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Various spatial density profiles can develop in partially miscible stratifications, when a phase A
dissolves with a finite solubility into a host phase containing a dissolved reactant B. We investigate
theoretically the impact of an A+B → C reaction on such density profiles in the host phase and
classify them in a parameter space spanned by the ratios of relative contributions to density and
diffusion coefficients of the chemical species. While the density profile is either monotonically in-
creasing or decreasing in the non reactive case, reactions combined with differential diffusivity can
create eight different types of density profiles featuring up to two extrema in density, at the reac-
tion front or below it. We use this framework to predict various possible hydrodynamic instability
scenarios inducing buoyancy-driven convection around such reaction fronts when they propagate
parallel to the gravity field.

I. INTRODUCTION

The study of partially miscible stratifications has re-
cently gained interest due to its relevance for ground-
water management [1, 2], enhanced oil recovery [3–5] or
carbon dioxide (CO2) sequestration [5–14]. Such strat-
ifications are typically composed of a reservoir phase A
dissolving with a finite solubility into a host phase, con-
taining chemicals that may react with A. The dissolu-
tion of A is limited by its solubility in the host phase,
where most of the dynamics occurs [12–18]. Upon dis-
solution and reaction, various concentration profiles can
develop and thereby affect the physical properties of the
host phase.

In particular, dynamic changes in concentrations can
induce spatio-temporal variations of the density of the
solution which, in turn, can generate hydrodynamic
“buoyancy-driven” instabilities [19]. As an example,
Rayleigh-Taylor convection can develop whenever locally
a denser zone overlies a less dense one in the gravity field
[20] or gravity currents can also be observed because of
horizontal density gradients [21, 22]. In the case of par-
tially miscible interfaces, so-called “dissolution-driven”
convection can also develop when the transfer of one
phase to the other one locally changes the density of
the host solution upon dissolution [23, 24]. This is for
instance the case during dissolution from above of less
dense CO2 into brine [12–18], or upon dissolution from
below of methanol into cyclohexane [25].

We thus see that changes of density gradients by
reaction-diffusion processes during dissolution in par-
tially miscible systems can be the source of convective
motions affecting mixing and the transfer from one phase
to the other. Classifying the possible density profiles de-
veloping around A+B → C reaction-diffusion fronts in
such partially miscible systems is therefore crucial to un-
derstanding the onset of possible buoyancy-driven insta-
bilities. It also helps to predict the spatial zones in which

convection can be localized in cases of non-monotonic
density profiles i.e. spatial profiles featuring local ex-
trema [26–29].

Density profiles have already been classified in the case
of a miscible interface between two solutions containing
solutes A and B. In the non reactive case, six different
density profiles can develop depending on the relative
contribution of A and B to density and their ratio of
diffusion coefficients [30]. In the reactive case where an
A+B → C reaction takes place, six different profiles are
also possible if all species diffuse at the same rate [31,
32]. On the contrary, if differential diffusion is taken into
account, the number of possible density profiles increases
up to 62 in the miscible case [33].

For partially miscible stratifications, the possible den-
sity profiles have been classified in the case where all
species diffuse at the same rate [15, 16]: without reac-
tion, only two density profiles can build up, monotoni-
cally increasing or decreasing [16]. The number of possi-
ble density profiles increases up to four when a reaction
A+B → C takes place in the host phase [15, 16]. If the
non reactive profile can be buoyantly unstable, i.e. the
density of the solution increases upon dissolution, a mini-
mum of density is formed when C contributes less to den-
sity than B, which slows down the growth of buoyancy-
driven fingering [15–17]. If C is sufficiently denser than
B, the density profile remains monotonic and the reaction
can accelerate the development of the instability [15, 16].
Chemistry can even be at the origin of the instability
by creating a maximum of density when the dissolving
species decreases or does not modify density [16, 34–38].
Similarly to what has been done in miscible stratifica-
tions [33], a classification of the possible density profiles
is now needed for partially miscible systems in the more
general case where species can diffuse at different rates.

In this context, we analyze here theoretically the
reaction-diffusion (RD) density profiles building up in a
partially miscible system when a species A dissolves into
a host solution of B and an A+B → C reaction takes
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FIG. 1: Schematic of a two-layer partially miscible
stratification, where the reservoir phase A dissolves
with a finite solubility into the host phase (shaded)

containing a dissolved reactant B.

place in the host phase. We classify these profiles in a
parameter space spanned by the diffusivity and solutal
expansion coefficient ratios. To do so, we derive asymp-
totic concentration profiles from the classical RD equa-
tions. By reconstructing the density profiles in the host
solution, we show that eight different types of RD den-
sity profiles can be observed, with either zero, one or two
extrema at the reaction front or below. Each type of RD
density profile will lead to a different scenario for the de-
velopment of buoyancy-driven convection. The classifica-
tion developed here can be used as a framework to unify
previous results as well as predict potential dynamics in
unexplored parameter zones.

This work is structured as follows. The model setup
and the equations are presented in Section II. We com-
pute the asymptotic concentration profiles in Section III
and construct the related RD density profiles both above
and below the reaction front in Section IV. Section V
gives more details about the extrema of density below the
reaction front. The global density profiles are described
in section VI and compared to their counterparts in mis-
cible stratifications in Section VII. Finally, we conclude
this study in Section VIII.

