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Chapter 1

Introduction

The goal of this thesis is to investigate some aspects of the quantisation of a polarised Kähler
manifold L → X .

Let (E,h) be a Hermitian holomorphic vector bundle of rank r over X . To ease notation
we put E(k) = E ⊗Lk. Denote by H0 (X ,E(k)) the space of holomorphic sections from X to
E(k) and by Gk the Grassmannian of r-dimensional subspaces of H0 (X ,E(k))∗. For k big
enough, evaluation at a point defines a map evk : X →Gk. The philosophy of quantisation
is to associate to each classical object defined on E → X a sequence of quantised objects
defined on the dual of the tautological bundle over Gk. These quantised objects should
be defined purely in terms of the projective geometry of Gk and the maps evk and should
converge to the classical object as k → ∞ in an appropriate sense.

In the second chapter of this thesis we quantise the Laplacian operator acting on
C∞ (X ,Endh(E)), the space of smooth sections of the bundle of h-Hermitian endomorphisms
of E. If E has rank 1, Endh (E)∼= R and one recovers the Laplacian acting on smooth func-
tions. The main results of this chapter have been published in an article called Quantization
of the Laplacian operator on vector bundles I and are joint work with Julien Keller and Reza
Seyyedali, [14]. To describe them, fix a Hermitian metric on L whose curvature defines a
Kähler form ω on X . This endows H0 (X ,E(k)) with an L2-inner product and hence the
Grassmannian Gk with a Fubini–Study metric. Write Vk for the space of Hermitian endomor-
phisms of H0 (X ,E(k)). One defines a self-adjoint operator on Vk as follows. Any element in
Vk induces a holomorphic vector field on Gk. Restricting this vector field to evk(X) defines
a map Pk : Vk →C∞

(
X ,ev∗k(TGk)

)
. The spaces Vk and C∞

(
X ,ev∗k(TGk)

)
are naturally en-

dowed with inner products given by the trace and the L2-inner product respectively. Here
the L2-inner product is defined using the Fubini–Study metric on the fibers and the (fixed)
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volume form ωn/n! coming from the metric on L. Write P∗
k for the adjoint of Pk with respect

to these inner products. The composition P∗
k Pk then defines a self-adjoint operator on Vk for

each k. In the first chapter we show that these operators quantise the Laplacian. Note that
the operators P∗

k Pk are not produced by applying some general quantisation scheme to the
Laplacian but are defined purely in terms of the projective geometry of Gk and the maps evk.
They make sense for an arbitrary complex submanifold of a Grassmannian.

The definition of the operators P∗
k Pk is motivated by the following moment map picture.

Denote by A 1,1 the set of unitary connections on E whose curvature is of type (1,1). Since
the work of Atiyah and Bott [1], it is well known that the map

µ∞ : A 7→ ΛωFA

can be seen as a moment map for the action of the unitary gauge group Gh of E. Building on
earlier work of Donaldson [7], Wang explains in [24] that the moment map µ∞ can be seen
as the limit of moment maps—denoted by µ̄k—on the space of holomorphic embeddings of
X into the Grassmannians Gk. Noticing that the group actions extend to the complexified
groups one can push Wang’s picture a step further and integrate the moment maps to get
the so-called Kempf–Ness functions which we denote by F∞ and Fk respectively. From this
point of view, Wang’s results can be rephrased by saying that the first order derivatives of the
Kempf–Ness functions converge. It is then natural to ask what happens for their Hessians.
It turns out that on one hand the Hessian of F∞ is nothing else than the Laplacian and on
the other hand the Hessians of Fk are given by the sequence of operators P∗

k Pk described
above. Consequently they are natural candidates to consider as an intrinsic quantisation of
the Laplacian.

A priori, the Laplacian and the operators P∗
k Pk are completely different and in order to

compare them we first need to explain the link between the spaces they act on. On one hand,
a smooth section of Endh(E) can be viewed as an infinitesimal change of the metric on E and
hence of the L2-inner product on H0 (X ,E(k)). In other words we get an element of Vk. This
defines a map C∞ (Endh(E))→Vk : φ 7→ Qk,φ . On the other hand, any element in Vk gives an
infinitesimal change of the inner product on H0 (X ,E(k)) and hence induces an infinitesimal
change in the metric on E(k). This in turn corresponds to a Hermitian section of End(E(k))
and hence also of End(E). In this way we get a map : Vk →C∞ (Endh(E)) : A 7→ HA.

Using this notation, we are now able to state the results of the first chapter.
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Theorem 1.0.1. For each section φ of Endh(E) there is an asymptotic expansion

Tr
(
Qk,φ P∗

k PkQk,φ
)
=

1
4πk

∫
X

Tr
(
φ∆

E
φ
) ωn

n!
+O

(
k−2) .

These estimates are uniform in the endomorphism φ if φ varies in a subset of C∞ (Endh(E))
which is compact for the C∞-topology. Moreover the estimate is uniform when the metric on
E varies in a set of uniformly equivalent metrics lying in a compact set for the C∞-topology.

When E is the trivial line bundle with the flat metric we also compute the next order term
of this expansion.

In the case when the bundle E is simple, meaning that its only holomorphic automor-
phisms are multiplication by a constant, we show that the eigenvalues of P∗

k Pk converge to
those of the Laplacian. Furthermore under the maps Qk,(·) and H(·) described above, the
eigenspaces of P∗

k Pk and ∆E asymptotically line up isometrically. More precisely if we denote
by νk, j and λ j the j-th eigenvalue of P∗

k Pk and ∆E respectively we have the following.

Theorem 1.0.2. Assume that E is simple. For each j ≥ 0, we have

νk, j =
λ j

4πkn+1 +O
(
k−n−2)

when k →+∞.

Define Fk,r to be the space generated by the νk, j-eigenspaces of P∗
k Pk for 0 ≤ j ≤ r and

write Fk,p,q for the span of the νk, j-eigenspaces with p ≤ j ≤ q.

Theorem 1.0.3. Assume that E is simple. For each integer r > 0 there is a constant C such
that for all A,B ∈ Fk,r,∣∣∣Tr(AB)− kn⟨HA,HB⟩L2

∣∣∣≤Ck−1Tr(A2)1/2Tr(B2)1/2.

Moreover, let us fix integers 0 < p < q such that λp−1 < λp = λp+1 = ...= λq < λq+1. Given
an eigenvector φ ∈ Ker(∆E −λpId), let Aφ ,k denote the point in Fk,p,q with HAφ ,k nearest to
φ as measured in L2. Then

∥HAφ ,k −φ∥2
L2 = O

(
k−1) ,

and this estimate is uniform in φ if we require that ∥φ∥L2 = 1.

Using the fact that we have some flexibility in our results (they are uniform if we vary the
metric or endomorphism in compact sets with respect to the smooth topology) we derive as
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corollaries some quantisation results for sequences of balanced metrics when E is assumed
to be Gieseker stable, see theorem 2.6.5.

As another application of the convergence results of the eigenvalues we quantise some
spectral measures associated to the Laplacian, see section 2.6.2 and speculate about further
implications involving the heat kernel. To conclude the chapter we illustrate our results
via some direct computations in the special case when the manifold is the one dimensional
complex projective space polarized by the dual of the tautological line bundle, see section 2.7.

In the third and fourth chapter of the thesis we restrict to the case when the vector bundle
E is the trivial line bundle with the flat metric.

The third chapter is devoted to study the asymptotics of solutions to the “heat equation"
associated to the (rescaled) operators P∗

k Pk. Heuristically speaking we show that the heat
operator associated to P∗

k Pk converges to the genuine heat operator on X as k → ∞. More
precisely let f ∈C∞ (X ,R) and write f (x, t) for the solution to the equation∂t f (x, t)+∆ f (x, t) = 0

f (x,0) = f (x).
(1.0.1)

Furthermore given an Hermitian endomorphisms A of H0 (X ,Lk) we write A(t) for the
solution to the system ∂tA(t)+4πkn+1P∗

k Pk (A(t)) = 0

A(0) = A.
(1.0.2)

Our main result of this chapter is the following.

Theorem 1.0.4. There is a constant C such that for all t ∈ [0,T ] we have

∥Qk, f (t,x)−Qk, f (x) (t)∥2
k ≤

C
k

where the norm ∥ · ∥k is defined by ∥A∥2
k =

1
kn Tr(A2).

Corollary 1.0.5. There is a constant C such that for all t ∈ [0,T ] we have

∥ f (x, t)−HQk, f (x)(t)∥L2 ≤
C
k
.
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The fourth chapter of this thesis is dedicated to an intriguing link between geometric
quantisation and a program initiated by Donaldson to study the geometry of the space of
Kähler metrics in a fixed cohomology class using finite dimensional approximations. In order
to ease notation, write H for the space of all Hermitian metrics on L for which the curvature
is positive. Hence any element h in H induces Kähler metric ωh on X . Furthermore let Bk

be the Bergman space of level k, i.e. the space of Hermitian inner products on H0 (X ,Lk).
The space H carries the structure of an infinite dimensional manifold and its tangent space
at a point h is naturally identified with the space of smooth functions on X . On the other
hand the tangent space to Bk is identified with the space Vk of Hermitian endomorphisms of
H0 (X ,Lk).

Choosing a metric on L induces an L2-inner product on H0 (X ,Lk) and hence a map
Hilbk : H → Bk. Explicitly,

Hilbk(h)(s, t) =
∫

X
hk (s(x), t(x))

ωn
h

n!
.

There is also a map in the other direction called the Fubini–Study map which can be described
as follows. First recall that by Kodaira’s embedding theorem, evaluation at a point defines
an embedding X → P

(
H0 (X ,Lk)∗). A point b ∈ Bk endowes the hyperplane bundle of

P
(

H0 (X ,Lk)∗) with a Fubini–Study metric which can be pulled back to give a metric on

Lk. Taking its k-th rooth defines a genuine metric on L which we call FSk(b). Hence we have
a map FSk : Bk → H .

A lot of research has been devoted to the geometric quantisation of Kostant [16] and
Souriau [21]. Roughly speaking it explains how to naturally associate to every classical
observable (i.e. a smooth function on X), a quantum observable (i.e. a Hermitian operator on
a Hilbert space). Here the manifold should be thought off as the phase space of a classical
mecanical system. In our setup the Hilbert space in question is nothing else than H0 (X ,Lk)
together with the L2-inner product and the quantum observables are defined as follows. One
first associates to every function f ∈C∞ (X ,R) the pre-quantum operator σ̃k, f acting on the
space C∞

(
X ,Lk) of smooth sections from X to Lk by

σ̃k, f = 2πk f + i∇(k)
X f

Here X f denotes the Hamiltonian vector field associated to f and ∇(k) is the Chern connection
on L with respect to the metric hk. To define the genuine quantum operators σk, f one simply
takes the holomorphic part of a pre-quantum operator by composing σ̃k, f with the orthogonal
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projecting onto the sub-space of holomorphic sections. In this way we obtain a map

f ∈C∞(X ,R) 7→ σk, f ∈Vk.

The starting observation is that this map is nothing else than the derivative of Hilbk (see
section 4.4). In this sense one can think of the Hilbk-map as a curved version of geometric
quantisation. It is then natural to ask of what use the higher derivatives of the Hilbk-map
could be. Furthermore one might think whether the differential of the FSk-map also has an
interpretation in terms of some dequantisation. And indeed we show in section 4.5 that its
derivative is nothing else than Berezin’s covariant symbol. Using expansions of Toeplitz
operators one easily sees that the composition dFSk ◦dHilbk tends to the identity as k goes to
infinity and hence, at least asymptotically, Berezin’s covariant symbol can be interpreted as
the inverse of geometric quantisation. This sheds new light on some of the results obtained
by Cahen, Gutt and Rawnsley in [20].

Motivated by the fact that the linearisation of Hilbk gives geometric quantisation we
compute its next order approximation, namely its Hessian. To state the result, define D :
C∞ (X ,R)→ Ω0,1 (T X) to be the operator given by

D ( f ) = ∂̄
(
X f
)
.

D ( f ) measures the failure of the Hamiltonian vector field X f of being holomorphic and is
know as the Lichnerowicz operator.

Theorem 1.0.6. The Hessian of Hilbk : H → Bk admits an asymptotic expansion in which
the leading order term in given by the leading order of the Toeplitz operator associated to
the function (D f ,Dg). More precisely, as k → ∞, one has

(∇dHilbk)φ
( f ,g) = T(D f ,Dg)+O

(
kn−1) .

As a corollary we reprove a result by Fine (theorem 2 in [11]) saying that the Hessian of
balancing energy converges to the Hessian of Mabuchi energy (see theorem 4.6.4).



Chapter 2

Quantisation of the Laplacian

2.1 Introduction

Let L be an ample line bundle over a compact complex manifold X of complex dimension
n. Fix a Hermitian metric σ on L whose curvature Fσ gives a Kähler form ω = i

2π
Fσ on X .

Let E be a holomorphic vector bundle of rank r over X with Hermitian metric h. This data
allows us to define the induced Bochner Laplacian acting on smooth endomorphisms of E,

∆
E : C∞(X ,End(E))→C∞(X ,End(E)).

Explicitely one puts ∆E =−trg∇2, where g is the Riemannian metric on X associated to ω

and the complex structure and ∇2 : C∞ (End(E))→C∞ (T ∗X ⊗T ∗X ⊗End(E)).

Note that in the case of a line bundle or a Hermitian-Einstein metric, this reduces to the
Kodaira Laplacian ∆∂ = ∂

∗h
End(E)∂End(E) up to a constant factor. In general, both Laplacians

are related by a Weitzenböck type formula, namely

∆∂ =
1
2
(
∆

E − iΛωFEnd(E)·
)
=

1
2
(
∆

E − [iΛωFh, ·]
)
. (2.1.1)

Here Fh ∈ Ω1,1 (X ,End(E)) denotes the curvature endomorphism of the metric h. Moreover
the Bochner–Kodaira–Nakano formula gives the link between ∆∂ and ∆

∂̄
,

∆
∂̄
= ∆∂ − [iΛωFh, ·]. (2.1.2)

See [4] or [18] as a reference.
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There is a decomposition End(E) = Endsh(E)⊕Endh(E) where Endsh(E) and Endh(E)
denote the bundles of skew-Hermitian and Hermitian endomorphisms of (E,h) respectively.
It is easy to check that the Laplacian ∆E actually preserves this decomposition. Throughout
this chapter, we restrict the action of the Bochner Laplacian to the space of sections of the
bundle of Hermitian endomorphisms of E, which is the central object of our study. Note
that when E is a line bundle, End(E) = E ⊗E∗ ∼= C and so C∞ (X ,End(E)) ∼= C∞ (X ,C).
Sections of Hermitian endomorphisms are then given by real valued functions on X .

Denote by A 1,1 the set of unitary connections on E whose curvature is of type (1,1).
Since the work of Atiyah and Bott [1] it is well known that the map

µ∞ : A 7→ ΛωFA

can be seen as a moment map for the action of the unitary gauge group Gh of E. Building on
earlier work of Donaldson [7], Wang explains in [24] that the moment map µ∞ can be seen as
the limit of moment maps—later denoted by µ̄k—on the space of holomorphic embeddings
of X into some Grassmannians denoted by Gk. In section 2.2 we briefly recall this moment
map picture and show that the group actions extend to the complexified groups. General
Kempf–Ness theory tells us how to integrate the moment maps to get so-called Kempf–Ness
functions F∞ and Fk respectively. From this point of view, Wang’s results can be rephrased by
saying that the first order derivatives of Fk converge to those of F∞. The goal of this chapter
is then to show that their Hessians converge too. It turns out that on one hand the Hessian of
F∞ is nothing else than the Laplacian and on the other hand, the Hessians of Fk are given by a
sequence of operator P∗

k Pk acting on some finite dimensional vector spaces whose dimension
grows in k. Consequently they are natural candidates to consider as an intrinsic quantisation
of the Laplacian.

As a first result we shall see the following. Any φ ∈C∞ (X ,Endh (E)) can be thought of
as an infinitesimal change of the metric on E and hence of the L2-inner product induced by h
and the (fixed) volume form ωn/n! on the space of holomorphic sections of E(k) := E ⊗Lk.
Thus we naturally obtain an Hermitian endomorphism Qk,φ of H0 (X ,E(k)). Given, φ ,ψ ∈
C∞ (X ,Endh (E)), we prove that the map

(φ ,ψ) 7→ Tr
(
Qk,φ P∗

k Pk
(
Qk,ψ

))
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admits an asymptotic expansion where the leading order term is given by the trace of the map

(φ ,ψ) 7→
∫

M
φ∆∂ ψ

ωn

n!

after renormalization, see theorem 2.4.1. This first theorem relies deeply on the asymptotic
expansions of Bergman kernels and Toeplitz operators due to Ma and Marinescu [19]. We
briefly recall their results in section 2.3.2.

In a second step we analyse the spectrum of the operators P∗
k Pk. If E is simple, we prove

that the eigenvalues of P∗
k Pk converge (after renormalisation) towards the eigenvalues of the

Laplacian ∆E , see theorem 2.5.2. Finally, theorem 2.5.3 says that the eigenspaces of P∗
k Pk

converge isometrically to the eigenspaces of ∆E in an appropriate sense. The proof of these
two theorems follows a strategy used by Fine in his quantisation of the Hessian of Mabuchi
energy [11].

Note that since the operators P∗
k Pk act on finite dimensional spaces these results make it

in principle possible to approximate the eigenvalues of the Laplacian algorithmically using a
computer program.

We remark that there is some flexibility in the results is the sense that they are still valid
if we vary the data (metric or endomorphism) in compact sets with respect to the smooth
topology. Using this fact, we derive as an application some quantisation results for sequences
of balanced metrics when E is assumed to be Gieseker stable (see theorem 2.6.5).

2.2 The moment map picture

In this section we recall the moment map picture mentioned above. To fix notation let us
start with some general theory.

Let G be a Lie group acting on a symplectic manifold (X ,ω) by symplectomorphisms.
Differentiating the action provides a Lie algebra map

g→ X(X) : φ 7→ ξ
φ

where X(X) denotes the space of vector fields on X .
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Definition 2.2.1. A moment map is a G-equivariant map µ : X → g∗ such that for any φ ∈ g

the function µ (φ) : X → R satisfies

dµ(φ) = ω

(
ξ

φ , ·
)
.

Among many others, one important application of moment maps comes from Kempf–
Ness theory. Suppose that the manifold in question is not only symplectic but Kähler and
that the group G acts holomorphically and isometrically on X . Furthermore suppose that the
action of G extends to a holomorphic (but no longer isometric) action of the complexification
GC of G. In this context one defines the so called Kempf–Ness function

F : GC/G → R

by integrating up the moment map. The space GC/G can be endowed with a symmetric
metric g turning it into a non-positively curved symmetric space. The function F enjoys the
following two important properties:

1. d
dt F

(
etiφ h

)∣∣
t=0 = µh·p(φ);

2. d2

dt2 F
(
etiφ h

)∣∣
t=0 = g

(
ξ

φ

h·p,ξ
φ

h·p

)
.

where h ∈ GC, φ ∈ g and p ∈ X . The first property implies that critical points of F correspond
to zeros of the moment map in the complex orbits and the second property tells us that F is
convex along geodesics in GC/G. In finite dimensions this implies for instance that, up to
the action of G, zeros of the moment map are unique within a complex orbit (assuming that
ξ φ never vanishes). We refer to [22] for further details.

2.2.1 The infinite dimensional picture

Let (E,h) be a Hermitian vector bundle over a compact Kähler manifold (X ,ω). Write
A 1,1 for the space of unitary connections on E whose curvature is of type (1,1) and denote
by Gh the unitary gauge group, i.e. the group of unitary automorphisms of (E,h). Gh acts
on A 1,1 by conjugation. The space of all unitary connections is an affine space modelled
on Ω1 (X ,Endsh (E)), the space of 1-forms with values in the bundle of skew-Hermitian
endomorphisms of (E,h). The infinitesimal change of such a connection dA in the direction
a induces an infinitesimal change in the curvature given by dAa. To make sure a is a tangent
vector to A 1,1, the (0,2)-part of dAa (and hence its (2,0)-part) must vanish. In other words,

TdAA
1,1 = {a ∈ Ω

1 (X ,Endsh (E)) | ∂̄Aa0,1 = 0}.
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There is a natural symplectic form on A 1,1 given by

ΩA (a,b) :=−
∫

X
ΛωTr(a∧b)

ωn

n!

where a,b ∈ TdAA
1,1. The compex strucure on the space of 1-forms on X induces a complex

structure J on Ω1 (X ,Endsh (E)) and turns A 1,1 into an infinite dimensional Kähler manifold
with Kähler metric

(a,b)A := ΩA (a,Jb) .

The action of the unitary gauge group Gh on A 1,1 preserves the symplectic form and thus it
makes sense to ask whether it admits a moment map or not. And indeed,

Theorem 2.2.2 (Atiyah–Bott, [1]). Under the identification of the Lie algebra Ω0 (X ,Endsh (E))
of Gh with its dual using the L2-inner product defined by the Killing form on the unitary
group and the volume form ωn/n!, the map µ∞ : A 1,1 → Ω0 (X ,Endsh (E)) defined by

µ∞(A) := ΛωFA

is a moment map.

The action of Gh not only preserves the symplectic form but also the complex structure.
Moreover Gh admits a complexification given by the complex gauge group GE , the group of
complex linear automorphisms of E and the action of Gh on A 1,1 extends to an action of GE

by

g · ∂̄A = g◦ ∂̄A ◦g−1

g ·∂A = (g∗)−1 ◦∂A ◦g∗

where dA ∈ A 1,1 and g ∈ GE . Thus we are in the context of Kempf–Ness theory. As
mentioned above we can integrate the moment map to get a function

F∞ : GE/Gh → R.

