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Abstract—To ensure a high signal-to-noise power ratio at the
terrestrial receiver, the power amplifier aboard the satellite often
works close to its saturation point. Unfortunately, this operating
point also adds non-linear distortions in the communication
channel. The literature proposes several digital equalizers to
compensate for this channel. But their complexity makes their
digital implementation difficult in particular for high bandwidth
communications. Analog equalizers are an interesting solution to
reduce the equalizer complexity. Here we numerically demonstrate
that a dedicated analog optoelectronic implementation based on
the Echo State Network paradigm can reach state-of-the-art
performance of digital equalizers, while reducing the required
resolution of the analog-to-digital converters.

Index Terms—Echo State Network, Non-linear Channel equal-
ization, Satellite, Analog Equalizer

I. INTRODUCTION

Satellite communications are specified by several communi-
cation standards such as the DVB-S2 (Digital Video Broadcast-
ing - Satellite - Second Generation) [1]. In this scenario, the
satellite works like a relay point between two terrestrial stations.
The satellite receives a signal, amplifies it and retransmits it
without digital signal processing.

Because of the limited power available aboard the satellite,
the power amplifier must work close to the saturation point
to ensure a high power output. This increases the amplifier
efficiency but adds important non-linear distortions in the
communication channel. In addition, inter-symbol interferences
(ISI) appear if the channel bandwidth is increased. This is
due to the limited bandwidth of the filters aboard the satellite.
Together, these create a non-linear communication channel with
memory. The literature proposes several digital algorithms to
compensate for this channel at the receiving side. Many of them
use a baseband Volterra structure for the equalization [2] [3].

Another family of digital equalizers is based on the Recurrent
Neural Networks (RNNs) [4]. Because of the important number
of parameters to train, they are complex to use in practice.
Echo State Nework (ESN) are a form of RNN that have been
introduced to reduce the training task complexity [5][6]. They
have proven useful for tasks such as speech recognition or
time-series prediction [7]. We showed in [8] that digital ESNs
can reach similar performances as the Volterra equalizer with
a similar or even lower algorithm complexity when the ESN
parameters are optimized [9].

However, the complexity of these algorithms makes the
digital implementation difficult because all the operations must
be implemented with combinations of logical gates. It increases
the latency and the power consumption of the receiver. On
the other hand, with analog processing, these operations are
directly provided by the behaviour of analog components. In
that way, the transposition of the equalization from digital to
analog domain can reduce the receiver complexity.

The equalization of a linear wireless communication channel
with analog or mixed-signal solutions has been studied in [10]
[11]. But, to the best of our knowledge, the compensation of
a realistic non-linear communication channel with an analog
equalizer has never been investigated.

Because of its structure, the ESN has the advantage that it
can easily be implemented using analog circuits. Experimental
implementations have been reported using optoelectronic [12]
[13] and all-optical [14] [15] [16] circuits. In this paper, we
propose an optoelectronic analog implementation dedicated to
the non-linear satellite channel equalization. We show, with nu-
merical simulations, that we can achieve similar performances
as digital ESN and Volterra equalizers in term of Bit Error Rate
(BER).

Furthermore, it is well known that the analog-to-digital
converter (ADC) is a bottleneck for high bandwidth commu-
nications [10] [11] [17] because it is difficult to combine high
sampling frequency with the important resolution required by
digital equalizers. With our solution, the ADCs are situated
at the output of the equalizer. They can be directly used as
symbol detectors based on I and Q axes if no soft decod-
ing is used on the symbols. This considerably reduces the
number of required quantification bits. However, because of
the constellation distortion introduced by the amplifier, the
different received constellation points are no longer aligned.
A simple pre-distortion of the transmitted constellation can
modify the received one in order to improve the constellation
points alignment on the I and Q axis. In that way, a considerable
reduction in resolution of the ADC is possible.

We believe that the main results of our paper, namely
that analog equalizers together with pre-distortion can reduce
both the equalizer complexity and the resolution of the ADC,
are very general and will apply to many other non-linear
communication channels in addition to the specific DVB-S2
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Fig. 1. Bloc diagram of a satellite communication channel, (a) Communication bloc, (b) Digital equalizer, (c) Analog equalizer.

channel studied here.
The outline of this paper is the following. The satellite

communication channel is described in section 2. The ESN is
introduced in section 3 with the equations of a digital imple-
mentation. Its optical implementation is described in section 4.
The analog ESN is compared with its digital equivalent and a
digital Volterra equalizer in term of BER in section 5.

