Ion pair dissociation of highly excited carbon clusters: size and charge effects

Thibaut Launoy, ${ }^{1, *}$ 用 Karine Béroff, ${ }^{2, \text {, }}$ Marin Chabot, ${ }^{3}$ Guillaume Martinet, ${ }^{3}$ Arnaud Le Padellec, ${ }^{4}$ Thomas Pino, ${ }^{2}$ Sandra Bouneau, ${ }^{3}$ Nathalie Vaeck, ${ }^{1}$ Jacques Liévin, ${ }^{1}$ Géraldine Féraud, ${ }^{2,}$ 周 Jérôme Loreau, ${ }^{1}$ and Thejus Mahajan ${ }^{2}$
${ }^{1}$ Laboratoire de Chimie Quantique et Photophysique (CQP) Université
Libre de Bruxelles (ULB) CP160/09 1050 Bruxelles, Belgium
${ }^{2}$ Institut des Sciences Moléculaires d’Orsay (ISMO) CNRS-INP
Univ.Paris-Sud Univ.Paris-Saclay F-91405 Orsay, France
${ }^{3}$ Institut de Physique Nucléaire d'Orsay (IPNO) CNRS-I2NP3
Univ.Paris-Sud Univ.Paris-Saclay F-91406 Orsay, France
${ }^{4}$ Institut de Recherche en Astrophysique et Planétologie
(IRAP) CNRS-INP Univ.Toulouse 3 F-31028 Toulouse, France

(Dated: July 21, 2016)
We present measurements of ion pair dissociation (IPD) of highly excited neutral and ionized carbon clusters $\mathrm{C}_{n=2-5}^{(q=0-3)+}$. The tool for producing these species was a high velocity collision between C_{n}^{+}projectiles ($\mathbf{v}=\mathbf{2 . 2 5}$ a.u.) and helium atoms. The setup allowed to detect in coincidence anionic and cationic fragments, event by event, leading to a direct and unambiguous identification of the IPD process. Compared to dissociation without anion emission, we found typical 10^{-4} IPD rates, not depending much on the size and charge of the (n, q) species. Exceptions were observed for \mathbf{C}_{2}^{+}and, to a lesser extent, \mathbf{C}_{4}^{3+} whose IPDs were notably lower. We tentatively interpreted IPDs of C_{2}^{+}and C_{3}^{+}by using a statistical approach based on the counting of final states allowed by energetic criteria. The model was able to furnish the right order of magnitude for the experimental IPD rates and to provide a qualitative explanation to the lower IPD rate observed in C_{2}^{+}.

PACS numbers: $36.40 . \mathrm{Qv}, 34.50 . \mathrm{Gb}, 31.15 . \mathrm{A}$

[^0]
I. INTRODUCTION

 ${ }_{34}$ occur in the repulsive inner wall of the potential energy profile [4]. It is nevertheless possible as ${ }_{35}$ recently observed in photoexcitation of O_{2} by absorption of three UV photons within a fs laser ${ }_{36}$ pulse [15]. The indirect population is expected to occur by coupling between the ion pair state 37 and a highly vibrationally excited Rydberg or cationic states of the molecule populated in the ${ }_{38} \mathrm{FC}$ region. It was often demonstrated through the observation of vibrational progressions in the 39 fragments spectra [16]. The mechanism may also depend on the dynamics of excitation, i.e. the ${ }^{0}$ absorption of one or several photons [16, 17. In addition to these two mechanisms one has to 1 take into account the crossings between molecular states at large internuclear distances [15] which ${ }_{42}$ makes the following of the process very complicated to achieve.Despite these numerous works there are still many unknowns concerning the IPD process. The ${ }_{44}$ yield of IPD is found to vary strongly from one work to another and it is not clear what is governing ${ }_{45}$ the obtained values. By the way, this yield is sometimes referenced to the ionization [16], sometimes ${ }_{46}$ to the total fragmentation [9] and sometimes to another process [5]. As mentioned before only few

47 works have reported on IPD with three positive charges and no result were obtained, to our 8 knowledge, for four positive charges.

In this paper we present measurements of ion pair relaxation of highly excited neutral and ${ }_{50}$ ionized carbon clusters $\mathrm{C}_{n=2-5}^{q+=0-3}$. The tool for producing these species was a high velocity colli51 sion between C_{n}^{+}projectiles ($v=2.25$ a.u.) and helium atoms. The setup allowed to detect in ${ }_{2}$ coincidence anionic and cationic fragments, event by event, leading to a direct and unambiguous ${ }_{3}$ identification of the IPD process. To our knowledge these are first results concerning ion pair 54 dissociation of carbon clusters. Moreover we measured ion pair dissociation of carbon clusters in 55 different charge states $q=0-3$ allowing a size and charge effect study to be conducted. In particu${ }_{6}$ lar, we observed for the first time IPD associated to emission of four positive charges together with 7 one negative charge. Finally we made an attempt to interpret some of IPD rates within a statistical ${ }_{8}$ approach. Due to crude approximations this should be seen as a "zero order" interpretation of 9 the results. Still it constitutes a rare case of interpretation of absolute IPD measurements in the o literature, to our knowledge.

The plan of the paper is as follows. In Section (II we describe the experimental setup and 62 methods used to extract IPD probabilities, namely, coincidence measurements in order to identify ${ }_{63}$ the process and target density dependence study to remove contributions from double collisions. ${ }_{4}$ In Section III we present results concerning the IPD probabilities and cross sections for C_{n}^{q+} as 5 a function of n and q. IPD rates are compared to " normal " dissociation (i.e. without anion 66 emission) and tentatively interpreted, for a part, in Section IV. In Section IV A, the principle ${ }_{67}$ of the statistical approach is presented and applied to C_{2}^{+}and C_{3}^{+}in Sections IV B - IV D. We ${ }_{68}$ conclude in Section ∇. ${ }_{11}$ setup. The setup is the same as the one described in [18]. Briefly, C_{n}^{+}projectiles of $125 \mathrm{keV} / \mathrm{u}$ 12 energy (constant velocity 2.25 a.u.) were delivered by the accelerator and sent to the AGAT setup ${ }_{3}$ consisting of a collision chamber, a fragment's electrostatic analyser and a fragment's detection ${ }_{4}$ chamber. In the collision chamber, the C_{n}^{+}projectiles were traversing a low density helium gaseous 75 jet whose thickness, $n \delta x$, could be varied by changing the flow rate through the formation capillary ${ }_{76}$ [19]. In the electrostatic analyser chamber, projectiles and fragments were deflected according to 7 their charge over mass ratios thanks to the application of a strong electric field of a few tens of

