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Abstract

Successful decision-making critically involves metacognitive processes such as monitoring
and control of our decision process. Metacognition enables agents to adaptively modify on-
going behavior and to determine what to do next in situations where external feedback is
not (immediately) available. Despite the importance of metacognition for many aspects of
life, little is known about how our metacognitive system operates or about what kind of
information is used for metacognitive (second-order) judgments. In particular, it remains an
open question whether metacognitive judgments are based on the same information as
first-order decisions.

Here, we investigated the relationship between metacognitive performance and
first-order task performance by recording EEG signals while participants were asked to
make a “diagnosis” after seeing a sample of fictitious patient data (a complex pattern of
colored moving dots of different sizes). In order to assess metacognitive performance,
participants provided an estimate about the quality of their diagnosis on each trial.

Results demonstrate that the information that contributes to first-order decisions
differs from the information that supports metacognitive judgments. Further, time
frequency analyses of electroencephalographic signals reveal that metacognitive
performance is specifically associated with prefrontal theta band activity. Together, our
findings are in line with a hierarchical model of metacognition, and suggest a crucial role for

prefrontal oscillations in metacognitive performance.

Significance Statement

Monitoring and control of our decision process (metacognition) is a crucial aspect of

adaptive decision-making. Crucially, metacognitive skills enable us to adjust on-going

behavior and determine future decision-making when immediate feedback is not available.
In the present study, we constructed a “diagnosis task” that allowed us to assess in

what way first-order task performance and metacognition are related to each other. Results

demonstrate that the contribution of sensory evidence (size, color and motion) differs

between first- and second-order decision-making. Further, our results indicate that
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specifically metacognitive performance is orchestrated by means of prefrontal theta

oscillations. Together, our findings point toward a hierarchical model of metacognition.

Introduction

Monitoring and control of our decision process (metacognition [Flavel, 1979; Fleming &
Dolan, 2012]) is a crucial aspect of adaptive decision-making. For instance, a doctor who is
not very confident about a diagnosis will prescribe additional tests; a tennis player who just
executed a drop shot will assess the likelihood of the shot being successful in order to
determine her next move. Crucially, such metacognitive skills enable us to adjust on-going
behavior and determine future decision-making when immediate feedback is not available.
Despite the obvious importance of metacognition, little is know about how our
metacognitive system operates, or how first-order performance and metacognition
(second-order performance) are related to each other. In particular, it remains an open
question whether first- and second-order judgments are based on the same information
(Steinhauser & Yeung, 2010; Desender et al., 2016).

On the one hand, metacognitive judgments are often viewed as depending on the
very same processes that underpin first-order decisions. From this perspective, the
information available for metacognitive computations is directly dependent on the quality
and quantity of accumulation of sensory evidence (Kiani & Shadlen, 2009; Kiani et al,,
2014). By contrast, dissociations between first- and second-order performance (Weiskrantz
et al, 1974; Del Cul et al,, 2009; Rounis et al., 2010; Harsay et al., 2012; King & Dehaene,
2014; Hebart et al,, 2014; Fleming et al., 2015) suggest that metacognition and first-order
task performance are supported by differential (though related) sources of information
(Cleeremans et al., 2007; Yeung & Summerfield, 2012; Charles et al.,, 2014; Maniscalco &
Lau, 2016). It has been proposed that dissociations between first- and second-order
performance are the result of differences in availability of supporting information (Baranski
& Petrusic, 1998; Del Cul et al,, 2009; Yeung & Summerfield, 2012; Fleming et al.,, 2015).
Further, hierarchical models of metacognition hold that sensory evidence used for first-
order performance becomes susceptible to accrual of noise and signal decay when arriving
at the stage where this information is being used by the metacognitive system (Pleskac &

Busemeyer, 2010; Maniscalco & Lau, 2016).
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Over the last decade, first-order decision-making has been strongly linked to trial-
by-trial electrophysiological cortical oscillatory dynamics (Siegel et al., 2012). For instance,
recent findings have associated theta band activity with the rate of evidence accumulation
and integration (Vugt et al., 2012; Werkle-Bergner et al,, 2014), whereas activity in the beta
band has been shown to predict behavioral choices (Donner et al., 2007; Donner et al., 2009;
Haegens et al,, 2011), and seems to be important for maintenance of persistent activity
(Engel & Fries, 2010; Siegel et al., 2012; Kloosterman, 2015; Kloosterman et al.,, 2015).
Despite mounting evidence of an intrinsic relationship between first-order decision-making
and neural oscillatory activity, however, it remains unknown how oscillatory dynamics
relate to second-order decision-making.