The space GE/Gh actually has a nice interpretation: GE acts transitively on H , the space of
all Hermitian metrics on E, and the stabilizer of the point h ∈ H is Gh. Hence we get an
identification

H ∼= GE/Gh
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and we can think of F∞ as a function on H . Moreover from general theory we see that the
Hessian of F∞ is given by

Hess(F∞)h (φ ,φ) =
∫

X
(dAφ ,dAφ)

ωn

n!
=
∫

X
Tr(φ∆Aφ)

ωn

n!
.

2.2.2 The finite dimensional picture

The infinite dimensional moment map picture described in the previous section has a finite
dimensional analogue as described in [24]. First recall that the unitary group U(N) acts
isometrically and holomorphically on the standard Grassmannian G(r,N) of r-dimensional
subspaces in CN endowed with the standard Fubini–Study metric. The action admits a
moment map

µ : G(r,N)→ iu(N)

where we implicitly identified the dual of the Lie algebra u(N) with u(N) using the Killing
form and multiplied the result by i. Thinking of the Grassmannian as

G(r,N) =
M 0

r×N

∼
,

where M 0
r×N is the space of rank r r×N-matrices and where z ∼ w if and only if there exists

P ∈ GL(r,C) such that z = Pw, the explicit formula for µ is given by

µ([z]) = z∗(zz∗)−1z.

Let (X ,ω) be a compact Kähler manifold of complex dimension n and let (L,σ) be an
ample Hermitian line bundle over X who’s curvature Fσ satisfies i

2π
Fσ = ω . Let E be a

holomorphic vector bundle of rank r over X . Since L is ample we can use holomorphic
sections of E(k) = E ⊗Lk to embed X into G(r,Nk) for k ≫ 0. Indeed, for any x ∈ X , we
have the evaluation map H0(X ,E(k))→ E(k)x, which sends s to s(x). Since E(k) is globally
generated, this map is a surjection. So its dual is an inclusion of E(k)∗x ↪→ H0(X ,E(k))∗,
which determines an r-dimensional subspace of H0(X ,E(k))∗. Therefore we get a map
ι : X →G(r,H0(X ,E(k))∗). Since L is ample, ι is an embedding for k ≫ 0. Clearly we have
ι∗U∗

r = E(k)∗, where U∗
r is the tautological vector bundle on G(r,H0(X ,E(k))∗), i.e. at any

r-plane in G(r,H0(X ,E(k))∗), the fibre of U∗
r is exactly that r-plane. Any choice of basis

s = s1, . . . ,sNk for H0(X ,E(k)) gives an isomorphism between G(r,H0(X ,E(k))∗) and the
standard Grassmannian G(r,Nk) and hence such a choice defines an embedding

ιs : X →G(r,Nk).
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Denote by B̃k the space of all basis of H0(X ,E(k)) or equivalently the space of embeddings
from X to G(r,Nk) which are projectively equivalent to a given one. There is a natural
symplectic structure on B̃k given by

ϖ(a,b) =
∫

X
⟨a,b⟩FS

ωn

n!
,

for a,b ∈ TsB̃ and ⟨·, ·⟩FS the Fubini–Study inner product. The action of the unitary group
admits a moment map µ̄ : B̃k → iu(Nk). Explicitly,

µ̄(s) =
∫

X
µ ◦ ιs

ωn

n!
.

Since the complexification of the unitary group U(Nk) is given by the general linear group
GL(Nk,C), this gives rise to a function

Fk : Bk = GL(Nk,C)/U(Nk)→ R

by integrating up the moment map. The homogeneous space Bk is called Bergman space
and can be thought of as the space of Hermitian inner products on H0 (X ,E(k)).

Fix b ∈ Bk and let s be any b-orthonormal basis of H0(X ,E(k)). Define the operator

P : iu(Nk)→C∞(X ,TG(r,Nk)|ιs(X)) (2.2.1)

by P(A) = ξ A|ιs(X). Using the Fubini-Study metric on TG(r,Nk)|ιs(X) and the volume form
ωn

n! on X , one obtains a L2 inner product on C∞(TG(r,Nk)|ιs(X)). Together with the trace on
iu(Nk) this allows us to define the adjoint map

P∗ : C∞(TG(r,Nk)|ιs(X))→ iu(Nk)

and hence we get a self-adjoint operator

P∗P : iu(Nk)→ iu(Nk).

Note that the operator P and its adjoint P∗ depend on the inner product b.
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By general Kempf–Ness theory, the Hessian of Fk, thought of as a bilinear form on iu(Nk),
is given by

(HessFk)b (A,B) =
∫

ιs(X)
⟨P(A),P(B)⟩FS

ωn

n!
= Tr(AP∗PB) .

2.3 Some preliminaries

Before we start with the proofs of our results let us first recall some general theory which
will be needed.

2.3.1 A quick review of the Fubini–Study geometry of Grassmannians

Denote the space of all matrices z ∈ Mr×N(C) with rank r by M 0
r×N . By definition,

G(r,N) =
M 0

r×N

∼
,

where z ∼ w if and only if there exists P ∈ GL(r,C) such that z = Pw. Note that G(r,N) can
be identified with the space of all r-dimensional subspaces of CN . The tangent bundle of
G(r,N) is given by {

(z,X) |z ∈ M 0
r×N , X ∈ Mr×N

}
∼′ ,

where (z,X)∼′ (w,Y ) if and only if there exists P ∈ GL(r,C) and Q ∈ Mr×r(C) such that

z = Pw, X = PY +Qw.

Under the equivalence relation ∼′, an element of TG(r,N) is denoted [z,X ]. The Fubini-Study
metric on TG(r,N) is given by

⟨[(z,X)], [(z,Y )]⟩FS = Tr(Y ∗(zz∗)−1X)−Tr((zz∗)−1zY ∗(zz∗)−1Xz∗).

Let Ur →G(r,N) be the dual of the tautological bundle

U∗
r = {(P,v) ∈G(r,N)×CN |v ∈ P}.

The standard Hermitian inner product on CN induces a Fubini–Study metric on Ur and U∗
r

by restriction. There is a 1-1 correspondence between the space of linear forms on CN and
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the holomorphic sections of Ur. Explicitely,

f ∈ (CN)∗ 7→ s f ∈ H0(G(r,N),Ur)

where
s f [z](v) = f (v),

for any [z] ∈ G(r,N) and v ∈ (U∗
r )[z]. Let e1, . . .eN be the standard basis of CN and define

si = se∗i . Then s1, . . .sN is a basis for H0(G(r,N),Ur) satisfying

N

∑
i=1

si ⊗ s
∗hFS
i = IdUr

as an endomorphism over G(r,N).

Definition 2.3.1. Any A ∈ iu(N) defines a smooth Hermitian endomorphism (with respect
to the Fubini-Study metric hFS) HA of Ur by

HA =
N

∑
i, j=1

A jisi ⊗ s
∗hFS
j .

Definition 2.3.2. Any A ∈ iu(N) induces a holomorphic vector field ξ A on G(r,N) given by

ξ
A(z) := [z,zA]. (2.3.1)

2.3.2 Asymptotic expansions of Bergman kernels and Toeplitz opera-
tors

Part of the main technical tools in this thesis are the asymptotic expansions of Bergman
kernels and Toeplitz operators.

Let (X ,ω) be a compact Kähler manifold of complex dimension n and let (L,σ) be a
Hermitian line bundle over X such that the curvature Fσ of the Chern connection satisfies
Fσ =−2πiω . Let (E,h) be a Hermitian holomorphic vector bundle on X of rank r and put
E(k) = E ⊗Lk. Write L2 (X ,E (k)) for the completion of C∞ (X ,E (k)) with respect to the
L2-inner product induced by the metric h⊗σ k on E(k) and the volume form ωn/n!. Denote
by Πk : L2 (X ,E (k))→ H0 (X ,E (k)) the orthogonal projection onto the finite dimensional
subspace of holomorphic sections. Its integral kernel Bk (x,y), also called the Bergman kernel,
is a smooth section of the pull-back bundle E(k)�E(k)∗ → X ×X . Explicitly at a point
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(x,y) ∈ X ×X it is given by

Bk(x,y) =
Nk

∑
i=1

si(x)⊗ s∗i (y)

where s = s1, . . . ,sNk is an L2-orthonormal basis of H0 (X ,E (k)). Furthermore the restriction
of Bk to the diagonal is naturally identified with a section of End(E).

Remark 2.3.3. We say that a sequence of Θk ∈C∞ (X ,End(E)) has an asymptotic expansion
of the form

Θk(x) =
∞

∑
j=0

A j(x)kn− j

where A j ∈C∞ (X ,End(E)), if for any r,M > 0 there exists a constant Cr,M such that

∣∣∣Θk −
M

∑
j=0

A j kn− j
∣∣∣
Cr(X)

≤Cr,Mkn−M−1

where | · |Cr(X) denotes the Cr-norm.

The following result has been proved in various degrees of generality by Zelditch [25],
Catlin [3], Lu [17] and Bouche [2] in the case where E is a line bundle. The general case
was studied later by Wang [24] and in a more general setting by Ma and Marinescu, see [18]
and [19].

Theorem 2.3.4 (Theorem 4.1.2. in [18]). For any Hermitian metric h on E and Kähler
form ω ∈ c1(L), there exists smooth endomorphisms bi(h,ω) ∈C∞(X ,End(E)) such that the
restriction to the diagonal of the Bergman kernel, denoted by Bk(h,ω), admits an asymptotic
expansion as k → ∞,

Bk(h,ω) = kn +b1(h,ω)kn−1 + . . .

In particular

b1(h,ω) =
i

2π
ΛωF(E,h)+

1
8π

S(ω)IdE .

Moreover the expansion is uniform in h and ω if they vary in compact subsets for the
C∞-topology.

Definition 2.3.5. Let f ∈C∞ (X ,End(E)). We define the Toeplitz operator Tk, f : L2 (X ,E (k))→
L2 (X ,E (k)) by

Tk, f = Πk ◦ f ◦Πk.
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One checks that in terms of an L2-orthonormal basis s = s1, . . . ,sNk of H0 (X ,E (k)) the
integral kernel of Tk, f can explicitly be written as

Kk, f (x,y) =
Nk

∑
i, j=1

∫
X
⟨ f si,s j⟩h⊗σ k(z)s j(x)⊗ s∗i (y)

ωn
z

n!
.

Theorem 2.3.6 (Theorem 0.1 in [19]). Let f ∈ C∞ (X ,End(E)). The restriction to the
diagonal of the Toeplitz kernel admits the following asymptotic expansions as k →+∞,

Kk, f = b0, f kn +b1, f kn−1 +b2, f kn−2 +O(kn−3)

where

b0, f = f ,

b1, f =
S(ω)

8π
f +

i
4π

(ΛωFhE f + f ΛωFhE )−
1

4π
∆

E f .

In the case when E is the trivial line bundle with the flat metric one has

b2, f = b2 f +
1

32π2 ∆
2 f − 1

32π2 S(ω)∆ f +
1

8π2 (Ric, i ∂̄ ∂ f ).

This expansion is uniform in the endomorphism f if f varies in a subset of C∞ (X ,End(E))
which is compact for the C∞-topology. Eventually the expansions are uniform when the
metric h on E varies in a set of uniformly equivalent metrics lying in a compact set for the
C∞-topology.

We come now to the composition of Toeplitz operators. For f ,g ∈ C∞ (X ,End(E))
consider Tk, f ,g = Tk, f ◦ Tk,g and denote by Kk, f ,g its integral kernel which can be written
explicitly in terms of Kk, f and Kk,g as

Kk, f ,g(x,y) =
∫

X
Kk, f (z,y)◦Kk,g(x,z)

ωn
z

n!
.

Theorem 2.3.7 (Theorem 0.2 in [19]). Let f ,g ∈C∞ (X ,End(E)). As k → ∞ the restriction
to the diagonal of the kernel Kk, f ,g admits an asymptotic expansion

Kk, f ,g = b0, f ,gkn +b1, f ,gkn−1 +O(kn−2).
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In particular,

b0, f ,g = f g,

b1, f ,g =
1

8π
S(ω) f g+

i
4π

(ΛωFhE f g+ f gΛωFhE )

− 1
4π

(
f ∆

Eg+
(
∆

E f
)

g
)
+

1
2π

⟨∂̄ E f ,∇1,0g⟩.

Moreover this expansion is uniform in the endomorphisms f ,g if f and g vary in a subset
of C∞ (X ,End (E)) which is compact for the C∞-topology. Eventually the expansions are
uniform when the metric h and ω vary in sets of uniformly equivalent metrics lying in a
compact set for the C∞-topology.

Finally the last result we need is the following expansion of the composition of two
Toeplitz operators.

Theorem 2.3.8 (Theorem 0.3 in [19]). Let f ,g ∈C∞ (X ,End(E)). The composition of the
Toeplitz operators Tk, f and Tk,g is again a Toeplitz operator and admits the asymptotic
expansion

Tk, f ◦Tk,g = Tk,C0( f ,g)+Tk,C1( f ,g)k
−1 +O

(
k−2) .

where Cr are bidifferential operators, in the sense that for any r ≥ 0, there exists constants
cr > 0 with

||Tk, f ◦Tk,g −
r

∑
j=0

k− jTk,C j( f ,g)|| ≤ crk−r−1

where ∥ · ∥ denotes the operator norm. Moreover the first order terms are given by

C0, f ,g = f g,

C1, f ,g = − 1
2π

⟨∇1,0 f , ∂̄ Eg⟩,
C2, f ,g = b2, f ,g −b2, f g −b1,C1( f ,g).

If f ,g ∈C∞ (X ,R) then

C2, f ,g =
1

8π2 ⟨D
1,0

∂ f ,D0,1
∂̄g⟩+ i

4π2 ⟨Ric,∂ f ∧ ∂̄g⟩− 1
4π2 ⟨∂ f ∧ ∂̄g,Fh⟩.

Here D1,0 and D0,1 are the (1,0) and (0,1) components of the connection

DT ∗X : C∞ (X ,T ∗X)→C∞ (X ,T ∗X ⊗T ∗X)
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induced by the Levi-Civita connection on X.

2.3.3 The Hilbk and the FSk maps

In order to show that the operators ∆ and P∗
k Pk are linked, we will need to understand the

relation between the spaces they act on. As before denote by H the space of Hermitian
metrics on E and by Bk the space of Hermitian inner products on H0 (X ,E (k)). Following
Donaldson [9] we define maps from H to Bk and back:

• Define Hilbk : H → Bk by

Hilbk(h)(s, t) =
∫

X
⟨s(x), t(x)⟩h⊗σ k

ωn

n!

for any s, t ∈ H0 (X ,E (k)).

• To define the map in the other direction, let b ∈ Bk and pick any b-orthonormal
basis s = s1, . . . ,sNk of H0 (X ,E (k)). As explained in section 2.2.2 this defines an
embedding of X into G(r,Nk). Pulling-back the Fubini–Study metric from the dual of
the tautological bundle defines an Hermitian metric on E(k) and hence on E which we
call FSk(b). Hence we have a map FSk : Bk → H . Equivalently FSk(b) is the unique
metric on E such that

∑si ⊗ s
∗FSk(b)⊗σk

i = IdE .

Furthermore for h ∈ H , consider the map

d (Hilbk)h : ThH ∼=C∞ (X ,Endh(E))→ THilbk(h)Bk
∼= iu(Nk).

In order to simplify notations we put

Qk,φ := d (Hilbk)h (φ) .

In terms of an Hilbk(h)-orthonormal basis s1, . . . ,sN of H0 (X ,E (k)) we have

(
Qk,φ

)
i j =

∫
X
⟨si,φs j⟩h⊗σ k

ωn

n!
.

To see this, it suffices to differentiate Hilbk along the path of Hermitian metrics given by

⟨r,s⟩t = ⟨r,(Id+ tφ)s⟩h⊗σ k
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where r,s ∈ H0 (X ,E (k)) and where t is sufficiently small.

2.3.4 The Lichnerowicz operator

The so called Lichnerowicz operator plays an important role in the last chapter of this thesis.
Furthermore, it appears in the second order term in the asymptotic expansion of P∗

k Pk in the
case when E is the trivial line bundle, see theorem 2.4.1.

Let L → X be an ample holomorphic line bundle over a compact Kähler manifold. Fix a
Hermitian metric σ on L such that its curvature Fσ gives a Kähler form ω = i

2π
Fσ .

Definition 2.3.9. The Lichnerowicz operator D : C∞(X ,R)→ Ω0,1(T X) is defined to be the
operator given by

D( f ) = ∂̄ (v f )

where v f is the Hamiltonian vector field corresponding to f via ω . D( f ) measures the failure
of the Hamiltonian vector field v f of being holomorphic.

Write D∗ for its L2-adjoint. The composition D∗D is linked to the linearisation of the
scalar curvature D as follows. If σt is the path of Hermitian metrics on L given by σt = e4π f t ,
we put

D( f ) =
∂S(σt)

∂ t
.

Lemma 2.3.10.
D( f ) = ∆

2 f −2(Ric,2i ∂̄ ∂ f )

and
D∗D( f ) = D( f )+(dS,d f )

See for example [5] or [11] as a reference.

2.4 Asymptotics of P∗
k Pk

Fix an Hermitian metric h on E. Applying the Hilbk-map we get an Hermitian inner product
on H0 (X ,E (k)) for each k. Choosing any Hilbk-orthonormal basis of H0 (X ,E (k)) identifies
G
(
r,H0 (X ,E (k))∗

)
with the standard Grassmannian G(r,Nk). As explained in section 2.2.2

this gives us a sequence of embeddings ιk : X 7→ Xk ⊂G(r,Nk). Let us recall the construction
of the operator P∗

k Pk in this setting.
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Any A ∈ iu(Nk) defines a holomorphic vector field ξ A on G(r,Nk). Following the
discussion from section 2.2.2, we define

Pk : iu(Nk)→C∞ (X ,TG(r,Nk)|Xk)

by Pk(A) = ξA|Xk . Using the trace on iu(Nk) and the L2 inner product on C∞ (X ,TG(r,Nk)|Xk)

induced by the Fubini–Study metric on the tangent space we, get an adjoint map

P∗
k : C∞ (X ,TG(r,Nk)|Xk)→ iu(Nk) .

Thus, we have a sequence of self-adjoint operators P∗
k Pk : iu(Nk)→ iu(Nk).

Theorem 2.4.1. Let φ ∈C∞(X ,Endh(E)). The pullback of P∗
k Pk under the map Hilbk : H →

Bk admits an asymptotic expansion as k → ∞. More precisely,

Tr
(
Qk,φ P∗

k Pk(Qk,φ )
)
= a1k−1 +a2k−2 +O(k−3)

where the leading order term a1 is given by

a1 =
1

4π

∫
X

Tr
(
φ∆

E
φ
) ωn

n!
,

=
1

2π

∫
X

Tr(φ∆∂ φ)
ωn

n!
,

=
1

2π

∫
X

Tr
(
φ∆

∂̄
φ
) ωn

n!
.

Moreover, in the case where E is the trivial flat line bundle, the second order coefficient is
given for all φ ∈C∞(X ,R) by

a2 =
1

32π2

∫
X

(
φD∗Dφ −4φ∆

2
φ
) ωn

n!
.

These estimates are uniform in the endomorphism φ if φ varies in a subset of C∞(X ,Endh(E))
which is compact for the C∞-topology. The estimate is uniform when the metric h on E varies
in a set of uniformly equivalent metrics lying in a compact set for the C∞-topology.

The proof of this theorem relies on the following lemma which is a generalisation of
lemma 18 in [10]. The notation is that of sections 2.2.2 and 2.3.1.

Lemma 2.4.2. For any A,B ∈ iu(N), the following identitiy holds pointwise in G(r,N),

Tr(HAHB)+ ⟨ξ A,ξ B⟩FS = Tr(ABµ). (2.4.1)
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Proof. By U(N) equivariance it is sufficient to prove the formula at one particular point in
G(r,N), let’s say the r-dimensional subspace in CN generated by the r first basis-vectors of
the standard basis e1, . . . ,eN . Denote this point by [z] where z is the r×N matrix given by

z =
(

Idr×r 0r×N−r

)
.

In order to fix notation, note that any A ∈ iu(N) can be decomposed as

A =

(
Ar×r Ar×N−r

AN−r×r AN−r×N−r

)
.

Let’s start computing the first term of the left-hand side of equation (2.4.1). For any A∈ iu(N)

the matrix of HA at the point [z] is given by(
Ar×r 0r×N−r

0N−r×r 0N−r×N−r

)

and hence
Tr(HA ([z])HB ([z])) = Tr(Ar×rBr×r) .

In order to compute the second term of the left-hand side in (2.4.1), recall that by definition,
the vector field ξ A induced by A ∈ iu(N) at [z] is given by

ξ
A([z]) = [z,zA]

=
[(

Idr×r 0r×N−r

)
,
(

Ar×r Ar×N−r

)]
.

Moreover from section 2.3.1 we know that the general formula for the Fubini–Study metric
on G(r,N) is given by

⟨[(z,X)], [(z,Y )]⟩FS = Tr(Y ∗(zz∗)−1X)−Tr((zz∗)−1zY ∗(zz∗)−1Xz∗).

In our situation, zz∗ = Idr×r and a straightforward computation shows that

⟨[(z,zA)], [(z,zB)]⟩FS = Tr
(
(Br×N−r)

∗Ar×N−r
)
.

In order to compute the right-hand side of (2.4.1), first note that

µ ([z]) = z∗ (zz∗)z =

(
Idr×r 0r×N−r

0N−r×r 0N−r×N−r

)
.
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After a short calculation, one gets

Tr(ABµ ([z])) = Tr(Ar×rBr×r)+Tr(Ar×N−rBN−r×r) .

The fact that B is Hermitian implies that BN−r×r = B∗
r×N−r. Putting everything together

yields the result.