FIG. 1. Normalised ion pair dissociation probability along the $\mathrm{C}_{2}^{-} / \mathrm{C}_{2}^{+} / \mathrm{C}^{+}$channel as a function of the helium target thickness (collision at 2.25 a.u. for $\mathrm{C}_{5}^{+}-\mathrm{He}$)
${ }_{88} \mathrm{kV} / \mathrm{cm}$ produced between two parallel plates. In the detection chamber six or seven solid state 79 silicon detectors were positioned as to intercept negatively charged, neutral and positively charged so fragments. The current signals issued from the detectors were used to extract the masses of the ${ }_{81}$ fragments and allowed to resolve pile up events associated to the impact of numerous fragments in ${ }_{82}$ the same detector (case of the neutral fragments detector for instance [20]). With these methods all ${ }_{83}$ fragments were detected (100% efficiency, 4π detection in the projectile frame) and identified with ${ }_{84}$ respect to their mass and charge. In some of the experiments the detector of neutral fragments ${ }_{85}$ was replaced by an original position sensitive CCD camera [21. With this detector, we extracted ${ }_{86}$ the dissociative kinetic energy of the C fragment following dissociation of C_{2}^{q+} into $\mathrm{C}^{q+} / \mathrm{C}$ [22].

Whereas typical target thicknesses (few 10^{13} atoms $/ \mathrm{cm}^{2}$) guaranteed the single collision condi88 tion for all major processes (electronic excitation, ionization, single electron capture) this was not 9 the case for processes of very small cross sections such as double electron capture [18] and ion pair эо dissociation. In this last case, we proceeded as explained in [18] i.e. by plotting the target thick1 ness dependence of the process of interest, normalised to a linearly dependent reference process 92 (often the sum of electronic excitation, ionization and electron capture). Figure 1 is illustrating ${ }_{3}$ the method in the case of the $\mathrm{C}_{2}^{-} / \mathrm{C}_{2}^{+} / \mathrm{C}^{+}$IPD process recorded in the $\mathrm{C}_{5}^{+}-\mathrm{He}$ collision. The 94 probability of the IPD process in a single collision is extracted from the normalised probability 5 obtained at zero thickness. ${ }_{121} \mathrm{C}_{4}^{3+}\left(8.610^{-21} \mathrm{~cm}^{2}\right)$. IPD cross sections from multicharged species ($\mathrm{q} \geqslant 2$) are relatively large as 122 compared to $q=0$ and $q=1$. This was unexpected. In fact IPD cross sections of C_{n}^{q+} species are ${ }_{123}$ more or less following the cross sections for production of the species. Since C_{n}^{q+} species with $124 \mathrm{q} \geqslant 2$ are mainly fragmenting this result may be understood by assuming that IPD is a constant 125 percentage of the dissociation, as discussed below.

n, q	Channel	Ion pair dissociation probability (abs.err)	Branching ratio within ion pair dissociation (abs.err)	Energy above the ground state of $\mathrm{C}_{n}^{q+}(\mathrm{eV})$
2,0	$\mathrm{C}^{-} / \mathrm{C}^{+}$	$5.43(0.65) 10^{-4}$	1	16.1
2,1	$\mathrm{C}^{-} / \mathrm{C}^{2+}$	$2.94(1.62) 10^{-5}$	1	28.5
3,0	$\mathrm{C}_{2}^{-} / \mathrm{C}^{+}$	$4.29(0.53) 10^{-4}$	0.58(0.07)	15.7
	$\mathrm{C}^{-} / \mathrm{C}^{+} / \mathrm{C}$	$1.91(0.50) 10^{-4}$	0.26(0.07)	23.9
	$\mathrm{C}^{-} / \mathrm{C}_{2}^{+}$	1.20 (0.32) 10^{-4}	$0.16(0.04)$	18.2
3,1	$\mathrm{C}^{-} / 2 \mathrm{C}^{+}$	$2.90(0.2) 10^{-4}$	1	23.2
4,0	$\mathrm{C}^{-} / \mathrm{C}_{2} / \mathrm{C}^{+}$	$6.10(3.5) 10^{-5}$	$0.36(0.21)$	22.9
	$\mathrm{C}_{2}^{-} / \mathrm{C} / \mathrm{C}^{+}$	$5.07(3.3) 10^{-5}$	0.30 (0.19)	20.9
	$\mathrm{C}_{2}^{-} / \mathrm{C}_{2}^{+}$	$3.47(2.0) 10^{-5}$	0.20 (0.12)	15.5
	$\mathrm{C}_{3}^{-} / \mathrm{C}^{+}$	$2.40(2.0) 10^{-5}$	$0.14(0.12)$	14.6
4,1	$\mathrm{C}^{-} / \mathrm{C} / 2 \mathrm{C}^{+}$	$1.53(0.22) 10^{-4}$	0.53(0.07)	28.5
	$\mathrm{C}^{-} / \mathrm{C}_{2}^{+} / \mathrm{C}^{+}$	$7.09(1.3) 10^{-5}$	0.25(0.04)	23.0
	$\mathrm{C}_{2}^{-} / 2 \mathrm{C}^{+}$	$6.33(1.19) 10^{-5}$	$0.22(0.04)$	20.4
4,2	$\mathrm{C}^{-} / 3 \mathrm{C}^{+}$	$1.57(0.14) 10^{-4}$	$0.96(0.01)$	22.4
	$\mathrm{C}^{-} / \mathrm{C}^{2+} / \mathrm{C}^{+} / \mathrm{C} \square$	$6.0(0.6) 10^{-6}$	0.04(0.01)	35.5
4,3	$\mathrm{C}^{-} / 2 \mathrm{C}^{+} / \mathrm{C}^{2+}$	$7.31(2.12) 10^{-5}$	0.96(0.03)	38.1
	$\mathrm{C}^{-} / \mathrm{C} / 2 \mathrm{C}^{2+}{ }^{\mathrm{b}}$	$2.58(2.05) 10^{-6}$	0.04(0.03)	39.9
5,0	$\mathrm{C}_{2}^{-} / \mathrm{C}_{3}^{+}$	$4.5(2.0) 10^{-5}$	0.42(0.16)	14.5
	$\mathrm{C}_{2}^{-} / \mathrm{C}_{2} / \mathrm{C}^{+}$	$3.6(1.5) 10^{-5}$	$0.31(0.13)$	21.0
	$\mathrm{C}_{2}^{-} / \mathrm{C}_{2}^{+} / \mathrm{C}$	$3.2(1.5) 10^{-5}$	0.27 (0.13)	21.8
5,1	$\mathrm{C}_{2}^{-} / 2 \mathrm{C}^{+} / \mathrm{C}$	$5.78(0.97) 10^{-5}$	0.30 (0.05)	28
	$\mathrm{C}^{-} / 2 \mathrm{C} / 2 \mathrm{C}^{+}$	$5.67(1.11) 10^{-5}$	$0.29(0.06)$	36
	$\mathrm{C}^{-} / \mathrm{C} / \mathrm{C}^{+} / \mathrm{C}_{2}^{+}$	$2.91(0.8) 10^{-5}$	$0.15(0.04)$	30.3
	$\mathrm{C}_{2}^{-} / \mathrm{C}_{2}^{+} / \mathrm{C}^{+}$	$2.33(0.5) 10^{-5}$	$0.12(0.03)$	22.5
	$\mathrm{C}^{-} / \mathrm{C}_{2} / 2 \mathrm{C}^{+}$	$2.0(0.6) 10^{-5}$	$0.10(0.03)$	30
	$\mathrm{C}_{3}^{-} / 2 \mathrm{C}^{+}$	$8.0(3.2) 10^{-6}$	$0.04(0.02)$	21.1
5,2	$\mathrm{C}^{-} / \mathrm{C} / 3 \mathrm{C}^{+}$	$1.56(0.24) 10^{-4}$	0.67 (0.10)	31
	$\mathrm{C}_{2}^{-} / 3 \mathrm{C}^{+}$	$3.96(0.77) 10^{-5}$	$0.17(0.03)$	21.7
	$\mathrm{C}^{-} / \mathrm{C}_{2}^{+} / 2 \mathrm{C}^{+}$	$3.59(0.77) 10^{-5}$	0.16(0.03)	25.4
5,3	$\mathrm{C}^{-} / 4 \mathrm{C}^{+}$	$2.31(0.26) 10^{-4}$	1	17.6

