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Antiphase dynamics and self-pulsing due to a low-frequency spatial population grating
in a multimode laser
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We study analytically equations that extend the Tang-Statz-deMars rate equations for a multimode Fabry-
Perot laser by including the low-spatial-frequency population grating and the inhomogeneous pumping rate
along the cavity axifQuant. Semiclassic Opb, L17 (1997)]. First, we prove the theorem that is the founda-
tion of the antiphase dynamics: The total intensity transients are characterized by only one frequency, the
single-mode relaxation oscillation. Second, we study the three-mode laser operation. In this context, we derive
analytic expressions for the steady-state intensities, their linear stability, and the bifurcation points. We prove
that strictly multimode solutions display a Hopf bifurcation leading to pas@hssvitched solutions. Numeri-
cally, we have found that these time-periodic regimes may bifurcate to quasiperiodic and chaotic states and that
there are many domains of bistabilify51050-294{®@8)07012-1

PACS numbgs): 42.65.Sf, 42.55.Rz, 42.60.Rn

[. INTRODUCTION peak in the power spectrum of the total intensity when the
laser is subjected to an external perturbat{onise, weak
The problem of an adequate description of a multimodemodulation, and transient relaxation, for instandehis is in
homogeneously broadened Fabry-Perot laser in the rawontrast with the modal intensities that display a larger num-
equation limit is old. By rate equations we mean equationder of peaks, typically as many peatend therefore relax-
that couple the fields and the population inversion. A sucation oscillation frequencig¢ss there are modes, and possi-
cessful model was proposed by Tang, Statz, and deMdrs bly the harmonics of these frequencies.
who showed that the dominant feature driving these lasers In Sec. IV we analyze systematically a symmetric three-
was the coupling between the modal intensities and the awnode configuration with one central mode of maximum gain
erage population inversion via the population inversion grat-y,,., and two side modes with equal gains smaller than or
ing (also known as spatial hole burningt optical wave- equal toy.- There are two types of steady solutions: regu-
lengths. Soon afterward, a number of theoretical model$ar and marginal solutions. By regular we mean a solution
generalizing the Tang-Statz-deMafESD) equations were that is defined in a finite domain of the three-dimensional
proposed to account for additional mechanisms: the coupling3D) parameter space of the pumping rates. The marginal
among the complex field modal amplitudgsase-sensitive solutions exist only on hypersurfaces of this 3D space and
interaction$, the coupling between the complex field modal are therefore expected to be much more difficult to observe.
amplitudes and the population grating at either optical or/and’he necessity to consider these marginal solutions stems
long wavelengths, and the longitudinal inhomogeneity of thefrom the fact that they are necessary to connect the regular
pumping mechanisif2-8]. The TSD" model[9] is a recent  solutions. However, since there are large domains of multi-
extension of the TSD model that includésthe coupling of  stability, it may very well be that the marginal solutions are
the modal intensities to the low spatial frequencies of thenot observed in an experiment and that a jump transition to
inversion of population profile andli) the pump profile in  another regular state occurs. For the regular solutions, we
the longitudinal direction. Transverse effects are ignored irgive the expressions of the steady-state solution and deter-
this approach. This paper is devoted to a systematic study ehine their stability. For the marginal solutions, we only give
the TSD" model. It is justified by some recent unpublished an expression of their steady state. In particular, in Sec. IV E
results, which suggest that microchip lasers may be bettewe analyze the Hopf bifurcations that may destabilize mul-
described by the TSDrate equations than by the traditional timode solutions only. Given the difficulty to determine the
TSD equations. existence and stability character of these bifurcations in the
In Sec. Il we briefly recall the two rate equation modelsusual way (i.e., nonlinear stability analysis of the steady
and define the notation. In Sec. Il we prove that a fundastatg, we adopt an alternative approach, which is suggested
mental theorem of antiphase dynamics, which was demorby the numerical simulations of the TSQequations. Indeed,
strated for the TSD equations, is preserved by the TSD they are prone to display pulsed solutions, as in a passive
extension. This theorem deals with the properties of the tota@-switching process. On this basis, we assume the existence
intensity, which in the rate equation approximation is theof pulsed solutions and determine analytically the conditions
sum of the modal intensities. It states that in the limit of a flatof existence of an interpulse solution, in which the modal
gain curve, the deviation of the steady state of the total inintensities are vanishingly small. It turns out that this prob-
tensity is a global variable verifying a single linear harmoniclem can be solved analytically and the conditions of exis-
oscillator equation with a frequend@g that is mode inde- tence are identical to the Hopf bifurcation conditions when-
pendent. This relaxation oscillation frequency generates aver a straightforward analysis has been possible. In
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addition, this result suggests that the Hopf bifurcations of th
steady states are subcritical.

Il. THE TSD * MODEL

Let us consider a cavity lasing ok’ successive longitu-
dinal modes of the cavity with frequencies, between
moc/2L and (my+AN—1)c/2L, L being the length of the
cavity. The usual TSD model yields the\&- 1 equations

dD,
7 ~ Wo— 1+E Ymlm DO+2 Yml mNm
dt m m

dN
i _ 1+§ Yerl m

1
dt Nn+57n|nDOv

— =Kl [~ 1+ y,(Do—

I N,)]  with N

nm=1, ...

