Normality of Demand in a Two-Goods Setting

Laurens Cherchye
KULeuven

Thomas Demuynck
SBS-EM, ECARES Université libre de Bruxelles

Bram De Rock
SBS-EM, ECARES Université libre de Bruxelles and KULeuven

September 2016

ECARES working paper 2016-31
Normality of demand in a two-goods setting

Laurens Cherchye* Thomas Demuynck† Bram De Rock‡

September 2, 2016

Abstract

We study the testable implications of normal demand in a two-goods setting. For a finite dataset on prices and quantities, we present the revealed preference conditions for normality of one or both goods. Our characterization provides an intuitive extension of the well-known Weak Axiom of Revealed Preference, and is easy to use in practice. We illustrate the empirical relevance of our theoretical results through an application to the experimental dataset presented in Andreoni and Miller (2002).

1 Introduction

Focusing on a two-goods setting, Chambers, Echenique, and Shmaya (2010, 2011) derived the necessary and sufficient revealed preference conditions for behavioral complementarity and gross substitutes in demand. The current paper complements these earlier papers by establishing the revealed preference conditions for normal demand in situations with two goods. As we will discuss in more detail below, our conditions bear specific relationships to the ones of Chambers, Echenique, and Shmaya (2010, 2011).

Normal goods. A good is normal if its consumption increases with income, keeping prices fixed. Normality is often a convenient assumption because it avoids pathological situations that violate the law of demand, which means that a good’s consumption increases with its price (i.e. Giffen goods). Normality of goods imposes restrictions on how

*Department of Economics, University of Leuven (KU Leuven). E. Sabbelaan 53, B-8500 Kortrijk, Belgium. E-mail: laurens.cherchye@kuleuven.be. Laurens Cherchye gratefully acknowledges the European Research Council (ERC) for his Consolidator Grant 614221. Part of this research is also funded by the FWO (Research Fund-Flanders).
†ECARES, Université Libre de Bruxelles. Avenue F. D. Roosevelt 50, CP 114, B-1050 Brussels, Belgium. E-mail: thomas.demuynck@ulb.ac.be
‡ECARES, Université Libre de Bruxelles and Department of Economics, University of Leuven (KU Leuven). Avenue F. D. Roosevelt 50, CP 114, B-1050 Brussels, Belgium. E-mail: bderock@ulb.ac.be. Bram De Rock gratefully acknowledges FWO and BELSPO for their support.
demand changes when budgets (prices and income) change, which implies specific testable implications.

For sufficiently rich data sets, normality of goods can be examined by estimating Engel curves and, subsequently, verifying whether they have a positive slope. Typically, such a test requires cross sectional data with fixed good prices; see, for example, Blundell, Chen, and Kristensen (2007). A second approach looks at the theoretical restrictions on consumer preferences that guarantee (local) normality of demand. Leroux (1987) provides a set of sufficient conditions involving first and second order derivatives of the utility function. Alarie and Bronsard (1990) extend these results by providing both necessary and sufficient conditions regarding the shape of utility functions. Bilancini and Boncinelli (2010) offer equivalent conditions that are easier to verify. Finally, Fisher (1990) relates normality of demand to the second order derivatives of expenditure functions.

Two-goods case. Following Chambers, Echenique, and Shmaya (2010, 2011), we focus on a demand setting with two goods and a finite set of observations on prices and demanded quantities. If there are only two goods, a relative price increase of one good necessarily implies a relative price decrease of the other good. As such, in two good settings relative price changes are unambiguous. In addition, when there are only two goods, they are necessarily Hicksian substitutes. Thus, for any price change, we can determine the direction of the substitution effect, which will be a key factor in the characterization that we develop below. By contrast, as soon as there are three or more goods, there may be Hicksian complements, which makes that the substitution effect is no longer unambiguous. In such a case, the change in the quantity of a certain good due to a relative price change will depend on both the intensity of the complementarity or substitutability with the other goods, as well as on the magnitude of the relative price change.

Admittedly, our focus on a two-goods setting may seem somewhat restrictive. Importantly, however, a multi-goods setting can often be reduced to a two-goods setting. First, one can use Hicksian aggregation for dimensionality reduction. A set of goods can be represented by a Hicksian aggregate if the goods’ relative prices remain fixed over observations. Thus, it suffices to verify the empirical validity of constant relative prices, to check whether the demand for multiple goods can be studied in terms of two Hicksian aggregates. Alternatively, one can assume that preferences are weakly separable. Specifically, for x_i the demanded quantity of good i and u the consumer’s utility function, we have

$$u(x_1, \ldots, x_n) = v(w(x_1, x_2), x_3, \ldots, x_n),$$

with w representing the subutility for goods 1 and 2. In such a setting, one may consider the demand for goods 1 and 2 separately from the demand of all other goods. Interestingly, it is possible to empirically check this weak separability structure. See, for example, Afriat (1969); Varian (1983); Diewert and Parkan (1985) and Cherchye, Demuynck, De Rock, and Hjertstrand (2014) for revealed preference conditions that are similar in nature to the conditions (for normality) that we establish below.
Our contribution. The existing tests for normality that we described above all start from a characterization that defines conditions on underlying consumer preferences or expenditure functions. Bringing these characterizations to data necessarily requires estimating demand functions or Engel curves, to subsequently check the associated testable implications. As such, the existing procedures always test multiple joint (explicit or implicit) hypotheses regarding the functional representation of preferences/demand and the nature of heterogeneity across different consumers.

In this paper, we follow a structurally distinct approach that is similar to the one adopted by Chambers, Echenique, and Shmaya (2010, 2011). We derive revealed preference conditions in the tradition of Afriat (1967) and Varian (1982) that only require a finite dataset on consumption prices and quantities. The conditions are necessary and sufficient to guarantee the existence of rational preferences that generate the observed behavior in terms of normal demand functions. By its very construction, our characterization avoids any functional specification of consumer preferences, which minimizes the risk of specification error. Our conditions are also easy to implement, which is convenient from a practical point of view. Moreover, if multiple observations per consumer are available, they do not require any homogeneity assumption across consumers.

2 Revealed preference characterization of normality

We consider a setting with two demand functions $D_1(p_1, p_2, m)$ and $D_2(p_1, p_2, m) : \mathbb{R}_+^2 \times \mathbb{R}_+ \rightarrow \mathbb{R}_+$ where p_1 is the price of good 1, p_2 is the price of good 2 and m is the income. We normalize prices and income such that the price of good 2 is equal to unity. More precisely, we define the relative price $\omega = \frac{p_1}{p_2}$ and budget $x = \frac{m}{p_2}$, and we write $D_1(\omega, x)$ and $D_2(\omega, x)$ for the two demand functions. The demand for the second good can easily be obtained if we know D_1 and the price-income pair (ω, x), i.e.

$$D_2(\omega, x) = x - \omega D_1(\omega, x).$$

We restrict ourselves to demand functions that are obtained from the maximization of a neo-classical utility function. A necessary and sufficient condition is that the demand functions satisfy the Strong Axiom of Revealed Preference (Houthakker, 1950; Mas-Colell, 1978). In a two-goods setting, however, SARP is equivalent to the Weak Axiom of Revealed Preference (WARP) (see (Rose, 1958)).

