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Abstract—We consider the problem of finding the cheapest
routing for a set of commodities over a directed graph, such
that: i) each commodity flows through a single path, ii) the
routing cost of each arc is given by a convex piecewise linear
function of the load (i.e. the total flow) traversing it. We propose
a new mixed-integer programming formulation for this problem.
This formulation gives a complete description of the associated
polyhedron for the single commodity case, and produces very
tight linear programming bounds for the multi-commodity case.

I. INTRODUCTION

In this paper, we study the convex piecewise linear unsplit-
table multicommodity flow (PUMF) problem. Let G = (V,A)
be a directed graph, with a set of nodes V , and a set of
arcs A. Consider as well the set of commodities K, each
k ∈ K with a given origin ok, destination dk, and demand
ρk. Each arc a ∈ A has an associated cost function ga(la)
of the load flowing through the arc la. This cost function is
continuous, convex and piecewise linear, with the segments
being represented by the finite set Sa = {1, 2, ..., |Sa|}. Each
segment s ∈ Sa has a lower and upper bound on the flow,
represented by the breakpoints bs−1a and bsa. If finite, the
breakpoint of the last segment of each arc a ∈ A , b|Sa|

a , can be
interpreted as the capacity of the arc. However, the case where
b
|Sa|
a =∞ also stands. A segment is also characterized by the

a slope csa and an intercept fsa . Here, we consider only the case
where the cost functions are convex, so these values must be
such that c1a > 0, csa > cs−1a and fsa ≤ 0, fsa < fs−1a . We also
assume that for every arc a ∈ A, ga(0) = 0, and consequently,
f1a = 0. The PUMF problem is to find a single path for each
commodity, such that the sum of the costs associated to the
load of the arcs is minimized.

The PUMF problem can be seen as a variant of the origin-
destination integer multicommodity flow (ODIMCF) problem,
which was introduced by Barnhart et al. [?]. The latter has
also been referred to as the unsplittable multicommodity flow
problem in [?]. In the ODIMCF problem, the costs are directly
proportional to the load on the arcs. Moreover, there are
explicit capacity constraints on the amount of flow traversing
an arc. In the PUMF problem, it is the routing costs, given by
the piecewise linear functions, that confine the load within

the arcs’ capacities, and at the same time, help to avoid
unnecessary detours in the network. An example of such a
cost function was proposed by Fortz and Thorup [?], [?] and
is illustrated in Figure 2.
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Fig. 1. Example of piecewise linear cost function

In this function, the cost of sending flow is cheap for arcs
with a small utilization (ratio between the arc’s load and its
capacity). However, the price quickly rises when the utilization
approaches the arc’s capacity. Even though it is possible for
the utilization to go above 100%, this is so heavily penalized,
that such a solution will likely be avoided.

In [?], the authors model this cost function by defining
variables ga, a ∈ A, and imposing the following lower bounds,
representing the segments of the piecewise linear function:

ga ≥ csala + fsa , a ∈ A, s ∈ Sa. (1a)
ga ≥ 0, a ∈ A. (1b)

Thus, for each arc a ∈ A, the variable ga stands for its
routing cost, and the objective is then to minimize

∑
a∈A ga.

Such objective functions have been widely used in problems
related with Traffic Engineering (TE) in internet networks. One
of the most important and well known of such objectives is
the Kleinrock delay function [?]:

F =
∑
a∈A

la
Ca − la

, (2)



where Ca denotes the capacity of link a ∈ A. The Kleinrock
function helps avoid congestion by penalizing heavily loaded
links. Observe that this objective function is convex, and hence
can be approximated with a convex piecewise linear function,
leading to a linear optimization problem ([?], [?], [?]). Balon et
al. [?] and Gourdin [?] discuss various TE objective functions.
These authors evaluate how well different objective functions
meet TE requirements, and conclude that piecewise linear
objectives provide a good trade-off between different measures
of quality of service.

Recently, such an objective function was also used by
Papadimitriou and Fortz [?], [?] in the context of a complex
multi-period design and routing problem. Lower bounds re-
sulting from the linear programming (LP) relaxation of the
problem are very weak, and part of this weakness is due to
the piecewise linear objective function combined with single
path routing. Stronger models provided in this paper could
be embedded in the models of [?], [?] to improve the lower
bounds and make the problems more tractable.