II. MODEL

Let us consider an isothermal partially miscible system
in which a reservoir phase A is placed in contact with a
host phase along a planar interface located at z = 0 with
z pointing into the host phase (Fig. 1). Although this
study is valid for any orientation of the z axis with re-
gard to gravity, Fig. 1 illustrates the special case where
the interface is at the top of the host phase, which is
for instance the case in the convective dissolution of CO2

into brine during CO2 sequestration [6, 7, 12–14]. The
host phase contains a dissolved reactant B in initial con-
centration B0. Phase A dissolves in the course of time
into the host phase, and reacts with B according to the
A+B → C scheme. This bimolecular reaction is consid-
ered to occur as an elementary step so that its rate is

given by qAB, with q the kinetic constant, and A, B the
concentrations of species A and B, respectively.

In order to model the dynamics in the host phase, we
make the following assumptions. At the interface, the
concentration of A is equal to its solubility A0 in the
host phase (local chemical equilibrium). This value is
not limited by the concentration of A in the reservoir
phase and does not evolve over time. Moreover, we sup-
pose that A0 does not depend on the concentrations of
B or C. This approximation is valid as long as the ini-
tial concentration B0 of the solute B in solution is small
enough [14]. No mass transfer takes place from the host
phase to the reservoir phase A.

The RD equations governing the evolution of the con-
centration profiles A, B, C in the host phase write

∂A

∂t
= DA

∂2A

∂z2
− qAB, (1a)

∂B

∂t
= DB

∂2B

∂z2
− qAB, (1b)

∂C

∂t
= DC

∂2C

∂z2
+ qAB, (1c)

where the molecular diffusion coefficients Di are assumed
constant for each species i = A, B, C.

To describe the convective dynamics in the host phase,
Eqs. (1) can be coupled to an equation for the velocity
of the fluid. We explicitly do not detail the flow equation
here as our classification of density profiles is generic, i.e.
valid for any flow equation , e.g. Darcy’s law in porous
media and Hele-Shaw cells, Stokes or Navier-Stokes equa-
tions in other cases [20]. The buoyancy term ρg typically
appears in such a flow equation, where g is the gravity
field and ρ is the density of the solution depending on the
concentrations. In a diluted solution, this dependence is
assumed to be linear [9] as

ρ = ρ0(1 + αAA+ αBB + αCC) (2)

where ρ0 is the density of the solvent of the host phase
and αi = 1

ρ0

∂ρ
∂i is the solutal expansion coefficient of

species i.
To solve Eqs. (1), we use the initial conditions

A = A0 for z = 0, A = 0 for z > 0, (3a)

B = B0, C = 0 ∀z, (3b)

and the boundary conditions

A = A0,
∂B

∂z
= 0,

∂C

∂z
= 0 for z = 0, (4a)

A→ 0, B → B0, C → 0 for z →∞. (4b)

We nondimensionalize Eqs. (1) by introducing the di-
mensionless time t̃ = t/tc, space coordinate z̃ = z/lc,

concentrations [Ã, B̃, C̃] = [A,B,C]/A0, and density
ρ̃ = (ρ− ρ0)/ρc, with tc = 1/(qA0) and lc =

√
DAtc the

characteristic RD time and length scales [15, 16, 31, 32],
and ρc a characteristic density whose expression depends
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on the flow equation. For example, if Darcy’s law is used,
ρc = µDA/(κlcg), with µ the viscosity of the solvent, κ
the permeability of the porous medium and g the norm
of the gravity field.

Substituting these dimensionless variables into Eqs.
(1)-(2) and dropping tildes for convenience leads to the
dimensionless equations:

∂A

∂t
=

∂2A

∂z2
−AB, (5a)

∂B

∂t
= δB

∂2A

∂z2
−AB, (5b)

∂C

∂t
= δC

∂2A

∂z2
+AB, (5c)

ρ = RAA+RBB +RCC. (5d)

δi = Di/DA is the ratio of diffusion coefficient of species i
with that of the dissolving species A. The Rayleigh num-
ber Ri = αiA0ρ0/ρc of species i quantifies the relative
contribution of i to density. Ri can be positive, zero
or negative, depending on whether species i increases
(αi ≥ 0), does not modify (αi = 0) or decreases (αi ≤ 0)
the density of the solution.

The initial conditions (3) are nondimensionalized as:

A = 1 for z = 0, A = 0 for z > 0, (6a)

B = β, C = 0 ∀z, (6b)

where β = B0/A0 is the ratio of the initial concentration
of B and the solubility of A in the host phase. Similarly,
boundary conditions (4) become

A = 1,
∂B

∂z
= 0,

∂C

∂z
= 0 for z = 0, (7a)

A→ 0, B → β, C → 0 for z →∞. (7b)

The dynamics in this reactive partially miscible stratifi-
cation depends thus on six dimensionless parameters: the
diffusivity ratios δB and δC , the Rayleigh numbers RA,
RB and RC , and the ratio β of the initial concentration
of B and solubility of A.

III. REACTION-DIFFUSION
CONCENTRATION PROFILES

To understand the dynamics in the host phase and
reconstruct the density profiles therein, we compute the
RD concentration profiles solutions of Eqs. (5a)-(5c) with
the initial (6) and boundary (7) conditions specific to the
partially miscible case, and compare them to their non
reactive counterpart.

