
PHYSICAL REVIEW A DECEMBER 1998VOLUME 58, NUMBER 6
Antiphase dynamics and self-pulsing due to a low-frequency spatial population grating
in a multimode laser

G. Kozyreff and Paul Mandel
Optique Nonline´aire Théorique, Universite´ Libre de Bruxelles, Campus Plaine Code Postal 231, B-1050 Bruxelles, Belgium

~Received 7 April 1998!

We study analytically equations that extend the Tang-Statz-deMars rate equations for a multimode Fabry-
Perot laser by including the low-spatial-frequency population grating and the inhomogeneous pumping rate
along the cavity axis@Quant. Semiclassic Opt.5, L17 ~1997!#. First, we prove the theorem that is the founda-
tion of the antiphase dynamics: The total intensity transients are characterized by only one frequency, the
single-mode relaxation oscillation. Second, we study the three-mode laser operation. In this context, we derive
analytic expressions for the steady-state intensities, their linear stability, and the bifurcation points. We prove
that strictly multimode solutions display a Hopf bifurcation leading to passiveQ-switched solutions. Numeri-
cally, we have found that these time-periodic regimes may bifurcate to quasiperiodic and chaotic states and that
there are many domains of bistability.@S1050-2947~98!07012-7#

PACS number~s!: 42.65.Sf, 42.55.Rz, 42.60.Rn
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I. INTRODUCTION

The problem of an adequate description of a multimo
homogeneously broadened Fabry-Perot laser in the
equation limit is old. By rate equations we mean equatio
that couple the fields and the population inversion. A s
cessful model was proposed by Tang, Statz, and deMars@1#,
who showed that the dominant feature driving these las
was the coupling between the modal intensities and the
erage population inversion via the population inversion g
ing ~also known as spatial hole burning! at optical wave-
lengths. Soon afterward, a number of theoretical mod
generalizing the Tang-Statz-deMars~TSD! equations were
proposed to account for additional mechanisms: the coup
among the complex field modal amplitudes~phase-sensitive
interactions!, the coupling between the complex field mod
amplitudes and the population grating at either optical or/
long wavelengths, and the longitudinal inhomogeneity of
pumping mechanism@2–8#. The TSD1 model@9# is a recent
extension of the TSD model that includes~i! the coupling of
the modal intensities to the low spatial frequencies of
inversion of population profile and~ii ! the pump profile in
the longitudinal direction. Transverse effects are ignored
this approach. This paper is devoted to a systematic stud
the TSD1 model. It is justified by some recent unpublish
results, which suggest that microchip lasers may be be
described by the TSD1 rate equations than by the tradition
TSD equations.

In Sec. II we briefly recall the two rate equation mode
and define the notation. In Sec. III we prove that a fun
mental theorem of antiphase dynamics, which was dem
strated for the TSD equations, is preserved by the TS1

extension. This theorem deals with the properties of the t
intensity, which in the rate equation approximation is t
sum of the modal intensities. It states that in the limit of a fl
gain curve, the deviation of the steady state of the total
tensity is a global variable verifying a single linear harmon
oscillator equation with a frequencyVR that is mode inde-
pendent. This relaxation oscillation frequency generate
PRA 581050-2947/98/58~6!/4946~10!/$15.00
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peak in the power spectrum of the total intensity when
laser is subjected to an external perturbation~noise, weak
modulation, and transient relaxation, for instance!. This is in
contrast with the modal intensities that display a larger nu
ber of peaks, typically as many peaks~and therefore relax-
ation oscillation frequencies! as there are modes, and pos
bly the harmonics of these frequencies.

In Sec. IV we analyze systematically a symmetric thre
mode configuration with one central mode of maximum g
gmax and two side modes with equal gains smaller than
equal togmax. There are two types of steady solutions: reg
lar and marginal solutions. By regular we mean a solut
that is defined in a finite domain of the three-dimensio
~3D! parameter space of the pumping rates. The marg
solutions exist only on hypersurfaces of this 3D space
are therefore expected to be much more difficult to obse
The necessity to consider these marginal solutions st
from the fact that they are necessary to connect the reg
solutions. However, since there are large domains of mu
stability, it may very well be that the marginal solutions a
not observed in an experiment and that a jump transition
another regular state occurs. For the regular solutions,
give the expressions of the steady-state solution and de
mine their stability. For the marginal solutions, we only gi
an expression of their steady state. In particular, in Sec. I
we analyze the Hopf bifurcations that may destabilize m
timode solutions only. Given the difficulty to determine th
existence and stability character of these bifurcations in
usual way ~i.e., nonlinear stability analysis of the stead
state!, we adopt an alternative approach, which is sugges
by the numerical simulations of the TSD1 equations. Indeed
they are prone to display pulsed solutions, as in a pas
Q-switching process. On this basis, we assume the existe
of pulsed solutions and determine analytically the conditio
of existence of an interpulse solution, in which the mod
intensities are vanishingly small. It turns out that this pro
lem can be solved analytically and the conditions of ex
tence are identical to the Hopf bifurcation conditions whe
ever a straightforward analysis has been possible.
4946 © 1998 The American Physical Society
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addition, this result suggests that the Hopf bifurcations of
steady states are subcritical.

II. THE TSD 1 MODEL

Let us consider a cavity lasing onN successive longitu-
dinal modes of the cavity with frequenciesnn between
m0c/2L and (m01N21)c/2L, L being the length of the
cavity. The usual TSD model yields the 2N11 equations

dD0

dt
5w02S 11(

m
gmI mDD01(

m
gmI mNm ,

dNn

dt
52S 11(

m
gmI mDNn1

1

2
gnI nD0 ,

dIn

dt
5kIn@211gn~D02Nn!# with n,m51, . . . ,N.