In the present study, we constructed a task in which participants were asked to
make a “diagnosis” after seeing a sample of fictitious patient data (a pattern of colored
moving dots of different sizes). The patterns provided probabilistic information about
patient health according to contingencies unknown to the participant; participants were to
learn these contingencies (explicitly or implicitly [Cleeremans et al. 1998]) and to diagnose
each patient as accurately as possible. On each trial, participants rated both the quality and
the reasoning strategy of their decision. Our task design allowed us to assess the
relationship between fluctuations in electrophysiological oscillatory activity and changes in
first-order decision accuracy, metacognitive judgment adequacy, and strategy judgment. In
addition, we were able to test how different sources of sensory evidence (size, color and
motion information) contributed to first- and second-order task performance. To capture
these behavioral and electrophysiological relationships we applied the multiple regression

method (Rousselet et al., 2009; Cohen & Cavanagh, 2011).

Materials and Methods

Participants

Thirty-eight participants (28 females, mean age= 23.1, SD= 6.55) took part in this study for
financial compensations. In order to investigate how changes in task accuracy,
metacognitive adequacy and metacognitive strategy (Berry & Dienes, 1993; Price &
Norman, 2008) related to neural oscillatory activity we focused our analyses on those
participants who exhibited variability in both their first- and second-order decisions and

metacognitive strategy. We therefore excluded participants i) who performed at chance
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level throughout the whole experiment, ii) almost exclusively indicated to have made
decisions of very poor quality (resulting in less than 50 ‘high quality decision’ trials), and iii)
participant who almost exclusively guessed (resulting in less than 50 intuitive and rational
trials, see below). Five participants were excluded because of failed EEG recordings. In these
participants, we observed excessive noise in more than half of all trials (partially due to our
long epoch, see below). A total of nineteen participants were included for further analyses.
All participants had normal or corrected-to-normal vision, and all were naive to the purpose
of the experiment. All procedures complied with international laws and institutional
guidelines and were approved by the Ethics Committee of the Psychology department of the
University of Amsterdam, and all participants provided their written informed consent

prior to the experiment.

Task design

Stimuli were presented full screen (1024*768 pixels) on a 17-inch DELL TFT monitor with a
refresh rate of 60 Hz. The monitor was placed at a distance of ~90 cm in front of each
participant so that one centimeter subtended a visual angle of 0.64°. On each trial a sample
of fictive patient data was presented, which consisted of blue, red and green colored circles
of different sizes (14, 24 and 34 pixels in diameter) that moved in three different directions
(45°,135° or 315°, see Figure 1) against a white background.

During the experiment one color, one size and one motion direction was indicative
of illness (e.g., the color blue, medium size, and motion left upwards). The sample was
positive if the presence of a combination of the indicative color, size and motion direction
exceeded a certain threshold (i.e, the criterion was set at 160%, see below). The task
parameters were based on data from an extensive pilot study, and were set so as to
measure trial-by-trial fluctuations in task accuracy, metacognitive adequacy and
metacognitive strategy. Metacognitive adequacy was based on decision quality ratings (see
below). A high value was awarded when participants rated a correct decision to be a high-
quality decision or when an error was rated as being of low quality and vice versa. On each
trial, the percentage of each feature (color, motion direction and size) was randomly set
between 10-70% (steps of 10%), until the total percentage of each separate feature added
up to 100% (e.g., 30% small circles, 40% medium sized circles and 30% large circles). On
“positive sample” trials, the percentages were randomly set until the sum of the percentages

of the three indicators varied between 160% and 210%. Importantly, participants had to
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pay attention to all three indicators to perform the task correctly. Paying attention to only
one indicator was not sufficient. For instance, a high number of blue circles (e.g., 70%) could
belong to a negative sample, depending on the percentage of the other two indicators. The
task therefore required participants to conjunctively discriminate between the features.