Definition 1 (WARP). A demand function D_1 and associated demand function D_2, satisfies the Weak Axiom of Revealed Preference (WARP) if, for any two relative prices
\(\omega, \omega'\) and incomes \(x, x'\),
\[
x \geq \omega D_1(\omega, x) + D_2(\omega, x') \quad \text{and} \quad x' \geq \omega' D_1(\omega, x) + D_2(\omega, x)
\]
implies \(D_1(\omega, x) = D_1(\omega', x') \) and \(D_2(\omega, x) = D_2(\omega', x')\).

In reality, we do not observe the demand functions but only a dataset \(S = \{p_t, q_t\}_{t=1,...,T}\), which consists of a finite number of prices \(p_t = (p_{t,1}, p_{t,2})\) and chosen quantities \(q_t = (q_{t,1}, q_{t,2})\). By defining \(\omega_t = \frac{p_{t,1}}{p_{t,2}}\) and \(x_t = \omega_t q_{t,1} + q_{t,2}\), we can also specify the dataset \(S = \{\omega_t, q_{t,1}, x_t\}_{t=1,...,T}\). By construction \(q_{t,2}\) can be recovered as
\[
q_{t,2} = x_t - \omega_t q_{t,1}.
\]

As shown by Varian (1982), it suffices to check WARP for this finite dataset \(S\) in order to guarantee the existence of a well-behaved utility function (and corresponding demand functions satisfying WARP). In what follows, we first consider the setting with one normal good. Subsequently, we characterize normality of both goods.

A single normal good. We say that the demand for good 1 is normal if it is increasing in \(x\). More formally, we use the following definition.

Definition 2. The demand function \(D_1\) is (strongly) **normal** if for all \(\omega\) and for all \(x < x'\), \(D_1(\omega, x) < D_1(\omega, x')\), i.e. an increase in income raises the demand for the good. The demand function is **weakly normal** if for all \(\omega\) and all \(x \leq x'\), \(D_1(\omega, x) \leq D_1(\omega, x')\).

The next definition states our key rationality axiom.

Definition 3 (NARP). A dataset \(S = \{\omega_t, q_{t,1}, x_t\}_{t=1,...,T}\) satisfies the **Normality Axiom of Revealed Preference** (NARP) if, for all observations \(t, v \in \{1, \ldots, T\}\):

- if \(\omega_t \leq \omega_v\) and \(x_t \geq \omega_v q_{v,1} + q_{v,2}\) then \(q_{v,1} \leq q_{t,1}\), and
- if \(\omega_t \leq \omega_v\) and \(x_t > \omega_v q_{v,1} + q_{v,2}\) then \(q_{v,1} < q_{t,1}\).

The condition (NARP-II) is the strict variant of (NARP-I). If we focus on weak normality, we can omit (NARP-II). For compactness, we will mainly consider the strong version of normality in our following exposition. However, it is fairly straightforward to extend our discussion (including the proofs of our main results) to include the weak normality case.

The first part of the NARP condition in Definition 3 requires that the relative price of good 1 in observation \(t\) is lower than the relative price of good 1 in observation \(v\). This guarantees that the substitution effect from observation \(v\) to observation \(t\) for good 1 is positive. The second part requires that \(q_v\) is revealed preferred to \(q_t\). This guarantees a positive income effect. If both these conditions hold, then the consumption of good 1 in period \(v\) (i.e. \(q_{v,1}\)) should be lower than the consumption of good 1 in period \(t\) (i.e. \(q_{t,1}\)), as both price and income effect are positive.
Figure 1: A violation of NARP

Figure 1 illustrates a case where NARP is violated. As a first observation, we note that the budget lines do not cross, so these observations are consistent with WARP. However, it is impossible that good 1 is a normal good. In order to see this, let us decompose the change of budget 1 towards budget 2 in a price and income effect. Consider the shift from the first budget to the dashed budget. This represents the minimal budget that can still afford the bundle q_1 at the new prices. The new prices imply a relative price decrease of good 1. As the own price effect is negative, the optimal bundle at the dashed budget line should contain more of good 1 (and less of good 2) compared to q_1. Second, the shift from the dashed budget line to the second budget line is a pure income effect. As such, if good 1 is normal, this implies that, again, the demand for good 1 should increase. The total effect is the sum of the two, which means that q_2 should contain more of good 1 than q_1. However, this last requirement is violated for the example shown in Figure 1, and thus we conclude that NARP is rejected (i.e. good 1 cannot be a normal good).

While the above shows that NARP is an intuitive necessary condition, the following theorem states that NARP is also the only condition that we need to impose on observed choices to characterize normality of good 1. If a finite dataset satisfies NARP, then we can find a utility function that rationalizes the observations in the dataset such that the associated demand function for good 1 is normal.

Theorem 1. Consider a dataset $S = \{\omega_t, q_{t,1}, x_t\}_{t=1,...,T}$ where for all $t, v \in \{1, \ldots T\}$, $(\omega_t, x_t) \neq (\omega_v, x_v)$ and $q_{t,1} > 0$. This dataset satisfies NARP if and only if there exist continuous and WARP consistent demand functions D_1 and D_2 where D_1 is normal and where, for all $t \in \{1, \ldots T\}$, $D_1(\omega_t, x_t) = q_{t,1}$ and $D_2(\omega_t, x_t) = q_{t,2} = x_t - \omega_t q_{t,1}$.

Normality of both goods. In some settings, it might be interesting to require that both goods are normal. In order to analyze this situation, we take a different approach. In particular, we will exploit the fact that in a two-goods setting with both goods normal, the income expansion paths are strictly increasing functions. To be more precise, if both goods are (strongly) normal, i.e. $D_1(\omega, x)$ and $D_2(\omega, x)$ are strictly increasing in x, it is
possible to invert the function $D_1(\omega, x)$ with respect to x, say $x = \xi(\omega, D_1)$, and substitute the inverted function into $D_2(\omega, x)$. This gives us a function $\psi(\omega, D_1) = D_2(\omega, \xi(\omega, D_1))$ that determines the optimal choice of good 2 given that D_1 is the optimal choice of good 1, for ω the relative price of good 1 compared to good 2. In other words, it gives the equation of the income expansion path, which is a strictly increasing function. The following result characterizes WARP and normality in terms of the expansion paths.

Lemma 1. Both goods are normal if and only if the income expansion path $\psi(\omega, D_1)$ is an increasing function of D_1 with $\psi(\omega, 0) = 0$.

In addition, if both goods are normal then the demand functions satisfy WARP if and only if the income expansion path $\psi(\omega, D_1)$ is weakly increasing in ω (i.e. $\omega' \geq \omega$ implies $\psi(\omega', D_1) \geq \psi(\omega, D_1)$).

In this case, we can define our key rationality axiom as follows.

Definition 4 (JNARP). A dataset $S = \{\omega_t, q_{t,1}, x_t\}_{t=1,...,T}$ satisfies the **Joint Normality Axiom of Revealed preference (JNARP)** if, for all $t, v \in \{1, \ldots, T\}$,

- if $\omega_t \leq \omega_v$ and $q_{t,1} \leq q_{v,1}$ then $q_{t,2} \leq q_{v,2}$, and (JNARP-I)
- if $\omega_t \leq \omega_v$ and $q_{t,1} < q_{v,1}$ then $q_{t,2} < q_{v,2}$. (JNARP-II)

As before, JNARP should be relaxed if we focus on weak normality. Then, (JNARP-II) can be ignored and (JNARP-I) must only hold for situations with $q_{t,1} < q_{v,1}$.