The timet is expressed in units of the population inversion
characteristic time of relaxatiomu_l. The constank is the

SELF-PULSING DUE D. .. 4947
€ dl,
d——k|n[ l+’yn n)] n:l,...,/\/
N=1 ©)

They describe the influence of the low spatial frequency
population gratingD;q+ 0} on the laser dynamics.

Ill. ANTIPHASE DYNAMICS: A THEOREM

In this section we use an asymptotic expansion of the
TSD* equations to prove that a fundamental theorem of an-
tiphase dynamics, which was derived for the TSD equations,
also holds for the TSD equations. LeQ be the set of indi-
ces of the excited modes in the cavi@={q|l;#0}. Let
(Iq, q) be the stationary values of {,Dy,Ng). We
mtroduce a small parameter=1/\k sincek is typlcally a
large parameter in the range “d(®. Following [10], we
introduce a perturbation expansion around the steady state

Dy(t)=Dg+e%dq(t) +O(e%),

inverse of the photon lifetime inside the cavity in the same

units. The population inversion is expanded according to
N

2nwz
D(2)=C3, D cos( LW)
N
2(myg+n—1)wz
n=1

whereC is chosen so thdD,=1 is the lasing first threshold.
Note thatmy~10°, so that thgN,,} describes the population
grating at the optical wavelength whi{®,} describes the

population grating at long wavelengths, which correspond to

the beat notes between lasing modes. The pumpifr) is
projected on the Iong—wavelength cavity modes

2nmwz
L

wW(z)= 2 W cos{

The frequency detuning of modefrom atomic resonance is

A,=(va—wa)! 7y, . The normalized gain parameters are
1+A2 LN
=——-—-, n=1,... N,
T Az
whereA, =minA,.

The TSD model only couples,, Dy, and the{N,} to
the modal intensities,. On the contrary, the TSDmodel
[9] yields the set of 3/ equations

dD N A

q
at 1+m2:1 Ymlm | D +§mz:1 VmImNm+q

N
2 2 ymlmNm qr 1)
m=
N N

dN

dtn 1+2 Ymlm |Nn+ 5 2 YmlmDn-m, (2)

Np(t)=N,+&2n,(t) + O(&%),

%), N,

We also use the time scale=t/e because it is closely re-
lated to the relaxation frequencies of the system that are of
the order ofyk as discussed ifit1,17. Moreover, it is as-
sumed that the gain parameters are close to each other. This
means that the gain curve is flat over the frequency spread of
the lasing modes. Hence the gains are expandegl,asl
—&0,+0(&?). To dominant order irz, we obtain

() =1,+ei (1) +O(e q=1, ... neQ.

N_
dd, 1 o
E__D E Im 2m EEQ|mNm+q
1 _
+t5 2 imNmeg, @)
2m=1+q,meQ
dn, — 1 =
F__Nnmeglm_kzngQ'manm, (5)
di, —
E=In(d0—nn) VY neQ. (6)

Note that for the excited modes, stationarity implies
Do— — =Dy~
0 Yn

n

1+0(e). (7)

This leads to

ddy

- > im

me Q

dr ®)
which explains the peculias expansion used for the inten-
sities.

We now study the evolution of the total intensity

=Smncolm=ZmcolmtEmecoim- We sum the linearized
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equations(6) overne Q and derive the sum with respect to tions v,=v;—c/2L and v3=v,+c/2L. The pump distribu-

7, taking Egs.(5) and(8) into account, to obtain tion is
d2 dn w(z)=wg+w;cog27z/L)+w,cog4mz/L). (10
— 2 = nmE Iy Z In—"
dTZ neQ me Q ne @

The stationary states are characterized by the nonzero modal

intensitiesR. We will therefore use this set to refer to the

=— 2 |m2 I+ 2 I N 2 im different steady states. For instance, the three possible mono-
meQ neQ mode states will be denote@,={l,}. The TSD" equations

for this symmetric three-mode configuration that we study

Z 1, 2 i Dnm are

neQ me
_ _ dDg
== > in> [1h(1-Npy] gt = Wo— (1+ 12t 11+y15)Dg
me Q neQ
+(y12No+ 11N+ yI5N3), (11
_E 'mz I I:)n m- (9)
me Q neQ le
szl_(1+7|2+ll+7|3)Dl

Let us prove the lemma that, . ol \D,,_n is independent of
me Q. It follows from Eq.(2) that 1
+ §(7|2N1+ [iN2+13N3+yI3Ny), (12

