 1 implies that we have either

a1s0,s0 > a1s0,o(s;t) and a1o(s;t),o(s;t) > a1o(s;t),t0 or a2s0,s0 > a2s0,o(s;t) and a2o(s;t),o(s;t) > a2o(s;t),t0 ; which

means that either sH1
0 t or sH2

0 t.

Rule 2: We suppose that there are s 6= t ∈ T satisfying p′sqs > p′sqt and tH1 s. The latter
inequality implies that ao(s;t),o(s;t) > ao(s;t),t0 . Using the definition of H1

0 we infer from tH1 s
that there exists a sequence u, v, . . . , w ∈ M such that a1t0,t0 ≥ a1t0,u, a1u,u ≥ a1u,v, . . . , a1w,w ≥
a1w,s0 . Furthermore, Claim 1 implies that a1s0,s0 > a1s0,o(s;t). We infer that a1o(s;t),o(s;t) < a1o(s;t),t0 ;
otherwise condition 2. of 2-budget will be violated. Therefore, ao(s;t),o(s;t) > ao(s;t),t0 implies that
a2o(s;t),o(s;t) > a2o(s;t),t0 , and using Claim 1 we conclude that sH2

0 t.
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Rule 3: We now consider s 6= t 6= u 6= s ∈ T such that p′sqs > p′s(qt + qu) and tH1 s. The latter
inequality implies that either a1o(s;t,u),o(s;t,u) > a1o(s;t,u),t0 + a1o(s;t,u),u0 or a2o(s;t,u),o(s;t,u) > a2o(s;t,u),t0 +

a2o(s;t,u),u0 . The relation tH1 s implies that there exists a sequence v, . . . , w ∈M such that a1t0,t0 ≥
a1t0,v, . . . , a1w,w ≥ a1w,s0 whereas Claim 1 implies that a1s0,s0 > a1s0,o(s;t,u). We infer that it is not

possible to have a1o(s;t,u),o(s;t,u) > a1o(s;t,u),t0 + a1o(s;t,u),u0 because condition 2. of 2-budget will be

violated, otherwise. As a consequence, we have a2o(s;t,u),o(s;t,u) > a2o(s;t,u),t0 +a2o(s;t,u),u0 . This implies

that a2o(s;t,u),o(s;t,u) > a2o(s;t,u),u0 , and using Claim 1 we conclude that sH2
0 u.

Rule 4: We suppose that there exist s 6= t ∈ T satisfying p′sqs > p′sqt, tH
1 s and tH2 s. Because

tH1 s there exists a sequence u, . . . , v ∈ M such that a1t0,t0 ≥ a1t0,u, . . . , a1v,v ≥ a1v,s0 ; and Claim 1

implies that a1s0,s0 ≥ a1s0,o(s;t). We infer that a1o(s;t),o(s;t) < a1o(s;t),t0 ; otherwise condition 2. of 2-

budget will be violated. By applying a similar reasoning using the fact that tH2 s, we arrive at
the conclusion that a2o(s;t),o(s;t) < a2o(s;t),t0 . Together with the previous inequality, we obtain that

ao(s;t),o(s;t) < ao(s;t),t0 ; which does not comply with our instance because p′sqs > p′sqt implies that
ao(s;t),o(s;t) = 2 and ao(s;t),t0 = 1.

Rule 5: Let us suppose that there exist s 6= t 6= u 6= s ∈ T such that p′sqs > p′s(qt+qu), tH1 s and
uH2 s. Because tH1 s there exists a sequence v, . . . , w ∈ M such that a1t0,t0 ≥ a1t0,v, . . . , a1w,w ≥
a1w,s0 whereas uH2 s implies that there exists a sequence x, . . . , y ∈ M such that a2u0,u0 ≥ a2u0,x,

. . . , a2y,y ≥ a2y,s0 . These inequalities together with Claim 1 imply that a1o(s;t,u),o(s;t,u) < a1o(s;t,u),t0

and a2o(s;t,u),o(s;t,u) < a2o(s;t,u),u0 . This contradicts the fact that p′sqs > p′s(qt + qu), tH1 s.

This completes the verification that H1
0 and H2

0 satisfy the rules defining carp.

On the other hand, suppose that S is a yes instance of carp. There exist two binary relations
H1

0 and H2
0 satisfying Rule 1–5. We are going to specify the value of a1ij and a2ij for all i, j ∈ M

and show that they satisfy the conditions defining 2-budget.