The timet is expressed in units of the population inversi
characteristic time of relaxationg i

21 . The constantk is the
inverse of the photon lifetime inside the cavity in the sa
units. The population inversion is expanded according to

D~z,t !5C(
n50

N

DncosS 2npz

L D
1C(

n51

N

NncosS 2~m01n21!pz

L D ,

whereC is chosen so thatD051 is the lasing first threshold
Note thatm0;106, so that the$Nn% describes the populatio
grating at the optical wavelength while$Dn% describes the
population grating at long wavelengths, which correspond
the beat notes between lasing modes. The pumpingw(z) is
projected on the long-wavelength cavity modes

w~z!5 (
n50

N

wncosS 2npz

L D .

The frequency detuning of moden from atomic resonance i
Dn5(nn2vat)/g' . The normalized gain parameters are

gn5
11D

*
2

11Dn
2

, n51, . . . ,N,

whereD* 5minnDn .
The TSD model only couplesw0 , D0 , and the$Nn% to

the modal intensitiesI n . On the contrary, the TSD1 model
@9# yields the set of 3N equations

dDq

dt
5wq2S 11 (

m51

N

gmI mDDq1
1

2 (
m51

N2q

gmI mNm1q

1
1

2 (
m511q

N

gmI mNm2q , ~1!

dNn

dt
52S 11 (

m51

N

gmI mDNn1
1

2 (
m51

N

gmI mDn2m , ~2!
e

e

o

dIn

dt
5kIn@211gn~D02Nn!#, n51, . . . ,N

q50, . . . ,N21. ~3!

They describe the influence of the low spatial frequen
population grating$Dq ;qÞ0% on the laser dynamics.

III. ANTIPHASE DYNAMICS: A THEOREM

In this section we use an asymptotic expansion of
TSD1 equations to prove that a fundamental theorem of
tiphase dynamics, which was derived for the TSD equatio
also holds for the TSD1 equations. LetQ be the set of indi-
ces of the excited modes in the cavityQ5$qu Ī qÞ0%. Let
( Ī q ,D̄q ,N̄q) be the stationary values of (I q ,Dq ,Nq). We
introduce a small parameter«51/Ak sincek is typically a
large parameter in the range 104–106. Following @10#, we
introduce a perturbation expansion around the steady sta

Dq~ t !5D̄q1«2dq~ t !1O~«3!,

Nn~ t !5N̄n1«2nn~ t !1O~«3!,

I n~ t !5 Ī n1« i n~ t !1O~«2!, q51, . . . ,N, nPQ.

We also use the time scalet5t/« because it is closely re
lated to the relaxation frequencies of the system that are
the order ofAk as discussed in@11,12#. Moreover, it is as-
sumed that the gain parameters are close to each other.
means that the gain curve is flat over the frequency sprea
the lasing modes. Hence the gains are expanded asgn51
2«gn1O(«2). To dominant order in«, we obtain

ddq

dt
52D̄q (

mPQ
i m1

1

2 (
m51,mPQ

N2q

i mN̄m1q

1
1

2 (
m511q,mPQ

N

i mN̄m2q , ~4!

dnn

dt
52N̄n (

mPQ
i m1

1

2 (
mPQ

i mD̄n2m , ~5!

din
dt

5 Ī n~d02nn! ; nPQ. ~6!

Note that for the excited modes, stationarity implies

N̄n5D̄02
1

gn
5D̄0211O~«!. ~7!

This leads to

dd0

dt
52 (

mPQ
i m , ~8!

which explains the peculiar« expansion used for the inten
sities.

We now study the evolution of the total intensityI T

5(mPQI m5(mPQĪ m1(mPQi m . We sum the linearized
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equations~6! over nPQ and derive the sum with respect
t, taking Eqs.~5! and ~8! into account, to obtain

d2

dt2 (
nPQ

i n52 (
mPQ

i m (
nPQ

Ī n2 (
nPQ

Ī n

dnn

dt

52 (
mPQ

i m (
nPQ

Ī n1 (
nPQ

Ī nN̄n (
mPQ

i m

2
1

2 (
nPQ

Ī n (
mPQ

i mD̄n2m

52 (
mPQ

i m (
nPQ

@ Ī n~12N̄n!#

2
1

2 (
mPQ

i m (
nPQ

Ī nD̄n2m . ~9!

Let us prove the lemma that(nPQĪ nD̄n2m is independent of
mPQ. It follows from Eq. ~2! that

052S 11 (
m51

N

gmĪ mD N̄n1
1

2 (
m51

N

gmĪ mD̄n2m .

To dominant order in«, gn51, andN̄n5D̄021 for nPQ.
In addition, D̄p[ D̄2p by definition and we can replac
(m51
N Ī mD̄n2m by (m51

N Ī mD̄m2n . Then

1

2 (
mPQ

Ī mD̄m2n5S 11 (
mPQ

Ī mD N̄n

5S 11 (
mPQ

Ī mD ~D̄021!,

which is the required lemma. Equation~1! for q50 and in a
steady state yieldsw05D̄01(nPQĪ n . Introducing this result
in Eq. ~9! and using Eq.~7! leads to

S d2

dt2
1w021D (

nPQ
i n50,

which is the theorem we wanted to prove: Deviations fro
the total steady-state intensity oscillate with only one f
quency, the single mode relaxation oscillation frequency,
matter how many modes are lasing in the cavity. The dim
sionless oscillation frequency isAw021 or, equivalently,
A(w021)/tct f in s21, wheret f andtc are, respectively, the
fluorescence lifetime~i.e., the population inversion lifetime!
and the cavity photon lifetime. This frequency is often r
ferred to as the McCumber frequency and denotedVR .