N 1N
O=—{1+ 2 Ymlm|Nnt+ 5 E Yml mDn—m-
m=1 2h=1 dD2
To dominant order ire, y,=1, andN DO 1 forne Q.
In addition, D =D._ p Dy definition and we can replace 1
+ = (yl2N3+ yI3N,), 13
SN T nmbyZm 1| Dy_n. Then 5 (MaNs+¥1sN2) (13
1 —= —\= dN;
EmEQImDm—n: 1+m§Q|m>Nn WZ—(1+‘}/|2+|1+)/|3)N1
1
1+ E m|(Do—1), +5(712D1+11Dg+ 713Dy), (14)
which is the required lemma. Equatl(m) forg=0 andin a dN,
steady state yieldsy=Do+ =, ol ,. Introducing this result - @yl it ygN,
in Eq. (9) and using Eq(7) leads to
1
d2 +§(’}/|2D0+|1D1+ ’)/|3D2), (15)
— +wo—1| > i,=0,
dr ne@
dN3
which is the theorem we wanted to prove: Deviations from gt - @yt ylNs
the total steady-state intensity oscillate with only one fre-
guency, the single mode relaxation oscillation frequency, no 1
matter how many modes are lasing in the cavity. The dimen- + 5 (72D +11D1+ 715Do), (16

sionless oscillation frequency igwy—1 or, equivalently,
V(Wo—1)/7.7 in s~ 1, wherer; and 7, are, respectively, the 1
fluorescence lifetiméi.e., the population inversion lifetime i~ KM=1+(Do= Ny, 17
and the cavity photon lifetime. This frequency is often re-
ferred to as the McCumber frequency and denddgd

dl,
Gt ~K=1+7(Do=Np)]lz, (18)
IV. STUDY OF A THREE-MODE REGIME
In this section we study the properties of the TSEqua- %: K — 1+ vDa—N-)TI 19
tions for a special case of the three-mode oscillation. The d [ (Do~ Na)lls. 9

mode with the highest gain is labeled 1. Modes 2 and 3 are
assumed to have the same gain paramegtell. Thus the In the three-mode configuration witly;=1, y,=7y3=vy
optical frequencies’; of modesj are connected by the rela- <1, the TSD model predicts via a linear stability analysis
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TABLE I. Modal selection as a function of the pump profild z) = wy+ w,cos(27z/L) +w,cos(4rz/L).
The frequencies of modes 2 and 3 ate= v, —c/2L and v3= v+ /2L, respectively.

Pump profile Maximum Minimum
components pump profile pump profile Favored pairs Quenched pairs
w;>0 z=0L z=L/2 (11,12),(14,153)
w;<0 z=L/2 z=0,L (14,15),(14,13)
W2>0 ZZO,L/Z,L zZ= L/4,3L/4 (ll,lz),(|1,|3) (|2,|3)
W,<0 z=L/4,3L/4 z=0L/2L (I5,13) (I1,15),(11,13)
that only three stable constant solutions can exist: the tnwar# >0, lim 17& I|m (|—2+|—3). and {|_1 |—2'|_3}** ,

solution {}, one monomode solutiofi ;}, and the three- , — —
mode solutior{l{,1,,13}. y—1 o
For wy<1, all intensities vanish. As/, is increased be- The solut|ons,{|2 134, {14, I2 3}*, and{ly,l,,15}**
yond the laser first thresholdi, =1, the laser enters the are necessary to provide a connection between the other so-
monomode regime until a second threshelg ,= y~1is lutions. However, they exist only along lines or surfaces in

reached wheré, and| ; become simultaneously positive. In the 3D pump parameter space and therefore are of measure

addition, the only stable solutions are constant in time. Z€ero.
Let us now analyze the TSDequations(11)—(19). It is
often simpler to express steady-state solutions and stability A. Trivial solution {7}
conditions in terms of the trlplett(o Dl 2) than in terms The trivial solution is
of (wg,wq,W5). The inversion of the relationsw;
=f,(Dy,D;,D,), i=0,1,2, leads to complicated expres- 1,=N=0, D;=w,, k=123, 1=0,1,2.

sions that obscure the physical interpretation. Howeﬁgr
—Ww, in the absence of light-matter interaction. As a conse-

guence, the stability conditions expressed with Imegwe a
qualitative indication of the constraints imposedwp.

From Egs.(17)—(19) a stable zero modal intensity, say {llﬁ ddition. th bif i ; h tabl
Iq—O, requires— 1+ Vq(Do q)<0. We infer the stability n addition, there are bifurcations from the unstable sec-

condition tion of the{J} solution to solutions that emerge as unstable
states. We list them because such solutions may become

stable. Fory arbitrary, the sqution$I_2},{I_3}, and{l,,15}*
emerge from{l,} atwy=7y"". In the limit y—1, we have

The stablhty of the trivial solution is ruled by the roat

=k(Do—1). The trivial solution is stable ifvo<1. At w,
=1, a steady bifurcation leads to the monomode solution

Ng(Dg,D1,D2)>Do— 74" (20)

Note that this is only a necessary condition. At the boundary"€ additional connection with the solutighy I, 15} at w

q(DO,Dl, 2) D0 yq , the system undergoes the sta- =1, with the squ_tlgn{I_llz, af™ atwo=w;=w,=1, and

tionary bifurcationR— R '=RU{1 . with the solution{l I,,13}** atwy=w,=1.
A key feature of the present analysis is that there are _

regions inside the cavity where longitudinal intensity distri- B. Monomode solutions{l .}

butions almost do not overlap for pairs of modes. Through 1. Solution{T }

spatial hole burning, one can expect mgless efficient ' !