A related problem to the PUMF problem is the non-convex
piecewise linear multicommodity network flow (NCPMF)
problem. This problem can be seen as occupying an opposite
spectre from the PUMF problem, with respect to both the type
of piecewise linear cost function, and the splittability of the
flows. Whereas, as far as we are aware, the PUMF problem
has not been yet studied in the literature, there are many
works dealing with the NCPMF problem. Croxton et al. [?]
review three formulations that had been previously used in
the literature for generic problems with non-convex piecewise
linear costs. These three formulations use integer variables to
model the costs, and are deemed equivalent, with respect to
their LP relaxation. In [?], the same authors choose one of this
formulations, the multiple choice model [?], and strengthen it,
so as to solve the NCPMF. Due to the common properties of
the two problems, these works provide an important basis for
our work.

In Section II, we begin by formulating the problem with
a simple multiple choice model, as seen in [?], [?] and [?].
Next, we propose a set of valid inequalities that considerably
strengthen the linear programming relaxation of this formu-
lation. This is confirmed by the computational experiments,
described in Section III. Finally, in Section IV we present the
conclusions and discuss future developments.

II. PROBLEM FORMULATION

Consider the notation for the PUMF problem introduced
in the beginning of Section I. In addition, let λki be such
that λko(k) = 1, λkd(k) = −1, and λki = 0 for every
i 6= {o(k), d(k)}. We define the binary variables xka, with
xka = 1 if arc a ∈ A is on the unique path chosen to route
commodity k ∈ K, and xka = 0 otherwise; and ysa, with
ysa = 1, if arc a ∈ A contains a non-zero flow on segment
s ∈ Sa, and ysa = 0 otherwise. For the sake of simplicity, if
arc a contains a non-zero flow on segment s ∈ Sa, we say that
arc a is on segment s ∈ Sa. We also define the continuous
variables lsa, that indicate the load going through arc a ∈ A,

which is on segment s ∈ Sa. The PUMF problem can be
formulated with the following mixed integer linear program
(MIP), which we refer to as the Basic Model 1:

min
∑
a∈A
s∈Sa

(fsay
s
a + csal

s
a) (3a)

s.t.
∑

a∈δ+(i)

xka −
∑

a∈δ−(i)

xka = λki , i ∈ V, k ∈ K, (3b)

∑
s∈Sa

ysa ≤ 1, a ∈ A, (3c)∑
s∈Sa

lsa =
∑
k∈K

ρkxka, a ∈ A, (3d)

bs−1a ysa ≤ lsa ≤ bsaysa, a ∈ A, s ∈ Sa, (3e)

xka ∈ {0, 1}, a ∈ A, k ∈ K, (3f)
ysa ∈ {0, 1}, a ∈ A, s ∈ Sa, (3g)
lsa ≥ 0, a ∈ A, s ∈ Sa. (3h)

The typical multicommodity flow balance constraints (3b)
define the path between the origin and destination node of each
commodity. Then, constraint sets (3c-3e) identify the segment
each arc is on. Naturally, only a single segment per arc may
be selected (3c). The choice of segment is implied by the load
flowing through the respective arc. This load is calculated in
constraints (3d) and its value is assigned to one of the variables
l. To ensure that only the appropriate load variable is non-
zero, in (3e) we either bound lsa by the breakpoints of the
corresponding segment, if ysa = 1; or we force it to zero, if
ysa = 0.

Variables x and y are considered as binary (3f-3g), whilst
variables l are regarded as continuous (3h). Note that if the cost
function for every arc is convex, it is not necessary to define
explicitly y as binary; instead they can simply be defined, as
continuous and between 0 and 1. Nevertheless, one reason for
defining them as binary will be discussed on Section III.

The PUMF problem can also be modelled using the objec-
tive function

∑
a∈A ga, together with constraints (1a,1b) and

(3b,3d,3f,3h). We refer to this formulation as Basic Model 2.
The LP relaxation of these Basic Models, in which we relax
the integrality on (3f), can provide very weak lower bounds,
even for toy instances. In fact, it is worthwhile to investigate
whether or not these two models produce the same LP bound,
since we have observed that for all the instances tested, their
LP bounds are equal.

As an example to show how weak these bounds are,
consider a graph with only two nodes, o and d, connected by
three parallel arcs. Assume a single commodity with origin
o, destination d, and demand 3. Finally, assume that the cost
function on all three arcs is the same, and is characterized
by only two segments, such that the breakpoints are b0 = 0,
b1 = 1 and b2 = 3; the slopes are c1 = 1 and c2 = 10; and the
intercepts f1 = 0 and f2 = −9. It is easy to see that there are
three solutions to the PUMF problem on this graph, all with



the same cost of 63: sending the commodity flow through each
one of the three available arcs. However, in the LP relaxation
of the Basic Models, the flow of the commodity can be split
among the three arcs, each on the first segment. This results
in a LP relaxation optimum value of only 9. By manipulating
the structure of the cost functions, this gap can be virtually
any value. Therefore, it is important to strengthen this model,
in order to solve our problem efficiently.