The stimulus was presented for ~1750 ms, during which the circles were displaced
7 pixels per screen refresh in one out of the three possible directions. At any moment during
stimulus presentation a total of 600 circles were on the screen. Each trial started with a
blank screen (jittered between 1000-1800 ms, in steps of 100 ms) on which the words
"loading patient data” were centrally presented. After stimulus presentation (~1750 ms) a
blank screen (jittered between 1000-1500 ms, with a 50 ms step) was presented to avoid
the influence on prolonged evidence accumulation (Yeung & Summerfield, 2012; Hebart et
al,, 2014), followed by an image of a clipboard (Figure 1) on which “sick” or “exit” had to be
ticked by pressing a left or right button (indicating a positive or negative sample,
respectively).

Next, participants had to rate how they had arrived at their diagnosis (strategy
judgment). Participants could indicate whether (1) their first-order decision was based on a
pure guess (like flipping a coin), (2) was made intuitively (pre-reflective, described as the
feeling of knowing what to decide without explicitly knowing why [Berry & Dienes, 1993;
Price & Norman, 2008]), or (3) rationally (i.e., reflective, knowing what to decide based on
explicit knowledge), by pressing the 1, 2 or 3 key respectively. Participants then provided
their estimate about the quality of their decision, on a scale ranging from 1 to 5 (by pressing
the 1-5 key). Participants were instructed to assign a low value to a diagnosis that they
experienced to be of poor quality and a high value to a diagnosis they considered to be of
high quality. Participants were encouraged to make use of the whole scale. Finally
participants received feedback about their first-order (diagnosis) decision (see Figure 1).

The experiment lasted around 2.5 hours and consisted of 512 trials divided into 8
blocks. After each block, the metacognitive scales (strategic judgment and judgment
accuracy) were explained again to make sure the meaning of the scales were properly
understood throughout the entire experiment. Within each block, negative and positive
samples were presented in pseudo-random order. Stimuli were presented using

Presentation (Neurobehavioral Systems).

Behavioral analyses
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In order to find out whether first-order decision accuracy and metacognitive adequacy
differed depending on strategic judgment we calculated first-order task sensitivity (d,, a
variant of da which takes unequal variance into account, see Macmillan & Creelman, 2004),
metacognitive sensitivity (meta-d.) and metacognitive efficiency (meta-d. - d. [Maniscalco
& Lau, 2012; Fleming & Lau, 2014]), for rational and intuitive decisions and guesses
separately. First-order task sensitivity (d.) and metacognitive sensitivity (meta-d,) are bias-
free measures of the ability to detect a signal from noise (a sick sample in this experiment)
and the ability to distinguish between good and bad decisions, respectively (both in units of
first-order d.). By subtracting d. from meta-d. (metacognitive efficiency) we were able to
determine metacognitive sensitivity relative to different levels of first-order task
performance (Fleming & Lau, 2014). The latter is important because metacognitive
sensitivity is known to be influenced by first-order task performance (Fleming & Lau,
2014). We performed multivariate repeated measures analyses of variance (MANOVA) on
first- and second-order task performance as dependent variables and strategic judgment
(with three levels: rational, intuitive and guess) as the independent variabele.

To determine whether different stimulus parameters (size, color and motion)
contributed differentially to task accuracy and metacognitive adequacy we performed

robust multiple linear regressions, resulting in the following linear equations:

Y1=INT + bsColorEv + b;SizeEv + bsMotionEv + bsTaskAcc +E.
Y, =INT + biColorEv + b,SizeEv + bsMotionEv + bsMetaAdeq +E.

In this equation, Y; is the data vector containing first-order task performance scores, Y> is
the data vector containing metacognitive adequacy scores, INT is the intercept, and E is
unexplained variance. The stimulus parameters ColorEv, SizeEv and MotionEv ranged
between 1-7, indicating the amount of evidence (percentage divided by 10) of each
indicator (color, size and motion direction, respectively) present on each trial. We rescored
decision quality ratings (see above) such that they now reflected the adequacy of the
metacognitive judgment (MetaAdeq). A high value was awarded when participants rated a
correct decision to be a high-quality decision or when an error was rated as being of low
quality; similarly a low value was awarded when an error was rated as a high-quality
decision or when a correct was rated as a low-quality decision. This value of metacognitive