electric field amplification with increasedecreasedpump This solution is

intensity in these regions when such pairs are excited. As a

consequence, a nonuniform pumping distribution alters the T

mode competition. This is realized by tuning the pump pa- 1 2_50

rameterswy in Eq. (10). A minimal overlap between longi-

tudinal cavrcy elgenmodes is found atL/2 for the palrs _ — — _—_Dy1

(11.15) and (11,15) and atz=L/2+ L/4 for the pair (5,13). N1=Do=1, Np=Ns=D;—=—,

The role ofw; andw, is therefore to distribute the injected

energy among the modes of the cavity. A classification of the - 53+450_ 2 D, BoDz

possible situations is given in Table I. Wp=——, W;=Wyg=—, Wr=——.
The steady-state solutions can be classified as follows: the 2—Do 0 2—Do

trivial solution {J}, |1—|2—|3—0 the single-mode solu-

tions {Ik} k>0, 1;,x=0; the two-mode solutions

Il
N
o

Il
w

I
o

The positivity of I ; requires & Dy<2. This constraint de-
— terminesﬁo as a function ofwg in a unique way when the
{l.12}, 1,>0, 2¢|1>0_| =0; {I2.15}, 1:=0, 1,=13 system is in state{l_l}. A linear stability analysis of this
>0; and{l,,I5}*, 1;=0, I,#15>0; the three-mode solu- spjution yields a double real root whose real part may change

tions {I1,15,15}, 11>0, 1,=13>0; {l;,1,,15*,1,>0, sign
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A1=—k[yD1(Dy—1)—Dgo(yDo—1)]Dy*. — _— Do-1
1 [¥D1(Do—1)=Do(yDo—1)]Dg D,>Dy—0 - 22
The resulting stability condition is Do—v
D1>Do(Do— 7 /(Do 1). (y  andiheroot
When long-wavelength population gratings are suppressed No=—Kk(yDo—1)(D,~Dg)Dy *, (23

(w;=D;=0, i=2,3), this inequality reduces @,<y*, a R

familiar result in the TSD theory. On the contrarywf is ~ Which is negative ifD,>Dy. If X;<0 and\,<0, a stable
varied in order to meet Eq21) the laser can be forced to monomode oscillation can thus be achieved with a mode
remain monomode even witly~ 1<D0, i.e., beyond the whose gain is smaller than the gain of the other modes. How-

multimode threshold with regard to the average pumpingEVer, the domains of stability of solutios;} and{I} (or

predicted via the TSD analysis. {l13}) overlap in the pump parameter spde®,,w,w,}, as
There is also one pair of complex roots discussed in Sec. IV F.
T — At the bifurcation point\ ;= 0, the solution{l,} becomes
Npo= M k(wo—1). unstable and the solutiofi;,|,} emerges. At the boundary
16—12Dy+2Dq \2=0, the solution{l,} becomes unstable and the solution

*
The imaginary part of these roots is the relaxation oscﬂla‘uorilz’ 3} emerges. In addition, we can show f@':l that
frequencyQg of the single-mode laser. This root does notthe solut|0n{l 2} is connected to the solutiofi 1,1, 15}*
lead to an instability. The remaining roots are real and negaalong the lineD,= D,=D,.
tive. The characteristic polynomial of the linearized system has
At the bifurcation point\,=0, the solut|on{|1} is con-  also two complex conjugate roots with negative real part

nected to the branches of solutiofls,I,} and{l;,1,,13}.

—_ 192D 25
The condition\ ;=0 defines a surface in the pump parameter 6=12yDo+3y"Do

)\+ - — —
space{w;,w,,wz}. In addition, if y=1, we can add that N —16+12yDy—29°D,
I} is connected at the bifurcation poing=0 to the solu- = =
{12 , PO [ (4= Do) (Do~ 1)
tion {I l_,|2_, ?i along the ImeDo—Dl—Dz and to the so- *+i\/k — .
lution {1,,1,,15}** along the lineDg=D;=1. 2=7Do

The imaginary part is different from the McCumber fre-

2. Solution{l o} quency, though it reduces toy for y— 1.

This solution is
C. Two-mode solutions

Iy

3=0, 1,=2 = 1. Solution{l;,1,}
This solution is
N;=D;—=—, N,=Do— 7y}, N3—D2—, — (50— _l)—BO(SO—l)
Dy Dg |, =2— ,
(D;—Dg)[D;—3Dg+2(1+y Y]

- 'y53+450—2'y_1

W = — y _ N n — __ N J— _1
0 2~ D, =2 _Dl(_DO _1) Dﬂ(Do v ) _
B B Y(D1—Dg)[D1—=3Dp+2(1+y )]
w,=D. 2Domy v W, =W D. T = =1
YDy (2—9Dg)’ 2 'Dy I3=0, N;=Dg—1, N,=Do—7y 4,

T_he_solution{l_g,} is obtained by permutingl¢,N,) and N3={D4[D1(Dg—y *)~Do(Do—1)]