The intuition of JNARP is the following. By Lemma 1, we know that the income expansion path is increasing in both ω and D_1. As such, if both arguments increase when going from observation t to observation v, then the quantity of the second good should also increase.

The following lemma specifies an intuitive connection between our two revealed preference axioms.

Lemma 2. A dataset $S = \{\omega_t, q_{t,1}, x_t\}_{t=1,...,T}$ satisfies JNARP if and only if it satisfies NARP for both goods.

The next theorem states that JNARP characterizes normality in both goods.

Theorem 2. Consider a dataset $S = \{\omega_t, q_{t,1}, x_t\}_{t=1,...,T}$ where for all $t, v \in \{1, \ldots, T\}$, $(\omega_t, x_t) \neq (\omega_v, x_v)$ and $q_{t,1} > 0$. This dataset satisfies JNARP if and only if there exist continuous and WARP consistent demand functions D_1 and D_2 where D_1 and D_2 are both normal and where, for all $t \in \{1, \ldots, T\}$, $\psi(\omega_t, q_{t,1}) = q_{t,2}$.

3 Behavioral complementarity and gross substitutes

We start by formally showing that consistency with the revealed preference conditions for complementarity implies consistency with weak JNARP. However, the opposite does not hold, which shows that complementarity is only a sufficient (but not a necessary) condition for normality. Next, we construct two example datasets to show that the revealed preference conditions for gross substitutes are independent of those for JNARP.
Behavioral complementarity. Two goods are behavioral complements if a price increase in one good leads to a decrease in the consumption of the other good. If \(D_1(p_1, p_2, m) \) is differentiable, then complementarity is equivalent to the assumption that
\[
\frac{\partial D_1(p_1, p_2, m)}{\partial p_2} \leq 0.
\]

This cross-price derivative can be decomposed in terms of a substitution and income effect, i.e.
\[
\frac{\partial D_1(p_1, p_2, m)}{\partial p_2} = \frac{\partial D_1^c}{\partial p_2} - \frac{\partial D_1(p_1, p_2, m)}{\partial m} D_2 \leq 0,
\]
where \(D_1^c \) is the Slutsky compensated demand function that keeps income fixed at \(m = p_1 D_1 + p_2 D_2 \), i.e. \(D_1^c = D_1(p_1, p_2, p_1 D_1 + p_2 D_2) \). The first term at the right hand side of the above expression determines how the compensated demand for good 1 changes as \(p_2 \) increases. In a two-goods setting, this effect is always positive, as goods are Hicksian substitutes by construction. The second term captures an income effect. This term will be negative if \(D_1 \) is a normal good and positive if \(D_1 \) is inferior. In order for the two goods to be complements, it is therefore necessary that good 1 is normal. However, there is a lower bound on the amount of normality that needs to be imposed. Thus, we conclude that complementarity is a stronger condition than normality.

Chambers, Echenique, and Shmaya (2010) state the revealed preference conditions for complementary goods. To formally relate these conditions to ours, we need to renormalize prices and income such that the total expenditure is equal to one. Consider a dataset \(S = \{p_t, q_t\}_{t=1,...,T} \) such that \(p_t q_t = 1 \) for all \(t \). For any \(t, v \), we let \(p_t \land p_v = \min\{p_{t,1}, p_{v,1}\}, \min\{p_{t,2}, p_{v,2}\} \) and \(q_t \lor q_v = \max\{q_{t,1}, q_{v,1}\}, \max\{q_{t,2}, q_{v,2}\} \). The revealed preference conditions of Chambers, Echenique, and Shmaya (2010) require, for all \(t, v \in \{1, \ldots, T\} \),
\[
\begin{align*}
1. & \quad (p_t \land p_v)(q_t \lor q_v) \leq 1; \\
2. & \quad \text{if } p_{t,i} q_v \leq 1 \text{ and } p_{t,i} > p_{v,i} \text{ for some } i = \{1, 2\}, \text{ then } q_{t,j} \geq q_{v,j} \text{ for } j \neq i.
\end{align*}
\]
These conditions characterize consistency with weak complementarity. Their formal relation to our weak version of JNARP is stated in the next result.

Lemma 3. If a dataset \(S = \{p_t, q_t\}_{t=1,...,T} \) satisfies Chambers, Echenique, and Shmaya (2010)'s conditions for weak complementarity, then it also satisfies the weak version of JNARP.

Importantly, the converse of the lemma does not hold true. We illustrate this in Figure 2. The figure depicts a situation for which the inequality \(1 \geq (p_1 \land p_2)(q_1 \lor q_2) \) is violated, i.e. the bundle \((q_1 \lor q_2) \) is above the dashed budget line. As an implication, complementarity is not satisfied. However, the dataset does satisfy JNARP as \(q_1 \) is not revealed preferred over \(q_2 \) and \(q_2 \) is not revealed preferred over \(q_1 \).
Gross substitutes. Two goods are gross substitutes if the price increase of one good leads to an increase in the consumption of the other good. For a differentiable demand function, this implies

$$\frac{\partial D_1(p_1, p_2, m)}{\partial p_2} \geq 0.$$

Again decomposing this into a substitution and income effect, we have

$$\frac{\partial D_1(p_1, p_2, m)}{\partial p_2} = \frac{\partial D_1^c}{\partial p_2} - \frac{\partial D_1(p_1, p_2, m)}{\partial m} D_2 \geq 0.$$

Like before, the first term on the right hand side is positive because we consider a two-goods setting. The second term can be both positive or negative (although its magnitude will be limited). In other words, gross substitutes can in principle be consistent with both normal and inferior goods.

Chambers et al. (2011) derive the revealed preference conditions for two goods to be gross substitutes. These conditions require, for all \(t, v \in t = 1, \ldots, T \),

if \(p_{t,1} \leq p_{v,1} \) and \(p_{t,2} \geq p_{v,2} \), then \(p_{v,1}q_{v,1} \leq p_{t,1}q_{t,1} \).

The following two examples show that these conditions are independent of our (J)NARP conditions that we stated above. Example 1 gives a dataset that satisfies JNARP but not gross substitutability, while the opposite applies to the dataset in Example 2.

Example 1. \(p_t = (1, 3), p_v = (3, 1), q_t = (1/3, 2/9), q_v = (2/9, 1/3) \). Observe that

\[
\begin{align*}
\mathbf{p}_t \cdot \mathbf{q}_t & = 1 \leq \mathbf{p}_t \cdot \mathbf{q}_v = 2/9 + 1, \\
\mathbf{p}_v \cdot \mathbf{q}_v & = 1 \leq \mathbf{p}_v \cdot \mathbf{q}_t = 1 + 2/9.
\end{align*}
\]

As such, no bundle is revealed preferred to the other one, which implies that JNARP is satisfied. On the other hand, \(p_{t,1} \leq p_{v,1} \) and \(p_{t,2} \geq p_{v,2} \), while \(p_{v,1}q_{v,1} = 2/3 > p_{t,1}q_{t,1} = 1/3. \)
This shows that Chambers, Echenique, and Shmaya (2011)'s conditions for gross substitutability is not met.