A. Non reactive case (β = 0)

We first recall the dynamics in the non reactive case
upon dissolution of A into the host phase [12–14]. The

only species present in solution is A, and its diffusive

concentration profile is a solution of Fick’s law ∂A
∂t = ∂2A

∂z2

with initial conditions (6) and boundary conditions (7)
where B = 0 and C = 0. We introduce the self-similar
variable η = z/(2

√
t) and thus solve A′′ + 2ηA′ = 0,

with the notation A′ = dA
dη and A′′ = d2A

dη2 . The solution,

illustrated in Fig. 2a, is

A = 1− erf(η), (8)

where erf(η) is the error function. Species A dissolves
from the boundary η = 0 and spreads towards the bulk of
the host solution. The flux JNR of A dissolving through
the interface into the host phase is evaluated as JNR =
− ∂A

∂z

∣∣
z=0

and reads

JNR =
1√
πt
, (9)

where “NR” stands for “non reactive”. This flux de-
creases in time as diffusion smoothes the concentration
gradient.

B. Reactive case (β 6= 0)

In the reactive case, all three species A, B and C con-
tribute to the density of the host phase. The dimen-
sionless density (5d) therefore evolves in space and time
depending on the dynamic changes of the concentration
profiles A, B and C.

1. Asymptotic solutions

An analytical solution of Eqs. (5a)-(5c) can be ob-
tained by assuming that the reaction takes place only at
a reaction front that moves on a diffusive time scale. The
position of the reaction front is defined as zf = 2ηf

√
t

where ηf > 0 is a constant [39–42]. This assumption is
valid in the asymptotic regime when the reaction is lim-
ited by the diffusive transport of A and B towards each
other, i.e. for sufficiently large times compared to the
characteristic chemical reaction time (t � 1). In this
limit, species A and B are immediately and entirely con-
sumed at the reaction front. Outside the reaction front,
no reaction takes place and the concentration fields j are
solutions of the diffusive equations δjj

′′ + 2ηj′ = 0 with
the following boundary conditions

η = 0 : A = 1, B′ = 0, C ′ = 0, (10a)

η = ηf : A = 0, B = 0, C = γ, (10b)

η → ∞ : A = 0, B = β, C = 0, (10c)

where γ is the maximum concentration possible for C,
which will be computed below (Eq.(13b)). The asymp-
totic concentration fields in the region above the reaction
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front 0 ≤ η ≤ ηf denoted by “U” (short for “Upper”) are

AU = 1− erf(η)

erf(ηf )
, (11a)

BU = 0, (11b)

CU = γ. (11c)

The asymptotic concentration fields in the region below
the reaction front η ≥ ηf denoted by “L” (short for
“Lower”) are

AL = 0, (12a)

BL = β

(
1− erfc(η/

√
δB)

erfc(ηf/
√
δB)

)
, (12b)

CL = γ
erfc(η/

√
δC)

erfc(ηf/
√
δC)

, (12c)

where erfc(η) = 1 − erf(η) is the complementary error
function.

2. Concentration profiles

Let us analyze the shape of the concentration profiles
(11)-(12), shown in Figs. 2 for different values of param-
eters β, δB , δC .
AU is like an error function, decreasing monotonically

from the interface like the non reactive concentration pro-
file (8). The consumption of A by the reaction is reflected
by the denominator erf(ηf ) ≤ 1 in (11a): at the same
coordinate η, AU is smaller than its non reactive coun-
terpart (Fig. 2a). This difference grows when β or δB
increase (Figs. 2b-2c), due to a larger flux of reactant B
towards the reaction front.

Below the reaction front, BL given by (12b) increases
from 0 at the front towards its initial value β in the bulk
of the solution (Fig. 2b). This profile becomes sharper
when δB decreases (Fig. 2c) as then weaker diffusion
acts less efficiently at smoothing the concentration gra-
dient. Neither A nor B depend on δC (Fig. 2d). The
concentration profiles A and B are monotonic, like their
counterparts in miscible systems.

The product C accumulates in the zone 0 ≤ η ≤ ηf
between the interface and the reaction front and its con-
centration decreases monotonically beyond η > ηf . The
amount of C produced increases with β and δB follow-
ing a larger consumption of A (Figs. 2b-2c). Increasing
δC does not affect the total amount of C produced but
smoothes its concentration profile because of faster dif-
fusion (Fig. 2d).

3. Position of the reaction front and maximum
concentration of C

We now examine ηf , the position of the reaction front
in self-similar coordinates, and γ, the maximum dimen-
sionless concentration of product C.

To compute ηf and γ, we invoke the fact that the reac-
tion is diffusion-limited. According to the stoichiometry
of the reaction, the fluxes must be equal at the reaction
front, i.e. A′U |ηf = −δBB′L|ηf = δCC

′
L|ηf , which after

rearrangement gives

erfc(ηf/
√
δB) = β

√
δB erf(ηf ) exp

[
−η2f

(
1

δB
− 1

)]
,

(13a)

γ =
erfc(ηf/

√
δC)√

δC erf(ηf )
exp

[
η2f

(
1

δC
− 1

)]
.