${ }^{\mathrm{a}}$ measurements performed at $\mathrm{v}=2.6$ a.u.
TABLE I. Measured ion pair probabilities in individual channels of C_{n}^{q+}, normalised to the total dissociation probability of the species.

FIG. 2. Measured ion pair dissociation cross sections of C_{n}^{q+} clusters as a function of n (abscissa) and for various q values (from top-left to bottom-right $q=0,1,2,3$)

B. Ion pair dissociation rates as compared to the total dissociation of a \mathbf{C}_{n}^{q+} species

We compare, within a given (n, q) species, the total IPD probability to the total dissociation ${ }_{128}$ probability. Results, obtained by summing all individual channels IPD probabilities of Table I 129 are displayed in Figure 3. It is seen that the rates are not depending much on the cluster size 130 and charge except the two channels already remarked as particularly low : C_{2}^{+}and, to a lesser ${ }_{131}$ extent, C_{4}^{3+}. The difference between the IPD of C_{2}^{+}and C_{3}^{+}(more than a factor 10) is particularly

FIG. 3. Measured rates of ion pair dissociation as compared to total dissociation of C_{n}^{q+} species as a function of q and for various n values : circles, squares, triangles up, diamonds for $n=2,3,4,5$ respectively. Lines are to guide the eye.

132 remarkable and is analysed below.

IV. TENTATIVE INTERPRETATION OF IPD IN C ${ }_{2}^{+}$AND C_{3}^{+}

As mentioned before the IPD process is complex and may occur through various mechanisms 135 taking place at various internuclear distances R . For instance, in the case of C_{2}^{+}, the avoided 136 crossings that are taking place at large internuclear distances between ion pair states (shown by 137 the dashed-dotted lines [27]) and molecular states dissociating into $\mathrm{C} / \mathrm{C}^{+}$are shown in Figure 4 . 138 The potential energy curves have been calculated with multi-configurational ab initio methods 139 (CASSCF/MRCI+Davidson correction with a cc-pVTZ basis set using the MOLPRO package [28], 140 to be published). The complexity of the molecular structure and the highly excited states involved 141 make a quantitative study and following of the IPD process impossible to handle. On the other 142 hand, when many events with different characteristics (energy and type of the populated molecular 143 state, mechanism at play) are summed and averaged as it is done in the experiment, another 144 approach relying on statistics is possible. Our approach, explicited below, is mainly based on 145 energetic criteria and the counting of open final channels that are supposed to be all equiprobable.

FIG. 4. (Color on line) Visualization of avoided crossings between highly excited ${ }^{4} \Sigma^{-}$states of C_{2} and the two ion pair states correlating to the $\mathrm{C}^{2+} / \mathrm{C}^{-}$ion pair channel (dashed-dotted lines on the lower panel). The upper panel shows the PECs (in eV) of the low-lying molecular states of C_{2}. Lower energy dissociation limits for $\mathrm{C} / \mathrm{C}^{+}, \mathrm{C}^{+} / \mathrm{C}^{+}$and $\mathrm{C}^{2+} / \mathrm{C}^{-}$are also reported.The calculations were performed from $10.0 \AA$ to $1.0 \AA$ with steps of $0.01 \AA$ except near avoided crossings where the step was $0.001 \AA$.

A. Expression of the IPD rate

The experimental results to be interpreted are the rates of ion pair dissociation as compared ${ }_{148}$ to the "normal" dissociation, namely, $R_{2}=\frac{p\left(C^{2+} / C^{-}\right)}{p\left(C / C^{+}\right)}$for C_{2}^{+}et $R_{3}=\frac{p\left(C^{+} / C^{+} / C^{-}\right)}{p\left(C^{+} / C / C\right)}$ for C_{3}^{+}. ${ }^{9} 9$ As we do not know by which mechanism the ion pair states are populated (direct or indirect ${ }_{150}$ process or through crossings at large internuclear distances), we will make our reasoning mainly by using energetic criteria. In particular dissociation into an ion pair is open for any state situated 52 energetically above the first ion pair dissociation channel, named Ion Pair Threshold (IPT), equal ${ }_{3}$ to 28.5 eV for C_{2}^{+}and 23 eV for C_{3}. On the other hand, fragmentation of C_{2} and C_{3}^{+}clusters into 154 normal dissociation is open as long as the internal energy E^{*} is larger than the first dissociative 155 channel ($\mathrm{E}_{\text {diss }}$) equal to 5.4 eV for $\left(\mathrm{C} / \mathrm{C}^{+}\right)$and 12 eV for ($\left.\mathrm{C}^{+} / \mathrm{C} / \mathrm{C}\right)$. We may then write :

$$
\begin{equation*}
R=\frac{\int_{I P T}^{\infty} B R\left(E^{*}\right) \frac{d \sigma}{d E^{*}} d E^{*}}{\int_{E_{d i s s}}^{I P T} \frac{d \sigma}{d E^{*}} d E^{*}+\int_{I P T}^{\infty} \frac{d \sigma}{d E^{*}}\left(1-B R\left(E^{*}\right)\right) d E^{*}} \tag{1}
\end{equation*}
$$

where $\frac{d \sigma}{d E^{*}}$ is the differential in internal energy E^{*} dissociative excitation cross section and

$$
\begin{equation*}
\sigma=\int_{E_{\text {diss }}}^{\infty} \frac{d \sigma}{d E^{*}} d E^{*}, \tag{2}
\end{equation*}
$$

and the internal energy distribution due to dissociative excitation $f\left(\mathrm{E}^{*}\right)$:

$$
\begin{equation*}
f\left(E^{*}\right)=\frac{\frac{d \sigma}{d E^{*}}}{\sigma}, \tag{3}
\end{equation*}
$$

so that we can express R as :

$$
\begin{equation*}
R=\frac{A}{1-A} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
A=\int_{I P T}^{\infty} f\left(E^{*}\right) B R\left(E^{*}\right) d E^{*} . \tag{5}
\end{equation*}
$$

FIG. 5. Internal energy distribution of excited C_{2}^{+}(circles) and C_{3}^{+}(triangles) calculated with the IAE model.