Proof of theorem 2.4.1

In order to simplify notation, we denote the volume form ωn

n! by Ω through the proof.

Integrating the formula from lemma 2.4.2 over X , one has for all A,B ∈ iu(Nk),∫
X
⟨ξ A,ξ B⟩FS Ω = Tr(ABµ̄k)−⟨HA,HB⟩L2

Moreover, by definition of the operator Pk,

Tr(AP∗
k Pk(B)) =

∫
X
⟨ξ A,ξ B⟩FS Ω.

Putting these together, we get that for any φ ∈C∞(X ,Endh(E)),

Tr
(
Qk,φ P∗

k Pk(Qk,φ )
)
= Tr

(
Q2

k,φ µ̄k

)
−
∫

X
Tr
(

H2
Qk,φ

)
Ω. (2.4.2)

Let s = s1, . . . ,sNk be a Hilbk(h)-orthonormal basis of H0 (X ,E (k)). We start computing the
first term of the right-hand side of this formula.

Tr
(

Q2
k,φ µ̄k

)
= ∑

i, j,ℓ

∫
X
⟨si,φs j⟩Ω

∫
X
⟨s j,φsℓ⟩Ω

∫
X
⟨sℓ,B−1

k si⟩Ω

=Tr
∫

X×X×X
∑
i, j,ℓ

⟨si,φs j⟩(y)⟨s j,φsℓ⟩(z)sℓ⊗ s∗i (x)◦B−1
k (x)Ω∧Ω∧Ω

=Tr
∫

X
Kφ ,φ ,k(x)(B−1

k (x))Ω.

Using theorem 2.3.4 and proposition 2.3.6, one can compute the first two terms in the
asymptotic expansion of this expression. After a short computation, one gets
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∫
X

Tr(φ 2)Ω+ k−1Tr
(∫

X

1
2π

⟨∂̄ φ ,∇1,0
φ⟩Ω−

∫
X

1
2π

φ∆
E

φ

)
Ω+O

(
k−2)

=
∫

X
Tr(φ 2)Ω+

k−1

2π

∫
X

(∣∣∂̄ φ
∣∣2 −Tr

(
φ∆

E
φ
))

Ω+O(k−2).

On the other hand,

HQk,φ (x) = ∑
i, j

∫
X
⟨si,φs j⟩(y)s j ⊗ s

∗FSk(h)
i (x)Ω

= ∑
i, j

∫
X
⟨si,φs j⟩(y)s j ⊗ s

∗
B−1

k h

i (x)Ω

= ∑
i, j

∫
X
⟨si,φs j⟩(y)s j ⊗ s∗h

i ◦B−1
k (x)Ω

= Kk,φ ◦B−1
k (x).

Using the asymptotic expansions for Bk and Kk,φ , we have

HQk,φ =

(
φ + k−1

(S(ω)

8π
φ +

i
4π

(ΛFhφ +φΛFh)−
1

4π
∆

E
φ

)
+ . . .

)
×
(

Id− k−1
(S(ω)

8π
+

i
2π

ΛFh

)
+ . . .

)
=φ + k−1

(
i

4π
(ΛFhφ +φΛFh −2φΛFh)−

1
4π

∆
E

φ

)
+O(k−2).

Therefore,

Tr(H2
Qk,φ

) = Tr(φ 2)− k−1

2π
Tr(φ∆

E
φ)+O(k−2).

Thus, putting everything together yields

Tr
(
Qk,φ P∗

k PkQk,φ
)
=
∫

X
Tr(Qk,φ µ)Ω−

∫
X

Tr(H2
Qk,φ

)Ω

=
k−1

2π

∫
X
|∂̄ φ |2Ω+O

(
k−2) .
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Moreover, by the Weitzenböck formula (2.1.1) and the Bochner–Kodaira–Nakano identity
(2.1.2), we have

1
2π

∫
X
|∂̄ φ |2 Ω =

1
2π

∫
X

Tr(φ∆
∂̄

φ)Ω

=
1

4π

∫
X

Tr(φ∆
E

φ)Ω+
i

2π

∫
X

Tr(φ [ΛFh,φ ])Ω

=
1

4π

∫
X

Tr(φ∆
E

φ)Ω.

We now explain how to compute the second order coefficient in the case E is the trivial
line bundle with the flat metric. The only thing we have to do is to go one term further is the
asymptotic expansion of the two terms in equation (2.4.2).

Let us start with the first term. We already know that∫
X

Tr(Q2
k,φ µ)Ω =

∫
X

Kφ ,φ ,k(x)(B−1
k (x))Ω

Using theorem 2.3.4 one gets

B−1
k = k−n

(
1− S

8π
k−1 +

(
S2

64π2 −b2

)
k−2 +O

(
k−3)) .

Moreover, the asymptotic expansion for Kφ ,φ ,k given in theorem 2.3.6 implies

Kφ ,φ ,kB−1
k =

(
1− S

8π
k−1 +

(
S2

64π2 −b2

)
k−2 +O(k−3)

)
×
{

φ
2 +

(
S

8π
φ

2 − 1
2π

φ∆φ +
1

4π
|d f |2

)
k−1 +b2,φ ,φ k−2 +O

(
k−3)}.

Since we already computed the k0 and k−1-terms above, we only focus on the k−2-term. An
straightforward computation shows that the coefficient of the k−2 term is given by

b2,φ ,φ +
S

16π2 φ∆φ − S
32π2 |dφ |2 −b2φ

2,

and hence the k−2-coefficient of
∫

X Tr(Q2
k,φ µ)Ω is

∫
X

(
b2,φ ,φ +

S
16π2 φ∆φ − S

32π2 |dφ |2 −b2φ
2
)

Ω. (2.4.3)
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Now consider the second term of the right-hand side of equation (2.4.2). We need the
asymptotic expansion of HQk,φ up to the k−2 term. We have

HQk,φ = Kk,φ B−1
k

=

(
1− S

8π
k−1 +

(
S2

64π2 −b2

)
k−2 +O(k−3)

)
×
(

φ +

(
S

8π
φ − ∆φ

4π

)
k−1 +b2,φ k−2 +O(k−3)

)
.

Expanding this expression, we get

φ − ∆φ

4π
k−1 +

(
b2,φ +

S∆φ

32π2 −b2φ

)
k−2 +O(k−3).

An easy calculation shows then that the k−2-coefficient of H2
Qk,φ

is given by

2φb2,φ +
Sφ∆φ

16π2 −2b2φ
2 +

(∆φ)2

16π2 .

Hence the k−2-coefficient of
∫

X H2
Qk,φ

Ω is

∫
X

(
2φb2,φ +

Sφ∆φ

16π2 −2b2φ
2 +

(∆φ)2

16π2

)
Ω. (2.4.4)

Putting equations 2.4.3 and 2.4.4 together we get the k−2-coefficient of Tr(Qk,φ P∗
k PkQkφ):

∫
X

(
b2,φ ,φ −

S |dφ |2

32π2 −2φb2,φ +b2φ
2 − φ∆2φ

16π2

)
Ω.

Now we use the fact that
∫

X Kφ ,ψ,k =
∫

X φKψ,k which implies that
∫

X bφ ,ψ,k =
∫

X φbψ,k. Using
the formula for b2,φ given in proposition 2.3.6 we get

∫
X

(
−3φ∆2φ

32π2 +
S

32π2

(
φ∆φ −|dφ |2

)
− φ

8π2

(
Ric, i ∂̄ ∂φ

))
Ω.

We will simplify this by using the following identities which can be proven using Leibniz’s
rule and integration by parts:∫

X
φ(dS,dφ)Ω =

1
2

∫
X

φ
2
∆SΩ =

∫
X

S(φ∆φ −|dφ |2)Ω.
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We get
1

32π2

∫
X

φ
(
(dS,dφ)−3∆

2
φ −2(Ric,2i ∂̄ ∂φ)

)
Ω.

Using the formulas from lemma 2.3.10 for the Lichnerowicz operator, this can be written as

1
32π2

∫
X

(
φD∗Dφ −4φ∆

2
φ
)

Ω,

which concludes the proof.

By symmetry, we get the following corollary.

Corollary 2.4.3. Let h be a Hermitian metric on E and φ ,ψ ∈C∞ (X ,Endh (E)). Then we
have the asymptotics

Tr
(
Qk,φ P∗

k PkQk,ψ
)
=

1
8πk

∫
X

Tr
(
φ∆

E
ψ +ψ∆

E
φ
)

Ω+O(k−2).

Moreover, in the case where E is the trivial flat line bundle, the second order coefficient is
given for all φ ,ψ ∈C∞(X ,R) by

1
32π2

∫
X

(
φD∗Dψ −4φ∆

2
ψ
) ωn

n!
.

This estimate is uniform in the endomorphisms φ ,ψ if φ ,ψ vary in a subset which is compact
for the C∞-topology. The estimate is uniform when the metric h on E varies in a set of
uniformly equivalent metrics lying in a compact set for the C∞-topology.

2.5 Eigenvalues and Eigenspaces

For j ≥ 0, let λ j be the eigenvalues of the Bochner Laplacian ∆ = ∆E acting on the space
of smooth sections of the bundle Endh(E) of h-Hermitian endomorphisms of E. We use the
convention that 0 ≤ λ j ≤ λ j+1. If we set Er to be the space generated by the eigenspaces

{v ∈C∞ (Endh (E)) |
(
∆

E −λ jId
)

v = 0}

for 0 ≤ j ≤ r, then

λr+1 = min
φ∈E⊥

r

∥∇φ∥2
L2

∥φ∥2
L2

.

Note that dimEr ≥ r+1 and equality holds if and only if λr+1 > λr. Let ν0,k ≤ ...≤ νMk,k

the eigenvalues of the operator P∗
k Pk, where Mk +1 = dimu(Nk) = N2

k . Define Fr,k to be the
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space generated by the eigenspaces

{A ∈ iu(Nk) |
(
P∗

k Pk −ν j,kId
)

A = 0}

for 0 ≤ j ≤ r. Then

νr+1,k = min
B∈F⊥

r,k

∥PkB∥2

∥B∥2 .

Note that dimFr,k ≥ r+1 and equality holds if νr+1,k > νr,k. We write Fp,q,k ⊂ iu(Nk) for
the span of ν j,k-eigenspaces of P∗

k Pk with p ≤ j ≤ q.

Definition 2.5.1. A holomorphic vector bundle is simple if its only holomorphic automor-
phisms are multiplication by a constant.

Theorem 2.5.2. Suppose that E is a simple vector bundle. For each j ≥ 0, one has

ν j,k =
λ j

4πkn+1 +O(k−n−2),

as k →+∞.

Theorem 2.5.3. Under the setting as above assume that E is a simple vector bundle. Fix an
integer r > 0. There is a constant C > 0 such that for all A,B ∈ Fr,k,∣∣∣Tr(AB)− kn⟨HA,HB⟩L2

∣∣∣≤Ck−1Tr(A2)1/2Tr(B2)1/2.

Moreover, let us fix integers 0 < p < q such that

λp−1 < λp = λp+1 = ...= λq < λq+1.

Given an eigenvector φ ∈ Ker(∆E − λpId), let Aφ ,k denote the point in Fp,q,k with HAφ ,k

nearest to φ as measured in L2. Then

∥HAφ ,k −φ∥2
L2 = O(k−1),

and this estimate is uniform in φ if we require that ∥φ∥L2 = 1.

In both theorems, the estimates are uniform when the metric varies in a family of uni-
formly equivalent metrics which is compact for the C∞-topology.

We will prove theorems 2.5.2 and 2.5.3 simultaneously by induction. Let r be a non-
negative integer. We call the following statement the rth inductive hypotheses.
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Induction hypotheses

1. For each j = 0, . . . ,r,

ν j,k =
λ j

4πkn+1 +O(k−n−2).

2. There exists a constant C > 0 such that for all A,B ∈ Fr,k,∣∣∣Tr(AB)− kn⟨HA,HB⟩L2

∣∣∣≤Ck−1Tr(A2)1/2Tr(B2)1/2.

3. Fix integers 0 < p < q ≤ r, such that λp−1 < λp = λp+1 = ... = λq < λq+1. Given
φ ∈ Ker(∆E − λpId), let Aφ ,k denote the point in Fp,q,k with HAφ ,k nearest to φ as
measured in L2. Then

∥HAφ ,k −φ∥2
L2 = O(k−1)

and this estimate is uniform in φ if we require that ∥φ∥L2 = 1.

2.5.1 Initial step of the induction

The first eigenvalue of ∆E is λ0 = 0 and Ker(∆) = R · IdE since E is simple. Therefore, λ1 >

λ0. Since the first eigenvalue ν0,k of P∗
k Pk is also 0, step 1 of the induction obviously holds.

Furthermore, note that Id spans the ν0,k-eigenspace. With Tr(Id2) = Nk = rV kn +O(kn−1)

and HId = IdE , one gets easily Step 2 since
∫

X⟨HId,HId⟩Ω = rV . Finally, H sends the ν0,k-
eigenspace isomorphically to the λ0-eigenspace. Hence, the induction process is valid at the
base level.

Let us assume that the eigenvalues satisfy λr < λr+1 = ...= λs < λs+1. To carry out the
induction we will prove that the rth inductive hypotheses imply the sth inductive hypotheses.

2.5.2 Upper bound on the eigenvalues

We start giving an asymptotic upper bound of the eigenvalues of the operator P∗
k Pk. Define

πk : C∞ (X ,Endh (E))→ Fr,k,

to be the orthogonal projection of Qk,φ onto Fr,k.
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Lemma 2.5.4. Assume that λr < λr+1 = ...= λs < λs+1 and that the inductive hypothesis
holds at level r. Then for all j = r+1, ...,s one has

ν j,k ≤
λ j

4πkn+1 +O(k−n−2).

Proof. Let us start with the case of λr+1. Note that dimEr+1 ≥ r+2. Define I = {k | dimFr,k =

r+ 1}. Hence, k ∈ I if and only if νr,k < νr+1,k. On one hand, the induction hypotheses
implies that for k ̸∈ I,

νr+1,k = νr,k ≤
λr

4πkn+1 +O(k−n−1)≤ λr+1

4πkn+1 +O(k−n−1).

On the other hand, for k ∈ I, we have Ker(πk|Er+1) ̸= {0} since dimFr,k < dimEr+1. Let
φk ∈ Ker(πk|Er+1) such that ∥φk∥L2 = 1. Then

νr+1,k ≤
∥PkQk,φk∥2

Tr(Q2
k,φk

)

since Qk,φk⊥Fr,k. Moreover by theorem 2.4.1, we get for all ℓ and all k > 0,

∥PℓQℓ,φk∥
2 ≤ 1

4πℓ
λr+1 +Cℓ−2.

The constant C in this estimate is actually uniform in k. In fact, all the φk are lying in the unit
sphere of Er+1 which is compact in the C∞-topology. Putting ℓ= k yields

∥PkQk,φk∥
2 ≤ 1

4πk
λr+1 +Ck−2.

Similarly,

Tr(Q2
ℓ,φk

) = ℓn
∫

Tr(φ 2
k )+O(ℓn−1) = ℓn +O(ℓn−1).

Again, this estimate is uniform in k and putting k = ℓ implies

Tr(Q2
k,φk

) = kn +O(ℓn−1).

Hence for any k ∈ I, we have

νr+1,k ≤
λr+1

4πkn+1 +O(k−n−2).
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This settles the case when j = r+1. To get the bound for j = r+2, one repeats the same
argument with I = {k | dimFr+1,k = r+ 2}. This time the easy case k ̸∈ I is given by the
bound of νr+1,k we just got above. Carrying on this way until j = s concludes the proof.

2.5.3 Some estimates

We will now prove some estimates which will be useful in the proof of the lower bound
afterwards. They also appear (in a slightly less general setup) in [11].

Lemma 2.5.5. As k →+∞, we have

∥µ̄k − k−nIdk∥op = O
(
k−n−1) .

where Idk is the identity matrix in iu(Nk).

Proof. Let {s1, . . . ,sNk} be a Hilbk(h)-orthonormal basis of H0(X ,E(k)), i.e

∫
X
⟨si,s j⟩h⊗σ k

ωn

n!
= δi j.

We have

(µ̄k)i j =
∫

X
⟨si,B−1

k (h)s j⟩h⊗σ k
ωn

n!

= k−n
∫

X
⟨si,(IdE + εk)s j⟩h⊗σ k

ωn

n!

= k−n
δi j + k−n

∫
X
⟨si,εks j⟩h⊗σ k

ωn

n!
,

where εk =O
(
k−1). Following Donaldson [7] and Fine [10], we put for any φ ∈L2 (X ,End(E)),

(Aφ )i j =
∫

X
⟨si,φs j⟩h⊗σ k

ωn

n!
.

Aφ defines a linear map from H0 (X ,E (k)) into itself. Moreover, Aφ = π ◦Mφ ◦ j, where
j : H0(E(k))→ L2(X ,E(k)) is the inclusion, π : L2(X ,E(k))→ H0(E(k)) is the orthogonal
projection and Mφ : L2(X ,E(k))→ L2(X ,E(k)) is defined by Mφ s = φs. Hence,

∥Aφ∥op = ∥π ◦Mφ ◦ j∥op ≤ ∥Mφ∥op ≤ ∥φ∥C0.
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Applying this to εk, we have

∥µ̄k − k−nIdk∥op = k−n
∥∥∥∫

X
⟨si,εks j⟩h⊗σ k

ωn

n!

∥∥∥
op

= k−n∥Aεk∥op

≤ k−n∥εk∥C0

= O
(
k−n−1) .

A consequence of lemma 2.5.5 is the following.

Lemma 2.5.6. There is a constant C > 0 such that for any A,B ∈ iu(Nk), one has

|Tr(ABµ̄)− 1
kn Tr(AB) | ≤Ck−n−1Tr(A2)1/2Tr(B2)1/2.

Proof. Let M := µ̄k − k−nIdk. We have

|Tr(ABµ̄)− 1
kn Tr(AB)|= |Tr(ABM)|

≤ ∥M∥op|Tr(AB)|
≤Ck−n−1∥A∥∥B∥.

Lemma 2.5.7. There is a constant C > 0 such that for any A ∈ iu(Nk), one has

∥HA∥2
L2 ≤

1
kn

(
1+Ck−1)Tr(A2)

Proof. By lemma 2.4.1, we have∫
X

Tr(H2
A)Ω+∥ξA∥2

L2 = Tr(A2
µ̄).

Thus,

∥HA∥2
L2 ≤ Tr(A2

µ̄)≤ 1
kn

(
1+Ck−1)Tr(A2).

The next lemma shows that the map H asymptotically preserves orthogonality along
eigenspaces.
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Lemma 2.5.8. Let ψ ∈ L2 and let Mk ∈ iu(Nk) be a sequence of P∗
k Pk-eigenvectors satisfying

the following conditions

1. Tr(M2
k ) = kn +O(kn−1)

2. ∥HMk −ψ∥2
L2 = O(k−1),

then there is a constant C > 0 such that for all B ∈ iu(Nk) with Tr(BMk) = 0, we have

|⟨HB,ψ⟩L2|2 ≤Ck−n−1Tr(B2).

Proof. Integrating the formula in lemma 2.4.2 implies that

⟨HB,HMk⟩L2 =−⟨ξB,ξMk⟩L2 +Tr(BMkµ̄k).

By definition,
⟨ξB,ξMk⟩L2 = Tr(BP∗

k Pk (Mk)) = λTr(B,Mk) = 0.

Moreover lemma 2.5.6 implies then that

|Tr(BMkµ̄k)| ≤Ck−n−1∥B∥∥Mk∥.

Using these estimates and lemma 2.5.7 we get,

|⟨HB,ψ⟩L2| ≤ |⟨HB,HMk⟩L2|+ |⟨HB,HMk −ψ⟩L2|
≤ |⟨HB,HMk⟩L2|+∥HB∥L2∥HMk −ψ∥L2

= |Tr(BMkµ̄k)|+∥HB∥L2∥HMk −ψ∥L2

≤Ck−
n+1

2 Tr(B2)1/2.

2.5.4 Lower bound for the eigenvalues

The goal of this section is to prove the following lower bound for the eigenvalues which turns
out to be much harder than the upper bound.

Proposition 2.5.9. Assume that λr < λr+1 and that the inductive hypothesis holds at level r.
Then one has the following bound

νr+1,k ≥
λr+1

4πkn+1 +O
(
k−n−2) .
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Remark 2.5.10. Note that the if we have for example λr+2 = λr+1 then this proposition
immediately implies that νr+2,k ≥ λr+2

4πkn+1 +O
(
k−n−2) too, since by definition νr+2,k ≥ νr+1,k.

The crucial step in the proof of proposition 2.5.9 is the following key-estimate

Proposition 2.5.11. For any A ∈ iu(Nk), we have

∥∇HA∥2
L2 ≤ (4πk+O(1))∥Pk(A)∥2.

The proof of this result makes use of the second fundamental form of a couple of
holomorphic sub-bundles. In order to set things clear and for the sake of completeness,
we begin by recalling some general theory. The way we present it here is close to Fine’s
treatment in [11]. Let V → X be a holomorphic Hermitian vector bundle over a complex
manifold. Suppose S is a holomorphic sub-bundle of V with quotient Q. In other words, we
have a short exact sequence

0 → S →V → Q → 0. (2.5.1)

Denote by ∇V the Chern connection on V . By restriction we also get a Hermitian metric on
S. Moreover, the Hermitian metric allows us to identify the quotient bundle Q with S⊥ as
smooth vector bundles, so that we have a smooth splitting

V = S⊕Q.

Hence we also obtain a Hermitian metric on Q which allows us to define Chern connections
∇S and ∇Q on S and Q respectively. One can check that ∇S is the composition of ∇V followed
by the projection to S.