IV. STUDY OF A THREE-MODE REGIME

In this section we study the properties of the TSD1 equa-
tions for a special case of the three-mode oscillation. T
mode with the highest gain is labeled 1. Modes 2 and 3
assumed to have the same gain parameterg<1. Thus the
optical frequenciesn j of modesj are connected by the rela
-
o
-

-

e
re

tions n25n12c/2L and n35n11c/2L. The pump distribu-
tion is

w~z!5w01w1cos~2pz/L !1w2cos~4pz/L !. ~10!

The stationary states are characterized by the nonzero m
intensitiesR. We will therefore use this set to refer to th
different steady states. For instance, the three possible m
mode states will be denotedRk5$I k%. The TSD1 equations
for this symmetric three-mode configuration that we stu
are

dD0

dt
5w02~11gI 21I 11gI 3!D0

1~gI 2N21I 1N11gI 3N3!, ~11!

dD1

dt
5w12~11gI 21I 11gI 3!D1

1
1

2
~gI 2N11I 1N21I 1N31gI 3N1!, ~12!

dD2

dt
5w22~11gI 21I 11gI 3!D2

1
1

2
~gI 2N31gI 3N2!, ~13!

dN1

dt
52~11gI 21I 11gI 3!N1

1
1

2
~gI 2D11I 1D01gI 3D1!, ~14!

dN2

dt
52~11gI 21I 11gI 3!N2

1
1

2
~gI 2D01I 1D11gI 3D2!, ~15!

dN3

dt
52~11gI 21I 11gI 3!N3

1
1

2
~gI 2D21I 1D11gI 3D0!, ~16!

dI1

dt
5k@211~D02N1!#I 1 , ~17!

dI2

dt
5k@211g~D02N2!#I 2 , ~18!

dI3

dt
5k@211g~D02N3!#I 3 . ~19!

In the three-mode configuration withg151, g25g35g
,1, the TSD model predicts via a linear stability analys
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TABLE I. Modal selection as a function of the pump profilew(z)5w01w1cos(2pz/L)1w2cos(4pz/L).
The frequencies of modes 2 and 3 aren25n12c/2L andn35n11c/2L, respectively.

Pump profile
components

Maximum
pump profile

Minimum
pump profile Favored pairs Quenched pairs

w1.0 z50,L z5L/2 (I 1 ,I 2),(I 1 ,I 3)
w1,0 z5L/2 z50,L (I 1 ,I 2),(I 1 ,I 3)
w2.0 z50,L/2,L z5L/4,3L/4 (I 1 ,I 2),(I 1 ,I 3) (I 2 ,I 3)
w2,0 z5L/4,3L/4 z50,L/2,L (I 2 ,I 3) (I 1 ,I 2),(I 1 ,I 3)
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that only three stable constant solutions can exist: the tri
solution $B%, one monomode solution$ Ī 1%, and the three-
mode solution$ Ī 1 , Ī 2 , Ī 3%.

For w0,1, all intensities vanish. Asw0 is increased be-
yond the laser first thresholdw0,151, the laser enters th
monomode regime until a second thresholdw0,25g21 is
reached whereĪ 2 and Ī 3 become simultaneously positive. I
addition, the only stable solutions are constant in time.

Let us now analyze the TSD1 equations~11!–~19!. It is
often simpler to express steady-state solutions and stab
conditions in terms of the triplet (D̄0 ,D̄1 ,D̄2) than in terms
of (w0 ,w1 ,w2). The inversion of the relationswi

5 f i(D̄0 ,D̄1 ,D̄2), i 50,1,2, leads to complicated expre
sions that obscure the physical interpretation. However,D̄k
→wk in the absence of light-matter interaction. As a con
quence, the stability conditions expressed with theD̄k give a
qualitative indication of the constraints imposed onwk .

From Eqs.~17!–~19! a stable zero modal intensity, sa
Ī q50, requires211gq(D̄02N̄q),0. We infer the stability
condition

N̄q~D̄0 ,D̄1 ,D̄2!.D̄02gq
21 . ~20!

Note that this is only a necessary condition. At the bound
N̄q(D̄0 ,D̄1 ,D̄2)5D̄02gq

21 , the system undergoes the st

tionary bifurcationR→R 85Rø$ Ī q%.
A key feature of the present analysis is that there

regions inside the cavity where longitudinal intensity dist
butions almost do not overlap for pairs of modes. Throu
spatial hole burning, one can expect more~less! efficient
electric field amplification with increased~decreased! pump
intensity in these regions when such pairs are excited. A
consequence, a nonuniform pumping distribution alters
mode competition. This is realized by tuning the pump p
rameterswk in Eq. ~10!. A minimal overlap between longi
tudinal cavity eigenmodes is found atz5L/2 for the pairs
( Ī 1 , Ī 2) and (Ī 1 , Ī 3) and atz5L/26L/4 for the pair (Ī 2 , Ī 3).
The role ofw1 andw2 is therefore to distribute the injecte
energy among the modes of the cavity. A classification of
possible situations is given in Table I.