175 ${ }_{176}$ ion pair $\left(\mathrm{E}^{*} \geqslant \mathrm{IPT}\right)$ is small, roughly 7% for $\mathrm{C}_{2}^{+}(\mathrm{IPT}=28.5 \mathrm{eV})$ and 13% for $\mathrm{C}_{3}^{+}(\mathrm{IPT}=23.1 \mathrm{eV})$. ${ }^{186}{ }^{2} \Sigma_{g}^{+}$and ${ }^{2} \Pi_{g}$ types.

There are constraints about the molecular states that are populated during the collision. If we assume that dipole transitions dominate, which is indeed the case in high velocity collisions [34], transitions from the initial molecular states must obey the following selection rules for linear molecules [35, 36]: $\Delta S=0$ (spin conservation), $\Delta \Lambda=0, \pm 1$ (Λ is the projection along the internuclear distance axis of the electronic orbital angular momentum), $u \leftrightarrow g$ transition (symmetry with respect to the molecule symmetry center), $\Sigma^{+} \leftrightarrow \Sigma^{-}$forbidden (symmetry with respect to a plane containing R). Starting from the C_{2}^{+}ground state ($\mathrm{X}^{4} \Sigma_{g}^{-}$) we populate final states of the ${ }^{4} \Sigma_{u}^{-}$and ${ }^{4} \Pi_{u}$ symmetry whereas populated states from the C_{3}^{+}ground state $\left(\mathrm{X}^{2} \Sigma_{u}^{+}\right)$are of the

C. Branching ratios towards ion pair dissociative channels $\mathbf{B R}\left(E^{*}\right)$

Dissociation of molecular states depends strongly on the considered state. As seen in Figure 4 highly excited molecular states tend to correlate, adiabatically, to highly excited dissociative limits. Considering non adiabatic transitions a much higher range of dissociation limits is open as all dissociative limits situated below E^{*} are potentially reachable.

Indication of population of low energy dissociative channels is furnished from the measurement 93 of the Kinetic Energy Release (KER) of C_{2}^{+}(see experimental part). Indeed a peak at 3 eV 194 was experimentally obtained that roughly corresponds to the more probable deposited energy ${ }_{196} \mathrm{eV}$). Within the frame of our statistical approach we assumed in the following analysis that all 197 198 concerning dissociation of highly excited molecules is not available. Then, we can relate the ion 199 pair branching ratio to the relative number of ion pair dissociation limits as compared to the total 200 number of dissociative channels. On the other hand, the number of molecular states connected to a 201 given dissociation limit also matters. We then defined $\operatorname{BR}\left(\mathrm{E}^{*}\right)$ as the ratio between the number of 202 molecular states connected to ion pair limits divided by the number of molecular states connected 203 to all other dissociative channels. Expressions of $\operatorname{BR}\left(\mathrm{E}^{*}\right)$ in C_{2}^{+}and C_{3}^{+}are given in Eq. (6) and 204 (7) respectively. In these expressions molecular states to be considered are those allowed by dipole 205 transitions from the initial state, as discussed before. The E^{*} dependence of $\mathrm{BR}\left(\mathrm{E}^{*}\right)$ comes from 206 the fact that the number of dissociative channels situated below E^{*} obviously depends on E^{*}.

$$
\begin{equation*}
B R\left(E^{*}\right)=\frac{N_{\text {mol.states }} \rightarrow C^{2+} / C^{-}}{N_{\text {mol.states }}^{\prime} \rightarrow C^{+} / C} \tag{6}
\end{equation*}
$$ 219 were performed at 100 eV electron kinetic energy ($\mathrm{v}_{\mathrm{p}}=2.7$ a.u.), a collision system very close from 220 ours according to the $\mathrm{Z}_{\mathrm{p}} / \mathrm{v}_{\mathrm{p}}$ criterium ($\mathrm{v}_{\mathrm{p}}=2.25$ a.u. and $\mathrm{Z}_{p}(\mathrm{He})=1-2$ depending on the impact ${ }_{221}$ parameter in the here studied systems). Since molecular Rydberg states are possibly contributing

2 to the ion pair dissociation and since molecular Rydberg states are likely to dissociate into HR ${ }_{223}$ atomic fragments [39] the question arises where to cut in n the countings. The IPD process ${ }_{224}$ representing roughly 10^{-4} of the dissociative excitation cross section we see from the $\frac{1}{n^{3}}$ law that ${ }_{225} \mathrm{HR}$ atomic fragments with n up to $n=60$ could be considered. In the NIST database terms up to $226 n=30$ are typically included. In order to see the effect of the cut in n, we also made countings with 227 $n=20$ and $n=10$. ${ }_{245}^{2,4} \Sigma_{u, g}^{-},{ }^{2,4} \Pi_{u, g}$ and ${ }^{2,4} \Delta_{u, g}$ types. According to the dipole transition rules only ${ }^{4} \Sigma_{u}^{-}$and ${ }^{4} \Pi_{u}$ states 246 should be considered when starting from $\mathrm{C}_{2}\left(\mathrm{X}^{4} \Sigma_{g}^{-}\right)$.