There are two ways to look at the second fundamental form of a short exact sequence as
in (2.5.1). Either you measure the failure of S to be a parallel sub-bundle of V , or you look at
S⊥ and measure its failure of being a holomorphic sub-bundle. The first point of view can
be described as follows. Denote by F the composition of ∇V with the projection to Q. This
defines an operator

F : C∞(S) ∇V
→ Ω

1(V )→ Ω
1(Q)

called the second fundamental form of (2.5.1). Note that since S is a holomorphic sub-bundle,
the (0,1)-part of ∇V leaves S invariant and thus F is a section of the bundle Λ1,0⊗Hom(S,Q).

On the other hand, observe that if S⊥ was a holomorphic sub-bundle, it would be invariant
under ∂̄V . The failure of S⊥ of being a holomorphic sub-bundle can then be measured by the
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composition of ∂̄V with the projection to S. This defines a map

F̃ : C∞(S⊥) ∂̄V
→ Ω

0,1(V )→ Ω
0,1(S). (2.5.2)

Hence we can think of F̃ as a section of Λ0,1 ⊗Hom(S⊥,S). One can check that under the
identification Q ≃ S⊥ the map F̃ is nothing else than F∗, the dual of F obtained by using
conjugation in the (1,0)-form factor and taking the usual adjoint in the Hom(S,Q) factor.

On one hand, write
F ∧F∗ ∈ Λ

1,1 ⊗End(Q)

where we take the genuine wedge product on the form part and composition on the homo-
morphism part. On the other hand, we consider

F∗∧F ∈ Λ
1,1 ⊗End(S).

Denote by R(S), R(Q) and R(V ) the curvatures of the Chern connections of S, Q and V
respectively. By the splitting of V = S⊕Q as smooth vector bundles, we get an induced
splitting

End(V ) = End(S)⊕Hom(S,Q)⊕Hom(Q,S)⊕End(Q).

If we write now R(V )|S and R(V )|Q for the components of R(V ) in End(S) and End(Q)

respectively, we have the following standard lemma. See for instance page 78 of [12] for a
proof.

Lemma 2.5.12.

F∗∧F = R(S)−R(V )|S
F ∧F∗ = R(Q)−R(V )|Q.

Assuming that the complex manifold X carries a Hermitian metric, we can identify

Λ
1,0 ≃ (Λ0,1)∗.

Using this, F can be interpreted as a homomorphism

F : Λ
0,1 ⊗S → Q
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and similarly, F∗ can be thought of as a homomorphism

F∗ : Q → Λ
0,1 ⊗S.

These two maps are adjoint with respect to the fibrewise Hermitian metrics on Λ0,1⊗S and Q.
Furthermore we will be interested in the compositions FF∗ and F∗F of these maps. Namely

Λ
0,1 ⊗S F−→ Q F∗

−→ Λ
0,1 ⊗S

and
Q F∗
−→ Λ

0,1 ⊗S F−→ Q.

One can then check that under these identifications, F∗F is identified with −F∗∧F whereas
FF∗ is identified with TrX(F ∧F∗). Here the trace is taken over the Λ1,1-component of
F ∧F∗ using the Hermitian metric on X (see Fine [11] page 28).

We will now use this general theory in the following situation. Still suppose that we have
a short exact sequence of holomorphic vector bundles

0 → S →V → Q → 0.

Taking duals, we get another short exact sequence

0 → Q∗ →V ∗ → S∗ → 0

and taking the tensor product with the bundle V yields

0 → Hom(Q,V )→ End(V )→ Hom(S,V )→ 0. (2.5.3)

The Hermitian metric on V induces metrics on all of these bundles. Let A ∈C∞ (End(V )) be
Hermitian and covariant constant with respect to the Chern connection on End(V ), i.e.

∇
End(V )A = 0.

If we use the metric on End(V ) to split

End(V ) = Hom(Q,V )⊕Hom(S,V )
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as smooth vector bundles, we can write

A =

(
A1

A2

)

where A1 ∈C∞ (Hom(Q,V )) and A2 ∈C∞ (Hom(S,V )). Furthermore we have

∂̄
End(V ) =

(
∂̄ Hom(Q,V ) η∗

0 ∂̄ Hom(S,V )

)

where η∗ is the dual of the second fundamental form of the short exact sequence given in
(2.5.3), defined as in (2.5.2). Applying it to our covariant constant section A yields(

0
0

)
= ∂̄

End(V )A =

(
∂̄ Hom(Q,V )A1 +η∗A2

∂̄ Hom(S,V )A2

)
.

In particular,
∂̄

Hom(S,V )A2 = 0 (2.5.4)

meaning that A2 ∈C∞ (Hom(S,V )) is a holomorphic section.

Now End(S) is a holomorphic sub-bundle of Hom(S,V ) with quotient Hom(S,Q). In
other words we have another short exact sequence

0 → End(S)→ Hom(S,V )→ Hom(S,Q)→ 0. (2.5.5)

Again we use the Hermitian metric to split this sequence and write

A2 =

(
H̃A

PA

)

where H̃A ∈C∞ (End(S)) and PA ∈C∞ (Hom(S,Q)). Writing

∂̄
Hom(S,V ) =

(
∂̄ End(S) F∗

0 ∂̄ Hom(S,Q)

)

and applying it to the holomorphic section A2 gives in particular

∂̄
End(S)H̃A =−F∗PA. (2.5.6)
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This formula is crucial for what follows. In fact it gives the geometric relation between the
derivative of H̃A in terms of PA.

In order to prove proposition 2.5.11 we will now apply the above discussion to our picture.
Recall that we used higher and higher powers of the line bundle L tensored with E to get a
sequence of embeddings of X into the Grassmannians G(r,Nk) which can be summarized by
the following diagram,

E(k) = ι∗k Ur −−−→ Ury y
X

ιk−−−→ G(r,Nk)

We have the following short exact sequence of holomorphic vector bundles

0 →U∗
r → CNk → Q → 0

where CNk denotes the trivial bundle over ιk(X) inside the Grassmannian and U∗
r and Q are

restricted to ιk(X) as well. As explained, we can use the metric to identify the quotient Q
with (U∗

r )
⊥ as smooth vector bundles.

Let A ∈ iu(Nk). We may think of A as a constant section of End(CNk) so that we can apply
the discussion from above with V = CNk . It is then just a matter of unwinding the definitions
to see that the dual of the Hermitian endomorphism HA of Ur defined in (2.3.1) coincides
with H̃A described in the discussion above. Furthermore the holomorphic tangent bundle
on the Grassmannian can be identified with End

(
U∗

r ,(U
∗
r )

⊥). Under this identification, the
section Pk(A) of TG(r,N)|ιk(X) defined in equation (2.2.1) corresponds to the restriction to
ιk(X) of what we called PA just above. Formula (2.5.6) gives then the link between the
derivative of H∗

A and Pk(A) by

∂̄
End(U∗

r )H∗
A =−F∗

k Pk(A). (2.5.7)

The next step in our discussion will be to control the asymptotics of the operator FkF∗
k .

However, it turns out to be easier to consider the operator F∗
k Fk first and then pass to F∗

k Fk.

Lemma 2.5.13. We have that ∥F∗
k Fk −2πkId∥C0(op) = O(1). Here Id denotes the identity in

End
(
Λ0,1 ⊗End(U∗

r )
)

and C0(op) is the C0-norm on sections of End
(
Λ0,1 ⊗End(U∗

r )
)

associated to the fibrewise operator norm.
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Proof. Recall that under the identification of Λ1,0 with (Λ0,1)∗, F∗
k Fk is identified with

−F∗
k ∧Fk. Moreover by lemma 2.5.12 we know that

−F∗
k ∧Fk = R

(
Hom(U∗

r ,CNk)
)
|End(U∗

r )
−R(End(U∗

r ))

Let’s start computing the first term of the right-hand side. Since CNk is flat, we get

R
(
Hom(U∗

r ,CNk)
)
= R(Ur)⊗ IdCNk . (2.5.8)

So we see that it boils down to calculate the curvature of Ur, the dual of the tautological
bundle restricted to ιk(X), or in other words, the curvature of E(k) = E ⊗Lk, computed with
respect to the metric FSk(h)⊗σ k. Since on one hand R(Lk) = −2πkiω and on the other
hand R(E) isn’t growing in k, we get

R(Ur) = O(1)+ IdE ⊗R(Lk) =−2πkiω ⊗ IdUr +O(1).

Putting these together, we see that

R
(
Hom(U∗

r ,CNk)
)
|End(U∗

r )
=−2πkiω ⊗ IdEnd(U∗

r )
+O(1).

Furthermore, since End(U∗
r ) =Ur ⊗U∗

r = E(k)⊗E(k)∗ = E ⊗E∗, the curvature of End(U∗
r )

isn’t growing in k. Putting these into equation (3.3.8) we get

−F∗
k ∧Fk =−2πkiω ⊗ IdEnd(U∗

r )
+O(1).

Raising indices to pass form −F∗
k ∧Fk to F∗

k Fk proves the Lemma.

We will now explain how to pass from F∗
k Fk to FkF∗

k . Denote by Tk ∈End(Hom(E(k),Q))

the orthogonal projection onto the image of Fk : Λ0,1 ⊗End(E(k))→ Hom(E(k),Q).

Lemma 2.5.14. ∥FkF∗
k − 2πkTk∥C0(op) = O(1), where we use the C0-norm on sections of

End(Hom(U∗
r ,Q)) associated to the fibrewise operator norm.

Proof. The argument is essentially the same as the proof of lemma 33 in [11], adapted to our
situation. Accordingly, we give nearly word-by-word the same proof. Clearly we have that
kerFkF∗

k = kerTk and since FkF∗
k is self-adjoint, it is enough to prove that all the non-zero

eigenvalues are given by 2πk+O(1). But the non-zero eigenvalues of FkF∗
k and F∗

k Fk are the
same since the eigenvectors are matched up by F∗

k . The result then follows from the previous
lemma.
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Having gathered all of these pre-requisites, we are finally in position to prove proposition
2.5.11.

Proof of proposition 2.5.11. Let A ∈ iu(Nk), we have

∥∇
End(E)HA∥2

L2 =
∫

X
Tr
(

HA∆
End(E)HA)

)
Ω,

=
∫

X
Tr
(
HA
(
2∆

∂̄
HA − i[ΛF,HA]

))
Ω,

= 2
∫

X
Tr
(
HA∆

∂̄
HA
)

Ω,

= 2
∫

X
|∂̄HA|2 Ω.

Using the relation ∂̄H∗
A =−F∗

k Pk(A) given in (2.5.7) and lemma 2.5.14 we further get that∫
X
|∂̄HA|2 Ω = ⟨Pk(A),FkF∗

k Pk(A)⟩,

= ⟨Pk(A),(2πkTk +O(1))Pk(A)⟩,
≤ (2πk+O(1))∥Pk(A)∥2.

This concludes the proof of proposition 2.5.11.

Assume that the induction hypothesis holds at level r and let λr < λr+1. We have the
following.

Lemma 2.5.15. Let φ0, . . . ,φr be an L2-orthonormal basis for Er such that ∆Eφi = λiφi. For
integers 0 < p < q ≤ r, satisfying λp−1 < λp = λp+1 = ...= λq < λq+1 and p ≤ j ≤ q, let
A j,k ∈ Fp,q,k be given by the induction hypotheses. Let Wk ⊂ Fr,k be the span of the vectors
A j,k (0 ≤ j ≤ r). Then

νr+1,k ≥ min
B∈W⊥

k

∥PkB∥2

Tr(B2)
.

Proof. By hypothesis (2) of the induction (I), there is a constant C such that

|Tr(Ai,kA j,k)− kn⟨HAi,kHA j,k⟩L2
Ω

| ≤Ck−1Tr
(
A2

i,k
)1/2

Tr
(

A2
j,k

)1/2
.

Using the estimate
Tr(A2

i,k) = kn +O(kn−1)

we get
Tr(Ai,kA j,k) = O(kn−1/2) if i ̸= j,
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since HAi,k = φ +O(k−1) uniformly by the induction hypotheses. Hence the vectors Ai,k

are linearly independent (otherwise their inner product would be of a similar order than
their norms). Thus dim(Wk) = r+1. The minimal eigenvalue of P∗

k Pk on W⊥
k is at least the

(r+2)th eigenvalue νr+1,k. Using the variational characterization of eigenvalues, one gets
the required inequality.

Proposition 2.5.16. There exists a constant C such that

∥PkB∥2 ≥
(

λr+1

4πkn+1 +
C

kn+2

)
Tr(B2),

for all B ∈W⊥
k .

Proof. Step I: Integrating lemma 2.4.2 we get

∥HB∥2
L2 +∥PkB∥2

L2 = Tr(B2
µ̄)

which together with lemma 2.5.6, imply that

∥HB∥2
L2 +∥PkB∥2

L2 ≥
1
kn

(
1+O

(
k−1))Tr

(
B2) . (2.5.9)

Step II: Let φ0, . . . ,φr be an L2-orthonormal basis for Er such that ∆Eφi = λiφi and let

HB =
r

∑
j=0

⟨HB,φ j⟩L2φ j + H̃,

where H̃ is orthogonal to Er. Applying lemma 2.5.8 to A j,k, shows that there exists a constant
C such that ∣∣⟨HB,φ j⟩L2

∣∣2 ≤Ck−n−1Tr(B2),

for all B ∈W⊥
k and 0 ≤ j ≤ r. Therefore,

∥HB∥2
L2 =

r

∑
j=0

∣∣⟨HB,φ j⟩L2

∣∣2 +∥H̃∥2
L2 ≤Ck−n−1Tr(B2)+∥H̃∥2

L2, (2.5.10)

for all B ∈W⊥
k . We will now estimate ∥H̃∥2

L2 . By definition, we have that

λr+1 = min
φ∈E⊥

r

∥∇φ∥2
L2

∥φ∥2
L2

≤
∥∇H̃∥2

L2

∥H̃∥2
L2
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which implies

∥H̃∥2
L2 ≤

1
λr+1

∥∇H̃∥2
L2 .

On the other hand,

∥∇HB∥2
L2 =∥∇H̃∥2

L2 +∥∇(HB − H̃)∥2
L2

+2Re⟨∇H̃,∇(HB − H̃)⟩L2

=∥∇H̃∥2
L2 +∥∇(HB − H̃)∥2

L2.

The second equality follows from

⟨∇H̃,∇(HB − H̃)⟩L2 = ⟨H̃,∆E(HB − H̃)⟩L2

=
r

∑
j=0

λ j⟨HB,φ j⟩L2⟨H̃,φ j⟩L2

= 0.

Hence,

∥H̃∥2
L2 ≤

1
λr+1

∥∇HB∥2
L2.

Putting this into equation (2.5.10) implies

∥HB∥2
L2 ≤

1
λr+1

∥∇HB∥2
L2 +Ck−n−1Tr(B2)

Step III: From step II and proposition 2.5.11 we get

∥HB∥2
L2 ≤

1
λr+1

∥∇HB∥2
L2 +Ck−n−1Tr(B2)

≤ 4πk
λr+1

∥PkB∥2 +O(1)∥PkB∥2 +Ck−n−1Tr(B2).

This together with equation (2.5.9) from step I conclude the proof.

Corollary 2.5.17. Assume that λr < λr+1 and that the inductive hypothesis at level r holds.
Then one has the lower bound,

νr+1,k ≥
λr+1

4πkn+1 +O(k−n−2).
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Proof. We have by lemma 2.5.15 and from the previous proposition

νr+1,k ≥ min
B∈W⊥

k

∥PkB∥2

Tr(B2)
≥ λr+1

4πkn+1 +O
(
k−n−2) .

2.5.5 Completing the proof of the induction, steps 2 and 3

In this subsection, we fix positive integers r and s such that λr < λr+1 = ..= λs < λs+1. We
start proving step 2 of the induction.

Proposition 2.5.18. If the rth inductive hypotheses hold, then there is a constant C such that
for all A,B ∈ Fs,k,

|Tr(AB)− kn⟨HA,HB⟩L2 | ≤Ck−1Tr(A2)1/2Tr(B2)1/2.

Proof. From lemma 2.5.6, we know that there is a uniform constant C > 0 such that

|Tr(ABµ̄)− 1
kn Tr(AB)| ≤Ck−n−1Tr

(
A2)1/2

Tr
(
B2)1/2

.

Lemma 2.4.2 implies that Tr(ABµ̄) = Tr(AP∗
k PkB)+ ⟨HA,HB⟩L2 . Moreover, using the facts

that A and B lie in Fs,k and νs,k = O(k−n−1) we see that

|Tr(AP∗
k PkB)| ≤ C

kn+1 Tr
(
A2)1/2

Tr
(
B2)1/2

.

Putting these estimates together concludes the proof.

Next, we prove that the step 3 of the induction holds. For any A ∈ iu(N), we write

HA = HA
<+HA

r+1 +HA
> (2.5.11)

where HA
< is the component of HA lying in Er, HA

> lies in the span of the eigenspaces
associated to eigenvalues strictly greater than λr+1 and HA

r+1 is the component of HA in the
span of the eigenspaces having eigenvalue λr+1.

Lemma 2.5.19. Assume that the rth inductive hypotheses hold. There exists a constant C
such that for any A ∈ Fr+1,s,k, we have
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∥HA
<∥2

L2 ≤Ck−n−1Tr(A2),

∥HA
>∥2

L2 ≤Ck−n−1Tr(A2),∣∣∣kn∥HA
r+1∥2

L2 −Tr(A2)
∣∣∣≤Ck−1Tr(A2).

Proof. Without loss of generality, we may assume that A ∈ Fr+1,s,k is a ν j,k eigenvector of
P∗

k Pk with r+1 ≤ j ≤ s. Let φ0, . . . ,φr be an orthonormal basis for Er such that ∆Eφ j = λ jφ j.
By the induction hypotheses, there are eigenvectors A j,k with eigenvalues ν j,k ≤ νr,k of P∗

k Pk

satisfying
Tr(A2

j,k) = kn +O(kn−1)

and
∥HA j,k −φ j∥L2 = O(k−1/2).

Since A ⊥ A j,k,0 ≤ j ≤ r, lemma 2.5.8 implies that

|⟨HA,φ j⟩L2|2 ≤Ck−n−1Tr(A2).

Thus we get the first inequality ∥HA
<∥2

L2 ≤Ck−n−1Tr(A2).

Moreover, proposition 2.5.18 implies that

∥HA
<∥2

L2 +∥HA
r+1∥2

L2 +∥HA
>∥2

L2 =
1
kn

(
1+O

(
k−1))Tr

(
A2)

and hence

∥HA
r+1∥2

L2 +∥HA
>∥2

L2 =
1
kn

(
1+O

(
k−1))Tr(A2). (2.5.12)

On the other hand, for any A ∈ Fr+1,s,k, an eigenvector associated to the eigenvalue ν j,k

(r+1 ≤ j ≤ s), we have by proposition 2.5.11 that

∥∇HA∥2
L2 ≤ 4π(k+O(1))∥PkA∥2

= 4π(k+O(1))ν j,kTr(A2)

=
λ j +O(k−1)

kn Tr(A2),
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since ν j,k =
λ j

4πkn+1 +O(k−n−2). Using the splitting (2.5.11) and the fact that HA
r+1 lies in

the λr+1 eigenspace, we obtain

∥∇HA
<∥2

L2 +λr+1∥HA
r+1∥2

L2 +∥∇HA
>∥2

L2 ≤
λr+1 +O(k−1)

kn Tr(A2). (2.5.13)

The variational property for eigenvalues of ∆E implies that λs+1 = min
φ∈E⊥

s

∥∇φ∥2
L2

∥φ∥2
L2

. There-

fore,

λs+1 ≤
∥∇HA

>∥2
L2

∥HA
>∥2

L2

,

since HA
> ∈ E⊥

s . Thus, using the fact that ∥∇HA
<∥2

L2 ≤Ck−n−1Tr(A2), we obtain thanks to
(2.5.13),

λr+1∥HA
r+1∥2

L2 +λs+1∥HA
>∥2

L2 ≤
1
kn

(
λr+1 +O

(
k−1))Tr(A2). (2.5.14)

Since λs+1 > λr+1, the system formed by the equations (2.5.12), (2.5.14) ensures the exis-
tence of a constant C > 0 such that

∥HA
>∥2

L2 ≤Ck−n−1Tr(A2),∣∣∣kn∥HA
r+1∥2

L2 −Tr(A2)
∣∣∣≤Ck−1Tr(A2).

This concludes the proof of the lemma.

With this last proposition below, we obtain the induction at step r+1.

Proposition 2.5.20. Assume that the rth inductive hypotheses hold. Given φ ∈ Ker(∆E −
λr+1Id), let Aφ ,k be the point of Fr+1,s for which HAφ ,k is nearest to φ as measured in L2.
Then,

∥HAφ ,k −φ∥2
L2 = O(k−1)

and this estimate is uniform in φ if in addition we require ∥φ∥L2 = 1.

Proof. First we show that the linear map

A ∈ Fr+1,s,k → HA
r+1 ∈Vr+1
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is an isomorphism for k ≫ 0, where Vr+1 is the eigenspace of ∆E associated to the eigenvalue
λr+1. Suppose that A ∈ Fr+1,s,k and HA

r+1 = 0. Then applying lemma 2.5.19, we have∣∣∣Tr(A2)
∣∣∣≤Ck−1Tr(A2).

This implies that A = 0 if k ≫ 0. Note that dimFr+1,s,k ≥ s− r = dimVr+1. Therefore, the
linear map is an isomorphism. This implies that for any φ ∈Vr+1, there exists a unique Aφ ,k

such that HAφ ,k
r+1 = φ . Applying lemma 2.5.19, we have

∥HAφ ,k −φ∥2
L2 = ∥HAφ ,k

<+HAφ ,k
>∥2

L2 = O(k−1).