The steady-state solutions can be classified as follows
trivial solution $B%, Ī 15 Ī 25 Ī 350; the single-mode solu
tions $ Ī k%, Ī k.0, Ī j Þk50; the two-mode solutions

$ Ī 1 , Ī 2%, Ī 1.0, Ī 2Þ Ī 1.0, Ī 350; $ Ī 2 , Ī 3%, Ī 150, Ī 25 Ī 3

.0; and$ Ī 2 , Ī 3%* , Ī 150, Ī 2Þ Ī 3.0; the three-mode solu
tions $ Ī 1 , Ī 2 , Ī 3%, Ī 1.0, Ī 25 Ī 3.0; $ Ī 1 , Ī 2 , Ī 3%* , Ī 1.0,
al

ity

-

y

e

h

a
e
-

e

he

Ī 2Þ Ī 3.0, lim
g→1

Ī 1Þ lim
g→1

( Ī 21 Ī 3); and $ Ī 1 , Ī 2 , Ī 3%** ,

Ī 1.0, Ī 2Þ Ī 3.0, lim
g→1

Ī 15 lim
g→1

( Ī 21 Ī 3).

The solutions$ Ī 2 , Ī 3%* , $ Ī 1 , Ī 2 , Ī 3%* , and $ Ī 1 , Ī 2 , Ī 3%**
are necessary to provide a connection between the othe
lutions. However, they exist only along lines or surfaces
the 3D pump parameter space and therefore are of mea
zero.

A. Trivial solution ˆB‰

The trivial solution is

Ī k5N̄k50, D̄ l5wl , k51,2,3, l 50,1,2.

The stability of the trivial solution is ruled by the rootl

5k(D̄021). The trivial solution is stable ifw0,1. At w0
51, a steady bifurcation leads to the monomode solut

$ Ī 1%.
In addition, there are bifurcations from the unstable s

tion of the$B% solution to solutions that emerge as unsta
states. We list them because such solutions may bec
stable. Forg arbitrary, the solutions$ Ī 2%,$ Ī 3%, and$ Ī 2 , Ī 3%*
emerge from$ Ī 1% at w05g21. In the limit g→1, we have
the additional connection with the solution$ Ī 1,Ī 2 , Ī 3% at w0

51, with the solution$ Ī 1,Ī 2 , Ī 3%* at w05w15w251, and
with the solution$ Ī 1,Ī 2 , Ī 3%** at w05w251.

B. Monomode solutionsˆ Ī k‰

1. Solution ˆ Ī 1‰

This solution is

Ī 152
D̄021

22D̄0

, Ī 25 Ī 350,

N̄15D̄021, N̄25N̄35D̄1

D̄021

D̄0

,

w05
2D̄0

214D̄022

22D̄0

, w15w0

D̄1

D̄0

, w25
D̄0D̄2

22D̄0

.

The positivity of Ī 1 requires 1,D̄0,2. This constraint de-
terminesD̄0 as a function ofw0 in a unique way when the
system is in state$ Ī 1%. A linear stability analysis of this
solution yields a double real root whose real part may cha
sign
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l152k@gD̄1~D̄021!2D̄0~gD̄021!#D̄0
21 .

The resulting stability condition is

D̄1.D̄0~D̄02g21!/~D̄021!. ~21!

When long-wavelength population gratings are suppres
(wi5D̄ i50, i 52,3), this inequality reduces toD̄0,g21, a
familiar result in the TSD theory. On the contrary, ifw1 is
varied in order to meet Eq.~21! the laser can be forced t
remain monomode even withg21,D̄0 , i.e., beyond the
multimode threshold with regard to the average pump
predicted via the TSD analysis.

There is also one pair of complex roots

l2,65
6212D̄013D̄0

2

16212D̄012D̄0
2

6 iAk~w021!.

The imaginary part of these roots is the relaxation oscillat
frequencyVR of the single-mode laser. This root does n
lead to an instability. The remaining roots are real and ne
tive.

At the bifurcation pointl150, the solution$ Ī 1% is con-
nected to the branches of solutions$ Ī 1 , Ī 2% and $ Ī 1 , Ī 2 , Ī 3%.
The conditionl150 defines a surface in the pump parame
space$w1 ,w2 ,w3%. In addition, if g51, we can add tha

$ Ī 1% is connected at the bifurcation pointl150 to the solu-
tion $ Ī 1 , Ī 2 , Ī 3%* along the lineD̄05D̄15D̄2 and to the so-
lution $ Ī 1 , Ī 2 , Ī 3%** along the lineD̄05D̄151.

2. Solution ˆ Ī 2‰

This solution is

Ī 15 Ī 350, Ī 252
D̄02g21

22gD̄0

,

N̄15D̄1

D̄02g21

D̄0

, N̄25D̄02g21, N̄35D̄2

D̄02g21

D̄0

,

w05
2gD̄0

214D̄022g21

22gD̄0

,

w15D̄1

2D̄02g21

D̄0~22gD̄0!
, w25w1

D̄2

D̄1

.

The solution $ Ī 3% is obtained by permuting (Ī 2 ,N̄2) and
( Ī 3 ,N̄3).

The condition of existence of this solution,Ī 2.0, leads to
g21,D̄0,2g21. A linear stability analysis of the$ Ī 2% so-
lution yields two real roots that may vanish, a pair of co
plex conjugate roots with negative real parts, and five r
roots that are negative. The two critical real roots are

l152k@D̄1~D̄02g21!2D̄0~D̄021!#D̄0
21 ,

which is negative if
ed

g

n
t
a-

r

-
al

D̄1.D̄0

D̄021

D̄02g21
, ~22!

and the root

l252k~gD̄021!~D̄22D̄0!D̄0
21 , ~23!

which is negative ifD̄2.D̄0 . If l1,0 andl2,0, a stable
monomode oscillation can thus be achieved with a mo
whose gain is smaller than the gain of the other modes. H
ever, the domains of stability of solutions$ Ī 1% and $ Ī 2% ~or

$ Ī 3%) overlap in the pump parameter space$w0 ,w1 ,w2%, as
discussed in Sec. IV F.