adequacy could vary between 1-5 (i.e, 5 points were awarded when a correct decision
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received a 5 point rating or when an error received a 1 point rating; 4 points were awarded
when a correct decision received a 4 point rating or when an error received 2 points, etc.).
The values for task accuracy (TaskAcc) varied between 0 and 1 (incorrect and correct,
respectively). In order to make the TaskAcc predictor less binary, we grouped all trials into
100 bins per participant. We adopted the multiple linear regression method to parcel out
variance caused by different experimental settings (e.g., the varying amount of color, motion
and size evidence present in the stimulus on each trial) and behavioral variables (e.g., task
accuracy or metacognitive adequacy). In this way, the unique contribution of each variable
can be observed, controlling for shared variance among the different variables (Cohen &
Cavanagh, 2011). To be able to compare b values across participants and between
behavioral variables (e.g., between task accuracy and metacognitive adequacy), we
standardized b values by scaling the coefficients by their standard deviations. All behavioral
analyses were performed using Matlab (Matlab 12.1, The MathWorks Inc.), type 2 SDT
scripts (Maniscalco & Lau, 2012: http://www.columbia.edu/~bsm2105/type2sdt/) and
SPSS (IBM SPSS Statistics, 22.0).

EEG measurements and analyses

EEG was recorded and sampled at 1048 Hz using a Biosemi ActiveTwo 64-channel system,
with four additional electrodes for horizontal and vertical eye-movements, each referenced
to their counterpart (Biosemi - Amsterdam, The Netherlands). High-pass filtering (0.5 HZ),
additional low-pass filtering (100 HZ) and a notch filter (50 HZ) were used. Next we down-
sampled to 512 Hz, after which eye movements were corrected on the basis of Independent
Component Analysis (Vigario, 1997). The data was epoched -1 to + 4 sec surrounding
stimulus onset. We removed trials containing irregularities due to EMG or other artifacts by
visually inspecting all trials. To increase spatial specificity and to filter out deep sources we
converted the data to spline Laplacian signals (Cohen, 2014). Subsequently, per participant
and per electrode the average of all trials was subtracted from each individual trial to obtain
the non-phase-locked power (Kalcher and Pfurtscheller 1995; Donner & Siegel, 2011;
Kloosterman et al., 2015). Next we used a sliding window Fourier transform (Mitra and
Pesaran, 1999), window length: 400 ms, step size: 50 ms, to calculate the time-frequency
representations of the EEG power (spectrograms) for each channel and each trial. We used
a single Hanning taper for the frequency range 2-30 Hz (frequency resolution: 2.5 Hz, bin

size: 1 Hz [Kloosterman et al., 2015]). Power modulations were characterized as the
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percentage of power change at a given time and frequency bin relative to baseline power
value for that frequency bin. The baseline was calculated as the mean power across the pre-
stimulus interval (from -0.3 to 0 s relative to stimulus onset). All signal processing steps
were done using Brain Vision Analyzer (BrainProducts) and Matlab (Matlab 12.1, The
MathWorks Inc.), X code (Cohen, 2014) and Fieldtrip (Oostenveld et al., 2010).

To increase the signal-to-noise ratio and decrease the number of comparisons we
used the data from a pilot study (n=19) to pre-select our channels, frequencies and time
windows of interest for statistical testing (see Figure 3a-b). The pilot study was identical to
the main experiment with the exception that participants did not indicate the quality of
their decision on each trial. We created six regions of interest (electrode selections):
Occipital, left and right parietal, left + right motor and prefrontal, thereby focusing our
analyses on changes in theta (4-6 HZ) and lower beta (13-20 HZ) band activity in an early
(0-1 s) and late (2-2.5 s) time window after stimulus presentation (Figure 3b). We
performed random-effects analyses by applying paired t-tests (two-tailed) to test whether
the mean percentage of power change in each time window for each frequency bin differed
significantly from baseline (from -0.3 to 0 s relative to stimulus onset). Because we tested
six poolings in each time window and frequency bin, we corrected for multiple comparisons
by adjusting the p value by fixing the false discovery rate (FDR) at 0.05 (Benjamini and
Hochberg, 1995).

Crucially, in order to study the relationship between theta and beta power
modulations and trial-by-trial differences in metacognitive strategy, metacognitive
adequacy and task accuracy, a robust multiple regression was computed that estimated
parameters for mean power in the above described time windows and frequency bands.