(13 Ng). _ +D[D1(Dg—1)~Do(Do—y H D5~ D] *,
The condition of existence of this solutioi,> 0, leads to
y 1<Dg<2y i A linear stability analysis of th¢l,} so- Wo=Do+ 11+ 15,

lution yields two real roots that may vanish, a pair of com-
plex conjugate roots with negative real parts, and five real
roots that are negative. The two critical real roots are wy=(1+ yl2+l )D. [yI2N1+I 1(No+N3g)T,

A1=—k[D1(Do—y 1)—Do(Do—1)1Dy %,

_ 1
o L =(1+yl,+ -z _
which is negative if W= (14 yl2+11)Dy= 5 715Ns (24)
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The positivity of the modal intensitiely and |, yields the D(2— yDo+ yD,)(—2+3yDgy+ yD5)
condition Wq=

. L ¥(Do+D,)(4—3yDo+ ¥yD,)

Using Eq.(20), one easily finds a first root of the character- yD3—2yDj+ yDoD,+4Do— 2y *
.. . - . W2: — — .
istic polynomial A;=K[—1+y(Dy—N3)]. The stability 4—3yDy+ yD,
condition\ ;<0 yields
[751(50_1)(52_50)+(y50_1)(55_5052)] The positivity of the intensities requires
N2 2\ -1 . _ _ _
X(Bi=Bo) = (#Be ). 29 (Bo—y H(4-3Dot9D)>0.  (2)

At this instability point, the two-mode solution is connected

to the three-mode solutiofl ;,1,,13}** . In the limit y A real root of the characteristic equationNg=k(— 1+ D,
—1, this stability condition reduces ©,>D,. Further in- —ﬁl). Stability requires

vestigation of the characteristic polynomial was carried out
in the limit y— 1. Taking advantage of the fact tHat-1, we
found an approximate expression for two pairs of complex

_ _ _ Dp-1
2D,>(Do+Dy)——-

conjugate roots, the first of which is Do— y*l’ 8
Do+D; e R _ o _
Npo=————=—=——x1limVkly(Dy—Dy)/2 which implies a depletion of the inversion profile at the cen-
2(4—=3Do+Dy) -1 ter of the cavity and therefore a competition between mode 1
Lok and modes 2 and 3. If this condition is not fulfilled, a tran-

sition to the solution{l,1,,15} takes place. The other sta-
They are stable provided thBt,>D; ; otherwise\, , is real  bility conditions were obtained in the limig—1. Two real
and positive. The second pair of complex conjugate root§0ts of the characteristic polynomial are
have their imaginary part equal to the McCumber frequency

Nge=atiQ, Q=0g+0(k 1), Ny — 2 D0FD2 oy 72¥3De*Dz o
4_3D0+D2 4_3D0+D2
w1+ 5w 1
2(8—3Dy+D;) Two pairs of complex conjugate roots have been found in the
double limit y—1 andk>1. The first pair is

The real part of this pair of roots is positive far; + 5w
<0. In that case, the system undergoes a Hopf bifurcation. In N —
Sec. IVE, we shall present an analysis of the periodic solu- _ Do+D; . = = =
X . Sl N "] . Ngo=————=——=—=ilimVkl,(Dy—D,)/2,
tions suggesting that this bifurcation is subcritical. Numeri- ' 2(4—3Dg+Dy) -1
cally, a periodic pulsed solution has been found Yog (30)

=1.1,w,=-5.51, ano\_/v2= 2. The value ofw, is suggested

by the condition52> D,. Decreasingw,;, we observed a
period-doubling cascade, chaos, and chaotic pasfve

switching (PQS. Period—twol_l pulses antiphased with

period-two | , pulses thus leading to period-one pulsing for
the total intensity.

whose imaginary part is different from the McCumber fre-
quency and exist only iDg>D,. The rootsh, . , \,, and

5 are stable provided the conditid@7) is fulfilled. If D,
=D,, the solution{l,,I5} is connected to the solution
{I,,15}*. There is also a pair of complex conjugate roots

2. Solution {1 ,,1 3} associated with the McCumber frequency
This solution is
_ . W5+ 5wy
_ - D0_7_1 )\5’i:ai|\Q, O=Q0r, a=——————.
1:0, |2: 3:27, 2(8_3D0+D2)
4—3yDy+ yD, (31
N -1
T o P07 Y NN o - A Hopf bifurcation occurs aw,+5wy=0 which will be
NZZDT N=N=D— 1 . . .2 0 .
1 'DotD, - ¢ L studied in Sec. IVE. Numerically, we have observed in-
phase period-two pulsed solutions, antiphase period-two
850—3y5§+ 75250_47—1 pulsed solutions, chaos, regular antiphase pulses, and chaotic

, PQS, respectively, by decreasing, from —5.5 to —6.2

Wy _—
4-3yDo+ D, with wo=1.1 andw, =0.
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3. Solution{l ,,1 3}* The characteristic polynomial that rules the linear stability of
this solution factorizes into second- and seventh-order poly-