At the bifurcation pointl150, the solution$ Ī 2% becomes
unstable and the solution$ Ī 1 , Ī 2% emerges. At the boundar
l250, the solution$ Ī 2% becomes unstable and the solutio

$ Ī 2 , Ī 3%* emerges. In addition, we can show forg51 that
the solution$ Ī 2% is connected to the solution$ Ī 1 , Ī 2 , Ī 3%*
along the lineD̄05D̄15D̄2 .

The characteristic polynomial of the linearized system h
also two complex conjugate roots with negative real part

l652
6212gD̄013g2D̄0

216112gD̄022g2D̄0

6 iAk
~42gD̄0!~gD̄021!

22gD̄0

.

The imaginary part is different from the McCumber fr
quency, though it reduces toVR for g→1.

C. Two-mode solutions

1. Solution ˆ Ī 1 , Ī 2‰

This solution is

Ī 152
D̄1~D̄02g21!2D̄0~D̄021!

~D̄12D̄0!@D̄123D̄012~11g21!#
,

Ī 252
D̄1~D̄021!2D̄0~D̄02g21!

g~D̄12D̄0!@D̄123D̄012~11g21!#
,

Ī 350, N15D̄021, N25D̄02g21,

N35$D̄1@D̄1~D̄02g21!2D̄0~D̄021!#

1D̄2@D̄1~D̄021!2D̄0~D̄02g21!#%@D̄1
22D̄0

2#21,

w05D̄01 Ī 11 Ī 2 ,

w15~11g Ī 21 Ī 1!D̄12
1

2
@g Ī 2N11 Ī 1~N21N3!#,

w25~11g Ī 21 Ī 1!D̄22
1

2
g Ī 2N3 . ~24!
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The positivity of the modal intensitiesI 1 and I 2 yields the
condition

~D̄021!~423D̄01D̄1!.0.

Using Eq.~20!, one easily finds a first root of the characte
istic polynomial l15k@211g(D̄02N3)#. The stability
conditionl1,0 yields

@gD̄1~D̄021!~D̄22D̄0!1~gD̄021!~D̄1
22D̄0D̄2!#

3~D̄1
22D̄0

2!21.~gD̄021!. ~25!

At this instability point, the two-mode solution is connect
to the three-mode solution$ Ī 1 , Ī 2 , Ī 3%** . In the limit g

→1, this stability condition reduces toD̄2.D̄0 . Further in-
vestigation of the characteristic polynomial was carried
in the limit g→1. Taking advantage of the fact thatk@1, we
found an approximate expression for two pairs of comp
conjugate roots, the first of which is

l2,652
D̄01D̄1

2~423D̄01D̄1!
6 lim

g→1

Ak Ī2~D̄02D̄1!/2

1O~k21/2!.

They are stable provided thatD̄0.D̄1 ; otherwisel2,1 is real
and positive. The second pair of complex conjugate ro
have their imaginary part equal to the McCumber freque

l3,65a6 iV, V5VR1O~k21/2!,

a52
w115w0

2~823D̄01D̄1!
1O~k21!. ~26!

The real part of this pair of roots is positive forw115w0
,0. In that case, the system undergoes a Hopf bifurcation
Sec. IV E, we shall present an analysis of the periodic so
tions suggesting that this bifurcation is subcritical. Nume
cally, a periodic pulsed solution has been found forw0
51.1,w1525.51, andw252. The value ofw2 is suggested
by the conditionD̄2.D̄0 . Decreasingw1 , we observed a
period-doubling cascade, chaos, and chaotic passiveQ-
switching ~PQS!. Period-two Ī 1 pulses antiphased with
period-two Ī 2 pulses thus leading to period-one pulsing f
the total intensity.

2. Solution ˆ Ī 2 , Ī 3‰

This solution is

Ī 150, Ī 25 Ī 352
D̄02g21

423gD̄01gD̄2

,

N̄152D̄1

D̄02g21

D̄01D̄2

, N̄25N̄35D̄02g21,

w05
8D̄023gD̄0

21gD̄2D̄024g21

423gD̄01gD̄2

,

t

x

ts
y

In
-

-

w15
D̄1~22gD̄01gD̄2!~2213gD̄01gD̄2!

g~D̄01D̄2!~423gD̄01gD̄2!
,

w25
gD̄2

222gD̄0
21gD̄0D̄214D̄022g21

423gD̄01gD̄2

.

The positivity of the intensities requires

~D̄02g21!~423gD̄01gD̄2!.0. ~27!

A real root of the characteristic equation isl15k(211D̄0

2N̄1). Stability requires

2D̄1.~D̄01D̄2!
D̄021

D̄02g21
, ~28!

which implies a depletion of the inversion profile at the ce
ter of the cavity and therefore a competition between mod
and modes 2 and 3. If this condition is not fulfilled, a tra
sition to the solution$ Ī 1 , Ī 2 , Ī 3% takes place. The other sta
bility conditions were obtained in the limitg→1. Two real
roots of the characteristic polynomial are

l252
22D̄01D̄2

423D̄01D̄2

, l352
2213D̄01D̄2

423D̄01D̄2

. ~29!