Example 2. $p_t = (1, 2), p_v = (4, 3), q_t = (1/5, 2/5), q_v = (1/4, 1/4)$. Then $\omega_t \leq \omega_v$ and $p_t q_t = 1 > p_t q_v = 3/4$. This implies a violation of NARP, and thus also JNARP, since $q_{t,1} = 1/5 < q_{v,1} = 1/4$. On the other hand, $p_{t,1} \leq p_{v,1}$ and $p_{t,2} \leq p_{v,2}$, so the conditions of Chambers et al. (2011) are automatically satisfied.

4 Empirical illustration

We next illustrate the usefulness of our theoretical results by applying them to the experimental dataset of Andreoni and Miller (2002). The experiment was designed to investigate individual preferences for giving by exposing subjects to a series of dictator games under varying incomes and conversion rates between giving and keeping. In particular, subjects made several choices by filling in questions of the form: “Divide X tokens: Hold _____ at a points, and Pass _____ at b points (the Hold and Pass amounts must sum to X)”.

The parameters X, a and b were varied across the decision problems and all points were worth 0.10. Andreoni and Miller (2002) considered two groups of experimental subjects. The first group of 134 subjects (Group 1) solved 8 dictatorship games (i.e. $T = 8$), while the second group of 34 subjects (Group 2) solved an additional 3 games (i.e. $T = 11$).

<table>
<thead>
<tr>
<th>Group 1 Pass rate</th>
<th>NARP giving</th>
<th>NARP keeping</th>
<th>JNARP</th>
<th>WARP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.6923</td>
<td>0.2168</td>
<td>0.1958</td>
<td>0.9091</td>
</tr>
<tr>
<td></td>
<td>0.980</td>
<td>0.986</td>
<td>0.999</td>
<td>0.743</td>
</tr>
<tr>
<td>Group 2 Pass rate</td>
<td>0.5882</td>
<td>0.0882</td>
<td>0.0588</td>
<td>0.8529</td>
</tr>
<tr>
<td></td>
<td>0.999</td>
<td>0.997</td>
<td>1</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Our revealed preference characterizations allow us to determine whether ‘giving’ or ‘keeping’ are normal goods: is it the case that one gives more money or keeps more money if total available funds increase? Table 1 presents the pass rates for the revealed preference conditions of both (strong) normality and WARP.

We see that a large majority of the subjects satisfies WARP, which means that they made choices that are consistent with utility maximization. More than half of the subjects are consistent with the NARP condition for giving. In other words, for more than 50% of the sample we cannot reject that giving is a normal good. The NARP condition for keeping has a much lower pass rate: around 22% for Group 1 and below 10% for Group 2. This seems to indicate that keeping is not a normal good for most individuals. The JNARP
Table 2: Pass rates and power for weak normality, complementarity and gross substitutes

<table>
<thead>
<tr>
<th></th>
<th>weak NARP giving</th>
<th>weak NARP keeping</th>
<th>weak JNARP</th>
<th>Complements</th>
<th>Substitutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass rate</td>
<td>0.8462</td>
<td>0.6713</td>
<td>0.6573</td>
<td>0.3916</td>
<td>0.3986</td>
</tr>
<tr>
<td>Power</td>
<td>0.970</td>
<td>0.971</td>
<td>0.999</td>
<td>1</td>
<td>0.999</td>
</tr>
<tr>
<td>Group 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pass rate</td>
<td>0.8235</td>
<td>0.6176</td>
<td>0.6176</td>
<td>0.3235</td>
<td>0.5294</td>
</tr>
<tr>
<td>Power</td>
<td>0.94</td>
<td>0.998</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Condition (which requires that both keeping and giving are normal) is only satisfied for approximately 20% of the subjects in Group 1 and 6% of the subjects in Group 2. It is also interesting to notice that the decrease in pass rates from WARP to NARP (or JNARP) is rather significant. This seems to indicate that normality of goods has strong testable restrictions in addition to WARP. Putting it differently, normality is not necessarily a weak and innocuous assumption.

The differences between the pass rates reported in Table 1 may be partly explained by varying empirical bite of the different testable implications under study. Indeed, NARP and JNARP verify consistency with both rationality and normality, whereas WARP only requires rationality. To examine this further, we quantify the discriminatory power of the behavioral models under evaluation. We define power as the probability of detecting irrational behavior. Following Bronars (1987), we simulate irrational behavior by randomly drawing quantity bundles from the budget lines corresponding to the different observed price regimes. Given the particular set-up of the experiment of Andreoni and Miller (2002), this generates random data sets with respectively 8 and 11 observations. For these newly constructed sets, we can check consistency with the revealed preference conditions of the different behavioral models. We iterated this procedure 1000 times, and our power measure for a given model then equals the fraction of violations of the corresponding testable restrictions. The results of this exercise are also given in Table 1. For all four models we find that the power is very high, which indicates that the conclusions for our experimental dataset are empirically meaningful. Nonetheless, for Group 1 we learn that part of the difference between the pass rates of WARP and the other models may be due to a drop in empirical bite. This is, however, not the case for Group 2.

Finally, Table 2 presents pass rates and power results for the axioms that test for weak normality, complementarity and gross substitutes. More than 80% of the subjects satisfy the test for weak normality for giving, and for more than 60% of the subjects we cannot reject the assumption that keeping is a normal good. The hypothesis that both goods are jointly normal is not rejected for more than 60% of the sample. This suggests that weak normality has more empirical support than normality, at least for the sample under consideration. Of course, we should also note that the conditions for weak normality
are also weaker by construction, which implies that the associated pass rates can never be lower. Further, we observe that the pass rates for complementarity and gross substitutes are substantially lower than the ones for normality. In our opinion, this clearly demonstrates that our results in Section 3 on non-nestedness of the behavioral hypotheses are not merely theoretical curiosities; they also have empirical relevance. Importantly, it appears that we cannot simply attribute the differences in pass rates in Table 2 to differences in empirical bite, as the power is close to one for all models under consideration.

5 Conclusion

We have derived revealed preference conditions in a two-goods setting that guarantee the existence of a utility function that rationalizes the data and generates demand functions with (one or two) normal goods. Our conditions are easy to implement and significantly strengthen the well-established Weak Axiom of Revealed Preference (WARP) in empirical applications. We have also clarified the relation between our characterization of normal demand and Chambers, Echenique, and Shmaya (2010, 2011)’s characterizations of behavioral complementarities and gross substitutes.

We see different avenues for further research. A first natural follow-up question is to extend our results to settings with more than two goods (for which Hicksian aggregation and weak separability do not hold). However, tackling this issue will require an entirely new approach, as our results in the present paper crucially rely on the fact that goods are always Hicksian substitutes in a two-goods setting. Next, another interesting question that is directly related to the current paper pertains to checking the necessary versus luxury nature of goods or, more generally, to developing testable implications associated with alternative assumptions regarding goods’ income elasticities. For a two-goods setting, this research may build further on the findings that we developed in this paper.