This family of solutions is given by nomials in the limity—1. The roots of the quadratic are

— — . Do~v — Do~y 1 _
l>+ =2—_, N.=D _—, L==1— + +
2113 2— 4D, 1= D, N 2{ (L+1,+21,)
T.20, Dy=D,, Ny=Ny—y~', +\(1+1,+21,)2— 2kl (Dy—Dy)}. (32
= —, _ L Sincek>1, these roots are complex conjugate with a nega-
WO:_27 +4[10_7D0 w,= i(ZDo—l ) tive real part if Dy>D,. The imaginary part isw
2—yDy ’ Do(2—yDg) =kl,(Dg—D,)/2+0O(k™*?). Otherwise, they are real and
N\ is positive. Of course, this instability is linked to the
2Dy—y ! competition between modes 2 and 3, as can be seen from
= = o =~ .- Table I. If D,>Dy, either 2 or 3 can be above threshold.
Do(2-yDo) 2o

The peculiar property of this family of solutions is that the 2. Solutions{l 2,1 s}

lasing modal intensities are not fixed: Only the t_otal in'gnsity This family of solutions is characterized tj_!¢|_3 and
is determined. The value of the modal intensitigsand |3  |;#1,+ 15, which implies thatD,=D,=D,. In the limit
depends on the initial conditions. This branch of solutionsy— 1, we have

connects the solutiofi ,} atA,=0, where\, is given by Eq. o
(23) to the solutior{I,,13}. We recall that no stability analy- T oA T 2Do— 1
e * *% ; P 1 2 3T E T —
sis is presented for the}* and{ }** solutions since they are 2-D,
of measure zero.
N12N2=ﬁ3=50— l,
D. Three-mode solutions

_ _ _
The symmetric three-mode TSDmodel has three differ- —2+4Do—Dg 2Dg—1 Do—1-

= = I
ent steady-state solutions with all modes above the lasing ‘"° 2-D, W1 2-D, 2 b
threshold. In this section we only define analytically these
solutions and recall which steady solutions they connect. In D2 Do—1
i i 0 0 - T
Sec. IVE, we shall derive a general expression for the Hopf Wo=——=—— (I,+13).
bifurcation which is another source of instability. 2-Dg
1. Solution{l;,1,,1 3} 3. Solutions{l 1,1 5,1 5}**
This solution is given by This family of solutions is considered only in the limit

y—1, where it is characterized Hy# 15 but1;=1,+15:

_ Do—1 _

—_— _— —_— —_— ZZT’ | :l_-‘r y
1,=[2ND;—Ny(Do+Dp)IM 1, Y %4-3Dy+D, - ° °
1,=13=[N3D;—NDgJ(yM) %, Do=D;, N;=N,=N3=Do—1,
—_— —_ —_ —_— _ - ___ _2 . —_— _—
Wo= Do To+ T3+ T, wo_—4+8Ds+DD1=3DF  ~1+2D+DoD,
4_3D0+Dl 4_3D0+Dl

Wy=(1+yl+ 1+ 7’|_3)61

W= — —

1 —— _
_§[7|2N1+|1(N2+N3)+7|3N1],

This family of solutions connects the brancHgs, |,} and

. - 1 -
W2:(1+7|2+|1+7|3)D2—§(7|2N3+7|3N2)- {11,12,13}.

where E. Pulsed solutions

We have shown in the previous sections that there are

M=D,[D;—2(N+N,)] Hopf bifurcations to self-pulsing states. We have been able

L o to derive a general expression for the Hopf bifurcation points
+Dg[2N+N;—(Dg+D,)/2]+D,yN;y. only for two-mode solutions and in the limji—1. The sta-
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12 (a) d Ny 1 . .
1.0 1 — = Nyt 5 (yigWy+iWo+ yiawy),
0.8 ] dt 2
0.6
04 an, 1 . ) )
£ 02] — = —Nat 5 (yigWotigWy+ yiaW,),
E o] dt 2
=
5 2514
=, dn 1
— 2.0 (b) —3:_n3+—(’yi2W2+ilWl+ 'yigWo),
1.5 dt 2
1.0 . . —
0.5 ] where we ha\f introduced the expansiomg=k(wg—1)
0.0 1] +0(1k) and wo,=k(ywy—1)+O(1/k) to have a correct
0.0 0.5 1.0 L5 2.0 25 3.0 balance in the intensity equations. Note that the time has not

time been scaled. Since there is no Hopf bifurcation in the single-

o _ ) mode solutions, we directly consider the two-mode solutions.
FIG. 1. (8 Periodic solution emerging from the steady-state

solution{l,l,} for wo=1.1, w;=—5.56, andw,=2. (b) Chaotic 1. Two-mode solutions
solution forwy=1.1, w;=—5.82, andw,=2. . . .
Let us first study the solutiodl,l,}. Introducing the
bility of the emerging periodic solutions has not been deteruxiliary variablesx,=In(iy), it is easy to derive
mined. We shall therefore use an indirect method to derive

more information on the self-pulsing solutions. It is based on X|+X;=W;— B — yB,e*,
the fact that the solutions observed numerically are pulsed _
(see Fig. 1, which means that for each mode, intensity peaks X5+ X;=W,— yBe*1— ¥?Boe’2,

are separated by domains of vanishingly small intensity.