(13b)

We use a Newton-Raphson iterative method [43] to ob-
tain ηf as a function of δB and β from the implicit Eq.
(13a). Once ηf is known, γ can be explicitly computed
as a function of δC and ηf using Eq. (13b).

Let us analyze how ηf and γ depend on the parameters
β, δB and δC .

In the case of contact between miscible solutions of A
and B, ηf can be of either sign, i.e. the reaction front
can move in either direction with regard to its initial
position or stay immobile, depending on the diffusivity
and initial concentration ratios [31, 32, 39–42]. Here, A
progressively invades the host solution from the interface
where it dissolves. Therefore the reaction front always
moves in the same direction towards positive η (ηf > 0).

The value of ηf depends on β and δB , and determines
the rate the front moves forward. When δB = 1, the
dependence of ηf on β is given by erf(ηf ) = 1

β+1 [16].

More generally, ηf decreases, i.e. the motion of the re-
action front slows down, when β or δB increases (Figs.
2b-2c and 3). Note that for small ηf and short time, the
reaction front can be assumed to be at the interface, so
that only the lower concentration profiles are considered
[44, 45]. Increasing β or δB amplifies the flux of fresh
reactant B towards the reaction zone. This enhances the
consumption of the dissolving species A, slowing down
its invasion of the host phase and increasing the amount
of C produced (Figs. 2b-2c and 4a).
γ increases thus when β and δB increase. In particular

when δB = δC , γ is equal to β [15, 16]. In addition, γ
decreases when δC increases (Figs. 2d and 4b) because
then the product diffuses faster away from its production
zone.

4. Flux of A through the interface

The reactive flux J = − ∂AU
∂z

∣∣
z=0

of A through the
interface is evaluated as

J =
1

erf(ηf )
√
πt

=
JNR

erf(ηf )
, (14)

which shows that the flux decreases with time. As erf
(ηf ) ≤ 1, the reactive flux is always larger than its non
reactive counterpart (9). The difference between the re-
active and non reactive cases increases with β and δB ,
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(d)

FIG. 2: (Color online) Asymptotic concentration profiles (11)-(12) of A, B and C for (a) δB = δC = 1, β = 1
compared to the non reactive profile (8) of A (dashed black), (b) δB = δC = 1 and different β, (c) β = 1, δC = 1 and

different δB , (d) β = 1, δB = 1 and different δC .

as shown in Figs. 5. When the host solution is more
concentrated in B and when this species diffuses faster,
the consumption of A by the reaction is indeed ampli-
fied, which accelerates the transfer of A towards the host
solution.

IV. CLASSIFICATION OF THE
REACTION-DIFFUSION DENSITY PROFILES

As the presence of extrema in the density profile ρ is
known to affect the convective stability of the system
[15, 16, 31, 32], we search for the region in the param-
eter space where ρ is non monotonic, i.e. for which its
derivative ρ′ changes sign at a given location ηm.
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FIG. 3: The position ηf of the reaction front with
regard to the interface at ηf = 0, computed with Eq.

(13a), decreases when δB or β increases.

A. Non reactive case (β = 0)

We first consider the density profile in the non reactive
case, where ρ depends only on the concentration profile
(8) of species A as [15, 16]

ρ = RAA = RA[1− erf(η)]. (15)

The derivative ρ′ is given by

ρ′ = RAA
′ = − 2√

π
RAe

−η2 . (16)

The sign of ρ′, depending on RA only, is constant over
its domain. ρ is thus monotonic increasing along z when
RA > 0, decreasing along z when RA < 0 and constant
when RA = 0.

B. Reactive case (β 6= 0)

The asymptotic RD density profiles computed by in-
serting solutions (11)-(12) into Eq. (5d) are

ρU = RA

(
1− erf(η)

erf(ηf )

)
+RCγ, (17a)

ρL = RBβ

(
1− erfc(η/

√
δB)

erfc(ηf/
√
δB)

)
+RCγ

erfc(η/
√
δC)

erfc(ηf/
√
δC)

. (17b)

Equations (17) show that in the bulk solution (η →∞),
where B is the only species contributing to the density,

0.0 2.0 4.0 6.0 8.0 10.0

δB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

γ

β=0.5

β=1.0

β=1.5

(a)

0.0 2.0 4.0 6.0 8.0 10.0

δC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

γ
β=0.5

β=1.0

β=1.5

(b)

FIG. 4: The maximum product concentration γ given
by (13b) is amplified when β increases or (a) δB
increases (δC = 1), or (b) δC decreases (δB = 1).

ρ tends to its initial value RBβ. At the reaction front
ηf where A and B are entirely consumed by the reaction
and C is the only species present at concentration γ, the
density is given by ρ = RCγ. At the interface A and C
are present in amount A = 1 and C = γ and the density
is equal to RA +RCγ.

We now analyze the density profiles above and below
the reaction front separately.



7

0 20 40 60 80 100

time

0.0

0.1

0.2

0.3

0.4

0.5
fl
u
x

β=0.0

β=0.5

β=1.0

β=1.5

(a)

0 20 40 60 80 100

time

0.0

0.1

0.2

0.3

0.4

0.5

fl
u
x

Non reactive
δB =0.1

δB =1.0

δB =2.0

(b)

FIG. 5: The flux (14) of A through the interface decreases with time, and at a given time increases with (a) β
(δB = 1) and (b) δB (β = 1). The full curve represents the flux in the non reactive case (9).