D. IPD rates in C_{2}^{+}and C_{3}^{+}, comparison with experiment and discussion

We give in Table IT and Table IIT the ion pair dissociation limits which are in the energy domain 249 between threshold and 35 eV together with the number and type of molecular states which are 250 converging to these limits and are possibly populated according to the dipole selection rules. For ${ }_{251} \mathrm{C}_{2}^{+}$(see Table II) we also made the counting starting from the $a^{2} \Pi_{u}$ metastable state since this ${ }_{252}$ state is likely to be present in the incoming beam [40] and since it leads to a very different IPD

Dissociation	Energy above	
limits	$\mathrm{C}_{2}^{+}\left(X^{4} \Sigma_{g}^{-}\right)(\mathrm{eV})$	Molecular states (number)
$\mathrm{C}^{-}\left({ }^{4} S^{\circ}\right)-C^{2+}\left({ }^{1} S\right)$	28.5	${ }^{4} \Sigma_{u}^{-}(1)$
$\mathrm{C}^{-}\left({ }^{4} S^{\circ}\right)-C^{2+}\left({ }^{3} P^{\circ}\right)$	35.0	${ }^{4} \Sigma_{u}^{-}(1),{ }^{4} \Pi_{u}(1)$
	$34.2\left(\right.$ above $\left.\mathrm{C}_{2}\left(a^{2} \Pi_{u}\right)\right)$	${ }^{2} \Sigma_{g}^{-}(1),{ }^{2} \Pi_{g}(1)\left(\right.$ from $\left.\mathrm{C}_{2}^{+}\left(a^{2} \Pi_{u}\right)\right)$

TABLE II. Ion pair dissociation limits situated in the $28.5-35 \mathrm{eV}$ energy domain above the ground state of C_{2}^{+}. The number and type of molecular states converging to each limit and meeting the selection rules (see text and appendix) are given in the last column. The number of states of each type is given in parenthesis. For the second ion pair limit, molecular states populated from the metastable $\mathrm{C}_{2}^{+}\left(a^{2} \Pi_{u}\right)$ are also reported.

Dissociation	Energy above	Molecular states
limits	$\mathrm{C}_{3}^{+}\left(X^{2} \Sigma_{u}^{+}\right)(\mathrm{eV})$	$($ number $)$
$\mathrm{C}^{-}\left({ }^{4} S^{\circ}\right)-C^{+}\left({ }^{2} P^{\circ}\right)-C^{+}\left({ }^{2} P^{\circ}\right)$	23	${ }^{2} \Sigma_{g}^{+}(1),{ }^{2} \Pi_{g}(3)$
$\mathrm{C}^{-}\left({ }^{4} S^{\circ}\right)-C^{+}\left({ }^{2} P^{\circ}\right)-C^{+}\left({ }^{4} P\right)$	28.5	${ }^{2} \Sigma_{g}^{+}(12),{ }^{2} \Pi_{g}(12)$
$\mathrm{C}^{-}\left({ }^{4} S^{\circ}\right)-C^{+}\left({ }^{2} P^{\circ}\right)-C^{+}\left({ }^{2} D\right)$	32.5	${ }^{2} \Sigma_{g}^{+}(3),{ }^{2} \Pi_{g}(9)$
$\mathrm{C}^{-}\left({ }^{4} S^{\circ}\right)-C^{+}\left({ }^{4} P\right)-C^{+}\left({ }^{4} P\right)$	33.6	${ }^{2} \Sigma_{g}^{+}(3),{ }^{2} \Pi_{g}(6)$
$\mathrm{C}^{-}\left({ }^{4} S^{\circ}\right)-C^{+}\left({ }^{2} P^{\circ}\right)-C^{+}\left({ }^{2} S\right)$	35	${ }^{2} \Sigma_{g}^{+}(0),{ }^{2} \Pi_{g}(3)$

TABLE III. Same legend as Table Π for C_{3}^{+}

	$\mathrm{N}_{\text {diss }} 28.5 \mathrm{eV}$	$\mathrm{N}_{\text {diss }} 35 \mathrm{eV}$	$\mathrm{N}_{\text {mol }} 28.5 \mathrm{eV}$	$\mathrm{N}_{\text {mol }} 35 \mathrm{eV}$
NIST	400	916	1508	3100
$n \leq 20$	383	880	1408	2955
$n \leq 10$	304	708	1206	2311

TABLE IV. Normal dissociation in C_{2}^{+}: Number of dissociative states of the $\mathrm{C}^{+} / \mathrm{C}$ type $\left(\mathrm{N}_{\mathrm{diss}}\right)$ situated below 28.5 eV (column 2) and below 35 eV (column 3) as a function of the cut in n (see text). In column 4 and 5 are reported the number of molecular states converging to these limits and allowed by selection rules.

$$
\begin{equation*}
A\left(X^{4} \Sigma_{g}^{-}\right)=0.03 *\left(\frac{B R(28.5)+B R(33.5)}{2}\right)+0.02 *\left(\frac{B R(33.5)+B R(35)}{2}\right) \tag{8}
\end{equation*}
$$

	$\mathrm{N}_{\text {diss }} 23 \mathrm{eV}$	$\mathrm{N}_{\text {diss }} 35 \mathrm{eV}$	$\mathrm{N}_{\text {mol }} 23 \mathrm{eV}$	$\mathrm{N}_{\text {mol }} 35 \mathrm{eV}$
NIST	226	26767	8631	1303374
$n \leq 20$	226	23335	8631	1000608
$n \leq 10$	226	13594	8631	572085

TABLE V. Normal dissociation in C_{3}^{+}: Number of dissociative states of the $\mathrm{C}^{+} / \mathrm{C} / \mathrm{C}$ type $\left(\mathrm{N}_{\text {diss }}\right)$ situated below 23 eV (column 2) and below 35 eV (column 3) as a function of the cut in n (see text). In column 4 and 5 are reported the number of molecular states converging to these limits and allowed by selection rules.

$$
\begin{gather*}
A\left(a^{2} \Pi_{u}\right)=0.02 * B R(35) \tag{9}\\
A\left(X^{2} \Sigma_{u}^{+}\right)=0.07 *\left(\frac{B R(23)+B R(28.5)}{2}\right)+0.04 *\left(\frac{B R(28.5)+B R(35)}{2}\right) \tag{10}
\end{gather*}
$$

Results for the calculated rates and comparison with the experimental rates are given in Ta274 ble VI.

275

Initial state	Calculated IPD Rate NIST	Calculated IPD Rate $n \leq 20$	Calculated IPD Rate $n \leq 10$	Experimental IPD Rate (rel.error)
$\mathrm{C}_{2}^{+}\left(\mathrm{X}^{4} \Sigma_{g}^{-}\right)$	3.010^{-5}	3.210^{-5}	3.910^{-5}	$3.010^{-5}(60 \%)$
$\mathrm{C}_{2}^{+}\left(a^{2} \Pi_{u}\right)$	8.710^{-6}	9.010^{-6}	1.110^{-5}	
$\mathrm{C}_{3}^{+}\left(\mathrm{X}^{2} \Sigma_{u}^{+}\right)$	5.610^{-5}	5.910^{-5}	7.010^{-5}	$5.310^{-4}(30 \%)$

TABLE VI. Comparison between measured and predicted by the model rates for ion pair dissociation. Experimental rates are those of Figure 3 whereas modelled rates are calculated with equations (4) and (5).