Thus these solutions represent a trajectory, in phase spadherex’=dx/dt and B;=wgy+W,/2. It can be shown that
between the unstab{g”} solution and some unstable finite- the solutionsx, may diverge in a finite time, depending on
intensity solution. The pulsing character of these solutionghe B,. Therefore, we seek solutions of the fonp=cy,

has the following origin. The first lasing threshold B, +CyaIn(|t—al) +cs(t—a). In this expressiona is an integra-
=1, which means that only the average population inversiofion constant, which is determined by matching consider-

affects the switching on of the laser. However, one can main@1ons With the pulsed part of the solution. Since we do not
L= . . . . . attempt to describe the pulse, we leave this constant undeter-
tain Dy<1 while storing energy in the material medium by

havingw, and/onw, strongly negative. As shown in Table I, mined in the rem_amder of our discussion. This leadsto

this is possible by pumping selectively a&nlL/4 with n ~ — C22= ~2, C13=W1, Cz3=Wy, and an algebraic system for
=1, 2, or 3. If there is enough energy stored in this way,the{ckl} whose solutions is
bringing the average population inversion above the first las-

ing threshold induces a cycle as in PQS: The energy stored eC11— E B1~7vBo eCa1— i vB1~Bo

by way of population inversion is released in the field, which vy B2-BZ' y? B2-B?

builds up abruptly. This depletes the population inversion

and soon again the average population inversion is belowmposinge®:>0 gives a condition that turns out to be the
threshold. To use this information, we seek interpulse soluexpression for the Hopf bifurcation point. In the limit

tions of the form =1, the existence of the solutidi,,} requiresBy+B;<0
e ) _ ) or equivalently 5vy<< —w;, which is the resulf26) we have
ly=ei +0(e%), Dy=w+ed+0(g%), derived in the conventional way. For arbitragy there are

two sets of three condition®3=B2, B,;=yB,, and yB,
=B,. Analyzing these conditions, it is easy to prove that it is
the lower inequality sign that must be retained and it reduces
to 5wo<—w; . This proves that the Hopf bifurcation thresh-
old is independent of.

N,=en,+0(&?), (33

wheree=1/k. To leading order ire this yields

ﬂ='1(v_vl+ do— 1), We have constructed in this way, in the self-pulsing do-
dt main, a solution of small amplitude, being of orderwhich
is expected to connect two consecutive pulses. The presence
di, . — of the pulse is attested by the divergence. This is not a solu-
E:'Z(WZJ’ vdo— ¥n2), tion that emerges from the Hopf bifurcation since close to
the bifurcation point the solution is harmonic in time. Hence
dis . the piece of solutiqn we have just constructed bglongs_ to an
EZIS(WZJF ydo— yN3), upper .branch,' Whlch suggests that the Hopf blfu.rcathn is
subcritical. This conjecture is supported by numerical simu-
lations.
ddy A similar result is obtained for the two-mode solution

—— = —dy—(yip i +yi ; - )
dt G (yigHiatyigw, {1,,15}. We obtain for the coefficients,,} the expression
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-2
¥2(Bo+By)

ef21=g@l31=
The condition of existence of these solutionBig+ B,<0,
i.e., Bwy+w,<<0, which is also independent ¢f This is the
threshold conditiori31) derived in the usual way, though for
y—1 only, in Sec. IV C. Here again a subcritical Hopf bi-
furcation induces a transition directly from the steady states
to the PQS regime.

!
A C D A
2. Multimode solution pump parameters

W —

The method_ used to construct the interpulse solutions is 16 2. Modal intensities as a function of, and w, for
readily generalized to an arbitrary number of modes and af, -175 and y=0.9. A, w,=3 and w,=2; B, w,;=0 and
arbitrary distribution of linear gaing, . The linear equations ,=2: ¢, w,=0 andw,=—3.5; andD, w,=3 andw,=—3.5.
for the {expc} are

when \; given by Eq.(21) vanishes, that is, atw(;,w-)
> yq€1B(q—q')=—2ly,, qeQ. = (0.94,2). Second, mode 3 is forceq to oscilla’;e by dgcreas-
q'cQ ing w; to zero and then decreasing,. A bifurcation
{I1,15}—{11,1,,13} occurs at (v,,w,)=(0,1.82) as a con-
sequence of Eq25). The parametew, is decreased further
in order to extinguish mode 1, as expected from the stability

For the three-mode regime, the coefficieats are given by

_ 2 282_ ’y(Bl+ B3)

eC11 ' condition (32). Indeed, at ¥;,w,)=(0,—3.5), the system
Y By(B;+B3)—28B3 bifurcates from{l,l,,l3} to {I,,I3}. The next step is to
increasew; up to 3. This has the effect of strengthening the
c . 2 vB,—B; mode competition betweeln andl,. As |, is already am-
eri=eni=— plified, I, is quenched. Finallyy, is increased from-3.5 to

-
¥ Bi(B1+By)~2B; 2. At the point(3,1.82, the system undergoes a bifurcation
The threshold conditions are somewhat more complex t&om{l2.ls} to either{l,} or{l5}, which follows from con-
study. Analyzing the expressions for thg,} yields that the dition (30). The final state{l,} or {I;} depends on fluctua-
periodic solutions exist in the domain defined By(B,  tions.