2.6 Applications

2.6.1 Quantisation of the Laplacian for balanced metrics

In the former sections we quantised the Laplacian operator associated to a fixed Hermitian
metric h on the vector bundle E. This was done using operators P∗

k Pk defined with respect to
the specific sequence Hilbk (h)∈Bk. We will now extend our results to a different, canonical
sequence which makes sense a priori, without specifying a Hermitian metric on E.

Let us recall Wang’s results from [23] and [24]. See also section 5.2.3 in [18].

Definition 2.6.1. We say that a holomorphic vector bundle E over a polarized complex
manifold L → X is Gieseker stable if for all proper coherent subsheaves F ⊂ E, one has for
k sufficiently big,

χ
(
X ,F ⊗Lk)
rk(F)

<
χ
(
X ,E ⊗Lk)
rk(E)

.

Let us remark that a Gieseker stable vector bundle is simple, see [15].

Definition 2.6.2. A pair (b,h) for b ∈ Bk and h ∈ H is said to be balanced if

b =
Nk

Vol(X)rk(E)
Hilbk (h) , and h = FSk (b) .

In this situation, we call h ∈ H and b ∈ Bk balanced.
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Theorem 2.6.3 (Wang, [23]). E is Gieseker stable if and only if for each k sufficiently big,
there is a balanced metric hk on E.

Theorem 2.6.4 (Wang, [24]). Suppose E is Gieseker stable. The sequence hk from theorem
2.6.3 converges to some metric h∞ on E in C∞ if and only if h∞ solves the following weakly
Hermitian–Einstein equation

i
2π

Λω (R∞) =

(
deg(E)

Vol(X) rk(E)(n−1)!
− 1

8π

(
S (ω)− S̄

))
IdE , (2.6.1)

where R∞ is the curvature associated to h∞ on E.

We are now going to extend our results to sequences of balanced metrics.

Theorem 2.6.5. Assume E is Gieseker stable. For k big, write bk for the balanced point in
Bk. In the following, all objects (Qk,φ , P∗

k Pk, . . . ) are computed with respect to bk. Let h∞ be
the almost Hermitian-Einstein metric on E satisfying equation (2.6.1).

1. For any φ ∈C∞ (X ,End (E)), Hermitian with respect to h∞, one has

Tr(Qk,φ P∗
k PkQk,φ )→

1
4πk

∫
X

Tr(φ∆
E,h∞φ)Ω (2.6.2)

where the Laplacian ∆E,h∞ is computed with respect to h∞. The result still holds if φ

varies in a compact set of Hermitian endomorphisms in the C∞-topology.

2. One has convergence of the eigenvalues ν j,k of the operator P∗
k Pk towards the eigenval-

ues of ∆E,h∞ after renormalization, i.e

4πkn+1
ν j,k → λ j.

3. Fix an integer r > 0. There is a constant C > 0 such that for all A,B ∈ Fr,k,∣∣∣Tr(AB)− kn⟨HA,HB⟩L2
Ω

∣∣∣≤Ck−1Tr(A2)1/2Tr(B2)1/2.

4. Let us fix integers 0 < p < q such that λp−1 < λp = λp+1 = ... = λq < λq+1. Given
φ ∈ Ker

(
∆E,h∞ −λpId

)
, let Aφ ,k denote the point in Fp,q,k with HAφ ,k nearest to φ as

measured in the L2
Ω

-norm. Then HAφ ,k converges to φ in L2
Ω

and this convergence is
uniform in φ if we require that ∥φ∥L2

Ω

= 1.



48 Quantisation of the Laplacian

Proof. We adapt the proof of theorem 7 in [11] to our situation. Denote by hk ∈ H the
balanced metric at level k. If we consider the sequence

bk,ℓ =
Nℓ

Vol(X) rk(E)
Hilbℓ(hk) ∈ Bℓ,

then by definition, the diagonal sequence bk,k is formed by balanced metrics. Let’s apply
theorem 2.4.1 to the metrics hk. For ℓ large enough, denote by Qℓ,φ ,hk ∈Bℓ, the operator Qℓ,φ

computed with respect to the metric hk. Of course, Qk,φ ,hk = Qk,φ . Similarly we introduce
the operators Pℓ,hk that specify to Pk when ℓ= k. By construction of the balanced metric (see
[24]), φ is also Hermitian with respect to all the hk. Hence we can apply our previous results,
so that for each k large enough, there is a constant C such that∣∣∣Tr

(
Qℓ,φ ,hkP∗

k Pk
(
Qℓ,φ ,hk

))
− 1

4πℓ

∫
X

Tr
(

φ∆
E,hk(φ)

)
Ω

∣∣∣≤Cℓ−2.

Since hk converges to h∞, the hk form a family which is compact in the C∞ topology and
hence we can choose the constant in the estimate independently of k. Putting k = ℓ, we get∣∣∣Tr

(
Qk,φ P∗

k Pk
(
Qk,φ

))
− 1

4πk

∫
X

Tr
(

φ∆
E,hk(φ)

)
Ω

∣∣∣≤Ck−2.

From [24], we know that hk = h∞ +O
(
k−1) in C∞ and hence∫

X
Tr
(

φ∆
E,hk(φ)

)
Ω =

∫
X

Tr
(

φ∆
E,h∞(φ)

)
Ω+O

(
k−1) .

This proves the first assertion.

The proof of the second and third assertion follows the same argument. Just note that to
get convergence of the eigenvalues, we use the uniformity from theorem 2.5.2 and the fact
that the eigenvalues depend continuously on the metric.

Let’s give a few more details for point 4. Given φ ∈ Ker
(
∆E,h∞ −λpId

)
, recall that

Aφ ,k ∈ Fp,q,k is defined to be the ν j,k-eigenvector of P∗
k Pk with p ≤ j ≤ q and with HAφ ,k

nearest to φ as measured in L2
Ω

. Since hk converges to h∞ in C∞, there is a sequence φk of
∆E,hk eigenvectors with eigenvalue λ j (hk) converging to φ in L2

Ω
. Applying theorem 2.5.3 on

each of these φk’s gives for each k a sequence Ak,ℓ such that HAk,ℓ,φ is nearest to φk. Restricting
to the diagonal k = ℓ produces a single sequence Ak,k,φ such that

∥HAk,k,φ −φk∥L2
Ω

<Ck−1
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for some constant C. Moreover, since φk converges to φ in L2, we get that HAk,k,φ converges
to φ in L2. Note that Ak,k,φ is not necessarily the same as Ak,φ but by definition HAk,φ is closer
to φ than HAk,k,φ and hence HAk,φ also converges to φ in L2

Ω
. This concludes the proof.

2.6.2 Spectral measures

In this section we use the convergence results of the eigenvalues to get quantisations of some
spectral measures. For the sake of completeness, recall that we denote the eigenvalues of the
Laplacian by λ0 ≤ λ1 ≤ λ2 ≤ . . . and the ones of P∗

k Pk by νk,0 ≤ νk,1 ≤ ·· · ≤ νk,N2
k
, repeated

according to their multiplicities. In the case when the vector bundle E is simple, we showed
in theorem 2.5.2 that for each j = 0,1,2, . . .

νk, j =
λ j

4πkn+1 +O
(
k−n−2) .

To any compactly supported smooth function ρ : R→ R we associate the following spectral
measures

m(ρ) =
∞

∑
j=0

ρ(λ j)

and

mk(ρ) =
N2

k

∑
j=0

ρ(4πkn+1
νk, j).

Theorem 2.6.6. In the case E is simple, we have that

mk(ρ) = m(ρ)+O
(
k−1) .

Proof. Since the function ρ has compact support, the number of terms in the sum defining
m(ρ) is finite. Using the asymptotics from theorem 2.5.2 and Taylor expansions of ρ yields
the result.

A similar statement obviously holds in the case when E is Gieseker stable and the spectral
measures mk and m are defined with respect to the balanced point bk ∈ Bk and the almost
Hermitian–Einstein metric respectively. Then for any compactly supported smooth function
ρ : R→ R, mk(ρ) converges to m(ρ) as k tends to infinity.

It is noteworthy that we can only prove this theorem for functions ρ which are compactly
supported. However it would be very interesting to know if the result still holds for a bigger
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class of functions. Here the motivation comes from the fact that for ρ(x) = e−tx, m(ρ) is
nothing else than the trace of the heat operator

Tr
(

e−t∆
)
=

∞

∑
j=0

e−tλ j .

Being able to quantise this object would probably lead to further interesting results, one of
them being the quantisation of the zeta function of the Laplacian. Let us briefly sketch how
this could work. For s ∈ C one defines the zeta function of ∆E by

ζ (s) =
∞

∑
j=1

1
λ s

j
.

There is a trick one can use to rewrite this in terms of the trace of the heat operator and the
Γ-function. A simple change of variable in

Γ(s) =
∫

∞

0
ts−1e−tdt

yields

λ
−s
j =

1
Γ(s)

∫
∞

0
ts−1e−tλ jdt.

Then one can rewrite the zeta function (at least wherever it converges) as

ζ (s) =
1

Γ(s)

∫
∞

0
ts−1

(
∑

j
e−tλ j −dimker∆

E

)
dt

=
1

Γ(s)

∫
∞

0
ts−1Tr

(
e−t∆ −P

)
dt,

where P denotes the orthogonal projection onto ker∆E . Hence the quantisation of the trace
of the heat operator implies the quantisation of the zeta function.

2.7 Explicit calculations for CP1

We will now illustrate our results via a direct computation in the special case when our
manifold is CP1, polarized by the dual of the tautological line bundle.

Denote by [Z : W ] homogeneous coordinates on CP1. We start recalling the spectral
theorem for CP1.
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Theorem 2.7.1 ([13]). If ∆ denotes the Laplacian on CP1 with respect to the Fubini-Study
metric, one has the following:

1. The eigenvalues of ∆ are given by λℓ = 4πℓ(ℓ+1) where ℓ ∈ N.

2. Denote by Wℓ = { f ∈C∞(CP1) |∆ f = λℓ f} the ℓ-th eigenspace of ∆. Then

L2(CP1) =
∞⊕
ℓ=0

Wℓ.

3. U(2) acts on CP1 and induces an action on Wℓ. Moreover Wℓ is an irreducible
representation of SU(2).

4. Wℓ consists of all functions of the form

∑
ℓ
i, j=0

√(ℓ
i

)(ℓ
j

)
ai jZiW ℓ−iZ̄ jW̄ ℓ− j

(|Z|2 + |W |2)ℓ

where ∑
ℓ
i, j=0

√(ℓ
i

)(ℓ
j

)
ai jZiW ℓ−iZ̄ jW̄ ℓ− j is a harmonic homogeneous polynomial of

degree (ℓ,ℓ) on C2 and ai j ∈ iu(ℓ+1). Moreover, the dimension of Wℓ is 2ℓ+1.

The homogeneous polynomials

√
k+1

√(
k
j

)
Z jW k− j

for j = 0, . . . ,k define a basis of H0(CP1,O(k)) and one can check that the embedding
ιk : CP1 →CPk they define is balanced. By lemma 2.4.2 we know that for all A,B ∈ iu(k+1)
one has

Tr(AP∗
k Pk(B)) = Tr(ABµ̄k)−

∫
CP1

HAHB ωFS (2.7.1)

and since the embeddings ιk are balanced, (µ̄k)i j =
1

k+1δi j so that the first term of the
right-hand side of (2.7.1) reduces to 1

k+1Tr(AB).
Fix k ≫ 0 and define

Uℓ = {A ∈ iu(k+1) |HA ∈ Wℓ}.

Our goal is to show that the leading order of P∗
k Pk restricted to Uℓ is a multiple of the identity

and that this multiple is precisely the ℓ-th eigenvalue of ∆. This illustrates our general results
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from theorems 2.5.2 and 2.5.3 that the eigenvalues of P∗
k Pk converge to those of ∆ and that

eigenvectors converge isometrically under H : iu(k+1)→C∞(X ,R).

First observe that the map H is U(k+ 1)-equivariant. In fact, for U ∈ U(k+ 1), A ∈
iu(k+1) and z ∈ CPk we have

HU ·A(z) = HUAU−1(z)

= Tr(AU−1
µk(z)U)

= Tr(Aµk(zU−1)) = HA(zU−1).

Moreover, by the spectral theorem,

H : iu(k+1)→
k⊕

ℓ=0

Wℓ.

To show that this is actually an isomorphism (for each k), it suffices to compare dimensions.
On one hand, dim(iu(k+1)) = (k+1)2 and on the other hand,

dim
( k⊕

ℓ=0

Wℓ

)
=

k

∑
ℓ=0

(2ℓ+1) = (k+1)2.

Defining Uℓ = H−1(Wℓ

)
, the map

H : Uℓ → Wℓ

is still an isomorphism.

Since Wℓ is an irreducible real representation of U(k+1) so is Uℓ. Furthermore it is easy
to see that

⟨A,B⟩1 = Tr(AB)

and
⟨A,B⟩2 =

∫
CP1

HAHB ωFS

define both U(k+1)-invariant inner products on Uℓ. This is trivial for the first one since the
action of the unitary group on iu(k+1) is given by conjugation. For the second one, observe
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that

⟨U ·A,U ·B⟩2 =
∫
CP1

HA(zU−1)HB(zU−1)ωFS

=
∫
CP1

HA(z)HB(z)ωFS.

Here the last equality follows from a change of variables and the fact that our embedding of
CP1 into CPk is balanced. This implies that the volume form ωFS is invariant. It follows then
from a real version of Schur’s lemma that both inner products only differ by a multiplicative
constant. For the sake of completeness, let us briefly recall how this works. By the U(k+1)-
invariance, there is an equivariant symmetric map ϕ : Uℓ →Uℓ such that

⟨A,B⟩2 = ⟨ϕ(A),B⟩1.

On the other hand, since ϕ is symmetric, ϕ has a real eigenvalue and its associated eigenspace
is invariant under U(k+ 1). The irreducibility of the representation then implies that the
eigenspace is Uℓ. Therefore, ϕ is a scalar matrix and thus the inner products differ by a real
multiplicative constant. Hence there exists Cℓ,k ∈ R such that for any A,B ∈Uℓ we have

⟨A,B⟩2 =Cℓ,k⟨A,B⟩1.

Furthermore in the balanced case, equation (2.7.1) implies that

⟨A,P∗
k Pk(B)⟩1 =

(
1

k+1
−Cℓ,k

)
⟨A,B⟩1 (2.7.2)

which shows that P∗
k Pk restricted to Uℓ is a multiple of the identity. As a corollary, we get

that H sends eigenspaces of P∗
k Pk isometrically to eigenspaces of ∆, at least up to a constant.

The end of this section is devoted to compute the constants Cℓ,k. Clearly it is sufficient to
find a particular A ∈Uℓ for which we can calculate both ⟨·, ·⟩1 and ⟨·, ·⟩2 explicitely. Their
quotient gives then the required constant.

Consider the eigenfunction

HA =
ZℓW̄ ℓ+ Z̄ℓW ℓ

(|Z|2 + |W |2)ℓ
∈ Wℓ
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for some appropriate Hermitian matrix A. After multiplying the numerator and the denomi-
nator by

(
|Z|2 + |W |2

)k−ℓ and developing that term we can write

HA =
∑

k−ℓ
j=0
(k−ℓ

j

)
|Z|2 j|W |2(k−ℓ− j) (ZℓW̄ ℓ+ Z̄ℓW ℓ

)
(|Z|2 + |W |2)k

= 2
∑

k−ℓ
j=0

√( k
ℓ+ j

)(k
j

)−1(k−ℓ
j

)
Re
(√( k

ℓ+ j

)
Zℓ+ jW k−(ℓ+ j)

√(k
j

)
Z̄ jW̄ k− j

)
(|Z|2 + |W |2)k

From here we can read of the corresponding matrix A and get

Tr(A2) = 2
k−ℓ

∑
j=0

(k−ℓ
j

)2( k
ℓ+ j

)(k
j

) ,
= 2

∑
k−ℓ
j=0(k− j) · · ·(k− j− ℓ+1)( j+ ℓ) · · ·( j+1)

(k(k−1) · · ·(k− ℓ+1))2 .

A tedious but straightforward computation implies that on one hand

k−ℓ

∑
j=0

(k− j) · · ·(k− j− ℓ+1)( j+ ℓ) · · ·( j+1)

=
1

(2ℓ+1)
(2ℓ
ℓ

) k2ℓ+1 +
1(2ℓ
ℓ

) k2ℓ+O(k2ℓ−1).

On the other hand we get

(k(k−1) · · ·(k− ℓ+1))2 =

(
kℓ− ℓ(ℓ−1)

2
kℓ−1 +O(kℓ−2)

)2

= k2ℓ− ℓ(ℓ−1)k2ℓ−1 +O(k2ℓ−2).

Putting these together, we get the following formula

∥A∥2
1 = Tr(A2) = α k

1+(2ℓ+1)k−1 +O(k−2)

1− ℓ(ℓ−1)k−1 +O(k−2)
,

= αk
(
1+(ℓ2 + ℓ+1)k−1 +O(k−2)

)
,

where
α =

2

(2ℓ+1)
(2ℓ
ℓ

) .
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To be able to deduce the constants Cℓ,k we now only have to compute ∥A∥2
2.

⟨A,A⟩2 =
∫
CP1

H2
A ωFS,

=
∫
CP1

(
ZℓW̄ ℓ+ Z̄ℓW ℓ

)2

(|Z|2 + |W |2)2ℓ ωFS,

= 2Re
∫
CP1

Z2ℓW̄ 2ℓ

(|Z|2 + |W |2)2ℓωFS +2
∫
CP1

|Z|2ℓ|W |2ℓ

(|Z|2 + |W |2)2ℓωFS.

The first of these integrals vanishes and the second one can be evaluated explicitly using the
local coordinate z =W/Z. In fact we get

2
∫
CP1

|Z|2ℓ|W |2ℓ

(|Z|2 + |W |2)2ℓωFS =
i
π

∫
C

|z|2ℓ

(1+ |z|2)2ℓ+2 dz∧dz̄

=
2π

π(2ℓ+1)
(2ℓ
ℓ

) = α.

Hence we proved the following Lemma.

Lemma 2.7.2. For any A,B ∈Uℓ ⊆ iu(SymkC2) one has∫
CP1

HAHB ωFS =
1
k

(
1− (ℓ2 + ℓ+1)k−1 +O(k−2)

)
Tr(AB).

From here it is now easy to get the leading order term of the eigenvalues of P∗
k Pk as

expected from theorem 2.5.2.

Proposition 2.7.3. For any A,B ∈Uℓ ⊆ iu(SymkC2) one has

Tr(AP∗
k Pk(B)) =

(
4πℓ(ℓ+1)

4πk2 +O(k−3)

)
Tr(AB).

Proof. We have

Tr(AP∗
k Pk(B)) =

1
k+1

Tr(AB)−
∫
CP1

HAHB,

=

(
1

k+1
− 1

k

(
1− (ℓ2 + ℓ+1)k−1 +O(k−2)

))
Tr(AB),

=

(
1
k
− 1

k2 −
1
k
+

ℓ2 + ℓ+1
k2 +O(k−3)

)
Tr(AB),

=

(
ℓ(ℓ+1)

k2 +O(k−3)

)
Tr(AB).





Chapter 3

Quantising Solutions to the Heat
Equation

3.1 Introduction

Let L → X be an ample line bundle over a compact Kähler manifold of complex dimension
n. Fix some positively curved Hermitian metric σ on L such that the curvature Fσ defines
a Kähler form ω = i

2π
Fσ . Furthermore denote by ∆ the Bochner Laplacian on X . Recall

that in this context, there is a sequence of non-negative real numbers λ0 < λ1 ≤ λ2 ≤ . . .

and an L2-orthonormal basis φ0,φ1,φ2, . . . of real-valued, smooth functions on X satisfying
∆φ j = λ jφ j, for each j = 0,1,2, . . . . The λ j’s are called the eigenvalues and the φ j’s the
eigenfunctions of the Laplacian.

In the previous chapter we provided a quantisation of the eigenvalues and eigenfunctions
of the Bochner Laplacian acting on smooth sections of the bundle Endh (E) where (E,h) is a
Hermitian, holomorphic vector bundle. This was done by constructing a sequence of opera-
tors P∗

k Pk which acted on the finite dimensional vector spaces of Hermitian endomorphisms
of H0 (X ,E ⊗Lk). To recover the Laplacian on the manifold from above, we restrict now to
the case where the vector bundle E is the trivial, flat line bundle C→ X .

In this chapter we are interested in solutions to the heat equation∂t ft(x)+∆ ft(x) = 0

f0(x) = f (x)
(3.1.1)
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where f is a smooth, real-valued function on X . One can prove that for any initial condition
f ∈C∞ (X ,R) this Cauchy problem admits a unique solution f (x, t) which can be written
explicitely in terms of the heat kernel p(t,x,y) ∈C∞

(
R0
+×X ×X

)
as

ft(x) =
∫

X
p(t,x,y) f (y)

ωn
y

n!
.

Using the eigenvalues and eigenfunctions of ∆, the heat kernel may be written as

p(t,x,y) =
∞

∑
j=0

e−tλ jφ j(x)φ j(y).

Moreover for each Hermitian endomorphism A of H0 (X ,Lk) we consider the equation∂tA(t)+4πkn+1P∗
k Pk (A(t)) = 0

A(0) = A.
(3.1.2)

This equation is even easier to solve than the genuine heat equation since it is defined on a
finite dimensional vector space. If in the case of the heat equation, the existence of the heat
kernel is a highly non-trivial theorem to prove, one immediately checks that a fundamental
solution to (3.1.2) is given by

pk(t) =
dk

∑
j=1

e−t4πkn+1νk, jφk, jφk, j.