Two pairs of complex conjugate roots have been found in
double limit g→1 andk@1. The first pair is

l4,652
D̄01D̄2

2~423D̄01D̄2!
6 i lim

g→1

Ak Ī2~D̄02D̄2!/2,

~30!

whose imaginary part is different from the McCumber fr
quency and exist only ifD̄0.D̄2 . The rootsl4,6 , l2 , and
l3 are stable provided the condition~27! is fulfilled. If D̄0

5D̄2 , the solution $ Ī 2 , Ī 3% is connected to the solution

$ Ī 2 , Ī 3%* . There is also a pair of complex conjugate roo
associated with the McCumber frequency

l5,65a6 iV, V5VR , a52
w215w0

2~823D̄01D̄2!
.

~31!

A Hopf bifurcation occurs atw215w050 which will be
studied in Sec. IV E. Numerically, we have observed
phase period-two pulsed solutions, antiphase period-
pulsed solutions, chaos, regular antiphase pulses, and ch
PQS, respectively, by decreasingw2 from 25.5 to 26.2
with w051.1 andw150.
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3. Solution ˆ Ī 2 , Ī 3‰*

This family of solutions is given by

Ī 21 Ī 352
D̄02g21

22gD̄0

, N15D̄1

D̄02g21

D̄0

,

Ī 150, D̄05D̄2 , N̄25N̄35g21,

w05
22g2114D̄02gD̄0

2

22gD̄0

, w15
D̄1~2D̄02g21!

D̄0~22gD̄0!
,

w25
2D̄02g21

D̄0~22gD̄0!
.

The peculiar property of this family of solutions is that th
lasing modal intensities are not fixed: Only the total intens
is determined. The value of the modal intensitiesĪ 2 and Ī 3
depends on the initial conditions. This branch of solutio
connects the solution$ Ī 2% at l250, wherel2 is given by Eq.
~23! to the solution$ Ī 2 , Ī 3%. We recall that no stability analy
sis is presented for the$ %* and$ %** solutions since they are
of measure zero.

D. Three-mode solutions

The symmetric three-mode TSD1 model has three differ-
ent steady-state solutions with all modes above the la
threshold. In this section we only define analytically the
solutions and recall which steady solutions they connect
Sec. IV E, we shall derive a general expression for the H
bifurcation which is another source of instability.

1. Solution ˆ Ī 1 , Ī 2 , Ī 3‰

This solution is given by

N̄15D̄021, N̄25N̄35N̄5D̄02g21,

Ī 15@2N̄D̄12N̄1~D̄01D̄2!#M 21,

Ī 25 Ī 35@N̄1D̄12N̄D̄0#~gM !21,

w05D̄01 Ī 11 Ī 21 Ī 3 ,

w15~11g Ī 21 Ī 11g Ī 3!D̄1

2
1

2
@g Ī 2N̄11 Ī 1~N̄21N̄3!1g Ī 3N̄1#,

w25~11g Ī 21 Ī 11g Ī 3!D̄22
1

2
~g Ī 2N̄31g Ī 3N̄2!.

where

M5D̄1@D̄122~N̄1N̄1!#

1D̄0@2N̄1N̄12~D̄01D̄2!/2#1D̄2N̄1 .
y

s

g
e
In
f

The characteristic polynomial that rules the linear stability
this solution factorizes into second- and seventh-order p
nomials in the limitg→1. The roots of the quadratic are

l65
1

2
$2~11 Ī 112 Ī 2!

6A~11 Ī 112 Ī 2!222k Ī2~D̄02D̄2!%. ~32!

Sincek@1, these roots are complex conjugate with a ne
tive real part if D̄0.D̄2 . The imaginary part isv

5Ak Ī2(D̄02D̄2)/21O(k21/2). Otherwise, they are real an
l1 is positive. Of course, this instability is linked to th
competition between modes 2 and 3, as can be seen
Table I. If D̄2.D̄0 , either 2 or 3 can be above threshold.

2. Solutionsˆ Ī 1 , Ī 2 , Ī 3‰*

This family of solutions is characterized byĪ 2Þ Ī 3 and
Ī 1Þ Ī 21 Ī 3 , which implies thatD̄05D̄15D̄2 . In the limit
g→1, we have

Ī 11 Ī 21 Ī 352
D̄021

22D̄0

,

N̄15N̄25N̄35D̄021,

w05
2214D̄02D̄0

2

22D̄0

, w15
2D̄021

22D̄0

2
D̄021

2
Ī 1 ,

w25
D̄0

2

22D̄0

2
D̄021

2
~ Ī 21 Ī 3!.

3. Solutionsˆ Ī 1 , Ī 2 , Ī 3‰**

This family of solutions is considered only in the lim
g→1, where it is characterized byĪ 2Þ Ī 3 but Ī 15 Ī 21 Ī 3 :

Ī 152
D̄021

423D̄01D̄1

, Ī 15 Ī 21 Ī 3 ,

D̄05D̄2 , N̄15N̄25N̄35D̄021,

w05
2418D̄01D̄0D̄123D̄0

2

423D̄01D̄1

, w25
2112D̄01D̄0D̄1

423D̄01D̄1

,

w15
2316D̄01D̄0D̄123D̄0

21D̄1
2

423D̄01D̄1

.

This family of solutions connects the branches$ Ī 1 , Ī 2% and

$ Ī 1 , Ī 2 , Ī 3%.