1. Above the reaction front (0 ≤ η ≤ ηf )

Above the reaction front, the reactant B is not present
because it has been consumed by the reaction. Only A
and C contribute to the density profile. The derivative
ρ′U is written as

ρ′U = RAA
′
U = − 2√

π

RA
erf(ηf )

e−η
2

. (18)

Similarly to its non reactive counterpart (see subsection
IV A), ρU is a monotonic function with two possibilities:
if A decreases or does not change the density of the so-
lution (RA ≤ 0), ρ increases or remains constant from
the interface towards the reaction front (ρ′U ≥ 0, zone
IIU in Fig. 6). In the other case (RA > 0), the density
decreases from the interface towards the reaction front
(ρ′U < 0, zone IU in Fig. 6). Note that in this study, “II”
will always correspond to monotonic increasing and “I”
to monotonic decreasing profiles. This classification does
not depend on the magnitude of RA but only on its sign.

2. Below the reaction front (η ≥ ηf )

Below the reaction front, two species contribute to the
density profile: the dissolved reactant B and the product

0 RA

IIU IU

η

ηf

ρU

η

ηf

ρU

FIG. 6: Classification of the density profiles ρU above
the reaction front (0 ≤ η ≤ ηf ): monotonic increasing in

zone IIU (dot-hatched), constant on the boundary
RA = 0, and monotonic decreasing in zone IU (shaded).

The dashed line in the plots ρU (η) indicates the
position ηf of the reaction front.

C, so that ρ′L reads

ρ′L = RBB
′
L +RCC

′
L

=
2√
π

RB βe
−η2
δB

erfc(ηf/
√
δB)
√
δB
−RC

γe
−η2
δC

erfc(ηf/
√
δC)
√
δC

 .

(19)
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IL IIL

η
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(a)

0 RB /RC

0
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1

1

δ B
/δ
C
=
R B
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C

δB /δC =1

IL

IIL

IIIL

IVL
η

ηf

ρL

η
ηf

ρLη
ηf

ρL

η
ηf

ρL

(b)

FIG. 7: Classification of the density profiles ρL below
the reaction front (η ≥ ηf ) for (a) RC = 0 and (b)
RC > 0: monotonic decreasing in zone IL (shaded),

monotonic increasing in zone IIL (dot-hatched), with a
minimum in zone IIIL, with a maximum in zone IVL,

and constant for RB = RC = 0 or RB/RC = δB/δC = 1.
The dashed line in the plots ρL(η) indicates the position

ηf of the reaction front.

Therefore, the balance between both contributions
RBB

′
L and RCC

′
L to the slope of the density profile de-

termines whether ρL has an extremum or not.

Let us first mention a few trivial cases before moving
to the more complex case where both species B and C
increase the density of the solution.

When C does not contribute to the density of the so-

lution (RC = 0, Fig. 7a), the density profile trivially fol-
lows the B profile and ρ′L = RBB

′
L. As B increases from

zero at the reaction front to its bulk value β (B′L > 0,
Figs. 2), ρL increases along z when B increases the den-
sity of the solution (RB > 0, zone IIL). Conversely, when
B decreases the density (RB < 0, zone IL), ρL decreases
along z (ρ′L < 0), and when neither B nor C contributes
to the density (boundary RB = 0 in Fig. 7a), ρL is a
constant (ρ′L = 0).

Similarly, when RB = 0, the density profile follows the
C profile, with C decreasing from γ at the reaction front
to zero in the bulk (C ′L < 0, Figs. 2). ρL decreases
thus towards the bulk when C increases the density of
the solution (RC > 0, in zone IL of Fig. 7b), and vice
versa (not shown here).

Finally, the trivial case when RB and RC are of op-
posite sign can be understood as follows. As B′L > 0
and C ′L < 0, the density gradients RBB

′
L and RCC

′
L

are of the same sign and the density profile is mono-
tonic (Eq. (19)). More specifically, the density profile
decreases along z when C increases the density and B
decreases it (RC > 0 and RB < 0, in zone IL of Fig. 7b)
and vice versa (not shown here).

Let us now restrict our analysis to cases where B and
C increase the density of the solution (RB and RC pos-
itive) without loss of generality. The sign of ρ′L can
straightforwardly be deduced when RB and RC are neg-
ative with the relation ρ′L(−RB ,−RC) = −ρ′L(RB , RC)
derived from Eq. (19).

The case δB = δC has already been analyzed [15, 16].
ρL decreases if RB < RC , is constant if RB = RC and
else increases. We now consider the most general case
where B and C diffuse at different rates (δB 6= δC).

With the conditions RB , RC > 0 and δB 6= δC , we
insert Eqs. (13a)-(13b) into Eq. (19) and rewrite it as:

ρ′L =
2√
π

e−η
2
f

erf(ηf )

RC
δB

(
RB
RC

e
−
η2−η2f
δB − δB

δC
e
−
η2−η2f
δC

)
.