This resulted in the linear equation:

Y =INT + b;Stratjudg + b,MetaAdeq + bsTaskAcc + bsColorEv + bsSizeEv + bgMotionEv + E

Here Y is the data vector (baseline corrected theta or beta power values across trials for
each time period), INT is the intercept, bi_s are regression coefficients, E is unexplained
variance, and StratJudg, MetaAdeq, TaskAcc, ColorEv, SizeEv and MotionEv are trial vectors
of the participant’s strategic judgment ratings, metacognitive judgment adequacy scores,
first-order performance scores, and stimulus parameters on each trial. Stratjudg

(metacognitive strategy judgment) ranged between 1 and 3 (1= guess, 2= intuitive decision,
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3= rational decision). We grouped trials again into 100 bins per participant. To be able to
compare b values across time, frequencies, poolings, and participants we standardized b

values by scaling the regression coefficients by their standard deviations.

Results

Behavior

To test how strategic judgment related to task performance and metacognitive sensitivity
we performed a repeated measures MANOVA on d,, meta d, and metacognitive efficiency.
We found a significant effect of strategic judgment for both d. (F(2, 36) = 44.74 p <.001)
and meta d, (F(2, 36) = 10.52 p < .001), while observing a marginally/non-significant
significant effect for metacognitive efficiency (F(2, 36) = 2.64 p= .086). Participants were
better able to distinguish sick from healthy patterns when making rational decisions
compared to intuitive and guess trials (ratio-intuitive d.: t(18)=7.21, p< 0.001; ratio-guess
da: t(18)=8.31, p< 0.001 ), while performance on intuitive trials was better than guesses (da:
t(18)=3.65, p= 0.002), see Figure 2a & c. We did not observed higher metacognitive
sensitivity when participants made rational decisions compared to intuitive decisions
(ratio-intuitive meta-d.: t(18)=1.87, p= 0.078). We did observe higher metacognitive
sensitivity when participants made rational decisions compared to guesses (ratio-guess
meta-da: t(18)=4.55, p<0.001), and intuitive decision compared to guesses (meta-da:
t(18)=2.71, p=0.014). When we compared metacognitive efficiency (meta d. - d.’), we
observed higher efficiency on intuitive trials than on rational trials (metacognitive
efficiency: t(18)=2.73, p= 0.014). The latter result demonstrates that the increase in d’ is
not proportionally reflected in the increase in meta d’ when participants reported to make
use of a rational decision strategy. For the proportions of all ratings given a Hit, correct
rejection, false alarm and miss, see Figure 2b.

To determine whether different stimulus parameters (size, color and motion)
contributed differentially to first-order task accuracy and metacognitive adequacy we
performed multiple linear regressions (Figure 2d). Interestingly, we observed significant
positive regression coefficients for the motion, color and size indicators with respect to
first-order task accuracy (all t's> 3.18, all p’s <0.01), but for metacognitive adequacy we
only observed significant positive regression coefficients with respect to the size indicator
(t(18)=5.66, p<0.01). When we directly compared regression coefficients between first-

order task accuracy and metacognitive adequacy, we observed that b values for the motion

10
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indicator were significantly lower for metacognitive adequacy (t(18)=3.04, p<0.01). These
findings are in line with the answers participants provided when being explicitly asked at
the end of the experiment about what kind of information they used for their decisions:
Seventeen participants indicated to made use of size information, six indicated to made use
of color information and six reported to made use of motion information.

Our behavioral findings indicate that presented sensory evidence differentially
supports first-order task performance and second-order judgments (Charles et al,, 2014;

Maniscalco & Lau, 2016).

EEG results

We focused our analyses on two preselected time windows, six poolings and two frequency
bands derived from data from a pilot study (Figure 3a & b). In the first second after stimulus
presentation we found increased theta power in frontal (t(18)= 3.66, p <0.05, FDR-
corrected) and occipital (t(18)= 5.20, p <0.05, FDR-corrected) channels compared to
baseline. In this same time window we found decreased beta band activity in left and right
parietal, occipital and left and right motor channels (all t's(18)> 3.59, p <0.05, FDR-
corrected). In the late time window after stimulus presentation (1.5-2.5 s) we observed
increased theta band activity in frontal channels (t(18)= 2.90, p <0.05, FDR-corrected),
while we found a decrease in theta band activity in left and right motor channels (t(18)=
3.46 and t(18)= 2.88, respectively, p <0.05, FDR-corrected). In this later time window, we
observed decreased beta band activity in frontal, left-right parietal and left-right motor
channels (all t's(18)> 2.48, p <0.05, FDR-corrected), see Figure 3c.