As seen from Table VI the model furnishes the right order of magnitude for the IPD rates. ${ }_{277}$ This means that the relative number of accessible ion pair dissociative limits is indeed important 278 in this matter. The very good agreement between the model and the experimental result for C_{2}^{+} $279\left(\mathrm{X}^{4} \Sigma_{g}^{-}\right)$is probably accidental because we do not expect the model to be so accurate. Relative 280 values are more meaningful. We note that the IPD rates are not dependent much on the cut in n. ${ }_{281}$ For C_{2}^{+}we have a sizeable lowering of the rate when considering the molecule in a metastable state 282 instead of in the ground state but unfortunately the experimental contribution of the former one is ${ }_{283}$ unknown. We observe that predicted IPD rates are larger in C_{3}^{+}than in C_{2}^{+}, as in the experiment. 284 This results can be explained by two factors. First, the density of ion pair states is much smaller ${ }_{285}$ in C_{2}^{+}than in C_{3}^{+}(factor 15 in the $[28.5,35] \mathrm{eV}$ energy domain) ; this will play a role for instance 286 in the $[33.5,35] \mathrm{eV}$ range in C_{2}^{+}where there is no ion pair limit at all. Second, the IPT value 287 is much higher in $\mathrm{C}_{2}^{+}(28.5 \mathrm{eV})$ than in $\mathrm{C}_{3}^{+}(23 \mathrm{eV})$. This energetical cost reduces roughly by a 288 factor 2 the excitation probability above IPT in C_{2}^{+}as compared to C_{3}^{+}, on the basis of the $\mathrm{f}\left(\mathrm{E}^{*}\right)$
function. Both phenomena have their origin in the fact that a C^{2+} fragment is emitted in IPD of ${ }^{\circ} \mathrm{C}_{2}^{+}$and not in IPD of C_{3}^{+}. The same explanation is probably at the origin of the lower IPD rate ${ }_{1}$ for C_{4}^{3+} as compared to C_{5}^{3+} (see Table IT). 317 the number of molecular states considered in a counting may be much too large. Possible directions ${ }_{18}$ could be to look at the individual ion pair dissociation channels and associated branching ratios 9 within a given (n, q) species that have not been exploited so far (only the total probability was here

320 discussed). Also it could be of interest to compare to IPD in other systems. We recently measured ${ }_{321}$ IPD in $\mathrm{C}_{n} \mathrm{~N}^{+}$clusters instead of C_{n}^{+}projectiles. The first results for $n=1$ indicate sizeably 322 lower IPD rates for identical electron capture, dissociative electronic excitation and ionization ${ }_{323}$ cross sections. The whole n series $(n=1-4)$ will be studied and analysed in the near future.

ACKNOWLEDGMENTS

T. Launoy acknowledges a FRIA grant of the F.R.S.-FNRS of Belgium. The ULB team ac326 knowledges financial support from the IISN, and PdR programs from the F.R.S.-FNRS. Financial ${ }_{327}$ support for the Orsay-Bruxelles collaboration has been provided by the GDR CNRS EMIE.

Appendix: Group theoretical treament

329 This appendix explains the group theoretical treatment which has been used for deriving the 330 type and respective number of molecular states correlating to ion pair dissociation channels reported ${ }_{331}$ in Tables II] and III. The procedure will first be presented using C_{2}^{+}as an example. It will then be 332 applied to linear C_{3}^{+}in which two different coupling cases occur.

$$
\text { 1. } \quad \mathbf{C}^{-}\left({ }^{4} \mathbf{S}^{\circ}\right)+\mathbf{C}^{2+}\left({ }^{3} \mathbf{P}^{\circ}\right) \longrightarrow \mathbf{C}_{2}^{+}
$$

Applying the Wigner-Witmer diatomic correlation rules for unlike atomic fragments C^{-}and ${ }_{335} \mathrm{C}^{2+}$ (see Table 26 of Herzberg book [35]), and performing the spin coupling leads to the resulting ${ }_{336} C_{\infty v}$ molecular states :

$$
\begin{equation*}
{ }^{2} \Sigma^{-},{ }^{2} \Pi,{ }^{4} \Sigma^{-},{ }^{4} \Pi,{ }^{6} \Sigma^{-},{ }^{6} \Pi \tag{A.1}
\end{equation*}
$$

${ }_{337}$ Note that for spatial symmetry the same result is obtained from a direct product adapted to ${ }_{338} C_{\infty v}$ symmetry : $\Sigma^{-}\left(\mathrm{S}^{\circ}\right) \times\left(\Sigma^{+}+\Pi\right)\left(\mathrm{P}^{\circ}\right) \rightarrow \Sigma^{-}+\Pi$.

339 The results A.1 do not take however into account the fact that, while fragments with different ${ }_{340}$ numbers of electrons are unlike, they have nevertheless identical nuclei. It follows that C_{2}^{+}is an ${ }_{341}$ homonuclear system possessing $D_{\infty h}$ inversion symmetry. As inversion transforms a function cen${ }_{342}$ tred on one nucleus to the same function on the other one, it is necessary to build the eigenfunctions ${ }_{343}$ of C_{2}^{+}at dissociation limit as linear combinations of the two degenerate wavefunctions differing by 344 a permutation of the two identical carbon nuclei numbered 1 and 2 :

$$
\begin{equation*}
\Psi_{ \pm}=\frac{1}{\sqrt{2}}\left[\Psi\left(\mathrm{C}^{-}\left({ }^{4} \mathrm{~S}^{\circ}\right) ; 1\right) \times \Psi\left(\mathrm{C}^{2+}\left({ }^{3} \mathrm{P}^{\circ}\right) ; 2\right)\right] \pm\left[\Psi\left(\mathrm{C}^{-}\left({ }^{4} \mathrm{~S}^{\circ}\right) ; 2\right) \times \Psi\left(\mathrm{C}^{2+}\left({ }^{3} \mathrm{P}^{\circ}\right) ; 1\right)\right] \tag{A.2}
\end{equation*}
$$

These functions maintain the spin and $C_{\infty v}$ characters of (A.1), but are also eigenfunctions of 6 the molecular inversion operator, with characters g and u for Ψ_{+}and Ψ_{-}, respectively. The final 347 result is thus :

$$
\mathrm{C}^{-}\left({ }^{4} \mathrm{~S}^{\circ}\right)+\mathrm{C}^{2+}\left({ }^{3} \mathrm{P}^{\circ}\right) \longrightarrow{ }^{2} \Sigma_{g}^{-},{ }^{2} \Pi_{g},{ }^{4} \Sigma_{g}^{-},{ }^{4} \Pi_{g},{ }^{6} \Sigma_{g}^{-6}, \Pi_{g} \text { and }{ }^{2} \Sigma_{u}^{-},{ }^{2} \Pi_{u},{ }^{4} \Sigma_{u}^{-},{ }^{4} \Pi_{u},{ }^{6} \Sigma_{u}^{-},{ }^{6} \Pi^{(\mathrm{A} .3)}
$$

All participating ion pair dissociation limits of C_{3}^{+}correspond to $\mathrm{C}^{-} / \mathrm{C}^{+} / \mathrm{C}^{+}$channels, and 351 in the present case the two identical C^{+}fragments are in different electronic states. As in the 352 case of C_{2}, while fragments C^{-}and C^{+}are unlike, molecular states arise from three identical ${ }_{353}$ carbon nuclei and belong to the $D_{\infty h}$ point group. Note that the middle fragment is centred at 354 the inversion point and already possess the molecular g / u symmetry.