E. Pulsed solutions

We have shown in the previous sections that there
Hopf bifurcations to self-pulsing states. We have been a
to derive a general expression for the Hopf bifurcation poi
only for two-mode solutions and in the limitg→1. The sta-
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bility of the emerging periodic solutions has not been de
mined. We shall therefore use an indirect method to de
more information on the self-pulsing solutions. It is based
the fact that the solutions observed numerically are pul
~see Fig. 1!, which means that for each mode, intensity pea
are separated by domains of vanishingly small intens
Thus these solutions represent a trajectory, in phase sp
between the unstable$B% solution and some unstable finite
intensity solution. The pulsing character of these solutio
has the following origin. The first lasing threshold isD̄0
51, which means that only the average population invers
affects the switching on of the laser. However, one can m
tain D̄0,1 while storing energy in the material medium b
havingw1 and/orw2 strongly negative. As shown in Table
this is possible by pumping selectively atz5nL/4 with n
51, 2, or 3. If there is enough energy stored in this w
bringing the average population inversion above the first
ing threshold induces a cycle as in PQS: The energy sto
by way of population inversion is released in the field, whi
builds up abruptly. This depletes the population invers
and soon again the average population inversion is be
threshold. To use this information, we seek interpulse so
tions of the form

I k5« i k1O~«2!, Dk5wk1«dk1O~«2!,

Nk5«nk1O~«2!, ~33!

where«51/k. To leading order in« this yields

di1
dt

5 i 1~w̄11d02n1!,

di2
dt

5 i 2~w̄21gd02gn2!,

di3
dt

5 i 3~w̄21gd02gn3!,

ddk

dt
52dk2~g i 21 i 11g i 3!wk ,

FIG. 1. ~a! Periodic solution emerging from the steady-sta
solution $I 1 ,I 2% for w051.1, w1525.56, andw252. ~b! Chaotic
solution forw051.1, w1525.82, andw252.
r-
e
n
d
s
.
ce,

s

n
-

,
s-
ed

n
w
-

dn1

dt
52n11

1

2
~g i 2w11 i 1w01g i 3w1!,

dn2

dt
52n21

1

2
~g i 2w01 i 1w11g i 3w2!,

dn3

dt
52n31

1

2
~g i 2w21 i 1w11g i 3w0!,

where we have introduced the expansionsw̄15k(w021)
1O(1/k) and w̄25k(gw021)1O(1/k) to have a correct
balance in the intensity equations. Note that the time has
been scaled. Since there is no Hopf bifurcation in the sing
mode solutions, we directly consider the two-mode solutio

1. Two-mode solutions

Let us first study the solution$I 1 ,I 2%. Introducing the
auxiliary variablesxk5 ln(ik), it is easy to derive

x191x185w̄12B0ex12gB1ex2,

x291x285w̄22gB1ex12g2B0ex2,

wherex8[dx/dt and Bq5w01wq/2. It can be shown tha
the solutionsxk may diverge in a finite time, depending o
the Bq . Therefore, we seek solutions of the formxk5ck1
1ck2ln(ut2au)1ck3(t2a). In this expression,a is an integra-
tion constant, which is determined by matching consid
ations with the pulsed part of the solution. Since we do
attempt to describe the pulse, we leave this constant und
mined in the remainder of our discussion. This leads toc12

5c22522, c135w̄1 , c235w̄2 , and an algebraic system fo
the $ck1% whose solutions is

ec115
2

g

B12gB0

B0
22B1

2
, ec215

2

g2

gB12B0

B0
22B1

2
.

Imposingeck1.0 gives a condition that turns out to be th
expression for the Hopf bifurcation point. In the limitg
51, the existence of the solution$ck1% requiresB01B1,0
or equivalently 5w0,2w1 , which is the result~26! we have
derived in the conventional way. For arbitraryg, there are
two sets of three conditions:B0

2:B1
2 , B1:gB0 , and gB1

:B0 . Analyzing these conditions, it is easy to prove that it
the lower inequality sign that must be retained and it redu
to 5w0,2w1 . This proves that the Hopf bifurcation thresh
old is independent ofg.

We have constructed in this way, in the self-pulsing d
main, a solution of small amplitude, being of order«, which
is expected to connect two consecutive pulses. The pres
of the pulse is attested by the divergence. This is not a s
tion that emerges from the Hopf bifurcation since close
the bifurcation point the solution is harmonic in time. Hen
the piece of solution we have just constructed belongs to
upper branch, which suggests that the Hopf bifurcation
subcritical. This conjecture is supported by numerical sim
lations.

A similar result is obtained for the two-mode solutio
$I 2 ,I 3%. We obtain for the coefficients$ck1% the expression
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ec215ec315
22

g2~B01B2!
.

The condition of existence of these solutions isB01B2,0,
i.e., 5w01w2,0, which is also independent ofg. This is the
threshold condition~31! derived in the usual way, though fo
g→1 only, in Sec. IV C. Here again a subcritical Hopf b
furcation induces a transition directly from the steady sta
to the PQS regime.

2. Multimode solution

The method used to construct the interpulse solution
readily generalized to an arbitrary number of modes and
arbitrary distribution of linear gainsgq . The linear equations
for the $expck1% are

(
q8PQ

gq8e
cq81B~q2q8!522/gq , qPQ.

For the three-mode regime, the coefficientsck1 are given by

ec115
2

g

2B22g~B11B3!

B1~B11B3!22B2
2

,

ec215ec315
2

g2

gB22B1

B1~B11B3!22B2
2

.

The threshold conditions are somewhat more complex
study. Analyzing the expressions for the$ck1% yields that the
periodic solutions exist in the domain defined byB1(B1

1B3),2B2
2 and 2B2,g(B11B3). The locus of the Hopf

bifurcations is a section of the curveB1(B11B3)52B2
2 ,

which can also be expressed asw252w1
2/3w018w1/3

27w0/3. In the plane (w2 ,w1), this locus is bounded by th
intersection with the line 2B25g(B11B3), which takes
place at (w2 ,w1)5(25w0 ,22w0), and by the point, where
D̄05D̄2 , since from there on the solution$ Ī 1 , Ī 2 , Ī 3% bifur-
cates to the solution$ Ī 2 , Ī 3%. Here again the Hopf bifurcation
is expected to be subcritical, in full agreement with the n
merical simulations.