In the present study, we were specifically interested in how variations in first-order
task accuracy, metacognitive adequacy, and metacognitive strategy judgment are related to
changes in oscillation power. We therefore performed a multiple linear regression (Cohen,
2014) to study the relationship between theta and beta power changes and diagnosis
accuracy, metacognitive adequacy, and strategy judgment, while partialling out shared
explained variance among the variables entered into the regression (i.e., stimulus
properties, task accuracy, metacognitive adequacy, and strategy judgment; see Methods).
Figures 4 and 5 show the multiple regression coefficients for the regression terms task
accuracy, metacognitive adequacy, and strategy judgment. We tested whether regression
coefficients differed significantly from zero for each frequency band and time window

separately (p <0.05, FDR-corrected; significant poolings are indicated with asterisks). We
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observed a positive linear relationship between early (t(18)= 3.16, p <0.05, FDR-corrected)
and late (t(18)= 3.64, p <0.05, FDR-corrected) prefrontal theta band activity and
metacognitive adequacy, while we found a negative linear relationship between late right
motor beta band activity and first-order task accuracy (t(18)= 3.07, p <0.05, FDR-
corrected). These results demonstrate that theta band activity in prefrontal channels
selectively relates to metacognitive adequacy. Variance in metacognitive strategy judgment
was not associated significantly with oscillation power in either early or late theta or beta
bands. To test whether coefficients actually differed significantly between task accuracy and
metacognitive adequacy (cf. Nieuwenhuis et al, 2011), we directly compared those
coefficients for prefrontal theta and found that regression coefficients were higher for
metacognitive adequacy compared to first-order task accuracy in the early (t(18)= 2.56, p
=0.02) and late (t(18)=2.69, p =0.03) time window.

In the present study, we observed a relation between theta and metacognitive
performance in a time window before the first-order response (i.e., the first 2.5s after
stimulus onset). We constructed the task in such a way that we expected participants to
have reached a first- and second-order decision before giving a first-order response. For
that purpose (and for the purpose of prolonged evidence accumulation, see above), we
added a jittered 1-1.5 sec time window between stimulus offset and the onset of
instructions to respond. To further investigate the relationship between metacognitive
performance and theta band activity, it would be interesting to examine the time window
right before the second-order response. Unfortunately, we did not add a time window
between first- and second-order responses. Nonetheless, we performed an additional
analysis, time locking the epochs to the second-order response (using 1 second of data
before the first-order response). We did not observe a significant effect (t(18)= 1.40, p
>0.05, FDR-corrected). However this result should be interpreted with great caution.
Indeed, because of the above described relatively long and jittered time window between
stimulus offset and first-order response, the timing of stimulus onset varied per epoch
when time-locking epochs to the second-order response. In dominant models of
metacognition, stimulus onset is taken as the starting point of first- and second-order
decisions. In future studies, it would be very interesting to investigate the relationship
between theta and metacognitive performance in a distinct time window directly preceding

second-order responses.
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Discussion

To summarize, we applied multiple linear regression analyses to our behavioral and
electrophysiological data to determine the relationship between first- and second-order
performance. Results demonstrate that sources of sensory evidence contributing to first-
order decision-making do not similarly support second-order decision-making. Variance in
first-order diagnosis performance was driven by size, color and motion information,
whereas variance in metacognitive adequacy was driven exclusively by size information.
These findings suggest that part of the sensory evidence used for first-order performance
becomes inaccessible or becomes susceptible to decay and noise when arriving at the stage
where this sensory information is being used for metacognitive judgments (Pleskac &
Busemeyer, 2010; Charles et al., 2014; Maniscalco & Lau, 2016).

To find out whether we could distinguish oscillatory mechanisms specifically
related to first- and second-order task performance, we performed multiple linear
regression analyses to our EEG data. We observed a positive relation between prefrontal
theta band activity and metacognitive performance that could not be explained by first-
order task performance or the various stimulus parameters. Further, we found that
increased task accuracy related to decreased beta power in motor regions (see also Donner

etal, 2007; Donner et al, 2009).

In a recent study, Maniscalso & Lau (2016) compared three dominant models that describe
the relationship between objective task performance and metacognitive (subjective) task
performance. In their study, they compared single channel models, which presume that the
same sources of (and quality of) information support both first- and second-order task
performance; dual channel models, which presume that two processing streams
differentially give rise to first- and second-order task performance; and hierarchical models,
which presume that a late processing stage evaluates the quality of sensory processing.
Results of comparing these models demonstrated that dissociations between first- and
second-order performance are best captured by hierarchical models. Maniscalso & Lau
(2016) concluded that hierarchical models performed best due to the fact that such models
require a less stringent relationship between the quality of information available for first-
and second-order task performance.