References

A Proofs

A.1 Proof of Theorem 1

Proof. Necessity. Assume that the observed demands are part of a rational demand system \((D_1, D_2)\) where \(D_1\) is normal and assume that

\[
\omega_t \leq \omega_v \quad \text{and} \quad x_t \geq (> \omega_t q_{v,1} + q_{v,2}.
\]

Consider the income demanded at relative prices \(\omega_t\) that can still buy the bundle \(q_v\), i.e.

\[
\tilde{x} = \omega_t q_{v,1} + q_{v,2} \leq (<) x_t.
\]

Denote

\[
\tilde{D}_1 = D_1(\omega_t, \tilde{x}), \quad \tilde{D}_2 = D_2(\omega_t, \tilde{x}).
\]

By definition, we have that

\[
\omega_t \tilde{D}_1 + \tilde{D}_2 = \tilde{x} = \omega_t q_{v,1} + q_{v,2}.
\]

Given that the demand functions are rational, we must have that (by WARP)

\[
x_v < \omega_v \tilde{D}_1 + \tilde{D}_2,
\]

or \(\tilde{D}_1 = q_{v,1}\) and \(\tilde{D}_2 = q_{v,2}\). If the first is the case, then

\[
\omega_t (\tilde{D}_1 - q_{v,1}) + (\tilde{D}_2 - q_{v,2}) = 0,
\]

\[
\omega_v (\tilde{D}_1 - q_{v,1}) + (\tilde{D}_2 - q_{v,2}) > 0.
\]

Taking the difference gives

\[
(\omega_t - \omega_v) (\tilde{D}_1 - q_{v,1}) < 0.
\]

Given that the first term is non-positive, we must have that \(\tilde{D}_1 > q_{v,1}\) (what we have shown here is that the income compensated price effect of good 1 is negative). We conclude that WARP implies \(\tilde{D}_1 \geq q_{v,1}\) in both cases.

The change from \((\omega_t, \tilde{x})\) to \((\omega_t, x_t)\) corresponds to a pure income increase, which is (strictly) positive if \(x_t(>) \geq \tilde{x} = \omega_t q_{v,1} + q_{v,2}\), so if \(D_1\) is normal, we should have that

\[
q_{v,1} \leq \tilde{D}_1 \leq (<) q_{t,1},
\]

as was to be shown.
Sufficiency. For the reverse, we will construct continuous demand functions D_1, D_2 that satisfy the following condition:

Condition I For two relative price income situations (ω, x) and (ω', x'),

$$\begin{align*}
\text{if } \omega \leq \omega' \text{ and } x \geq (>) \omega D_1(\omega', x') + D_2(\omega', x'), \\
\text{then } D_1(\omega', x') \leq (>) D_1(\omega, x).
\end{align*}$$

Let us first show that any system of demand functions that satisfy Condition I satisfies both WARP and normality of D_1. For WARP, assume that

$$x \geq \omega D_1(\omega', x') + D_2(\omega', x') \quad \text{and} \quad x' \geq \omega' D_1(\omega, x) + D_2(\omega, x).$$

This gives

$$\begin{align*}
\omega(D_1(\omega, x) - D_1(\omega', x')) + D_2(\omega, x) - D_2(\omega', x') &\geq 0, \\
\omega'(D_1(\omega', x') - D_1(\omega, x)) + D_2(\omega', x') - D_2(\omega, x) &\geq 0.
\end{align*}$$

If $\omega = \omega'$ then both inequalities are in fact equalities. However, given condition I, this can only happen if $(D_1(\omega, x), D_2(\omega, x)) = (D_1(\omega', x'), D_2(\omega', x'))$ which shows consistency with WARP. So assume that $\omega \neq \omega'$. Taking the sum gives

$$(\omega - \omega') (D_1(\omega, x) - D_1(\omega', x')) \geq 0. \quad (1)$$

If $\omega < \omega'$, then Condition I states that $D_1(\omega', x') \leq D_1(\omega, x)$. If $D_1(\omega', x') < D_1(\omega, x)$ equation (1) is violated. On the other hand, if $D_1(\omega', x') = D_1(\omega, x)$ we also obtain that $D_2(\omega, x) = D_2(\omega', x')$, which established WARP. If $\omega > \omega'$, then reversing the roles of ω and ω' in Condition I gives that $D_1(\omega, x) \leq D_1(\omega', x')$. If $D_1(\omega, x) < D_1(\omega', x')$ then inequality (1) is again violated. If $D_1(\omega, x) = D_1(\omega', x')$, we also obtain that $D_2(\omega, x) = D_2(\omega', x')$ so WARP is satisfied.

To show that D_1 is normal if Condition I is satisfied, take $\omega = \omega'$ and $x \geq (>) x'$, so Condition I requires that $D_1(\omega, x) \geq (>) D_1(\omega', x')$ which shows normality.

Now let us prove that such functions exist. Towards this end, we first rewrite the second statement of Condition I in the following form.

$$\begin{align*}
x \geq \omega D_1(\omega', x') + D_2(\omega', x') &\iff x \geq x' + (\omega - \omega') D_1(\omega', x') \\
&\iff x' \leq x + (\omega - \omega') D_1(\omega', x').
\end{align*}$$

For every t, v let $\delta_{t,v} = \min\{|\omega_t - \omega_v|, |x_t - x_v + (\omega_t - \omega_v)q_{t,1} - x_v + (\omega_t - \omega_v)q_{t,1} + (\omega_t - \omega_v)q_{t,1}|\}$ if $\omega_t \neq \omega_v$ and $x_t - x_v + (\omega_t - \omega_v)q_{t,1} \neq x_v$. Else let $\delta_{t,v} = \max\{|\omega_t - \omega_v|, |x_t - x_v + (\omega_t - \omega_v)q_{t,1}|\}$. Observe that $\delta_{t,v} > 0$ otherwise we would have that $\omega_t = \omega_v$ and $x_t = x_v$, which we excluded. Consider a number $\varepsilon > 0$ such that

$$\min_{t,v, t \neq v} \delta_{t,v} > \varepsilon.$$
Define \(\alpha, \beta > 0 \) such that
\[
1 + \beta < \min_{t,v} \left\{ \frac{q_{v,1}}{q_{t,1}} \mid q_{v,1} > q_{t,1} \right\},
\]
\[
\alpha (1 + \beta) < \min_{t,v} \left\{ \frac{q_{v,1}}{q_{t,1}} \right\}.
\]

Consider the function \(g : \mathbb{R} \to \mathbb{R}_+ \) such that
\[
g(z) = \begin{cases}
\alpha & \text{for } z \leq -\varepsilon, \\
1 + \frac{1 - \alpha}{\varepsilon} z & \text{for } -\varepsilon \leq z \leq 0, \\
1 & \text{for } z \geq 0.
\end{cases}
\]
This is a continuous and increasing function (see figure below).

In addition, consider the function
\[
h(z) = \begin{cases}
\frac{1}{z + \varepsilon - 1} \alpha & \text{for } z \leq -\varepsilon, \\
1 + \frac{1 - \alpha}{\varepsilon} z & \text{for } -\varepsilon \leq z \leq 0, \\
1 + \beta \frac{z}{z+1} & \text{for } z \geq 0.
\end{cases}
\]
This is a continuous and strictly increasing function (see figure below).