• For t0, t1, and t2 in M corresponding with the same observation t ∈ T, we have:

a1t0,t0 := 1.5, a1t0,t1 := 1.9, a1t0,t2 := 0.1,

a2t0,t0 := 1.5, a2t0,t1 := 0.1, a2t0,t2 := 1.9,

a1t1,t1 := 2.9, a1t1,t2 := 0.5, a1t1,t0 := 0.5,

a2t1,t1 := 0.1, a2t1,t2 := 0.5, a2t1,t0 := 0.5,

a1t2,t2 := 0.1, a1t2,t1 := 0.5, a1t2,t0 := 0.5,

a2t2,t2 := 2.9, a2t2,t1 := 0.5, a2t2,t0 := 0.5.

• For s 6= t 6= v 6= s ∈ T, we fix a1t0,o(t;v,s) := 0.25, a2t0,o(t;v,s) := 0.25, a1t0;o(t;v) := 0.25 and

a2t0;o(t;v) := 0.25.

• For s 6= t ∈ T we have:

1: if p′tqt > p′tqs then
2: a1o(t;s),s0 := 0.5 and a2o(t;s),s0 := 0.5

3: if tH1 s then
4: if tH2 s then a1o(t;s),o(t;s) := 1, a2o(t;s),o(t;s) := 1

5: else a1o(t;s),o(t;s) := 1.9, a2o(t;s),o(t;s) := 0.1
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6: else
7: if tH2 s then a1o(t;s),o(t;s) := 0.1, a2o(t;s),o(t;s) := 1.9

8: else a1o(t;s),o(t;s) = a2o(t;s),o(t;s) := 1
2ao(t;s),o(t;s) = 1

9: else a1o(t;s),o(t;s) = a2o(t;s),o(t;s) := 0.5 and a1o(t;s),s0 = a2o(t;s),s0 := 5

• For s 6= t 6= v 6= s ∈ T we have:

1: if p′tqt > p′t(qs + qv) then
2: if tH1 s then
3: if tH1 v then
4: if tH2 s then
5: if tH2 v then
6: a1o(t;s,v),o(t;s,v) := 1.5, a2o(t;s,v),o(t;s,v) := 1.5, a1o(t;s,v),s0 := 0.5, a2o(t;s,v),s0 := 0.5,

a1o(t;s,v),v0 := 0.5, and a2o(t;s,v),v0 := 0.5
7: else
8: a1o(t;s,v),o(t;s,v) := 2.2, a2o(t;s,v),o(t;s,v) := 0.8, a1o(t;s,v),s0 := 0.5, a2o(t;s,v),s0 := 0.5,

a1o(t;s,v),v0 := 0.1, and a2o(t;s,v),v0 := 0.9
9: else

10: if tH2 v then
11: a1o(t;s,v),o(t;s,v) := 2.2, a2o(t;s,v),o(t;s,v) := 0.8, a1o(t;s,v),v0 := 0.5, a2o(t;s,v),v0 := 0.5,

a1o(t;s,v),s0 := 0.1, and a2o(t;s,v),s0 := 0.9
12: else
13: a1o(t;s,v),o(t;s,v) := 2.2, a2o(t;s,v),o(t;s,v) := 0.8, a1o(t;s,v),s0 := 0.1, a2o(t;s,v),s0 := 0.9,

a1o(t;s,v),v0 := 0.1, and a2o(t;s,v),v0 := 0.9
14: else
15: if tH2 s then
16: if tH2 v then
17: a1o(t;s,v),o(t;s,v) := 0.8, a2o(t;s,v),o(t;s,v) := 2.2, a1o(t;s,v),s0 := 0.5, a2o(t;s,v),s0 := 0.5,

a1o(t;s,v),v0 := 0.9, and a2o(t;s,v),v0 := 0.1
18: else
19: a1o(t;s,v),o(t;s,v) := 1.5, a2o(t;s,v),o(t;s,v) := 1.5, a1o(t;s,v),s0 := 0.5, a2o(t;s,v),s0 := 0.5,

a1o(t;s,v),v0 := 0.5, and a2o(t;s,v),v0 := 0.5
20: else
21: if tH2 v then
22: a1o(t;s,v),o(t;s,v) := 1.5, a2o(t;s,v),o(t;s,v) := 1.5, a1o(t;s,v),s0 := 0.1, a2o(t;s,v),s0 := 0.9,