Remark 3.1.1. From this point of view one might expect that the quantisation of the heat
kernel and hence the quantisation of solutions to the heat equation readily follows from our
results in the previous chapter. We proved for instance that if νk, j denotes the j-th eigenvalue
of P∗

k Pk and λ j the j-th eigenvalue of the Laplacian, then

νk, j =
λ j

4πkn+1 +O(k−n−2).

However we have no bound on the error term which is uniform for all the eigenvalues and
hence such an attempt must necessarily fail.

As in the previous chapter, Nk denotes the dimension of the space H0 (X ,Lk). The maps
Qk, f and HA introduced in section 2.3.3 and 2.3.1 can be written in terms of an L2-orthonormal
basis s of H0 (X ,Lk) as

Qk, f =
∫

X
f (x)⟨si(x),s j(x)⟩σ k

ωn

n!
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for any f ∈C (X ,R), and
HA = Tr(Aµk) .

for any A ∈ iu(Nk).

Our main result of this chapter states that solutions to the equation (3.1.2) quantise
solutions to (3.1.1).

Theorem 3.1.2. Let f ∈C∞ (X ,R) and denote by ft a solution to the heat equation (3.1.1)
starting at f . Moreover, denote by Qk, f (t) a solution to the equation (3.1.2) starting at Qk, f .
There is a constant C such that for all t ∈ [0,T ] we have

∥∥Qk, ft −Qk, f (t)
∥∥2

k ≤
C
k

where the norm ∥ · ∥k is defined by ∥A∥2
k = k−nTr(A2).

Corollary 3.1.3. Under the same assumptions, there is a constant C such that for all t ∈ [0,T ]
we have ∥∥ ft(x)−HQk, f (x)(t)

∥∥
L2 ≤

C
k
.

The corollary readily follows from lemma 2.5.7 and the fact that HQk, f can be written as
B−1

k Kk, f where Bk is the Bergman function and Kk, f is the restriction to the diagonal of the
Toeplitz kernel, see section 2.3.2.

3.2 Relation with other work

Similar to our quantisation of the Laplacian, Fine quantises in [11] another elliptic operator
D∗D : C∞ (X ,R)→C∞ (X ,R). This operator is nothing else than the Hessian of Mabuchi
energy, see section 2.3.4. Similarly to what we do for solutions to the genuine heat equation,
one can try to quantise solutions to the “heat equation" associated to D∗D . And indeed, all
the steps in the proof go through except that we are not able to rewrite the proof of proposition
3.3.3 in this context. The problem is that as in our result, one must prove a complicated
relationship between various coefficients in the asymptotic expansion of Bergman kernels and
Toeplitz operators. Unfortunately the depth to which one must go in these expansions implies
this time that we are not able to do the computations anymore. However we conjecture that
the result still holds.
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Q k,f t

Q k,f t0

Q
k,f 

Q
k,f 

k

k 

~

εk 

(t-t )

(t)

0

t 0 t 

d (t)

d (t)

(t)

3.3 Proof of the results

Similarly to the technique used by Fine in [10], we first show that it is enough to prove an
infinitesimal version of what we actually want to prove. In order to simplify notations, we
define

dk (t) =
∥∥Qk, ft −Qk, f (t)

∥∥
k.

Now fix some t0 > 0. For t > t0 we put

d̃k (t) =
∥∥Qk, ft −Qk, ft0

(t − t0)
∥∥

k

and
εk (t) =

∥∥Qk, ft0
(t − t0)−Qk, f (t)

∥∥
k

Lemma 3.3.1. εk(t) is decreasing.

Proof. Putting
Ak = Q ft0

−Qk, f (t0)

we can rewrite εk in a more condensed way as

εk(t) =
∥∥Ak (t − t0)

∥∥
k.

Now let φk, j be an orthonormal basis of eigenvectors of 4πkn+1P∗
k Pk with associated eigen-

values ν̃k, j. Then
εk(t)2 = ∑

j
e−2(t−t0)ν̃k, j⟨Ak,φk, j⟩2

and hence
d
dt

εk (t)
2
∣∣∣
t0
=−2∑

j
ν̃k, j⟨Ak,φk, j⟩2 ≤ 0.
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Lemma 3.3.2.
d
dt

dk (t)
∣∣∣
t0
≤ d

dt
d̃k (t)

∣∣∣
t0

Proof. By the triangular inequality, we have that

dk (t0 +∆t)≤ d̃k (t0 +∆t)+ εk (t0 +∆t) .

Hence we can write

d
dt

dk (t)
∣∣∣
t0
≤ lim

∆t→0

d̃k (t0 +∆t)+ εk (t0 +∆t)−dk (t0)
∆t

.

Moreover, since εk (t) is decreasing, and since εk (t0) = dk (t0) we are done.

Clearly these arguments hold for any time t0 ≥ 0. The last ingredient in the proof is be
the following proposition. Its proof is not necessarily complicated but since the calculations
involved are very lenghty we postpone them to the next section.

Proposition 3.3.3. The following estimate holds uniformly for t0 ≥ 0,

d
dt

d̃k (t)
∣∣∣
t0
= O

(
k−1/2

)
.

We are now in position to complete the proof of theorem 3.1.2. Integrating the inequality
in lemma 3.3.2 for t0 going from 0 to T , we get

dk (T )≤
∫ T

0

d
dt

d̃k (t)
∣∣∣
t0

dt0.

Since by proposition 3.3.3, d
dt d̃k (t)

∣∣
t0
= O

(
k−1/2

)
uniformly in t0, there is a constant C

such that
dk (T )≤

CT
k1/2 .

which proves the result.

3.3.1 Proof of Proposition 3.3.3

We saw in the last section that the remaining step in proving Theorem 3.1.2 was to show that
d
dt d̃k (t)

∣∣
t0
= O

(
k−1/2

)
uniformly in t0.
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Lemma 3.3.4. Let (X ,∥ · ∥) be a normed space. Let t 7→ γ(t) and t 7→ η(t) be two smooth
paths in X such that γ(0) = η(0). Then∣∣∣∣ d

dt

∥∥γ(t)−η(t)
∥∥∣∣∣

t=0

∣∣∣∣= ∥∥γ̇(0)− η̇(0)
∥∥.

Proof. We compute∣∣∣∣ d
dt

∥∥γ(t)−η(t)
∥∥∣∣∣

t=0

∣∣∣∣= ∣∣∣∣limt→0

∥γ(t)−η(t)∥
t

∣∣∣∣
=
∥∥∥ lim

t→0

γ(t)− γ(0)
t

− lim
t→0

η(t)−η(0)
t

∥∥∥
=
∥∥γ̇(0)− η̇(0)

∥∥.

Applying the lemma to the quantity

d
dt

d̃k (t)
∣∣
t0
=

d
dt

∥∥Qk, ft −Qk, ft0
(t − t0)

∥∥
k

∣∣∣
t0

and using the fact that ft and Qk, ft0
(t − t0) solve equations (3.1.1) and (3.1.2) respectively,

one sees that in order to prove proposition 3.3.3 it is sufficient to show that∥∥Qk,∆ f −4πkn+1P∗
k Pk(Qk, f )

∥∥2
k = O(k−1),

uniformly on compact subsets of C∞(X ,R) in the C∞-topology.

First observe that∥∥Qk,∆ f −4πkn+1P∗
k Pk(Qk, f )

∥∥2
k

=
∥∥Qk,∆ f

∥∥2
k +
∥∥4πkn+1P∗

k Pk(Qk, f )
∥∥2

k −2⟨Qk,∆ f ,4πkn+1P∗
k Pk(Qk, f )⟩k

=
1
kn Tr

(
Q 2

k,∆ f

)
+16π

2kn+2 Tr
((

P∗
k Pk(Qk, f )

)2
)
−8πk Tr

(
Qk,∆ f P∗

k Pk
(
Qk, f

))
Theorem 2.4.1 from chapter 2, gives us the asymptotics of the last term of this expression,

Tr
(
Qk,∆ f P∗

k Pk
(
Qk, f

))
=

1
4πk

∫
X
(∆ f )2 ωn

n!
+O(k−2). (3.3.1)

In the next lemma, we compute the nessessary asymptotics for the first term.
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Lemma 3.3.5. There is an asymptotic expansion

Tr
(

Q 2
k, f

)
= kn

∫
X

f 2 ωn

n!
+O(kn−1).

Proof. Recall that by definition,

(
Qk, f

)
αβ

=
∫

X
f ⟨sα ,sβ ⟩

ωn

n!
.

Hence, we can write

Tr
(

Q 2
k, f

)
=
∫

X

(
f (x)∑

αβ

∫
X

f (y)
(
sα ,sβ

)
(x)
(
sβ ,sα

)
(y)

ωn
y

n!

)
ωn

x
n!

=
∫

X
f (x)K f ,k(x)

ωn

n!
.

Using the asymptotic expansion for Kk, f from theorem 2.3.6 yields the result.

From equation 3.3.1 and lemma 3.3.5 it follows that

∥Qk,∆ f −16π
2kP∗

k Pk(Qk, f )∥2
k = 16π

2kn+2 Tr
((

P∗
k Pk(Qk, f )

)2
)
−
∫

X
f ∆

2 f
ωn

n!
+O(k−1).

Hence it is sufficient to show the following asymtotic result:

Proposition 3.3.6. Let f ∈C∞ (X ,R). There is an asymptotic expansion

Tr
((

P∗
k Pk(Qk, f )

)2
)
=

1
16π2kn+2

∫
X

f ∆
2 f

ωn

n!
+O(k−n−3).

The proof of this proposition is in principle not more difficult than the proof of the
various asymptotic expansions we already got. However the computations become much
more involved. Before we start with the actual proof, let us first recall the following general
fact.

Lemma 3.3.7. Any matrix A can be decomposed into the sum of a Hermitian and a skew-
Hermitian matrix,

A = AH +ASH



64 Quantising Solutions to the Heat Equation

where

AH =
1
2

(
A+A†

)
ASH =

1
2

(
A−A†

)
.

Moreover if A is Hermitian and B skew-Hermitian, then

Tr(AB) =−Tr(AB)

which implies that
Re(Tr(AB)) = 0.

The starting point in the proof of proposition 3.3.6 is the following lemma.

Lemma 3.3.8. For any A ∈ iu(Nk), we have

Tr
(
(P∗

k Pk(A))
2
)
= ReTr

(
(Aµ̄k)

2
)
−2Re

∫
X

Tr(Aµ̄kµk(x))HA(x)
ωn

n!

+
∫

X×X
HA(x)HA(y)Hµk(x)(y)

ωn ∧ωn

(n!)2 .

Proof. Integrating lemma 2.4.2 over X we see that for all A,B ∈ iu(Nk),

Tr(AP∗
k PkB) = ReTr(ABµ̄k)−

∫
X

HAHB
ωn

n!
. (3.3.2)

Hence we can write

Tr
(
(P∗

k Pk(A))
2
)
= ReTr(P∗

k Pk(A)Aµ̄k)−
∫

X
HP∗

k Pk(A)HA
ωn

n!
. (3.3.3)

Applying formula (3.3.2) a second time to the first term of the right-hand side of (3.3.3)
yields

ReTr(P∗
k Pk(A)Aµ̄k) = ReTr((Aµ̄k)H P∗

k Pk (A))

= ReTr
(
(Aµ̄k)

2
)
−
∫

X
H(Aµ̄k)H

(x)HA(x)
ωn

n!

Here we had to pay attention since the matrix Aµ̄k is not necessarily Hermitian and we need
to restrict Aµ̄k to its Hermitian part, see lemma 3.3.7. Moreover, we used the fact that the
trace of a skew-Hermitian matrix is imaginary to get the first term of the right-hand side.
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Equation (3.3.3) can now be rewritten as

Tr
(
(P∗

k Pk(A))
2
)
= ReTr

(
(Aµ̄k)

2
)
−
∫

X

(
H(Aµ̄k)H

(x)+HP∗
k Pk(A)(x)

)
HA(x)

ωn

n!
. (3.3.4)

Furthermore, by definition

H(Aµ̄k)H
(x)+HP∗

k Pk(A)(x) = Tr((Aµ̄k)H µk(x))+Tr(P∗
k Pk(A)µk(x))

= ReTr(Aµ̄kµk(x))+ReTr(µk(x)Aµ̄k)−
∫

X
HA(y)Hµk(x)(y)

ωn
y

n!

= 2ReTr(Aµ̄kµk(x))−
∫

X
HA(y)Hµk(x)(y)

ωn
y

n!
.

Putting this into (3.3.4) yields the result.

To prove proposition 3.3.6 we apply lemma 3.3.8 with A = Qk, f . We start computing the
three terms separately up to the 3rd order. We use the same notation as in section 2.3.2.

We start with the asymptotic expansion of the inverse of the Bergman function since it
shows up ubiquitously in the calculations.

Lemma 3.3.9. The inverse of the Bergman function Bk admits an asymptotic expansion given
by

B−1
k = k−n

(
1− S

8π
k−1 +

(
S2

64π2 −b2

)
k−2 +O

(
k−3)) .

Proof. This readily follows from the asymptotic expansion of the Bergman function given in
theorem 2.3.4.

Lemma 3.3.10. There is an asymptotic expansion

Tr
((

Qk, f µ̄k
)2
)
= η0 ( f )k−n +η1 ( f )k−n−1 +η2 ( f )k−n−2 +O

(
k−n−3) ,
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where

η0 ( f ) =
∫

X
f 2 ωn

n!
,

η1 ( f ) =
∫

X

(
− 1

4π
f ∆ f − 1

8π
S f 2
)

ωn

n!
,

η2 ( f ) =
∫

X

(
1

32π2 f ∆
2 f +

3
32π2 S f ∆ f − 1

16π2 S|d f |2

+
1

8π2 f
(
Ric, i ∂̄ ∂ f

)
+

1
64π2 S2 f 2 −b2 f 2

)
ωn

n!
.

Proof. By the composition of the kernels of Toeplitz operators, we can write

Tr
((

Qk, f µ̄k
)2
)
=
∫

X
B−1

k Kk, f ,B−1
k , f

ωn

n!
.

Applying lemma 3.3.9 this can be rewritten as

Tr
((

Qk, f µ̄k
)2
)
= k−n

∫
X

(
1− S

8π
k−1 +

(
S2

64π2 −b2

)
k−2 +O

(
k−3))Kk, f ,B−1

k , f
ωn

n!

and hence we must compute the following 3 terms,

k−n
∫

X
Kk, f ,B−1

k , f , −k−n−1
∫

X

S
8π

Kk, f ,B−1
k , f , and k−n−2

∫
X

(
S2

64π2 −b2

)
Kk, f ,B−1

k , f .

(3.3.5)
To compute the first one, we apply a trick we learned from [11], saying that for f ,g,h ∈
C∞ (X ,R),

∫
Kk, f ,g,h =

∫
gKk, f ,h. Hence,∫

X
Kk, f ,B−1

k , f =
∫

X
B−1

k Kk, f , f .

Now,

B−1
k Kk, f , f

=

(
1− S

8π
k−1 +

(
S2

64π2 −b2

)
k−2
)(

b0, f , f +b1, f , f k−1 +b2, f , f k−2)+O
(
k−3)

=b0, f , f +

(
b1, f , f −

S
8π

b0, f , f

)
k−1

+

(
b2, f , f −

S
8π

b1, f , f +

(
S2

64π2 −b2

)
b0, f , f

)
k−2 +O

(
k−3) .
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Since the trick we used before clearly also holds for the coefficients of Toeplitz kernels, i.e.
for example

∫
b2, f , f =

∫
f b2, f , we get

∫
X

B−1
k Kk, f , f

ωn

n!
=
∫

X
f b0, f

ωn

n!
+ k−1

∫
X

(
f b1, f −

S
8π

b0, f , f

)
ωn

n!

+ k−2
∫

X

(
f b2, f −

S
8π

b1, f , f +

(
S2

64π2 −b2

)
b0, f , f

)
ωn

n!
+O

(
k−3) .

Introducing the exact values for the coefficients from section 2.3.2, we see after a short
computation that the first of the 3 terms in (3.3.5) is given by

k−n
∫

X
Kk, f ,B−1

k , f

=k−n
∫

X
f 2 ωn

n!
− k−n−1

∫
X

1
4π

f ∆ f
ωn

n!

+ k−n−2
∫

X

(
1

32π2 f ∆
2 f +

1
32π2 S f ∆ f − 1

32π2 S|d f |2 + 1
8π2 f

(
Ric, i ∂̄ ∂ f

)) ωn

n!

+O
(
k−n−3) .

We now compute to the second term in (3.3.5), namely −k−n−1 ∫
X

S
8π

Kk, f ,B−1
k , f . First observe

that by lemma 3.3.9 we have

Kk, f ,B−1
k , f = k−nKk, f ,1, f −

k−n−1

8π
Kk, f ,S, f +O

(
k−2)

= b0, f , f + k−1
(

b1, f , f −
1

8π
b0, f ,S, f

)
+O

(
k−2) .

Introducing the exact values of the coefficients, we can rewrite this as

f 2 + k−1
(
− 1

2π
f ∆ f +

1
4π

|d f |2
)
+O

(
k−2) .

Therefore the second term in (3.3.5) is given by

− k−n−1
∫

X

S
8π

Kk, f ,B−1
k , f

=k−n−1
∫

X
− 1

8π
S f 2 ωn

n!
+ k−n−2

∫
X

(
1

16π2 S f ∆ f − 1
32π2 S|d f |2

)
ωn

n!
+O

(
k−n−3) .
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We now come to the third term in (3.3.5), namely k−n−2 ∫
X

(
S2

64π2 −b2

)
Kk, f ,B−1

k , f . Applying
lemma 3.3.9, we see that it can be written as

k−n−2
∫

X

(
S2

64π2 −b2

)
f 2 ωn

n!
+O

(
k−n−3) .

Putting the asymptotics of the three terms together, one sees that only the first one contributes
to the k−n-term. It follows that

η0 ( f ) =
∫

X
f 2 ωn

n!
.

The term in k−n−1 is composed by a contribution of the first and the second term. We get,

η1 ( f ) =−
∫

X

(
1

4π
f ∆ f +

1
8π

S f 2
)

ωn

n!
.

Finally the term in k−n−2 is a combination of the asymptotics of all three terms in (3.3.5).
Explicitely,

η2 ( f ) =
∫

X

( 1
32π2 f ∆

2 f+
3

32π2 S f ∆ f − 1
16π2 S|d f |2

+
1

8π2 f
(
Ric, i ∂̄ ∂ f

)
+

1
64π2 S2 f 2 −b2 f 2

)
ωn

n!
.

Lemma 3.3.11. There is an asymptotic expansion∫
X

Tr
(
Qk, f µ̄kµk(x)

)
HQk, f (x)

ωn

n!
= η0 ( f )k−n +η1 ( f )k−n−1 +η2 ( f )k−n−2 +O

(
k−n−3)

where

η0 ( f ) =
∫

X
f 2 ωn

n!

η1 ( f ) =
∫

X

(
− 1

2π
f ∆ f − 1

8π
S f
)

ωn

n!

η2 ( f ) =
∫

X

(
1

16π2 f ∆
2 f +

1
32π2 f 2

∆S+
1

16π2 S f ∆ f +
1

16π2 (∆ f )2

+
1

64π2 f 2S2 − 1
32π2 f (dS,d f )+

1
4π2 f

(
Ric, i ∂̄ ∂ f

)
− f 2b2

)
ωn

n!
.
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Proof. Using notation from section 2.3.2, we can rewrite

Tr
(
Qk, f µ̄kµk(x)

)
= B−1

k (x)Kk, f ,B−1
k
(x),

and
HQk, f (x) = B−1

k (x)Kk, f (x).

Hence the integrand is given by

Tr
(
Qk, f µ̄kµk(x)

)
HQk, f (x) = B−2

k (x)Kk, f ,B−1
k
(x)Kk, f (x) (3.3.6)

By lemma 3.3.9 we easily see that

B−2
k = k−2n

(
1− 1

4π
Sk−1 +

(
3

64π2 S2 −2b2

)
k−2 +O

(
k−3)) .

Moreover, by theorem 2.3.6

Kk, f = k−n

(
f + k−1

(
1

8π
S f − 1

4π
∆ f
)

+ k−2
(

b2(ω) f +
1

32π2 ∆
2 f − 1

32π2 S(ω)∆ f +
1

8π2 (Ric, i ∂̄ ∂ f )
)
+O

(
k−3)).

Multiplying B−2
k by Kk, f we get

B−2
k Kk, f = σ0( f )k−n +σ1( f )k−n−1 +σ2( f )k−n−2 +O

(
k−n−3) , (3.3.7)

where

σ0 ( f ) = f ,

σ1 ( f ) =− 1
8π

S f − 1
4π

∆ f ,

σ2 ( f ) =
1

64π2 S2 f +
1

32π2 S∆ f +
1

32π2 ∆
2 f − f b2 +

1
8π2 (Ric, i ∂̄ ∂ f ).

Let us now have a look at Kk, f ,B−1
k

. Using lemma 3.3.9, write

Kk, f ,B−1
k

= k−n
(

Kk, f + k−1Kk, f ,− S
8π

+ k−2K
k, f , S2

64π2 −b2
+O

(
k−n−3))

= γ0( f )+ γ1( f )k−1 + γ2( f )k−2 +O
(
k−3) ,
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where

γ0 ( f ) =C0, f ,

γ1 ( f ) =C1, f +C0, f ,− S
8π

,

γ2 ( f ) =C2, f +C1, f ,− S
8π

+C
0, f , S2

64π2 −b2
.

Using the explicit values of the coefficients from theorem 2.3.6, we get

γ0 ( f ) = f ,

γ1 ( f ) =− 1
4π

∆ f ,

γ2 ( f ) =
1

32π2 ∆
2 f +

1
32π2 f ∆S− 1

32π2 (d f ,dS)+
1

8π2

(
Ric, i ∂̄ ∂ f

)
.