F. Hysteresis

Another difference between the TSD and the TSD1 equa-
tions is the occurrence of hysteresis domains for the ste
state solutions. The analytic expression of the single-m
solutions$ Ī k% in terms of the$wk% is too complex to be of
much use for a general discussion of the hysteresis dom
Therefore, we shall illustrate this effect by a simple examp
We consider a closed loop in the (w1 ,w2) plane with
w051.75 andg50.9. The result is displayed in Fig. 2 an
shows that starting with the$ Ī 1% solution, we end up at the
same point in parameter space, but with the$ Ī 2% solution.
The initial and final states are connected, successively, by
states$ Ī 1 , Ī 2%, $ Ī 1 , Ī 2 , Ī 3%, and$ Ī 2 , Ī 3%. Only one of the two
parametersw1 andw2 is changed at a time.

The first step is to weaken competition betweenI 1 andI 2

by decreasingw1. The system bifurcates from$ Ī 1% to $ Ī 1 , Ī 2%
s

is
n

to

-

y-
e

ns.
.

he

when l1 given by Eq. ~21! vanishes, that is, at (w1 ,w2)
5(0.94,2). Second, mode 3 is forced to oscillate by decre
ing w1 to zero and then decreasingw2 . A bifurcation
$ Ī 1 , Ī 2%→$ Ī 1 , Ī 2 , Ī 3% occurs at (w1 ,w2)5(0,1.82) as a con-
sequence of Eq.~25!. The parameterw2 is decreased furthe
in order to extinguish mode 1, as expected from the stab
condition ~32!. Indeed, at (w1 ,w2)5(0,23.5), the system
bifurcates from$ Ī 1 , Ī 2 , Ī 3% to $ Ī 2 , Ī 3%. The next step is to
increasew1 up to 3. This has the effect of strengthening t
mode competition betweenI 1 and I 2. As I 2 is already am-
plified, I 1 is quenched. Finally,w2 is increased from23.5 to
2. At the point~3,1.82!, the system undergoes a bifurcatio
from $ Ī 2 , Ī 3% to either$ Ī 2% or $ Ī 3%, which follows from con-
dition ~30!. The final state$ Ī 2% or $ Ī 3% depends on fluctua
tions.

V. CONCLUSION

The results presented in this paper may seem to contra
a little-known theorem on the global stability of the gene
rate equations expressed as

dI~p,t !

dt
5kS 211ApE

0

L

uf~p,z!u2D~z,t !dzD I ~p,t !,

~34!

dD

dt
52g@D~z,t !2D0~z!#2bD~z,t !

3(
p

gpuf~p,z!u2I ~p,t !, ~35!

from which the TSD and the TSD1 equations are derived a
modal expansions. A detailed derivation of the rate equati
~34! and ~35! is found, for instance, in@12#. The global sta-
bility theorem of Antsiferovet al. @13# proves that the func-
tion

L~ t !5E
0

L@D~z,t !2D̄~z!#2

2D̄~z!
dz

1k21(
p

F I p~ t !2 Ī p2 Ī pln
I p~ t !

Ī p
G

FIG. 2. Modal intensities as a function ofw1 and w2 for
w051.75 and g50.9. A, w153 and w252; B, w150 and
w252; C, w150 andw2523.5; andD, w153 andw2523.5.
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is a Lyapunov function sincedL/dt,0. The existence of
such a function implies that the only dynamics that can t
place is a monotonic evolution towards a single steady-st
However, a careful analysis of the proof indicates that i
restricted by the conditionD̄(z)Þ0. In other terms, this theo
rem states that if the steady-state population inversion v
ishes nowhere in the domain 0<z<L, there is a unique
steady state associated with any initial condition throug
momentous evolution. Our results do not contradict t
theorem since all the bifurcation conditions obtained in t
paper impose constraints on the pump that lead to dom
without population inversion and therefore points in spa
where the population inversion changes sign.

The main point of this paper is that the longitudinal inh
mogeneity of the pumping process is the source of n
steady states and Hopf bifurcations. The Hopf bifurcatio
lead to more complex time-dependent solutions, includ
chaotic solutions. The coincidence of the Hopf bifurcati
threshold and the PQS pulsing is surprising since they o
ously do not correspond to the same mechanism. The
phenomena occur for the same values of the parameter
on different branches of the same periodic solution. A sim
EE

-

ec
e
te.
s

n-

a
s
s
ns
e

w
s
g

i-
o

but
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lar situation has been described for a laser with a satur
absorber@14#, though without any more mathematical unde
standing.

Another consequence of the inhomogeneous longitud
pumping is the occurrence of solutions such as$I 2%, $I 3%, or
$I 2 ,I 3%, which involve only modes with a lower gain whil
the mode with the highest gain is off. This is confirme
qualitatively by the results of Gusevet al. @15#. In their ex-
periment, a 5-cm-long Nd:YAG crystal~where YAG denotes
yttrium aluminum garnet! was translated along the axis of
80-cm-long cavity. This achieved a highly inhomogeneo
pumping profile. Mode locking was observed when the cr
tal was atL/2, the center of the cavity~strongly negative
w1), and also when located atL/4 ~strongly negativew2).
Spectral analysis revealed that mode spacing wasc/2L in the
former case andc/L in the latter, in agreement with ou
theoretical analysis.
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