For any \((\omega, x) \in \mathbb{R}_+^2\), consider the following maximization program, **Program I**

\[
D_1(\omega, x) = \max_r r
\]
\[
\text{s.t. } g(\omega - \omega_t) \ h(x_t + (\omega - \omega_t)r - x) \ r \leq q_{t,1}, \quad \forall t \in \{1, \ldots, T\}
\]
\[
\omega r \leq x.
\]
First, observe that, as $g(.)$ and $h(.)$ are non-negative, $r = 0$ is always a feasible solution. This shows that $D_1(\omega, x)$ is non-negative. Next, observe that as $x \to 0$, $D_1(\omega, x) \to 0$, so the demand function is well defined. The following lemma shows that this demand function equal the observed data points.

Lemma 4. For all $t \in \{1, \ldots, T\}$: $D_1(\omega_t, x_t) = q_{t,1}$.

Proof. First of all, notice that for $\omega = \omega_t$ and $x = x_t$, $r = q_{t,1}$ satisfies the last constraint of Program I. Also, the t-th constraint of Program I gives
\[
g(\omega_t - \omega_v) \ h(x_t + (\omega_t - \omega_v)r - x_t) \ r \leq q_{t,1}
\]
\[
\leftrightarrow g(0) \ h(0) \ r = r \leq q_{t,1}.
\]

As such, $q_{t,1}$ is an upper bound for $D_1(\omega_t, x_t)$. We are left to show that $r = q_{t,1}$ also satisfies all other constraints. We consider several cases.

Case I: $\omega_t < \omega_v$. In this case, we have, by assumption $\omega_t - \omega_v < -\varepsilon$. As such,
\[
g(\omega_t - \omega_v) \ h(x_t + (\omega_t - \omega_v)q_{t,1} - x_t) \ q_{t,1} \leq \alpha(1 + \beta)q_{t,1} \leq q_{v,1}.
\]

Case II: $\omega_t \geq \omega_v$ and $x_v + (\omega_t - \omega_v)q_{t,1} - x_t > 0$ In this case, NARP gives us that $q_{t,1} < q_{v,1}$. As such,
\[
g(\omega_t - \omega_v) \ h(x_v + (\omega_t - \omega_v)q_{t,1} - x_t) \ q_{t,1} \leq (1 + \beta)q_{t,1} \leq q_{v,1}.
\]

Case III: $\omega_t \geq \omega_v$ and $x_v + (\omega_t - \omega_v)q_{t,1} - x_t = 0$ In this case, NARP tells us that $q_{t,1} \leq q_{v,1}$. As such,
\[
g(\omega_t - \omega_v) \ h(x_v + (\omega_t - \omega_v)q_{t,1} - x_t) \ q_{t,1} = q_{t,1} \leq q_{v,1}.
\]

Case IV: $\omega_t \geq \omega_v$ and $x_v + (\omega_t - \omega_v)q_{t,1} - x_t < 0$ Then, by assumption, we have that $x_v + (\omega_t - \omega_v)q_{t,1} - x_t < -\varepsilon$. As such,
\[
g(\omega_t - \omega_v) \ h(x_v + (\omega_t - \omega_v)q_{t,1} - x_t) \ q_{t,1} \leq \alpha q_{t,1} \leq q_{v,1}.
\]

As such we obtain that $D_1(\omega_t, x_t) = q_{t,1}$.

Now, consider two price-income vectors (ω, x) and (ω', x') and the associated solutions $D_1(\omega, x)$ and $D_1(\omega', x')$ of Program I. We need to show that Condition I is satisfied. In particular, if
\[
\omega \leq \omega' \text{ and,}
\]
\[
x' \leq (\leq) x + (\omega' - \omega) \ D_1(\omega', x')
\]
then $D_1(\omega', x') \leq (\omega <) D_1(\omega, x)$. The way to proceed is by showing that if (2) and (3) are satisfied, then $D_1(\omega', x')$ was also feasible solution for Program I at price-income (ω, x), i.e. $D_1(\omega', x')$ satisfies the following restrictions:

$$g(\omega - \omega_t) h(x_t + (\omega - \omega_t)D_1(\omega', x') - x_t)) D_1(\omega', x') \leq q_{1,t} \quad \forall t \in \{1, \ldots, T\}, \quad (4)$$

Condition (3) can be rewritten as $x \geq (x' >) \omega D_1(\omega', x') + (x' - \omega'D_1(\omega', x') \geq \omega D_1(\omega', x')$ so we know that $D_1(\omega', x')$ satisfies (5). The function g is non-decreasing. As such, using (2),

$$g(\omega - \omega_t) \leq g(\omega - \omega_t).$$

Likewise, $h(.)$ is strictly increasing, so from (3),

$$h(x_t + (\omega - \omega_t)D_1(\omega', x') - x) \leq (\omega h(x_t + (\omega - \omega_t)D_1(\omega', x') + (\omega' - \omega)D_1(\omega', x') - x'))
= h(x_t + (\omega' - \omega_t)D_1(\omega', x') - x').$$

Given this, we have that, for all t,

$$g(\omega - \omega_t) h(x_t + (\omega - \omega_t)D_1(\omega', x') - x) D_1(\omega', x') \leq (\omega g(\omega' - \omega_t)) h(x_t + (\omega' - \omega_t)D_1(\omega', x') - x') D_1(\omega', x') \leq q_{1,t},$$

which shows that (4) is also satisfied. Given that $D(\omega', x')$ is feasible for the maximization Program I at price-income (ω, x), we must have that $D_1(\omega', x') \leq D_1(\omega, x)$. In addition, if the inequality (3) is strict, we can find a strictly better solution as all inequalities become slack and we can always find a strictly higher optimal value that satisfied all inequalities. As such, $D_1(\omega', x') < D_1(\omega, x)$ as was to be shown. Given that the constraint set of Program I is compact and continuous in (ω, x), we have, by Berge’s maximum theorem, that the optimal value function is also continuous in (ω, x). In other words, $D_1(\omega, x)$ is a continuous function.

A.2 Proof of Lemma 1

Proof. The first part of the proof is easy. For the second part, assume, towards a contradiction that $\omega \leq \omega'$ and $\psi(\omega, D_1) > \psi(\omega', D_1)$ for some value $D_1 > 0$ and WARP is satisfied. Then we have that $\omega D_1 + \psi(\omega, D_1) > \omega D_1 + \psi(\omega', D_1)$.

Given that the left hand side of this equation is strictly decreasing in D_1, there should exist a value $q_1 < D_1$ such that,

$$\omega q_1 + \psi(\omega, q_1) = \omega D_1 + \psi(\omega', D_1).$$

But then,

$$\omega' D_1 + \psi(\omega', D_1) = \omega' D_1 + \omega q_1 + \psi(\omega, q_1) - \omega D_1
= (\omega' - \omega) D_1 + \omega q_1 + \psi(\omega, q_1)
\geq (\omega' - \omega) q_1 + \omega q_1 + \psi(\omega, q_1)
= \omega' q_1 + \psi(\omega, q_1).$$
Given this, WARP implies that \(q_1 = D_1 \) (and \(\psi(\omega, q_1) = \psi(\omega', D_1) \)), a contradiction.