Combining this with (3.3.7) and integrating over X we get∫
X

B−2
k (x)Kk, f ,B−1

k
(x)Kk, f (x)

ωn

n!
= η0 ( f )k−n +η1 ( f )k−n−1 +η2 ( f )k−n−2 +O

(
k−n−3)

where

η0 ( f ) =
∫

X
f 2 ωn

n!

η1 ( f ) =
∫

X

(
− 1

2π
f ∆ f − 1

8π
S f
)

ωn

n!

η2 ( f ) =
∫

X

(
1

16π2 f ∆
2 f +

1
32π2 f 2

∆S+
1

16π2 S f ∆ f +
1

16π2 (∆ f )2

+
1

64π2 f 2S2 − 1
32π2 f (dS,d f )+

1
4π2 f

(
Ric, i ∂̄ ∂ f

)
− f 2b2

)
ωn

n!
.

Lemma 3.3.12. There is an asymptotic expansion∫
X×X

HQk, f (x)HQk, f (y)Hµk(x)(y)
ωn ∧ωn

(n!)2

= η0 ( f )k−n +η1 ( f )k−n−1 +η2 ( f )k−n−2 +O
(
k−n−3) ,
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where

η0 ( f ) =
∫

f 2 ωn

n!
,

η1 ( f ) =
∫ (

− 3
4π

f ∆ f − 1
8π

S f 2
)

ωn

n!
,

η2 ( f ) =
∫

X

(
5

32π2 f ∆
2 f +

1
32π2 f ∆(S f )+

1
16π2 S f ∆ f +

1
8π2 (∆ f )2

+
1

64π2 S2 f 2 +
3

8π2 f
(
Ric, i ∂̄ ∂ f

)
− f 2b2

)
ωn

n!
.

Proof. First observe that

HQk, f = Tr
(
Qk, f µk

)
= B−1

k Kk, f .

Furthermore, ∫
X

HQk, f (y)Hµk(x)(y)
ωn

n!
=
∫

X
HQk, f (y)Tr(µk(x)µk(y))

ωn

n!
= B−1

k (x)Kk,B−1
k HQk, f

(x)

= B−1
k (x)Kk,B−2

k Kk, f
(x).

Hence, we can rewrite∫
X×X

HQk, f (x)HQk, f (y)Hµk(x)(y)
ωn ∧ωn

(n!)2 =
∫

X
B−2

k Kk, f Kk,B−2
k Kk, f

ωn

n!
. (3.3.8)

From the proof of lemma 3.3.11 we already know that

B−2
k Kk, f = σ0( f )k−n +σ1( f )k−n−1 +σ2( f )k−n−2 +O

(
k−n−3) ,

where

σ0 ( f ) = f ,

σ1 ( f ) =− 1
8π

S f − 1
4π

∆ f ,

σ2 ( f ) =
1

64π2 S2 f +
1

32π2 S∆ f +
1

32π2 ∆
2 f − f b2 +

1
8π2 (Ric, i ∂̄ ∂ f ).
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Therefore,

Kk,B−2
k Kk, f

= k−n (Kσ0( f )+ k−1Kσ1( f )+ k−2Kσ2( f )
)

= γ0( f )+ γ1( f )k−1 + γ2( f )k−2 +O
(
k−3)

where

γ0 ( f ) = b0,σ0( f ),

γ1 ( f ) = b1,σ0( f )+b0,σ1( f ),

γ2 ( f ) = b2,σ0( f )+b1,σ1( f )+b0,σ2( f ).

Putting in the exact values yields after some calculations

γ0 ( f ) = f ,

γ1 ( f ) =− 1
2π

∆ f ,

γ2 ( f ) =
1

8π2 ∆
2 f − 1

32π2 S∆ f +
1

32π2 ∆(S f )+
1

4π2

(
Ric, i ∂̄ ∂ f

)
.

Keeping in mind relation (3.3.8), we next compute∫
X

B−2
k Kk, f Kk,B−2

k Kk, f

ωn

n!
= η0( f )k−n +η1( f )k−n−1 +η2( f )k−n−2 +O

(
k−n−3) ,

where

η0 ( f ) =
∫

σ0( f )γ0( f ),

η1 ( f ) =
∫

σ0( f )γ1( f )+σ1( f )γ0( f ),

η2 ( f ) =
∫

σ0( f )γ2( f )+σ1( f )γ1( f )+σ2( f )γ0( f ).
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Using the explicit values yields

η0 ( f ) =
∫

f 2 ωn

n!
,

η1 ( f ) =
∫ (

− 3
4π

f ∆ f − 1
8π

S f 2
)

ωn

n!
,

η2 ( f ) =
∫

X

(
5

32π2 f ∆
2 f +

1
32π2 f ∆(S f )+

1
16π2 S f ∆ f +

1
8π2 (∆ f )2

+
1

64π2 S2 f 2 +
3

8π2 f
(
Ric, i ∂̄ ∂ f

)
− f 2b2

)
ωn

n!
.

Having computed all the necessary asymptotics, the proof of proposition 3.3.6 is now
just a matter of putting the right terms together.

Recall from lemma 3.3.8 that for all f ∈C∞ (X ,R),

Tr
((

P∗
k Pk(Qk, f )

)2
)
= ReTr

((
Qk, f µ̄k

)2
)
−2Re

∫
X

Tr
(
Qk, f µ̄kµk(x)

)
HQk, f (x)

ωn

n!

+
∫

X×X
HQk, f (x)HQk, f (y)Hµk(x)(y)

ωn ∧ωn

(n!)2 .

By lemmas 3.3.10, 3.3.11 and 3.3.12 we immediately see that the k−n-contribution
vanishes. The term in k−n−1 is given by

∫
X

(
− 1

4π
f ∆ f − 1

8π
S f 2
)
−2
(
− 1

2π
f ∆ f − 1

8π
S f
)
+

(
− 3

4π
f ∆ f − 1

8π
S f 2
)

ωn

n!

and hence it vanishes too.

Let us rewrite the full k−n−2 term.
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∫
X

(
1

32π2 f ∆
2 f +

3
32π2 S f ∆ f − 1

16π2 S|d f |2 + 1
8π2 f

(
Ric, i ∂̄ ∂ f

)
+

1
64π2 S2 f 2 −b2 f 2

)
ωn

n!
.

−2
∫

X

(
1

16π2 f ∆
2 f +

1
32π2 f 2

∆S+
1

16π2 S f ∆ f +
1

16π2 (∆ f )2

+
1

64π2 f 2S2 − 1
32π2 f (dS,d f )+

1
4π2 f

(
Ric, i ∂̄ ∂ f

)
− f 2b2

)
ωn

n!

+
∫

X

(
5

32π2 f ∆
2 f +

1
32π2 f ∆(S f )+

1
16π2 S f ∆ f +

1
8π2 (∆ f )2

+
1

64π2 S2 f 2 +
3

8π2 f
(
Ric, i ∂̄ ∂ f

)
− f 2b2

)
ωn

n!
.

After simplifying the obvious terms, the integrand becomes

1
16π2 f ∆

2 +
1

32π2 S f ∆ f − 1
16π2 S|d f |2 − 1

16π2 f 2
∆S+

1
32π2 f ∆(S f )+

1
16π2 f (dS,d f ) .

Now using the fact that
∆(S f ) = f ∆S+S∆ f −2(dS,d f )

and that
1
2

∫
X

f 2
∆S

ωn

n!
=
∫

X
S
(

f ∆ f −|d f |2
)

one sees that all the terms vanish, except

1
16π2

∫
X

f ∆
2 f

ωn

n!
.

This concludes the proof of proposition 3.3.6 and hence of proposition 3.3.3.



Chapter 4

Geometric Quantisation and the
Derivative of Hilbk

4.1 Introduction

The fourth chapter of this thesis is dedicated to an intriguing link between geometric quanti-
sation and a program initiated by Donaldson to study the geometry of the space of Kähler
metrics in a fixed cohomology class using finite dimensional approximations.

For the sake of completeness we start recalling some notation and definitions we already
used in the previous chapters. Let L → X be an ample line bundle over a compact complex
manifold of complex dimension n. Write H for the space of all positively curved Hermitian
metrics on L. Any element h ∈ H induces a Kähler metric ωh on X by ωh =

i
2π

Fh. Further-
more let Bk be the Bergman space of level k, i.e. the space of Hermitian inner products on
H0 (X ,Lk). H carries the structure of an infinite dimensional Riemannian manifold and
its tangent space at a point h is naturally identified with the space of smooth, real valued
functions on X . On the other hand the tangent space to Bk at b is identified with the space Vk

of Hermitian endomorphisms on H0 (X ,Lk), see section 4.2 or [6] for further information.

Choosing a metric on L induces an L2-inner product on H0 (X ,Lk) and hence a map
Hilbk : H → Bk. Explicitly,

Hilbk(h)(s, t) =
∫

X
hk (s(x), t(x))

ωn
h

n!
.

Remark 4.1.1. Note that this Hilbk-map differs from the one we used in the chapters before.
This time the volume form depends on the point h ∈ H , whereas before it was fixed.
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There is also a map in the other direction called the Fubini–Study map. Given b ∈ Bk,
we define FSk(b) as follows: any b-orthonormal basis s = s1, . . . ,sNk of H0(X ,Lk) embeds X
into CPNk−1. Pulling back the Fubini–Study metric from O(1) via this embedding defines
a Hermitian metric on Lk. Then take the k-th root to get a genuine metric on L which we
denote by FSk(b). Hence we get a map FSk : Bk → H . Note that FSk(b) does not depend
on the b-orthonormal basis we choose.

A lot of research has been devoted to the geometric quantisation of Kostant [16] and
Souriau [21]. It explains how to naturally associate to every classical observable (i.e. a
smooth function on X), a quantum observable (i.e. a Hermitian operator on a Hilbert space).
The Hilbert space in question is nothing else than H0 (X ,Lk) together with the Hilbk (h)-
inner product. To define the quantum observables, one first associates to every function
f ∈ C∞ (X ,R) the so-called pre-quantum operator σ̃k, f acting on the space C∞

(
X ,Lk) of

smooth sections into Lk. Explicitly

σ̃k, f = 2πk f + i∇(k)
X f
.

Here X f denotes the Hamiltonian vector field associated to f and ∇k is the Chern connection
on
(
Lk,hk). The genuine quantum operators σk, f are then given by taking the holomorphic

part of the pre-quantum operators by composing σ̃k, f with the orthogonal projection onto the
sub-space of holomorphic sections in C∞

(
X ,Lk). In this way we get a map

f ∈C∞(X ,R) 7→ σk, f ∈Vk.

The starting observation is that this map is nothing else than the derivative of Hilbk, see
section 4.4. In this sense one can think of the Hilbk-map as a curved version of geometric
quantisation. It is then natural to ask of what use the higher derivatives of the Hilbk-map
might be and if they have some physical interpretation. Furthermore one might think whether
the differential of the FSk-map also has an interpretation in terms of some dequantisation.
And indeed, in section 4.5 we show that it is nothing else than Berezin’s covariant symbol.
Using expansions of Toeplitz operators one easily sees that the composition dFSk ◦dHilbk

tends to the identity as k goes to infinity and hence, at least asymptotically, Berezin’s covari-
ant symbol can be interpreted as the inverse of geometric quantisation. This sheds new light
on the results obtained by Cahen, Gutt and Rawnsley in [20].

Motivated by the fact that the linearisation of Hilbk gives geometric quantisation we
compute in section 4.6 its next order approximation, namely its Hessian. To state the result,
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define D : C∞ (X ,R)→ Ω0,1 (T X) to be the operator given by

D ( f ) = ∂̄
(
X f
)
.

D ( f ) measures the failure of the Hamiltonian vector field X f of being holomorphic and the
operator D is called the Lichnerowicz operator, see also section 2.3.10.

Theorem 4.1.2. The Hessian of Hilbk : H → Bk admits an asymptotic expansion in which
the leading order term is given by the leading order of the Toeplitz operator associated to the
function (D f ,Dg). More precisely, as k → ∞, one has

(∇dHilbk)φ
( f ,g) = T(D f ,Dg)+O

(
kn−1) .

As a corollary we reprove a result by Fine saying that the Hessian of balancing energy
converges to the Hessian of Mabuchi energy, see theorem 2 in [11].

4.2 The geometric structures on H and Bk

Fixing h ∈ H , every other element in H can be written as hφ = e4πφ h for some smooth
function φ and the associated Kähler metric ωφ is given by ωφ = ω0 +2i∂̄ ∂φ . Explicitly,
we can write

H = {φ ∈C∞(X ,R) |ωφ = ω0 +2i∂̄ ∂φ > 0}.

Hence H can be thought of as an open subset of the vector space C∞(X ,R) and we identify
its tangent space TφH with the space of smooth functions on X .

Remark 4.2.1. Note that one can equally well think of H as the space of Kähler potentials
with respect to ω0. Two elements φ and ψ in H give the same Kähler form if and only if
they differ by an additive constant. The space of Kähler forms in c1(L) can then be identified
with H /R by modding out these constants.

There is a natural Riemannian structure on H known as the Donaldson–Mabuchi–
Semmes metric. We start recalling its definition and some of its properties. For further
information and proofs, we refer the reader to [6]. At each point φ ∈ H one defines an inner
product

⟨ f ,g⟩φ :=
∫

X
f g

ωn
φ

n!

where f and g are two smooth, real-valued functions thought of as tangent vectors to H at
φ . It happens that the Donalson–Mabuchi–Semmes metric admits a Levi-Civita connection
(recall that the existence of a metric, torsion free connection is not guaranteed in infinite
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dimensions) which can be described as follows. Let ht = e4πt f h be a path in H and gt a
path of tangent vectors along ht which amounts to a function on X × [0,1]. One defines the
covariant derivative DLC

t gt of gt along ht by

DLC
t gt =

∂gt

∂ t
+(d f ,dgt)ωt

.

One checks that this connection is symmetric and compatible with the metric.

Similar to the fact that H can be thought of as an open subset of C∞ (X ,R) we can
embedd Bk into the space of Hermitian forms on H0 (X ,R). Denote by Nk the dimension of
the space H0(X ,Lk). Note that GL(Nk,C) acts transitively on Bk with stabilizer U(Nk) so that
if we choose a point b ∈Bk we can identify Bk with the symmetric space GL(Nk,C)/U(Nk).

There is a natural Riemannian structure on Bk given by

(A,B)b := Tr
(
b−1Ab−1B

)
where b ∈ Bk and A,B ∈ TbBk

∼= iu(Nk). The Levi-Civita connection associated to this
metric can be written as

∇ = d +a

where the connection 1-form a ∈ Ω1 (Bk,End(TBk)) is explicitly given by

ab (A)(B) =−1
2
(
Ab−1B+Bb−1A

)
.

4.3 The derivatives of Hilbk and FSk

Recall that we defined Hilbk : H → Bk by

Hilbk(φ) =
∫

X
hk

φ (·, ·)
ωn

φ

n!
.

To compute its differential at a point φ in the direction f , we differentiate Hilbk along the
path e4π f thφ . One gets

(
(dHilbk)φ

( f )
)

αβ
=
∫

X

(
4πk f +∆φ f

)
hk

φ (sα ,sβ )
ωn

φ

n!

where s = s1, . . . ,sNk is a Hilbk(φ)-orthonormal basis of H0(X ,Lk). The Laplacian term

in this expression comes from the variation of the volume form
ωn

φ

n! and follows from the
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well-known formula
2ni∂̄ ∂ f ∧ω

n−1 = ∆ f ω
n

from Kähler geometry.

Recall that for k large enough the Kodaira embedding theorem tells us that for any basis
s = s1, . . . ,sNk of H0(X ,Lk), ιs : X → CPNk−1 given by

ιs(x) = [s1(x), . . . ,sNk(x)]

embeds X holomorphically into CPNk . The Fubini–Study map was given by the k-th root of
the pull-back of the Fubini–Study metric from O(1) to Lk. Explicitly if s is any b-orthonormal
basis of H0 (X ,Lk) and h any auxilliary Hermitian inner product,

hb =
hx

∑
Nk
i=0 |si(x)|2h

and FSk(b) = (hb)
1/k. To compute the differential of FSk, we differentiate FSk along the

path s(t) = e−
1
2 At · s where A ∈ iu(Nk +1). One gets

d
dt

(
− 1

4πk
log

Nk

∑
i=0

|si(t)(x)|2h

) ∣∣∣∣∣
t=0

=
1

4πk
∑

Nk
i, j=0 Ai jh

(
s j(x),si(x)

)
∑

Nk
i=0 |si(x)|2h

.

For every positive integer m, consider the map µ : CPm → iu(m+1) given in homoge-
neous coordinates by

(µ ([Z1, . . . ,Zm]))αβ
=

Zα Z̄β

4π ∑γ |Zγ |2
.

Moreover, if s = s1, . . . ,sNk is a basis of H0(X ,Lk), we denote by µs the composition µ ◦ ιs.

Remark 4.3.1. At this point the conventions we use in this chapter differ from those used in
the previous chapters in the sense that we multiply the map µ defined in 2.2.2 by 1

4π
. The

reason why we do this is because we recover Fine’s quantisation of the Hessian of Mabuchi
energy from [11] in section 4.6.1 and we want to use his conventions.

Using these notations, the differential of FSk at a point b in the direction A can be written
as

(dFSk)b (A) =
1
k

Tr(Aµb) .
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4.4 Relation between geometric quantisation and the Hilbk-
map.

We start recalling some of the general theory from geometric quantisation. Let L → X
be a ample line bundle over a compact complex manifold of complex dimension n. Fix
an Hermitian metric h on L inducing a Kähler form ω on X . To every smooth function
f ∈C∞ (X ,R) we associate an Hermitian endomorphism σ f of the Hilbert space H0 (X ,Lk).
This is done by composing the Lie algebra map σ̃ : C∞(X ,R)→ Op(Γ(X ,L)) given by

σ̃ f = 2π f + i∇X f .

with the orthogonal projection Π : Γ(X ,L)→ H0(X ,L). Here we use the L2-Hermitian inner
product on Γ(X ,L) given by

⟨s1,s2⟩=
∫

X
h(s1,s2)

ωn

n!
.

X f denotes the Hamiltonian vector field with respect to ω and ∇ denotes the Chern connection
on L.

In the following lemma (known as Tuynman’s lemma) we compute the matrix of σ f in
terms of an L2-orthonormal basis of H0 (X ,L).

Lemma 4.4.1. Given an orthonormal basis s = s1, . . . ,sN of H0(X ,L), the matrix of the
operator σ f with respect to s is given by

(
σ f
)

αβ
=
∫

X
(2π f +

1
2

∆ f )h(sα ,sβ )
ωn

n!
.

Proof. Using the definitions we see that(
σ f
)

αβ
= ⟨sα , σ̃ f sβ ⟩

=
∫

X
h(sα , σ̃sβ )

ωn

n!

=
∫

X
2π f h(sα ,sβ )

ωn

n!
− i
∫

X
h(sα ,∇X f sβ )

ωn

n!
.

Hence it suffices to compute the second term of the right-hand side. Let v be some vector
field on X . The holomorphic, resp. anti-holomorphic part of v is given by 1

2 (v∓ iIv). Using
the fact that the covariant derivative of a holomorphic section s in the direction of a vector
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field of type (0,1) vanishes we see that

∇ 1
2 (v+iIv)sβ = 0.

and hence
∇Ivsβ = i∇vsβ .

Furthermore we know that X f = I grad f and so

h
(
sα ,∇X f sβ

)
=−ih

(
sα ,∇grad f sβ

)
.

On the other hand we can write

h
(
sα ,∇X f sβ

)
= d

(
h
(
sα ,sβ

))(
X f
)
− ih

(
∇grad f sα ,sβ

)
.

Adding up the last two equations we get

2h
(
sα ,∇X f sβ

)
= d

(
h
(
sα ,sβ

))(
X f
)
− i
(
h
(
∇grad f sα ,sβ

)
+h
(
sα ,∇grad f sβ

))
= d

(
h
(
sα ,sβ

))(
X f
)
− id

(
h
(
sα ,sβ

))
(grad f )

Integrating over X and using the fact that divX f = 0 and divgrad f =−∆ f implies

∫
X

h
(
sα ,∇X f sβ

) ωn

n!
=

i
2

∫
X

∆ f h
(
sα ,sβ

) ωn

n!

Putting everything together we get

(
σ f
)

αβ
=
∫

X
2π f h(sα ,sβ )

ωn

n!
− i
∫

X
h(sα ,∇X f sβ )

ωn

n!

=
∫

X
(2π f +

1
2

∆ f )h(sα ,sβ )
ωn

n!
.

Even if the map σ̃ was a Lie algebra map, there is no reason for σ to be one. However
the property is satisfied asymptotically, in the so-called semi-classical limit. More precisely
we will look at higher and higher tensor powers of the line bundle L. The curvatures F(k) on
Lk and F on L are related by

F(k) = kF



82 Geometric Quantisation and the Derivative of Hilbk

and we get a new Kähler form ω(k) = kω . The Hamiltonian vector field with respect to the
Kähler form ω(k) is then given by

X (k)
f =

1
k

X f

and we define associated pre-quantum operators by

σ̃k, f = k
(

2π f + i∇(k)

X (k)
f

)
= 2πk f + i∇(k)

X f
.

This operator acts on the space of smooth sections of Lk and we need to compose it with
the orthogonal projection Π(k) onto the space of holomorphic sections with respect to the
inner product given by

⟨s1,s2⟩k =
∫

X
hk (s1,s2)

ωn

n!
.

This allows us to define quantum operators

σk, f = Π
(k) ◦Pk, f .

The next proposition tells us that the Hilbk-map itself can be thought of as some curved
version of geometric quantisation.