These results and findings from the present study are in line with simulations

demonstrating that a second order network is able to gradually learn to interpret
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contingencies related to processing in first order neural networks (Cleeremans et al., 2007).
From this point of view, second-order networks could learn to evaluate the extent to which
activity patterns in brain regions contributing to first-order decision-making result in
successful performance.

Here, we observed that part of the information strongly supporting first order task
performance (size information, see Figure 2d) also supported metacognitive performance,
whereas “weaker” information (color and motion, see Figure 2d) exclusively contributed to
first order task performance. These results indicate that the quality of information used for
first-order performance is not similar to the quality of information used for second-order
performance, possibly due to accrual of noise or signal decay (Pleskac & Busemeyer, 2010;
Maniscalco & Lau, 2016). Alternatively, different sources of information can be differentially
accessible for first- and second-order processes (Del Cul et al, 2009). From this perspective,
size information can be seen as information processed in the “conscious” channel, whereas
color and motion information are being processed in the “unconscious” channel. Although
such dual channel models did not seem to most accurately capture dissociations between
first- and second-order task performance in a visual backward masking task (Maniscalco &
Lau, 2016), it remains to be tested whether this generalizes to other tasks or the
dissociations between first- and second-order task performance we observed in the present

study (Figure 2).

Information used for first- and second-order task performance

Recent work suggest that sensory evidence supporting first-order performance can become
supplemented by additional sources of information that become available after a first-order
decision has been made (Wierzchon, et al., 2014; Fleming et al,, 2015). For instance, it has
been demonstrated that the manipulation of neural activity in premotor cortex affects
metacognitive performance, without altering first-order accuracy (Fleming et al., 2015).
Further, when participants had to rate the visibility of a stimulus before making a first-
order decision, exhaustiveness of the scales was lower (though not for confidence
judgments) in comparison with the situation in which participants provided such ratings
after responding to the stimulus (Wierzchon et al,, 2014). The authors concluded that the
identification task decisions affected the subsequent awareness ratings. These findings
suggest that metacognition might be an “embodied” process, in which sensory evidence

becomes integrated with motor and body-related information (Fleming et al., 2015; Allen et
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al, 2016). The availability of post-decision information that is only accessible for
metacognitive processes could also contribute to the observed different relationship
between presented sensory evidence and first- and second-order task performance (Figure
2d).

However, in the present study we did not observe a relationship between activity in
motor channels and metacognitive adequacy, while we did observe a link between
sensorimotor beta-band activity and first-order task performance. In our analyses, we
focused on the time period before first-order responses, suggesting that at least motor
preparatory processes do not contribute to metacognitive performance. It could be that the
actual motor execution (and a possible accompanying ‘sense of fluency’) is necessary in
order to contribute to metacognitive performance. At the present, however, this still
remains to be investigated.

Here, we did observe a relationship between first-order responses and beta-band
activity in motor regions, as previously reported by Donner et al. (2009). It is currently
hotly debated in what way the action system is involved in decision-making (Cisek &
Kalaska, 2005; Rushworth et al,, 2012; Buc Calderon et al, 2016), specifically whether
action selection depends on a serial or a parallel cognitive architecture. Our present findings
could be interpreted as the result of continuous interactions between perceptual and action
systems, which are more effective in case of correct decisions. Alternatively, the observed
effect may reflect a late processing stage. Predictive activity of decision outcome might have
also been evident in other regions when using more spatially refined imaging methods or
recordings at the single-neuron level (Donner et al, 2009). Nonetheless, our findings

demonstrate that activity related to motor preparation can be predictive of task accuracy.

Prefrontal theta oscillations

The present study indicates that metacognitive processes are orchestrated by means of
prefrontal theta oscillations (Figure 4 & 5). In line with our findings, previous work
demonstrated that lesions to prefrontal cortex induce metacognitive deficits, without
necessarily disrupting first-order performance (Pannu & Kaszniak, 2005; Fleming et al,,
2014). Similarly, modulating prefrontal cortical activity via theta burst stimulation has
been shown to alter metacognitive performance, without affecting first-order decision-

making (Rounis et al, 2010; Ryals et al, 2015). In the present study, we observed that

15



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

specifically theta power in prefrontal channels related to metacognitive performance
(Figure 4 & Figure 5).