Conversely, if WARP is violated then there are relative prices \(\omega, \omega' \) and quantities \((q_1, \psi(\omega, q_1)) \neq (q'_1, \psi(\omega', q'_1))\) such that,

\[
\omega q_1 + \psi(\omega, q_1) \geq \omega q'_1 + \psi(\omega', q'_1),
\omega' q'_1 + \psi(\omega', q'_1) \geq \omega' q_1 + \psi(\omega, q_1).
\]

This gives,

\[
\omega (q_1 - q'_1) + \psi(\omega, q_1) - \psi(\omega', q'_1) \geq 0,
\omega' (q'_1 - q_1) + \psi(\omega', q'_1) - \psi(\omega, q_1) \geq 0.
\]

If \(\omega = \omega' \), then \(\psi(\omega, q_1) = \psi(\omega', q'_1) \) and consequentially, \(q_1 = q'_1 \), a contradiction. Also, if \(q_1 = q'_1 \) we have that \(\psi(\omega, q_1) = \psi(\omega', q'_1) \), again a contradiction. As such, we can assume that \(\omega \neq \omega' \) and \(q_1 \neq q'_1 \). Adding up the two inequalities gives,

\[
(\omega - \omega')(q_1 - q'_1) \geq 0.
\]

Assume \text{wlog} that \(\omega' < \omega \) then we have that \(q'_1 < q_1 \). Then,

\[
\omega' q'_1 + \psi(\omega', q'_1) \geq \omega' q_1 + \psi(\omega, q_1) > \omega' q'_1 + \psi(\omega, q'_1).
\]

This gives that \(\psi(\omega', q'_1) > \psi(\omega, q'_1) \) which shows that \(\psi(\omega, q_1) \) is not (weakly) increasing in \(\omega \).

\(\square \)

A.3 Proof of Lemma 2

Proof. Assume that NARP is satisfied for both goods. Then if JNARP is violated there are observations \(t, v \) such that \(\omega_t \leq \omega_v, q_{t,1} \leq (\leq)q_{v,1} \text{ and } q_{t,2} > (\geq)q_{v,2} \). Then negating NARP gives

\[
x_t \leq (\leq)\omega_t q_{v,1} + q_{v,2},
x_v < (\leq)\omega_v q_{t,1} + q_{t,2}
\]

or, equivalently,

\[
\omega_t (q_{t,1} - q_{v,1}) + q_{t,2} - q_{v,2} \leq (\leq)0,
\omega_v (q_{v,1} - q_{t,1}) + q_{v,2} - q_{t,2} < (\leq)0.
\]

Adding up gives

\[
(\omega_t - \omega_v)(q_{t,1} - q_{v,1}) < 0.
\]

The first factor is non-positive. As such, it must be that \(q_{t,1} > q_{t,2} \), a contradiction.
For the reverse; Assume that JNARP is satisfied and assume that, towards a contradiction, \(\omega_t \leq \omega_v, x_t \geq (>)\omega_t q_{t,1} + q_{v,2} \) and \(q_{t,1} < (\leq)q_{v,1} \). By JNARP, we must conclude that \(q_{t,2} < (\leq)q_{v,2} \). As such,

\[
x_t \geq (>)\omega_t q_{t,1} + q_{v,2} > (\geq)\omega_t q_{t,1} + q_{t,2} = x_t,
\]

which is a contradiction. A violation for good 2 of NARP gives that \(q \) and \(v \) satisfy JNARP, then for all \(t, v \) satisfies JNARP, it follows that \(\omega = \omega_v \) and \(\omega_t = \omega_t q_{t,1} + q_{t,2} \) and \(q_{v,2} < (\leq)q_{v,2} \). Negating JNARP implies that \(q_{t,1} > (\geq)q_{v,1} \). As such,

\[
x_v \geq (>)\omega_v q_{t,1} + q_{t,2} > (\geq)\omega_v q_{v,1} + q_{v,2} = x_v,
\]

a contradiction. \(\square \)

A.4 Proof of Theorem 2

Proof. Necessity. Assume that \(\omega_t \leq \omega_v \) and \(q_{t,1} \leq (\leq)q_{v,1} \). Given Lemma 1, we have that that \(\psi(\omega, q_1) \) is weakly increasing in \(\omega \) and strictly increasing in \(q_1 \), which obtains

\[
q_{t,2} = \psi(\omega_t, q_{t,1}) \leq \psi(\omega_v, q_{t,1}) \leq (\leq)\psi(\omega_v, q_{v,1}) = q_{v,2},
\]

as was to be shown.

Sufficiency. We start by showing the following result.

Lemma 5. If \(S = \{\omega_t, q_{t,1}, x_t\}_{t=1,...,T} \) where \((\omega_t, x_t) \neq (\omega_v, x_v) \) for all \(t, v \in \{1, \ldots, T\} \) satisfies JNARP, then for all \(t, v \in \{1, \ldots, T\} \) it is not the case that \(\omega_t = \omega_v \) and \(q_{t,1} = q_{v,1} \).

Proof. Assume towards a contradiction that \(\omega_t = \omega_v \) and \(q_{t,1} = q_{v,1} \). Then because of JNARP, it follows that \(q_{t,2} = q_{v,2} \). However, this implies that \(x_t = \omega_t q_{t,1} + q_{t,2} = \omega_v q_{v,1} + q_{v,2} = x_v \), which contradicts the assumption that \((\omega_t, x_t) \neq (\omega_v, x_v) \). \(\square \)

The construction of \(\psi(\omega, x) \) is similar as the construction of \(D_1(\omega, x) \) in the proof of Theorem 1. For any \(t, v \), let \(\delta_{t,v} = \min\{|\omega_t - \omega_v|, |q_{1,t} - q_{1,v}|\} \) if \(\omega_t \neq \omega_v \) and \(q_{1,t} \neq q_{1,v} \), and set \(\delta_{t,v} = \max\{|\omega_t - \omega_v|, |q_{1,t} - q_{1,v}|\} \) otherwise. The lemma above guarantees that \(\delta_{t,v} > 0 \) for all \(t, v \). Next, consider a number \(\varepsilon > 0 \) such that

\[
\min_{t,v,t\neq v} \delta_{t,v} > \varepsilon,
\]

Define \(\alpha, \beta > 0 \) such that

\[
1 + \beta < \min_{t,v} \left\{ \frac{q_{v,2}}{q_{t,2}} \left| q_{v,2} > q_{t,2} \right. \right\},
\]

\[
\alpha(1 + \beta) < \min_{t,v} \left\{ \frac{q_{v,2}}{q_{t,2}} \right\}.
\]
As in the proof of theorem 1, consider the functions $g : \mathbb{R} \to \mathbb{R}_{++}$ and $h : \mathbb{R} \to \mathbb{R}_{++},$

$$g(z) = \begin{cases}
\alpha & \text{for } z \leq -\varepsilon, \\
1 + \frac{1-\alpha}{\varepsilon}z & \text{for } -\varepsilon \leq z \leq 0, \\
\frac{\alpha^{z+\varepsilon-1}}{1} & \text{for } z \geq 0.
\end{cases}$$

$$h(z) = \begin{cases}
\alpha^{\frac{1}{z+\varepsilon-1}} & \text{for } z \leq -\varepsilon, \\
1 + \frac{1-\alpha}{\varepsilon}z & \text{for } -\varepsilon \leq z \leq 0, \\
1 + \beta^{\frac{z}{z+1}} & \text{for } z \geq 0.
\end{cases}$$

Let q be such that $0 < q_1 < \min_t\{q_{t,1}\}$. For any $(\omega, q_1) \in \mathbb{R}_{++} \times [q, \infty[$, consider the following maximization program

Program II

$$\psi(\omega, q_1) = \max r$$

$$g(\omega_t - \omega) \ h(q_{t,1} - q_1) r \leq q_{t,2}.$$

Observe that 0 is a feasible solution where all inequalities are slack, so $\psi(\omega, q_1) > 0$. We extend the function $\psi(\omega, q)$ on the entire domain $\mathbb{R}_{++} \times \mathbb{R}$ by defining for $0 < q_1 < q_1$,

$$\psi(\omega, q_1) = (q_1/q_1) \ \psi(\omega, q_1).$$

This makes sure that $\psi(\omega, 0) = 0$.