To this end, we use variable disaggregation, a common
technique to strengthen the LP relaxation of MIPs. Thus,
consider the binary variables xksa , with xksa = 1 if arc a ∈ A,
which is on segment s ∈ Sa, is on the unique path chosen to
route commodity k ∈ K, and xksa = 0 otherwise. We denote
as the Disaggregated Model, the following formulation:

min
∑
a∈A
s∈Sa

(
fsay

s
a + csa

∑
k∈K

ρkxksa

)
(4a)

s.t.
∑

a∈δ+(i)
s∈Sa

xksa −
∑

a∈δ−(i)
s∈Sa

xksa = λki , i ∈ V, k ∈ K, (4b)

∑
s∈Sa

ysa ≤ 1, a ∈ A, (4c)

bs−1a ysa ≤
∑
k∈K

ρkxksa ≤ bsaysa, a ∈ A, s ∈ Sa, (4d)

xksa ∈ {0, 1}, a ∈ A, k ∈ K, s ∈ Sa, (4e)
ysa ∈ {0, 1}, a ∈ A, s ∈ Sa. (4f)

In this new model the l-variables are no longer necessary as
lsa =

∑
k∈K ρ

kxksa for every a ∈ A, s ∈ Sa, leading to the new
objective function (4a) and variable bound constraints (4d).
Constraints (4b) define, for each commodity, a path between
the origin and destination, now with the disaggregated x-
variables.

It is easy to see that the Disaggregated Model, as it has been
defined so far, is equivalent to the Basic Model. However, we
can use the disaggregated variables to create new inequalities
that considerably strengthen the LP relaxation.

First, note that an arc being traversed by a given commodity
cannot be on a segment whose upper breakpoint is smaller
than the demand flow. Therefore, we can fix the x-variables
as follows:

xksa = 0, a ∈ A, k ∈ K, s ∈ Sa : bsa < dk (5)

Furthermore, when combined with inequalities (4d), this
variable fixing has a strong impact on the values of the y-
variables.

A well-known class of valid inequalities, common with this
variable disaggregation, are the following:

xksa ≤ ysa, k ∈ K, a ∈ A, s ∈ Sa. (6)

These valid inequalities are an obvious choice in cases
where the intercepts fsa are non-negative (e.g. [?]), as they lift
the y-variables. This is not the case for the PUMF. However,
due to (4c), these valid inequalities can still be useful in
cutting-off LP solutions; those that for a given arc a have
xksa + xk

′s′

a > 1, k′ 6= k, s′ 6= s.
A related class of valid inequalities, but now making use

of the fact that the intercepts fsa are negative, is obtained by
tightening coefficients in the first inequality in (4d):

bs−1a ysa ≤
∑
k∈K

min(ρk, bs−1a )xksa , a ∈ A, s ∈ Sa. (7)

Empirical results reveal that combining the Disaggregated
Model with both fixing variables (5) and valid inequalities
(7) is highly advantageous, improving both the quality of
the lower bounds provided by the LP relaxation, and the
computing time of the MIPs. We refer to this strengthening
of the Disaggregated Model as the Strong Model. We do not
include valid inequalities (6) in the Strong Model, as empirical
results also show that they seldom improve the bounds of the
LP relaxation, and often cause out-of-memory issues for large
instances. Note, however, that they might prove to be useful
for specific instances, when generated dynamically.

Finally, we conclude this section by pointing out a relevant
result about the Strong Model, namely that its LP feasible set
provides a complete description of the associated polyhedron
for the single commodity case. Due to space restrictions, we
omit the proof in this paper.

III. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of computational
experiments that were conducted in order to compare the
Basic Models 1 and 2, and the Strong Model, for solving
instances of the PUMF problem. These experiments were done
on randomly generated instances, that follow the motivation of
the problem. We created 40 instances and grouped them into 8
classes, according to number of nodes, arcs and commodities.
Table I describes each class of instances.

In each of these instances, the distribution of the arcs on the
graph is random. Each arc was assigned a capacity of 50, 75
or 100. The traffic demand between the origin and destination
node of each commodity was calculated using the following
formula, used in [?]:

ρk = αOokDdkR(ok,dk)e
−L2(ok,dk)

2∆ (8)

For each node i, two random numbers, Oi and Di were
randomly generated in the interval [0, 1]. These values reflect,
respectively, the activeness of each node as a sender and as
a receiver. Another value, R(i,j), was generated in the same
interval, for each pair of nodes. The parameter α was set to
0.6, for all the experiments; we found that this value lead to
instances, where the majority of the arcs used in the optimal
solution were not overloaded. The Euclidian distance (L2) was
substituted by the length of the shortest path between each pair



of nodes, with respect to the number of links. ∆ is the largest
distance in the network. The final values were rounded to the
nearest integer.