A large body of work indicates that flexible and adaptive behavior and prefrontal theta
oscillations are intimately related. It has been shown that prefrontal theta oscillations
support implementation of cognitive control, action monitoring and flexible behavior
(Cavanagh & Frank, 2014; Cohen, 2014; Van de Vijver, 2016). Theta band mechanisms are
thought to facilitate flexible connections between prefrontal cortex and lower-tier task
related networks, and allow for top-down modulation in order to adjust ongoing behavior
(Cohen et al, 2009; Cohen and Cavanagh, 2011; Van Driel et al., 2015). In clinical
populations, dysfunction of prefrontal theta phase dynamics has been recently linked to
adaptive behavior deficits in schizophrenia (Reinhart et al,, 2015). By using direct current
stimulation over frontal cortex Reinhart and colleagues (2015) demonstrated that adaptive
control (post-error slowing) in schizophrenia patients increased after frontal electrical
stimulation. This behavioral effect coincided with a change in the organization of theta band
phase dynamics. Interestingly, previous work associated schizophrenia with metacognitive
deficits (Moritz & Woodward, 2002; Moritz & Woodward, 2007). Individuals with
schizophrenia demonstrated impaired discriminatory capabilities between correct and
incorrect judgments as reflected in confidence ratings (Moritz & Woodward, 2006). Here,
the nature of the observed relationship between theta power in prefrontal channels and
metacognitive performance still remains an open question. We observed the effect well
before the second-order response had been made, opening the possibility that the link
between metacognitive performance and prefrontal theta could be due to more general
processes that support metacognition performance. Further, the way typical measures of
cognitive control (e.g., post-error slowing, response conflict/inhibition [Rabbitt, 1966;
Ridderinkhof et al., 2004; Charles et al., 2013; Wokke et al., 2016]) and metacognition are
related (Boldt & Yeung, 2015) remains an interesting open empirical question. From this
perspective, metacognition could be seen as the internalization of an initially external
process, making use of similar neural mechanisms, enabling us to guide behavior more

effectively (Buzsdki et al., 2014).

Fig 1. Task design
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Participants made a “diagnosis” based on a pattern of moving dots that contained information
indicative of illness. On each trial, participants provided judgments about the quality of their

decisions and what kind of decision strategy they employed.

Fig 2. Behavioral results

a) Hit and false alarm (FA) rates for rational, intuitive decisions and guesses. b) Proportions of all
ratings given a Hit, Miss (MS), Correct Rejection (CR) and false alarm (FA). ¢) For each decision
strategy, d, meta-d, and metacognitive efficiency are displayed. d) Regression coefficients
demonstrate that different sources of information (size, color, motion) contribute differentially to
first-order task performance (black bars) and metacognitive performance (grey bars). Data are

means *= (between subject) SEM.

Fig 3. Time frequency analyses.

a) We used the data from a pilot study (n-=19) to pre-select our channels, frequencies and time
windows of interest for statistical testing. b) Channels, frequencies and time windows of interest. c)
In the first second after stimulus presentation we observed increased theta power in frontal and
occipital channels. In this same time window we found decreased beta band activity in left and right
parietal, occipital and left and right motor channels. In the late time window after stimulus
presentation, we observed increased theta band activity in frontal channels, while we found a
decrease in theta band activity in left and right motor channels. In this later time window, we

observed decreased beta band activity in frontal, left-right parietal and left-right motor channels.

Fig 4. Multiple linear regression EEG results: early time window (0-1 s)

We performed a multiple linear regression to study the relationship between theta and beta power
changes and diagnosis accuracy, metacognitive adequacy, and strategy judgment, while partialling
out shared explained variance among the variables. a) We observed a positive linear relationship
between prefrontal theta band activity and metacognitive adequacy. b) We found no effects for beta

power. Asterisks indicate significant poolings.

Fig 5. Multiple linear regression EEG results: late time window (1.5-2.5 s)

a) We also observed a positive linear relationship between prefrontal theta band activity and
metacognitive adequacy in the late time window. b) In this time window we also observed a negative
linear relationship between late right motor beta band activity and first-order task accuracy.

Asterisks indicate significant poolings.
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