+B3)<2B2 and 2B,<y(B;+B3). The locus of the Hopf

bifurcations is a section of the curv@,(B,+ B3)=2B3, V. CONCLUSION

; _ 2
which can also be expressed &g=2wy/3wo+8w,/3 The results presented in this paper may seem to contradict

—7Wo/3. In the plane z,wy), this locus is bounded by the  jittle-known theorem on the global stability of the general
intersection with the line B,=y(B;+Bj), which takes |50 equations expressed as
place at (v,,w;)=(—5wq, —2w;), and by the point, where

Dy=D,, since from there on the solutidn,l,,l3} bifur- dl(p,t)

L
Sl _ 2
cates to the solutiofi ,, 1 3}. Here again the Hopf bifurcation dt 1+Apfo |¢(p.2)| D(z,t)dz) I(p.t),
is expected to be subcritical, in full agreement with the nu- (34)
merical simulations.

=K

dD
F. Hysteresis i =~ "DB(z1)=Do(2)]-BD(z1)

Another difference between the TSD and the TS&jua-
tions is thg occurrence of h.ysteresis QOmains for _the steady- x> yol6(p,2)|?1(p,b), (35)
state solut_lons. The analytic expression of the single-mode p
solutions{l,} in terms of the{w,} is too complex to be of i sD i )
much use for a general discussion of the hysteresis domain&°m which the TSD and the TSDequations are derived as
Therefore, we shall illustrate this effect by a simple exampleMedal expansions. A detailed derivation of the rate equations
We consider a closed loop in thew{,w,) plane with (34) and(35) is found, for instance, if12]. The global sta-
Wo=1.75 andy=0.9. The result is displayed in Fig. 2 and bility theorem of Antsiferowet al. [13] proves that the func-

shows that starting with th&l ;} solution, we end up at the

same point in parameter space, but with {ih_ge} solution.

> P . . L[D(z,t)—D(2)]?
The initial and final states are connected, successively, by the c(t):f [(Z)_—(Z)]dz

states{l 1,15}, {11,113}, and{l,,13}. Only one of the two 2D(2)

parametersv; andw, is changed at a time. B
The first step is to weaken competition betwéemnd|, +x D (D) —1p—1 p|nprl

by decreasingv,. The system bifurcates frofih,} to{l,,1,} P I
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is a Lyapunov function sincel£/dt<0. The existence of lar situation has been described for a laser with a saturable
such a function implies that the only dynamics that can tak@bsor_be{14], though without any more mathematical under-
place is a monotonic evolution towards a single steady-statstanding. _ o
However, a careful analysis of the proof indicates that it is Another consequence of the inhomogeneous longitudinal
restricted by the conditioB (z) # 0. In other terms, this theo- PUMPINg is the occurrence of solutions sucag, {Is}, or

rem states that if the steady-state population inversion va rl]é 'Irﬁc') dvéh:/(\:/ir':r:nt\;]%lvﬁi Or?éétmogﬁsi;mg?fa_ll_?]\i"éezsgigln}’i\’mg d
ishes nowhere in the domain<z<L, there is a unique 9 g '

steady state associated with any initial condition through élgﬁlr'rtgtr']\{egﬁzriﬁ);esﬁI(;‘?‘Y?Af\ecagrsﬁaﬂhgrg]yféhf;gi(e's
momentous evolution. Our results do not contradict thisp ! g INd. y

theorem since all the bifurcation conditions obtained in this’ gngr;nﬁlr?m:;r;i,r: g?rr;‘iitvgiﬁié?gslgti? illonign :lgfnixgnci)is
paper impose constraints on the pump that lead to domain% 9 Y. gnly 9

. T ; : : umping profile. Mode locking was observed when the crys-
without population inversion and therefore points in s:pace{)aI W%sgaFtJLIZ the center ofgthe cavitystrongly ne ativey
where the population inversion changes sign. ' gly neg

The main point of this paper is that the longitudinal inho-W1). and also when located at4 (strongly negativen,).

mogeneity of the pumping process is the source of ne\fpectral analysis rev_ealed that mode spacingcmlsinthe
steady states and Hopf bifurcations. The Hopf bifurcation ormer case and:_/L in the latter, in agreement with our
lead to more complex time-dependent solutions, includinéheorm'caII analysis.

chaotic solutions. The coincidence of the Hopf bifurcation
threshold and the PQS pulsing is surprising since they obvi-
ously do not correspond to the same mechanism. The two This research was supported by the Fonds National de la
phenomena occur for the same values of the parameters bRecherche Scientifigue and the Interuniversity Attraction
on different branches of the same periodic solution. A simi-Pole program of the Belgian government.
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