The routing cost on every arc are given by the function
shown in Figure 2, and described in [?].

Class ID |V | |A| |K|
1 60 2478 200
2 60 2832 150
3 60 2832 200
4 80 316 250
5 80 1896 200
6 80 1896 250
7 80 3160 200
8 80 1896 350

TABLE I
DESCRIPTION OF EACH CLASS OF INSTANCES.

The three formulations were implemented using ILOG
CLEX 12.6, on a Intel Core i7 CPU 960 @ 3.20GHz with
12GB of memory with 64 bits, and running Ubuntu 14.04.2
LTS (GNU/Linux 3.2.0 − 26−generic x86 64). Tests were
done using both the MIP and LP of each instance. Figures 3,
4 and 5 illustrate the results.
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Fig. 2. Performance profile of the solving time of the MIP.

Figure 3 describes the performance profile of the solving
time of the MIPs, for each model. This performance profile
measures the percentage of instances (spanned over the y-axis)
that are solved under different amounts of time, detailed in
the x-axis. It reveals that, even though using CPLEX with the
Basic Model 1 is faster in solving the “easier” instances (Class
4), for the more “demanding” ones, using CPLEX with the
Strong Model far out-performs the latter. Whereas by using
the Basic Model 1 we were only able to solve 70% of the
instances in the time limit, by using the Strong Model we
solved 88%. CPLEX was not able to solve the remaining 5
instances, with the Strong Model, not due to time restrictions,
but due to lack of memory. All the other instances were solved
fairly quickly, under 200 seconds. Finally, we can also observe
that the Basic Model 2 is much slower than the other models,
only solving 53% of the instances within the time limit. The
disparity between the results of the two Basic Models might

be partly explained by our implementation: we defined the y-
variables as binary, which might help during CPLEX’s branch-
and-bound procedure.
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Fig. 3. Performance profile of the solving time of the LP.

When it comes to solving the LP relaxation of each instance,
the Strong model is also much faster than the two Basic
Models. This can be observed in the performance profile
depicted in Figure 4. It is also curious to verify that the Basic
Model 2 is only able to solve the LP relaxation of 78% of the
instances within the one hour time limit.

0
0.

2
0.

4
0.

6
0.

8 1
1.

2
1.

4
1.

6
1.

8 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

10

20

30

40

50

60

70

80

90

100

gap (%)

%
of

in
st

an
ce

s

Basic 1 & 2

Strong

Fig. 4. Performance profile of the LP gap.

Let g∗IP and g∗LP be, respectively, the cost of the best integer
solution found, and the cost of the solution of the LP relaxation
of each model. We denote as LP gap the ratio g∗IP−g

∗
LP

g∗IP
. The

performance profile in Figure 5 measures the proportion of our
instances whose LP gap is under the the percentages detailed
in the x-axis. In it, we can observe that the two Basic Models
produce the same LP bound. More importantly, we can see
how strong the Strong Model really is. The high percentage
(90%) of instances that have 0 LP gap with the Strong Model,
contrasts significantly with the results for the Basic Models.

IV. CONCLUSION

In this work, we present a novel, special case of the
multicommodity flow problem, for which the flow of each
commodity is unsplittable, and the routing costs on the arcs



are given by a convex piecewise linear function. We propose
four MIP formulations for this problem: the Basic Model
1 and 2, the Disaggregated Model and the Strong Models.
We present computational experiments on randomly generated
instances. These experiments reveal that the LP relaxation of
the Strong Model is able to provide very good lower bounds,
far better than the ones provided by the LP relaxation of the
Basic Models. In fact, for 90% of the randomly generated
instances, the LP gap of the Strong Model is null. For this
reason, the Strong Model is also much more efficient than
the Basic Models, in solving the MIPs of the instance. When
implemented in CPLEX, this model was able to solve 88%
of the instances in under 200 seconds. As for the remaining,
unsolved instances, the issue was not the time restriction, but
lack of CPU memory.

In the future, we want to explore the use of decomposi-
tion methods, that could eventually help solve the issue of
large memory consumption for the more demanding instances.
Moreover, we consider that it would be interesting to delve into
a variant of this problem, where the piecewise linear cost func-
tions can be non-convex. This could be seen as a special case
of the non-convex piecewise linear multicommodity problem
studied in [?] and [?], where the flows are unsplittable.
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