(20)
ρL admits thus an extremum at η = ηm if the following
equality is satisfied:

ρ′L|ηm = 0⇔ η2m − η2f =
ln
(
RBδC
RCδB

)
1
δB
− 1

δC

, (21)

which is equivalent to(
δB
δC
− RB
RC

)(
δB
δC
− 1

)
> 0, (22)

and if

ρ′′L|ηm =
4ηme

−η2f
√
πerf(ηf )

(
RBδC
RCδB

) δB/δC
δB/δC−1 RC

δB

(
δB
δC
− 1

)
6= 0.

(23)
As a consequence, ρL has a minimum (ρ′L|ηm = 0 and

ρ′′L|ηm > 0) if δB/δC > max(1, RB/RC) (zone IIIL
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in Figs. 7b-8a), and else a maximum if δB/δC <
min(1, RB/RC) (zone IVL in Figs. 7b-8a).

Therefore, when (22) or (23) is not satisfied, ρL is
monotonic. As the sign of its derivative ρ′L does not
change, we determine whether ρL increases or decreases
by looking at the sign of ρ′L close to the reaction front:

ρ′L|η→ηf →
2√
π

e−η
2
f

erf(ηf )

RC
δB

(
RB
RC
− δB
δC

)
, (24)

and, when (24)=0 (i.e. when δB/δC = RB/RC), at the
sign of ρ′′L|η→ηf :

ρ′′L|η→ηf , δBδC =
RB
RC

→ 4ηfe
−η2f

√
πerf(ηf )

RC
δCδB

(
δB
δC
− 1

)
(25)

From the possible signs of (24) and (25), we deduce that
ρL is monotonic decreasing if 0 < RB/RC ≤ δB/δC < 1
(in zone IL of Fig. 7b), and monotonic increasing if 1 <
δB/δC ≤ RB/RC (zone IIL of Fig. 7b).

In conclusion, Figs. 7 summarize the classification of
the four possible lower density profiles ρL in the reactive
system: monotonic decreasing (zone IL), monotonic in-
creasing (zone IIL), with a minimum (zone IIIL) or with
a maximum (zone IVL), corresponding to

zone IL:
RB
RC
≤ δB
δC
≤ 1 for RC > 0; RB < 0 for RC = 0,

(26a)

zone IIL: 1 ≤ δB
δC
≤ RB
RC

for RC > 0; RB > 0 for RC = 0,

(26b)

zone IIIL:
δB
δC

> max(1,
RB
RC

) for RC > 0, (26c)

zone IVL:
δB
δC

< min(1,
RB
RC

) for RC > 0. (26d)

V. EXTREMA BELOW THE REACTION
FRONT

In zones IIIL and IVL of Fig. 7b, the density profiles
ρL below the reaction front have extrema because of dif-
ferential diffusivity (δB 6= δC). We now analyze these
extrema in detail, and in particular how their character-
istics depend on the diffusivity ratio.

Figure 8a illustrates the transition from zone IVL to
zone IIIL of Fig. 7b when δB/δC is increased along the
line RB/RC = 1, i.e. if B and C contribute equally to
the density of the solution and only differential diffusivity
effects are at play. This allows one to understand the
switch from a maximum to a minimum in the density
profile when δB/δC is varied. The relative value of the
extremum is defined as (ρm−ρ∞)/ρ∞, where ρm = ρ(ηm)
is the extremum of density and ρ∞ = ρ(η →∞) = RBβ
is the density in the bulk solution. This relative value is
positive in zone IVL, as the maximum ρm is larger than

0.0 0.5 1.0 1.5 2.0

δB /δC

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

(ρ
m
−ρ

∞
)/
ρ
∞

IIIL

IVL

δB =0.2

δB =1.0

δB =2.0

(a)

0.0 0.5 1.0 1.5 2.0

δB /δC

0.0

1.0

2.0

3.0

4.0

5.0

(η
m
−η

f
)/
η f

δB =0.2

δB =1.0

δB =2.0

(b)

FIG. 8: Characteristics of the extremum ρm of density
for RB = RC = 1: (a) for any value of δB , the relative

density extremum (ρm − ρ∞)/ρ∞ becomes negative
when δB/δC > 1, illustrating the transition from zone

IVL to zone IIIL; (b) the relative distance (ηm − ηf )/ηf
between the extremum and the reaction front increases

when δB/δC decreases or δB increases.

ρ∞, and conversely negative in zone IIIL where ρm is a
minimum. The transition between these two zones occurs
when B and C diffuse at the same rate (δB = δC). The
density profile is then constant and equal to ρ∞ = RBβ
everywhere.

The maximum of density in zone IVL can be under-
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stood as follows. When the reactant B diffuses more
slowly than the product C (δB < δC), its concentra-
tion just below the reaction front becomes larger than
in the case of equal diffusivities (see Fig. 2c). This
can induce a maximum of density if B is sufficiently
denser than C (RB > RCδB/δC). If this is not the case
(RB ≤ RCδB/δC), the density decreases monotonically
(zone IIL).

Similarly, the minimum of density in zone IIIL can
be explained by the slower diffusion (δC < δB) and
sufficiently large contribution to density of C (RC >
RBδC/δB). The faster escape of B towards the reaction
front is not compensated by the diffusion of C, as C lags
behind in the upper part of the solution (see Fig. 2d).