a1o(t;s,v),v0 := 0.9, and a2o(t;s,v),v0 := 0.1
23: else
24: a1o(t;s,v),o(t;s,v) := 1.5, a2o(t;s,v),o(t;s,v) := 1.5, a1o(t;s,v),s0 := 0.1, a2o(t;s,v),s0 := 0.9,

a1o(t;s,v),v0 := 0.5, and a2o(t;s,v),v0 := 0.5

25: else {use the same reasoning as above while inverting the role of H1 and H2}
26: else a1o(t;s,v),o(t;s,v) := 1.5, a2o(t;s,v),o(t;s,v) := 1.5, a1o(t;s,v),s0 := 0.5, a2o(t;s,v),s0 := 0.5,

a1o(t;s,v),v0 := 0.5, and a2o(t;s,v),v0 := 0.5

• For all the remaining values that are not yet specified, we fix a1t,v = a2t,v := 1
2at,v.

Claim 2. Consider the values of a1ij and a2ij for all i, j ∈ M defined above. For a pair of distinct

observations s 6= t ∈ T if there exist ` ∈ {1, 2} and a sequence u1, . . . , un ∈ M such that u1 = s0,
un = t0 and for all i = 1, . . . , n− 1 we have a`ui,ui ≥ a

`
ui,ui+1

then sH` t.
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Proof: Let us consider s 6= t ∈ T and a sequence u1, . . . , un ∈ M such that u1 = s0, un = t0 and
for all i = 1, . . . , n−1 we have a1ui,ui ≥ a

1
ui,ui+1

. Because u1 = s0, u2 is either o(s; v), o(s; v, w) or s2

for some v, w ∈ T. However, a1s2,s2 < a1s2,v for all v ∈ M implies that u2 6= s2. If u2 = o(s; v) then

u3 = t0 and sH1 t whereas if u2 = o(s; v, w) then u3 is either v0 or w0 and sH1 v or sH1w. By
repeating this argument and using the transitivity of H1, we end up with sH1 t. This completes
the proof of Claim 2. �

These values of a1ij and a2ij for all i, j ∈M satisfy the conditions defining 2-budget because if that

was not the case then there will be a cycle either in H1 or in H2. The existence of such cycle would
contradict the assumption that we have a yes instance of carp.

This completes the proof that we have a yes instance of 2-budget. Therefore, the problem
2-budget is at least as hard as carp; and because the latter problem is np-complete we infer that
2-budget is also np-complete. Note that the above reduction from carp to 2-budget remains
valid even if we consider the modified version of 2-budget corresponding with 2-sarp. In summary,
we have shown that 2-garp and 2-sarp are at least as hard as 2-budget, which is also at least as
hard as carp. Therefore, 2-garp and 2-sarp are at least as hard as carp. Because carp is an
np-complete problem, we conclude that 2-garp and 2-sarp are also np-complete.

B. An mip formulation for 2-sarp

As in Section 3.2, we use the binary decision variables y`st and the continuous (vectors of) decision
variables x`t, for ` = 1, 2 and s 6= t ∈ N , with the interpretations provided in Section 3.2. In
addition, there are continuous variables z`st ∈ [0, 1] for ` = 1, 2, and s < t ∈ N , which take the value
z`st = 0 if and only if x`s = x`t. The constraints are the following:

x1t + x2t = qt, t ∈ N, (35)

x`t ≥ q`t , t ∈ N ; ` = 1, 2, (36)

p′s
(
x`s − x`t

)
−My`st < 0, s 6= t ∈ N ; ` = 1, 2, (37)

y`su + y`ut − y`st ≤ 1, s 6= t 6= u 6= s ∈ N ; ` = 1, 2, (38)

y`st + y`ts + z`st ≤ 2, s < t ∈ N ; ` = 1, 2, (39)

Qz`st + x`t,i − x`s,i ≥ 0, s < t ∈ N ; ` = 1, 2; i = 1, . . . ,m, (40)

Qz`st + x`s,i − x`t,i ≥ 0, s < t ∈ N ; ` = 1, 2; i = 1, . . . ,m. (41)

The constraints (35)–(38) have the same meaning as in F1:2-garp. The constraints (39) en-
tail that if x`s 6= x`t then member ` cannot prefer both s over t and t over s. The sets of
constraints (40)–(41) ensure that if x`s 6= x`t then z`st > 0; in these constraints, the constant
Q := max {qs,i : i = 1, . . . ,m; s = 1, . . . , n}. We denote the formulation (35)–(41) as F1:2-sarp.
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