Lemma 6. For all $t \in \{1, \ldots, T\}$, $\psi(\omega_t, q_{t,1}) = q_{t,2}$.

Proof. First of all, notice that the t-th restriction gives

$$g(\omega_t - \omega_t) \ h(q_{t,1} - q_{t,1}) w = w \leq q_{t,2},$$

as such, $q_{t,2}$ is an upper bound on $\psi(\omega_t, q_{t,1})$. As such, we only need to show that $q_{t,2}$ also satisfies all other restrictions. There are several cases to consider.

Case I: $\omega_v < \omega_t$
In this case, we have that $\omega_v - \omega_t \leq -\varepsilon$, so,

$$g(\omega_v - \omega_t) \ h(q_{v,1} - q_{t,1}) q_{t,2} \leq \alpha(1 + \beta) q_{t,1} \leq q_{v,2}.$$

Case II: $\omega_v \geq \omega_t$ and $q_{t,1} < q_{v,1}$
In this case JNARP gives $q_{t,2} < q_{v,2}$, so

$$g(\omega_v - \omega_t) \ h(q_{v,1} - q_{t,1}) q_{t,2} \leq 1(1 + \beta) q_{t,2} \leq q_{v,2}.$$

Case III: $\omega_v \geq \omega_t$ and $q_{t,1} = q_{v,1}$
In this case JNARP gives $q_{t,2} \leq q_{v,2}$, so

$$g(\omega_v - \omega_t) \ h(q_{v,1} - q_{t,1}) q_{t,2} = q_{t,2} \leq q_{v,2}.$$

20
Case IV: $\omega_v \geq \omega_t$ and $q_{t,1} > q_{v,1}$ Then we know that $q_{v,1} - q_{t,1} < -\varepsilon$, so

$$g(\omega_v - \omega_t) h(q_{v,1} - q_{t,1}) q_{t,2} \leq \alpha q_{t,2} \leq q_{v,2}.$$

In all four cases this gives us the desired contradiction.

We finish the proof by showing that $\psi(\omega, q_1)$ is increasing in ω and strictly increasing in q_1. First consider the case where $q_1 \geq q_1$. Let $\omega \leq \omega'$. Observe that

$$g(\omega - \omega') h(q_{t,1} - q_1) \psi(\omega, q_1) \leq g(\omega - \omega) h(q_{t,1} - q_1) \psi(\omega, q_1) \leq q_{t,2}.$$

As such, the solution $\psi(\omega, q_1)$ is also a feasible solution for the problem that determines $\psi(\omega', q_1)$. Given this, we know that $\psi(\omega, q_1) \leq \psi(\omega', q_1)$. Second if $q_1 \leq (\omega)q'_1$ then, as $g(.) > 0$ and $h(.)$ is strictly increasing,

$$g(\omega - \omega) h(q_{t,1} - q'_1) \psi(\omega, q_1) \leq (\omega)g(\omega - \omega) h(q_{t,1} - q'_1) \psi(\omega, q_1) \leq q_{t,2}.$$

As such, the solution $\psi(\omega, q_1)$ is also feasible for the problem that determines $\psi(\omega, q'_1)$, demonstrating that $\psi(\omega, q_1) \leq \psi(\omega, q'_1)$. If $q_1 < q'_1$ all inequalities become slack. As such, in this case, we have $\psi(\omega, q_1) < \psi(\omega, q'_1)$.

For $q_1 < q_1$, $\psi(\omega, q_1)$ is weakly increasing in ω as $\psi(\omega, q_1)$ is weakly increasing in ω. If $q_1 < q_1 \leq q'_1$, then $\psi(\omega, q_1) < \psi(\omega, q_1) \leq \psi(\omega, q'_1)$. Finally, if $q_1 < q'_1 < q_1$, then

$$\psi(\omega, q_1) = \frac{q_1}{q_1} \psi(\omega, q_1)
\leq \frac{q'_1}{q_1} \psi(\omega, q_1)
= \psi(\omega, q'_1).$$

We can thus conclude that $\psi(\omega, q_1)$ is strictly increasing in q_1, as was to be shown.

A.5 Proof of Lemma 3

Proof. Assume, towards a contradiction, that the conditions of Chambers, Echenique, and Shmaya (2010) are satisfied but the weak version of JNARP is not satisfied. We consider two cases.

Case I: $\frac{p_{t,1}}{p_{t,2}} \leq \frac{p_{v,1}}{p_{v,2}}$, $1 \geq p_t q_v$ and $q_{t,1} < q_{v,1}$.

Observe that the premises implies that either $p_{t,1} \leq p_{v,1}$ or $p_{t,2} \geq p_{v,2}$.

If $p_{t,2} > p_{v,2}$, then by the second condition, we have that $q_{t,1} \geq q_{v,1}$, a contradiction. As such, it must be that $p_{t,2} \leq p_{v,2}$.

If $p_{t,2} = p_{v,2}$, then by assumption, it must be that $p_{t,1} \neq p_{v,1}$. If $p_{t,1} > p_{v,1}$, then

$$1 \geq p_t q_v > p_v q_v = 1,$$
a contradiction.

If \(p_{t,1} < p_{v,1} \), we have that \(p_t \land p_v = p_t \) but then,
\[
1 \geq (p_t \land p_v) (q_t \lor q_v) = p_t (q_t \lor q_v) > p_t q_t = 1,
\]
a contradiction. The strict inequality follows from the fact that \(q_{v,1} > q_{t,1} \).

Case II: \(\frac{p_{t,1}}{p_{t,2}} \leq \frac{p_{v,1}}{p_{v,2}} \), \(1 \geq p_v q_t \) and \(q_{t,2} > q_{v,2} \).

Again the premises implies that either \(p_{t,1} \leq p_{v,1} \) or \(p_{t,2} \geq p_{v,2} \).

If \(p_{v,1} > p_{t,1} \), then by the second condition, we have that \(q_{v,2} \geq q_{t,2} \), a contradiction.

As such, it must be that \(p_{v,1} \leq p_{v,2} \).

If \(p_{v,1} = p_{t,1} \), then by assumption, it must be that \(p_{v,2} \neq p_{t,2} \). If \(p_{v,2} > p_{t,2} \), then
\[
1 \geq p_v q_t > p_v q_t = 1,
\]
a contradiction.

If \(p_{v,2} < p_{t,2} \), we have that \(p_t \land p_v = p_v \), but then
\[
1 \geq (p_t \land p_v) (q_t \lor q_v) = p_v (q_t \lor q_v) > p_v q_v = 1,
\]
a contradiction. The strict inequality follows from the fact that \(q_{v,1} > q_{t,1} \). \(\square \)