355 Six degenerate uncoupled fragments wavefunctions can be built, each differing by a permutation 356 of the three identical carbon nuclei :

$$
\begin{equation*}
\Psi_{i j k}=\Psi\left(\mathrm{C}^{-}\left({ }^{4} \mathrm{~S}^{\circ}\right) ; i\right) \times \Psi\left(\mathrm{C}^{+}\left({ }^{2} \mathrm{P}^{\circ}\right) ; j\right) \times \Psi\left(\mathrm{C}^{+}\left({ }^{4} \mathrm{P}\right) ; k\right) \tag{A.4}
\end{equation*}
$$

357 with $\mathrm{ijk}=123,213,132,231,312$ and 321 , defining the numbering of the nuclei.
358 The total degeneracy of this channel is very high $(6 \times 288=1728)$. Each wavefunction in A. 4 359 leads to the same resulting $C_{\infty v}$ states, resulting from the $C_{\infty v}$ adapted direct product or from the 360 Wigner-Witmer rules extended to linear polyatomic molecules (see Table 22 of Herzberg [36]) :

$$
\begin{equation*}
{ }^{2,4,6}\left[\Sigma^{+}(4), \Sigma^{-}(2), \Pi(4), \Delta(2)\right]+^{8}\left[\Sigma^{+}(2), \Sigma^{-}(1), \Pi(2), \Delta(1)\right] \tag{A.5}
\end{equation*}
$$

Eigenfunctions of the molecular inversion operator are obtained by projecting A.4 functions 362 on the irreducible representations (IRs) A_{g} and A_{u} of the inversion group C_{i}, leading to linear ${ }_{363}$ combinations of 3 couples of $\Psi_{i j k}$ functions :

$$
\begin{align*}
& \Psi_{1 \pm}=\frac{1}{\sqrt{2}}\left[\Psi_{123} \pm \Psi_{321}\right] \\
& \Psi_{2 \pm}=\frac{1}{\sqrt{2}}\left[\Psi_{132} \pm \Psi_{312}\right] \tag{A.6}\\
& \Psi_{3 \pm}=\frac{1}{\sqrt{2}}\left[\Psi_{213} \pm \Psi_{231}\right]
\end{align*}
$$

For all of these eigenfunctions, the symmetric and antisymmetric products of the atomic func365 tions on nuclei 1 and 3 are g and u, respectively, but the function on the central nucleus 2 is g or u, ${ }_{366}$ depending of its atomic parity. It follows that $\Psi_{1-}, \Psi_{2+}, \Psi_{3-}$ are g and Ψ_{1+}, Ψ_{2-} and Ψ_{3+} are u . ${ }_{367}$ The final result is that all $C_{\infty v}$ of Eq. A. 5 occur 3 times with g and three times with u symmetry. 368 States meeting the selection rule are ${ }^{2} \Sigma_{g}^{+}(12)$ and ${ }^{2} \Pi_{g}(12)$.

$$
\text { 3. } \quad \mathbf{C}^{-}\left({ }^{4} \mathbf{S}^{\circ}\right)+\mathbf{C}^{+}\left({ }^{2} \mathbf{P}^{\circ}\right)+\mathbf{C}^{+}\left({ }^{2} \mathbf{P}^{\circ}\right) \longrightarrow \mathbf{C}_{3}^{+}
$$

The second case to consider for C_{3}^{+}is when both C^{+}ions are in the same state. Only three 371 different degenerate uncoupled fragments wavefunctions appear in this case (identical C^{+}are not 372 exchanged):

$$
\begin{equation*}
\Psi_{i j k}=\Psi\left(C^{-}\left({ }^{4} S^{\circ}\right) ; i\right) \times \Psi\left(C^{+}\left({ }^{2} P^{\circ}\right) ; j\right) \times \Psi\left(C^{+}\left({ }^{2} P^{\circ}\right) ; k\right) \tag{А.7}
\end{equation*}
$$

with $\mathrm{ijk}=123,213$ and 321.
374 The projection of A.7 functions on IRs of C_{i} tell us that Ψ_{123} already belongs to $D_{\infty h}$ and that 375 a linear combination is formed with the two remaining functions:

$$
\begin{equation*}
\Psi_{ \pm}=\frac{1}{\sqrt{2}}\left[\Psi_{123} \pm \Psi_{321}\right] \tag{A.8}
\end{equation*}
$$

376
$C_{\infty v}$ states arising from Ψ_{123} or Ψ_{321} are obtained as before from Herzberg Tables [36] :

$$
\begin{equation*}
{ }^{2}\left[\Sigma^{+}, \Sigma^{-}(2), \Pi(2), \Delta\right],,^{4}\left[\Sigma^{+}(2), \Sigma^{-}, \Pi(4), \Delta(2)\right],{ }^{6}\left[\Sigma^{+}, \Sigma^{-}(2), \Pi(2), \Delta\right] \tag{A.9}
\end{equation*}
$$

377 All these states exist with additional g and u characters for Ψ_{-}and Ψ_{+}, respectively.
378 States of $D_{\infty h}$ symmetry resulting from Ψ_{213} do not occur in g,u pairs. The group theoretical 379 treatment is different from previous ones. One must first couple both identical fragments together 380 using the same rules as those applying to an homonuclear diatomic molecule formed from identical $3^{381} \mathrm{P}^{\circ}$ states (see Table 28 of [35]) :

$$
\begin{equation*}
{ }^{1}\left[\Sigma_{g}^{+}(2), \Sigma_{u}^{-}, \Pi_{g}, \Pi_{u}, \Delta_{g}\right],{ }^{3}\left[\Sigma_{u}^{+}(2), \Sigma_{g}^{-}, \Pi_{g}, \Pi_{u}, \Delta_{u}\right] \tag{A.10}
\end{equation*}
$$