In both zones IIIL and IVL, the absolute value of the
extremum increases when the differential diffusivity effect
becomes more important, i.e. when |1−δB/δC | increases.
This increase is amplified with smaller δB (Fig. 8a) and
δC (not shown here) as the concentration profiles are then
sharper. Furthermore, the relative distance between the
extremum and the reaction front increases when δB/δC
decreases (Fig. 8b), and when δB (Fig. 8b) or δC (not
shown here) increases.

VI. GLOBAL DENSITY PROFILES AND
POSSIBLE DYNAMICS

In order to have an idea of the global density profiles
in the host phase, the two types of density profiles ρU
(0 ≤ η ≤ ηf , Fig. 6) must be combined with the four
possible lower density profiles ρL (η ≥ ηf , Figs. 7), lead-
ing to eight different possible types of density profiles:
monotonic (increasing or decreasing), with one extremum
(minimum or maximum, at the reaction front or below)
or two extrema (minimum followed by maximum or the
opposite). All these profiles are shown in Figs. 9.

Further quantitative studies such as linear stability
analyses or non linear simulations are necessary to an-
alyze the temporal dynamics and assess the convective
stability of these density profiles for a given initial angle
between the interface and gravity. The density profiles
presented here are valid at large times and could thus
become unstable with regard to convection before this
asymptotic limit. However, their spatial dependence, i.e.
the type and number of extrema, typically remains the
same over time as shown previously for specific zones
[15, 16, 46]. Therefore, we can analyze the shape of the
density profiles to predict possible scenarios for the de-
velopment of buoyancy-driven instabilities.

As the convective dynamics depend on the orientation
of the interface with regard to gravity, we fix ideas by con-
sidering a horizontal interface. The reservoir A is on top
of the denser host phase containing B and gravity points
downwards along z, so that the initial density stratifica-
tion is statically stable. We discuss which part(s) of the
profile can evidently be buoyantly unstable and associate
each zone to dynamics previously observed in quantita-

0 RB /RC

0

δB /δC

1

1

δ B
/δ
C
=
R B
/R
C

δB /δC =1

IU+IL

IU+IIL

IU+IIIL

IU+IVL

η

ρ

η

ρ

η

ρ

η

ρ

(a)

0 RB /RC

0

δB /δC

1

1

δ B
/δ
C
=
R B
/R
C

δB /δC =1

IIU+IL

IIU+IIL

IIU+IIIL

IIU+IVL

η

ρ

η

ρ

η

ρ

η

ρ

(b)

FIG. 9: Classification of the global density profiles ρ for
RC > 0 and (a) RA < 0, or (b) RA > 0. Typical plots of

ρ(η) are included, with a dashed line showing the
position of the reaction front ηf .

tive studies (e.g. [15–17, 34–38, 44, 45]).
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A. RA > 0: Chemistry can modify the
characteristics of the buoyancy-driven instability

If the density of the host solution increases upon dis-
solution of A (RA > 0), the density profile in the non
reactive case can be buoyantly unstable, as a boundary
layer of denser fluid rich in A grows on top of the solu-
tion. More specifically, buoyancy-driven convection does
not develop immediately but after an onset time depend-
ing on the experimental conditions [12–14]. This is the
case e.g. of alkyl formate [17] or gaseous CO2 [44–46]
dissolving into an aqueous solution. Even when a reac-
tion takes place in the host phase, it is not possible to
observe a stratification statically stable everywhere: at
least above the reaction front, the density of the solu-
tion decreases downwards due to the contribution of the
dissolving species to density (Fig. 9a).

When the upper and lower density profiles are of the
same type I (zone IU+IL in Fig. 9a), global density
profiles are monotonic decreasing like their non reactive
counterpart (Section IV A). This case has been illus-
trated by experiments of CO2 dissolving into a solution
of monoethanolamine (δB/δC ≈ 1, RB/RC ≈ 0.45) [44].
The instability develops faster than in the non reactive
case because the contribution of the product C to density
adds to that of the dissolving species [15, 16].

Density profiles of other zones in Fig. 9a have at least
one minimum, at the reaction front or below, which can
lead to different dynamics.

In zone IU+IIL, the minimum forms at the reaction
front even without differential diffusivity if the prod-
uct is less dense than the initially dissolved reactant
(RC < RB) [15, 16]. In that case, this minimum acts
as a stabilizing barrier because locally less dense fluid
lies on top of denser one. The instability and thus the
fingering pattern observed experimentally develop more
slowly than in the non reactive case [15–17].

By contrast, the minimum of density in zone IU+IIIL,
below the reaction front, can build up only if the product
and initially dissolved reactant diffuse at different rates.
This zone has been illustrated by the experiments of CO2

dissolving into aqueous solutions of alkalis (δB/δC ≈ 2,
RB/RC ≈ 0.4). In that case, the instability develops
faster than without reaction [15, 46]. The concentration
of C above and at the reaction front is larger than in the
equal diffusivities case (Figs. 2d and 4), which increases
the density jump at the origin of convection and thus
opposes the stabilizing effect of the minimum [46].