Proposition 4.4.2. Let f ∈C∞ (X ,R) and φ ∈ H . Then

d (Hilbk)φ
( f ) = 2σk, f

where all the objects in σk, f are computed with respect to φ .

Proof. From lemma 4.4.1 we readily see that the matrix of σk, f with respect to an Hilbk (φ)-
orthonormal basis s of H0 (X ,Lk) is given by

(
σk, f

)
αβ

=
∫

X
(2πk f +

1
2

∆ f )hk(sα ,sβ )
ωn

n!
.

Comparing this with the differential of Hilbk yields the result.

4.5 Relation between Berezin quantisation and the FSk-map

We start recalling the definition of Berezin’s covariant symbol. We follow the presentation of
Cahen, Gutt and Rawnsley in [20].
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Let q be a non-zero point in the fibre of L over x ∈ X . Evaluation of a section s ∈ H0(X ,L)
defines a multiple ℓq(s) of q given by

s(x) = ℓq(s)q.

Fixing b ∈ Bk, ℓq is a continuous linear form on the Hilbert space
(
H0 (X ,L) ,b

)
so that by

the Riesz representation theorem, there exist an element eq ∈ H0 (X ,L) such that for any
s ∈ H0 (X ,L),

ℓq(s) = ⟨s,eq⟩b

The section eq is called a coherent state.

Definition 4.5.1. To every endomorphism A of H0 (X ,L) one associates a covariant symbol
Â ∈C∞ (X ,C) by

Â(x) =
⟨Aeq,eq⟩
∥eq∥2 .

This definition is actually independent of the point q we chose in the fibre over x. In fact,
for c ∈ C∗,

ℓcq(s) = c−1ℓq(s) and ecq = c−1ēq.

As before, we can do this construction for tensor powers of L and get covariant symbols Âk.

Proposition 4.5.2. The covariant symbol Âk of an Hermitian endomorphism A of H0 (X ,Lk)
is given by the derivative of the Fubini–Study map at the point b in the direction A. Explicitly

Â(x) = 4πk (dFSk)b (A)(x).

Proof. Pick a b-orthonormal basis s of H0 (X ,Lk) and write

eq = ∑
α

eα
q sα .

Clearly eα
q = ⟨sα ,eq⟩ = ℓq(sα) and thus the coordinates of eq is the basis s define a point

[s1(x), . . . ,sNk(x)] in projective space. Since the formula defining Â does not depend on
the point q in the fibre over x, we can use the notation of the sα(x) to do the following
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computation:

Â(x) =
⟨Aeq,eq⟩
∥eq∥2

=
⟨A∑α sα(x)sα ,∑β sβ (x)sβ ⟩

∑γ |sγ(x)|2

=
∑αβ ⟨Asα ,sβ ⟩sα(x)sβ (x)

∑γ |sγ(x)|2

=
∑αβ Aαβ sα(x)sβ (x)

∑γ |sγ(x)|2

= 4πTr
(
Aµs(x)

)

4.6 The Hessian of Hilbk

Guided by the observation that the derivative of Hilbk is geometric quantisation, we compute
the next order approximation of the Hilbk-map in this section.

Definition 4.6.1. Let (M,gM) and (N,gN) be two Riemannian manifolds and let ϕ : M → N
be a smooth map between M and N. The Hessian of ϕ is defined to be ∇dϕ .

A first thing to note about this definition is that dϕ ∈ Γ(M,T ∗M⊗ϕ∗T N) and ∇ is the
connection on T ∗M⊗ϕ∗T N induced by the Levi-Civita connections ∇M and ∇N on M and
N respectively. Explicitely,

(∇dϕ)(X ,Y ) = ∇
ϕ

X (dϕ (Y ))−dϕ
(
∇

M
X Y
)
, (4.6.1)

where ∇ϕ denotes the pull-back connection.

Theorem 4.6.2. The Hessian of Hilbk : H → Bk admits an asymptotic expansion in which
the leading order term is given by the leading order of the Toeplitz operator associated to the
function (D f ,Dg). More precisely, as k → ∞,

(∇dHilbk)φ
( f ,g) = T(D f ,Dg)+O

(
kn−1) .

We postpone the proof to section 4.6.2 and first discuss one of its applications.
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4.6.1 Application

Our starting point is the following lemma.

Lemma 4.6.3. Let ϕ : (M,gM)→ (N,gN) and ψ : (N,gN)→ (P,gP) be two smooth functions
between Riemannian manifolds. The Hessian of the composition ψ ◦ϕ is given by

∇d (ψ ◦ϕ) = dψ (∇dϕ)+∇dψ (dϕ,dϕ) .

Proof.

(∇d (ψ ◦ϕ))(X ,Y ) = ∇X (d (ψ ◦ϕ)(Y ))−d (ψ ◦ϕ)(∇XY )

=
(
∇dϕ(X) (dψ)

)
(dϕ (Y ))+dψ (∇X (dϕ (Y )))−dψ (dϕ (∇XY ))

= (∇dψ)(dϕ (X) ,dϕ (Y ))+dψ (∇dϕ (X ,Y ))

Let Fk : Bk → R be any functional on Bergman space. Using the Hilbk-map, Fk can be
pulled-back to H to get a functional Ek : H → R. Using lemma 4.6.3, we can compute the
pullback by Hilbk of the Hessian of Fk in terms of the Hessians of Hilbk and Ek.

∇dFk (dHilbk,dHilbk) = ∇dEk −dFk (∇dHilbk) .

A very interesting functional on Bk is balancing energy. It can be defined via its derivative
by putting for b ∈ Bk and A ∈ iu(Nk +1),

(dFk)b (A) = Tr(Aµ̄b)

where µ̄b =
∫

X µb
ωn

FS
n! . The left hand-side of this expression actually defines a 1-form on Bk

and one needs to check that it is closed so that it can be integrated to get a function on Bk

(well defined up to a constant). Balancing energy can be thought-off as a finite dimensional
analogue of yet another functional defined on H which is called Mabuchi energy. Similar to
what we did for balancing energy, Mabuchi energy can be defined via its derivative by

(dE)
φ
( f ) =

∫
X

f S(φ)
ωn

φ

n!
.

where φ ∈ H and f ∈C∞ (X ,R). Again one has to check that the left-hand side defines a
closed 1-form to get a function on H . Using the asymptotic expansion for the Hessian of
Hilbk we got in theorem 4.6.2, we recover the following theorem proved by Fine in [11].
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Theorem 4.6.4. Under the map Hilbk : H → Bk the pull-back of the Hessian of balancing
energy admits an asymptotic expansion in which the leading order term is the Hessian of
Mabuchi energy. More precisely, for any f ,g ∈C∞ (X ,R) there is an asymptotic expansion
as k → ∞ given by

(∇dFk)Hilbk(φ)

(
(dHilbk)φ

( f ) ,(dHilbk)φ
(g)
)
=

kn

4π

∫
X

f D∗Dg
ωn

φ

n!
+O

(
kn−1) .

Proof. Using theorem 4.6.2 and the formula for the differential of balancing energy, the
second term of the right-hand side of formula 4.6.1 is given by,

(dFk)Hilbk(φ)
(∇dHilbk)φ

( f ,g) = Tr
(
(∇dHilbk)φ

( f ,g) µ̄k

)
= ∑

αβ

∫
X×X

(D f ,Dg)

(
sα ,sβ

)(
sβ ,sα

)
4πρk

ωn ∧ωn
k

n!2 .

Using the asymptotics for the Bergman kernels from section 2.3.2 and the fact that the
operator D is self-adjoint, one easily sees that the leading order term in this expression is
given by

kn

4π

∫
X

f D∗Dg
ωn

n!
(4.6.2)

On the other hand, we know from lemma 2 in Donaldson’s paper [8] that the differential of
Ek = Fk ◦Hilbk is given by

(dEk)φ
( f ) =

∫
X
(4πkρk +∆ρk) f

ωn

n!
.

This expression admits an asymptotic expansion

(dEk)φ
( f ) = (α0)φ

( f )kn+1 +(α1)φ
( f )kn +O

(
kn−1) .

Using the asymptotic expansion of the Bergman function from section 2.3.2, one sees that

(α0)φ
( f ) = 4πkn+1

∫
X

f
ωn

n!

(α1)φ
( f ) =

kn

2π

∫
X

f S
ωn

n!

These two quantities define 1-forms on H which by construction can be integrated up
and define functionals AY and E up to constants. AY is sometimes called the Aubin–Yau
functional and E is nothing else that Mabuchi energy (up to the kn/2π-factor). The Hessian
of AY computed with respect to the Donaldson–Mabuchi–Semmes metric vanishes, whereas
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the Hessian of Mabuchi energy is given by D∗D . To sum up, we get that the leading order
term of the right-hand side in 4.6.1 is given by

kn

2π

∫
X

f D∗Dg
ωn

n!
(4.6.3)

Putting the terms 4.6.2 and 4.6.3 together yields the result.

Remark 4.6.5. Note that in our example, we used balancing energy as functional on Bk, but
the technique works in principle for any other functional on Bk as well.

4.6.2 Proof of theorem 4.6.2

We start recalling some standard formulas from Kähler geometry of which a proof can be
found for example in [22].

Lemma 4.6.6. Let ht = e4π f th be a path in H . We have:

1. ωt = ω0 + t2i∂̄ ∂ f ;

2. 2ni∂̄ ∂ f ∧ωn−1 = ∆ f ωn ;

3. n(n−1)2i∂̄ ∂ f ∧2i∂̄ ∂g∧ωn−2 = ∆ f ∆g−⟨2i∂̄ ∂ f ,2i∂̄ ∂g⟩.

Throughout the proof, we work at a point φ ∈ H and all quantities are computed with
respect to φ except mentioned otherwise. We fix s = s1, . . . ,sNk to be a Hilbk(φ)-orthonormal
basis of H0 (X ,Lk). For ψ ∈ H , the matrix of the inner product Hilbk (ψ) with respect to s
is given by (

Hilbk(ψ)
)

αβ
=
∫

X
hk

ψ

(
sα ,sβ

) ωn
ψ

n!
.

Note that by definition (Hilbk(φ))αβ
= δαβ .

Using formula (4.6.1) and the expression of the connection on Bk described in section
4.2 we get for f ,g ∈ TφH ∼=C∞ (X ,R),

∇(dHilbk)φ
( f ,g) = f ·(dHilbk)φ

(g)− 1
2
[[(dHilbk)φ

( f ),(dHilbk)φ
(g)]]

− (dHilbk)φ

(
DLC

f (g)
)
.
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Here [[·, ·]] denotes the anti-commutator [[A,B]] = AB+BA.

We first compute the three terms of the right-hand side separately and then combine them.

Lemma 4.6.7. Let f ,g ∈C∞ (X ,R) and put φ(s, t) = f s+gt. The second variation

∂t∂s (Hilbk (φ(s, t))) |s=0|t=0

of Hilbk(φ(s, t)) is given by

16π
2k2 Tk, f g +4πk Tk, f ∆g+g∆ f +Tk,∆ f ∆g−(2i∂̄ ∂ f ,2i∂̄ ∂g).

Proof. First recall that given φ(s, t) ∈ H , the associated family of Hermitian metrics on L is
given by

hφ(s,t) = e4π( f s+gt)hφ .

We compute

∂t∂s (Hilbk (φ(s, t))) |s=0|t=0

=∂t∂s

(∫
X

hk
φ(s,t)

(
sα ,sβ

) ωn
φ(s,t)

n!

)∣∣∣
s=0

∣∣∣
t=0

=∂t

(∫
X

4πk f hk
φ(0,t)

(
sα ,sβ

) ωn
φ(0,t)

n!
+
∫

hk
φ(0,t)

(
sα ,sβ

) 2ni∂̄ ∂ f ∧ω
n−1
φ(0,t)

n!

)∣∣∣
t=0

=
∫

X
16π

2k2 f ghk
φ

(
sα ,sβ

) ωn
φ

n!

+
∫

X
4πk f hk

φ

(
sα ,sβ

) 2ni∂̄ ∂g∧ω
n−1
φ

n!
+
∫

X
4πkghk

φ

(
sα ,sβ

) 2ni∂̄ ∂ f ∧ω
n−1
φ

n!

+
∫

X
hk

φ

(
sα ,sβ

) n(n+1)2i∂̄ ∂ f ∧2i∂̄ ∂g∧ω
n−2
φ

n!
.

Using lemma 4.6.6 this can be rewritten as

16π
2k2
∫

X
f ghk

φ

(
sα ,sβ

) ωn
φ

n!
+4πk

∫
X
( f ∆g+g∆ f )hk

φ

(
sα ,sβ

) ωn
φ

n!

+
∫

X

(
∆ f ∆g−⟨2i∂̄ ∂ f ,2i∂̄ ∂g⟩

)
hk

φ

(
sα ,sβ

) ωn
φ

n!

which proves the lemma.
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Lemma 4.6.8. For f ,g ∈C∞ (X ,R), we have

(dHilbk)φ

(
DLC

f (g)
)
= 4πk Tk,(d f ,dg)+Tk,∆(d f ,dg)

Proof. This follows from the expression of the differential of Hilbk and the Levi-Civita
connection on H . In fact since f and g can be thought of as constant vector fields on H we
have that DLC

f (g) = (d f ,dg).

Lemma 4.6.9. Let f ,g∈C∞ (X ,R). There is an asymptotic expansion of the anti-commutator
[[(dHilbk)φ

( f ),(dHilbk)φ
(g)]] given by

k2 Tk,η0( f ,g)+ k Tk,η1( f ,g)+Tk,η2( f ,g)+O(k−1)

where

η0( f ,g) = 32π
2 f g

η1( f ,g) = 8π ( f ∆g+g∆ f ))−8π
(
⟨∂ f , ∂̄g⟩+ ⟨∂g, ∂̄ f ⟩

)
η2( f ,g) = 2

(
⟨D1,0

∂ f ,D0,1
∂̄g⟩+ ⟨D1,0

∂g,D0,1
∂̄ f ⟩
)
+4⟨Ric, i∂ f ∧ ∂̄g+ i∂g∧ ∂̄ f ⟩

−2
(
⟨∂ f , ∂̄ (∆g)⟩+ ⟨∂ (∆ f ), ∂̄g⟩+ ⟨∂g, ∂̄ (∆ f )⟩+ ⟨∂ (∆g), ∂̄ f ⟩

)
+2∆ f ∆g.

Proof. We have

(dHilbk)φ ( f )◦ (dHilbk)φ
(g)

= Tk,4πk f+∆ f ◦Tk,4πkg+∆g

= 16π
2k2 Tk, f ◦Tk,g +4πk

(
Tk, f ◦Tk,∆g +Tk,∆ f ◦Tk,g

)
+Tk,∆ f ◦Tk,∆g

Using the notation from theorem 2.3.8 we can rewrite this as

16π
2k2 (Tk,C0( f ,g)+ k−1Tk,C1( f ,g)+ k−2Tk,C2( f ,g)+O(k−3)

)
+4πk

(
Tk,C0( f ,∆g)+C0(∆ f ,g)+ k−1Tk,C1( f ,∆g)+C1(∆ f ,g)+O(k−2)

)
+Tk,C0(∆ f ,∆g)+O(k−1)

Putting the terms of the same order together gives

k2 Tk,σ0( f ,g)+ k Tk,σ1( f ,g)+Tk,σ3( f ,g)+O(k−1),
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where

σ0( f ,g) = 16π
2C0( f ,g)

σ1( f ,g) = 16π
2C1( f ,g)+4π (C0( f ,∆g)+C0(∆ f ,g))

σ2( f ,g) = 16π
2C2( f ,g)+4π (C1( f ,∆g)+C1(∆ f ,g))+C0(∆ f ,∆g).

Using the exact values of the coefficients from theorem 2.3.8 these can be rewritten as

σ0( f ,g) = 16π
2 f g

σ1( f ,g) =−8π⟨∂ f , ∂̄g⟩+4π ( f ∆g+g∆ f ))

σ2( f ,g) = 2⟨D1,0
∂ f ,D0,1

∂̄g⟩+4⟨Ric, i∂ f ∧ ∂̄g⟩−2
(
⟨∂ f , ∂̄ (∆g)⟩+ ⟨∂ (∆ f ), ∂̄g⟩

)
+∆ f ∆g.

By symmetry we deduce that the term [[(dHilbk)φ
( f ),(dHilbk)φ

(g)]] is given by

k2 Tk,η0( f ,g)+ k Tk,η1( f ,g)+Tk,η3( f ,g)+O(k−1)

where

η0( f ,g) = 32π
2 f g

η1( f ,g) = 8π ( f ∆g+g∆ f ))−8π
(
⟨∂ f , ∂̄g⟩+ ⟨∂g, ∂̄ f ⟩

)
η2( f ,g) = 2

(
⟨D1,0

∂ f ,D0,1
∂̄g⟩+ ⟨D1,0

∂g,D0,1
∂̄ f ⟩
)
+4⟨Ric, i∂ f ∧ ∂̄g+ i∂g∧ ∂̄ f ⟩

−2
(
⟨∂ f , ∂̄ (∆g)⟩+ ⟨∂ (∆ f ), ∂̄g⟩+ ⟨∂g, ∂̄ (∆ f )⟩+ ⟨∂ (∆g), ∂̄ f ⟩

)
+2∆ f ∆g.

End of the proof of theorem 4.6.2.

Putting lemma 4.6.7, 4.6.8 and 4.6.9 together we get

(∇dHilbk)φ
( f ,g) = f · (dHilbk)φ

(g)− (dHilbk)φ

(
DLC

f (g)
)
− 1

2
[[(dHilbk)φ

( f ),(dHilbk)φ
(g)]]

= 16π
2k2 Tk, f g +4πk Tk, f ∆g+g∆ f +Tk,∆ f ∆g−⟨2i∂̄ ∂ f ,2i∂̄ ∂g⟩

−4πk Tk,(d f ,dg)−Tk,∆(d f ,dg)

−16π
2k2Tk, f g +4πkT⟨∂ f ,∂̄g⟩+⟨∂g,∂̄ f ⟩−4πkTk, f ∆g+g∆ f −

1
2

Tk,η2( f ,g).
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One readily sees that the terms in k2 vanish. Furthermore since

(d f ,dg) = ⟨∂ f , ∂̄g⟩+ ⟨∂g, ∂̄ f ⟩

we see that the term in k vanishes too so that the leading order is the leading order of the
Toeplitz operator applied to the function

∆ f ∆g−⟨2i∂̄ ∂ f ,2i∂̄ ∂g⟩−∆(d f ,dg)

−
(
⟨D1,0

∂ f ,D0,1
∂̄g⟩+ ⟨D1,0

∂g,D0,1
∂̄ f ⟩
)
−2⟨Ric, i∂ f ∧ ∂̄g+ i∂g∧ ∂̄ f ⟩

+
(
⟨∂ f , ∂̄ (∆g)⟩+ ⟨∂ (∆ f ), ∂̄g⟩+ ⟨∂g, ∂̄ (∆ f )⟩+ ⟨∂ (∆g), ∂̄ f ⟩

)
−∆ f ∆g.

Formula (5.79) in [19] tells us that

∆⟨∂ f , ∂̄g⟩= ⟨∂∆ f , ∂̄g⟩+ ⟨∂ f , ∂̄∆g⟩−2⟨∇T ∗X
∂ f ,∇T ∗X

∂̄g⟩−2⟨Ric, i∂ f ∧ ∂̄g⟩.

The curvature term in the right-hand side comes from the non-commutativity of the Bochner-
Laplacian with the ∂ and ∂̄ -operators.

Applying this formula to the term

∆(d f ,dg) = ∆
(
⟨∂ f , ∂̄g⟩+ ⟨∂g, ∂̄ f ⟩

)
enables us to rewrite the leading order as

−⟨2i∂̄ ∂ f ,2i∂̄ ∂g⟩+2
(
⟨∇T ∗X

∂ f ,∇T ∗X
∂̄g⟩+ ⟨∇T ∗X

∂g,∇T ∗X
∂̄ f ⟩
)

−
(
⟨D1,0

∂ f ,D0,1
∂̄g⟩+ ⟨D1,0

∂g,D0,1
∂̄ f ⟩
)

Observing that

⟨∇T ∗X
∂ f ,∇T ∗X

∂̄g⟩= ⟨D1,0
∂ f ,D0,1

∂̄g⟩+ ⟨D0,1
∂ f ,D1,0

∂̄g⟩

and
⟨2i∂̄ ∂ f ,2i∂̄ ∂g⟩= 2

(
⟨D0,1

∂ f ,D1,0
∂̄g⟩+ ⟨D0,1

∂g,D1,0
∂̄ f ⟩
)

the leading order term simplifies to

⟨D1,0
∂ f ,D0,1

∂̄g⟩+ ⟨D1,0
∂g,D0,1

∂̄ f ⟩.
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In terms of the Lichnerowicz operator D : C∞ (X ,R)→ Ω0,1 (T X) this can be written as

(D f ,Dg) .

To see this, note that D0,1∂̄ f is a section of (T ∗X)0,1 ⊗ (T ∗X)0,1. Using the metric, we
can identify ∂̄ f with an element of the holomorphic tangent bundle (T X)1,0. Furthermore,
on (T X)1,0 the (0,1)-part of the covariant derivative coincides with the usual ∂̄ -operator.
Hence under this identification, D0,1∂̄ f = ∂̄

(
grad1,0 f

)
. Moreover, (T X)1,0 is canonically

isomorphic to (T X ,J) and hence we can think of D0,1∂̄ f as a section of Ω0,1 (T X). Finally,
under the isomorphism (T X)1,0 ∼= (T X ,J), one has that

(·, ·) = 2⟨·, ·⟩|(T X)1,0.

Observing that ∂̄ commutes with J since X is Kähler concludes the proof.
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