382 Noting that the g and u symmetry is governed by the antisymmetry of the total electronic ${ }_{383}$ eigenfunctions including the spin part. All states of A.10 must then be coupled to the ${ }^{4} \mathrm{~S}^{\circ}$ state 384 of C^{-}, which transforms to ${ }^{4} \Sigma_{u}^{-}$symmetry under $C_{\infty v}$ transformation, leading to:

$$
\begin{equation*}
{ }^{2,4,6}\left[\Sigma_{g}^{-}(2), \Sigma_{u}^{+}, \Pi_{g}, \Pi_{u}, \Delta_{g}\right],{ }^{4}\left[\Sigma_{u}^{-}(2), \Sigma_{g}^{+}, \Pi_{g}, \Pi_{u}, \Delta_{u}\right] \tag{A.11}
\end{equation*}
$$

385 States arising from the $\mathrm{C}^{-}\left({ }^{4} \mathrm{~S}^{\circ}\right)+\mathrm{C}^{+}\left({ }^{2} \mathrm{P}^{\circ}\right)+\mathrm{C}^{+}\left({ }^{2} \mathrm{P}^{\circ}\right)$ channel result from the sum of A.9) ${ }_{386} \mathrm{~g}, \mathrm{u}$ pairs and A.11, from which only one ${ }^{2} \Sigma_{g}^{+}$and three ${ }^{2} \Pi_{g}$ states meet the selection rule. Journal of Chemical Physics 139, 044311 (2013)
[17] C. Elkharrat, Y. J. Picard, P. Billaud, C. Cornaggia, D. Garzella, M. Perdrix, J. C. Houver, R. R. Lucchese, and D. Dowek, J. Phys. Chem. A 114, 9902 (2010).
[18] K. Béroff, M. Chabot, G. Martinet, T. Pino, S. Bouneau, A. L. Padellec, G. Féraud, N. D. Thi, F. Calvo, C. Bordas, and F. Lépine, J. Phys. B: At. Mol. Opt. Phys. 46, 015201 (2013).

17 [19] K. Wohrer, M. Chabot, R. Fossé, and D. Gardès, Review of Scientific Instruments 71, 2025 (2000)
418 [20] M. Chabot, S. Della Negra, L. Lavergne, G. Martinet, K. Wohrer-Béroff, R. Sellem, R. Daniel, J. Le Bris, G. Lalu, D. Gardès, J. A. Scarpaci, P. Désesquelle, and V. Lima, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 197, 155 (2002).
[21] M. Chabot, G. Martinet, K. Beroff, T. Pino, S. Bouneau, B. Genolini, X. Grave, K. Nguyen, C. le Gail-

422 liard, P. Rosier, G. Feraud, H. Friha, and B. Villier, Review of Scientific Instruments 82 (2011),
$423 \quad 10.1063 / 1.3640411$.
424 [22] Jallat PHD thesis University Paris Sud (2015) and to be published.
425 [23] S. Díaz-Tendero, G. Sánchez, P.-A. Hervieux, M. Alcamí, and F. Martín, Brazilian Journal of Physics $426 \quad \mathbf{3 6}, 529$ (2006).
427 [24] S. S. G. Tesina, unpublished, University of Madrid (2006).
428 [25] J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, and G. B. Ellison, Chem. Rev. $429 \quad$ 102, 231 (2002).

430 [26] Barriers of some eV may be present in multicharged species 42, 43].
431 [27] Convergence problems precluded to reach the real ion pair states; those states have been approximated 432 by an attractive Coulomb potential in this region as often done.
${ }_{433}$ [28] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, WIREs Comput Mol Sci 2, 242 434 (2012).
435 [29] L. H. Toburen, R. D. DuBois, C. O. Reinhold, D. R. Schultz, and R. E. Olson, Phys. Rev. A 42, 5338 (1990)

437 [30] K. Beroff, N. T. Van-Oanh, M. Chabot, T. Tuna, T. Pino, G. Martinet, A. Le Padellec, Y. Carpentier, 438 and L. Lavergne, Physical Review A 84 (2011), 10.1103/PhysRevA.84.032705.

439 [31] K. Wohrer, M. Chabot, J. P. Rozet, D. Gard'es, D. Vernhet, D. Jacquet, S. D. Negra, A. Brunelle, 440 M. Nectoux, M. Pautrat, Y. L. Beyec, P. Attal, and G. Maynard, Journal of Physics B: Atomic, 441 Molecular and Optical Physics 29, L755 (1996)
442 [32] M. Chabot and et al., Proceedings of the XXIV ICPEAC , 607 (2006).
443 [33] K. Béroff, M. Chabot, F. Mezdari, G. Martinet, T. Tuna, P. Désesquelles, A. LePadellec, and M. Barat,
$444 \quad$ Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials
445 and Atoms Proceedings of the Seventh International Symposium on Swift Heavy Ions in Matter, 267,
$446 \quad 866$ (2009).
447 [34] E. Merzbacher, NATO Courses ASI Series B: Physics, Vol.103, 1983.
448 [35] G. Herzberg, Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules (Van Nostrand Rheinhold, Princeton, New Jersey, 1950).

0 [36] G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Rheinhold, Princeton, New Jersey, 1966).

452 [37] A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.3), [Online]. Available: http://physics.nist.gov/asd [2016, July 11]. National Institute of Standards and Technology, Gaithersburg, MD. (2015).
455 [38] J. A. Schiavone, S. M. Tarr, and R. S. Freund, J. Chem. Phys. 70, 4468 (1979).
456 [39] A. Ehresmann, P. V. Demekhin, W. Kielich, I. Haar, M. A. Schlueter, V. L. Sukhorukov, and
${ }^{457} \quad$ H. Schmoranzer, Journal of Physics B-Atomic Molecular and Optical Physics 42 (2009), 10.1088/0953-
458 4075/42/16/165103.

459 [40] C_{2}^{+}is formed by stripping, at the accelerator terminal, of two electrons from C_{2}^{-}. Removing of the two 460 more external electrons from C_{2}^{-}(Ground State) leads to $\mathrm{C}_{2}^{+}\left(a^{2} \Pi_{u}\right)$.
461 [41] M. Chabot, G. Martinet, F. Mezdari, S. Diaz-Tendero, K. Béroff-Wohrer, P. Désesquelles, S. Della${ }^{462}$ Negra, H. Hamrita, A. LePadellec, T. Tuna, L. Montagnon, M. Barat, M. Simon, and I. Ismaïl, J. $463 \quad$ Phys. B: At. Mol. Opt. Phys. 39, 2593 (2006).
464 [42] H. Hogreve, J. Chem. Phys. 102, 3281 (1995).
465 [43] H. Hogreve, Journal of Molecular Structure-Theochem 532, 81 (2000).

[^0]: * email: tlaunoy@ulb.ac.be
 \dagger email: karine.beroff@u-psud.fr
 \ddagger Present address: LERMA, Sorbonne Universités UPMC Univ. Paris 06, Observatoire de Paris, PSL Research University, CNRS F-75252 Paris, France