In zone IU+IVL, the minimum of density at the re-
action front is followed by a maximum where denser
fluid lies on top of less dense one. We expect that
this local unstable density stratification can generate
buoyancy-driven convection. This type of density profile
can build up during the dissolution of CO2 into a solu-
tion of sodium carbonate and bicarbonate (δB/δC ≈ 0.8,
RB/RC ≈ 1.11) [44, 45].

B. RA ≤ 0: Chemistry can be at the origin of
buoyancy-driven instability

When the density of the host solution decreases or re-
mains constant upon dissolution of A (RA ≤ 0), the cor-
responding non reactive case is buoyantly stable. This
is usually the case when a gas, e.g. oxygen [34–38], dis-
solves into an aqueous solution, except when that gas is
CO2 [8]. The dissolution of CO2 can nevertheless de-
crease the density of some organic solvents, for example
nitrobenzene or chlorobenzene [47]. Studying the case
RA ≤ 0 is also relevant in the context of CO2 seques-
tration, because the density of the brine decreases upon
dissolution of CO2 with a sufficiently large fraction of
hydrogen sulfide (H2S) impurities [48].

If the upper and lower density profiles are both of type
II “increasing” (zone IIU+IIL in Fig. 9b), they com-
bine in a global profile statically stable as everywhere less
dense fluid lies on top of denser one. Despite this stati-
cally stable stratification, this profile can still be unstable
with regard to double diffusive instabilities if species B
and C diffuse at different rates (δB 6= δC) [19, 30, 33].

Outside this zone, reactions create a maximum in the
density profile, and as discussed above, this localized
unstable density stratification can be at the origin of
buoyancy-driven convection. This is indeed the case in
the methylene-blue-glucose system corresponding to zone
IIU+IL (RA = RB = 0, RC > 0) [34–38]. Unlike zones
IU+IVL and IIU+IVL, the maximum is here located ex-
actly at the reaction front. The location of the density
maximum seems to affect the development of fingering as
the periodic birth of fingers described by Wylock et al.
[44, 45] has not been reported in the methylene-blue-
glucose system [34–38].

To the best of our knowledge, no experiment illus-
trates the development of the fingering pattern in zones
IIU+IIIL and IIU+IVL. We expect that the dynamics
in these zones will look like those in zones IU+IIIL and
IU+IVL, respectively, although the instability could grow
more slowly due to the stable density gradient above the
reaction front.

VII. COMPARISON WITH MISCIBLE
STRATIFICATIONS

The density profiles classified here for partially miscible
systems bear some similarities and differences with their
counterparts in miscible stratifications [33].

In both cases, the theoretical framework used to com-
pute the density profiles is similar. The same RD equa-
tions can be solved to compute the concentration fields in
both systems. The main difference lies in the initial and
boundary conditions with a constant concentration of A
imposed at the top boundary, equal to the solubility A0

of A in the host solution for the partially miscible strati-
fication. By contrast, for miscible stratifications, no-flux
boundary conditions are imposed at η → ±∞ as the
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system is typically isolated while the miscible interface
expands diffusively in both directions around η = 0, the
initial contact line. This completely changes the picture,
as discussed below.

Although the expressions for the concentration profiles
below the reaction front (12) have the same form in both
systems, the maximum concentration γ of the product
and the coordinate ηf of the reaction front are different.
Moreover, the number of possible profiles is much larger
in miscible fluids, where 62 profiles can be obtained [33].
Indeed, the situation above the reaction front is more
complex: density profiles with zero, one or two extrema
can develop because of the combination of the two oppos-
ing concentration gradients A′U and C ′U [33]. By contrast,
here only A′U affects the type of upper density profile.
Furthermore, in miscible stratifications the front can re-
main at the same location or move towards positive or
negative η, amplifying the number of possibilities. On
the contrary, here there is only one direction possible for
the movement of the reaction front: species A can only
invade the host phase from the interface towards positive
η where it dissolves.

VIII. CONCLUSION

We have theoretically computed reaction-diffusion
(RD) density profiles in partially miscible stratifications
where a solute A dissolves into a host phase containing
a solute B and an A+B→C reaction takes place. While
only two different types of density profiles can develop in
the non reactive case, eight different types of profiles can
be observed in the reactive case, depending on the so-
lutal and diffusivity ratios, each potentially associated

to a different type of convective dynamics. The cou-
pling between dissolution and diffusion on the one hand,
and chemistry on the other hand, multiplies the number
of possible scenarios for the development of buoyancy-
driven instabilities. This enlarged complexity can be ex-
plained by the increased number of parameters as three
species A, B and C are involved in the dynamics instead
of only one in the non reactive case.

This work opens up new horizons for further research.
We have proposed a general framework, independent on
the chosen flow equation, in order to guide future quanti-
tative experiments, linear stability analyses or non linear
simulations. The present study also represents a first
step towards a similar classification of density profiles
in immiscible stratifications where the transfer of solutes
between phases can be diffusion-limited and complex dy-
namics can appear in both phases. Further, we note that
our results can easily be extended to any property of the
fluid depending linearly on the concentrations of the so-
lutes, such as e.g. surface tension. Understanding the
coupling of chemistry, differential diffusivity and fluid
flow helps clarifying the development of convection, for
instance in industrial setups (chemical extraction,...) or
geological formations (CO2 sequestration, enhanced oil
recovery, natural convection in aquifers beneath saline
lakes,...) to name but a few.
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