II. SYSTEM MODEL

The baseband satellite communication channel, which is
a non-linear channel with memory, is described on Fig. 1.
The power amplifier aboard the satellite gives the non-linear
behaviour of the channel. It is defined by its baseband model
which gives the amplitude modulation fPA(.) and phase modu-
lation gPA(.) characteristics. If the input is defined as u(t), the
output of the amplifier v(t) is:

v(t) = fPA(|u(t)|)ej(∠u(t)+gPA(|u(t)|)). (1)

The operating point is defined by the output back off (OBO)
defined as

OBO = 20 log10
Aout

Asat
, (2)

where Aout is the root mean square (rms) amplitude of the signal
at the output of the power amplifier and Asat is the saturation
amplitude of the amplifier.

The memory of the channel comes from the Butterworh and
the half-root Nyquist shaping filters at the ground station and
the filters aboard the satellite. These latter can also be modelled
by Butterworth low-pass filters.

The propagation channel is considered as memoryless be-
cause there is a line-of-sight communication between the satel-
lite and the ground stations. The important directivity of the
antennas reduces the reflections on obstacles.

On the transmitter side, the sequence of transmitted symbols
is shaped with a half-root Nyquist filter and transmitted to the
satellite. Then the signal is shaped with an imux filter, amplified
with the power amplifier following eq. (1) and shaped with
the omux filter. The received signal is also corrupted by an
additive white Gaussian noise. At the receiving side, this signal
is shaped with a Butterworth filter before the equalization to
limit the noise power. The analog-to-digital conversion is done
before (Fig. 1 (b)) or after (Fig. 1 (c)) the equalizer depending

on the implementation (digital or analog). The sampling rate is
equal to the symbol rate.

In a linear communication channel, the clusters of points
which define the received constellation are centred on the
transmitted one. But with a non-linear channel, the received
constellation is affected by a compression due to the non-linear
power amplifier. We can observe a displacement of the center
of the cloud of points, called centroids [18].

III. DIGITAL ECHO STATE NETWORK

The ESN is a framework which has been proposed to reduce
the complexity of the learning task of RNNs. The algorithm is
composed by N neurons xi(n) with i = 0, ..., N−1 connected
to each other in a neural network. Here, we use a specific
structure where each neuron xi(n) is only connected to the
previous one at the previous time xi−1(n−1) in order to create
a ring structure. It has been shown in [19] that this structure
can offer the same performances as the random connections
proposed initially. As we will see in next section, it simplifies
the analog implementation.

The evolution of the neurons is defined by:

xi(n) = fNL(ai(n)), (3)

where ai(n) is the activation signal defined by:{
ai(n) = αxi−1(n− 1) + win

i r(n), 0 < i ≤ N − 1 (4)
ai(n) = αxN−1(n− 1) + win

i r(n), i = 0 (5)

where α is called the feedback gain and r(n) is the received
baseband signal. The input weights win

i are real random num-
bers with a uniform distribution limited to a specific range of
values. The activation function fNL(.) creates the non-linear
behaviour of the ESN. Here we propose the use of a new
activation function compared to the ones used usually (e.g. a
sine in [12], a tanh in [6] or a polynome in [8])

fNL(a) = a.sin(
π

2
|a|2 + γ), (6)

where γ is a bias optimized by simulations. We will see that this
can easily be implemented with optoelectronic components. We
also show that, as with the activation function used in [8] and
[9], we achieve similar performances to the Volterra equalizer.



The output signal is defined by:

ŝ(n) =

N−1∑
i=0

wout
i xi(n), (7)

where wout
i are the output weights. In classical RNNs, the

weights wout
i , win

i and the connections between the neurons are
trained. But in the ESN paradigm, only the output weights are
trained to implement a specific task. In that way, the number of
connections that need to be optimized is strongly reduced which
simplifies the training task without degrading the performances.

The ESN requires the echo state property (ESP) which
specifies that the value of each neuron only depends on the
past history of the input signal. In that way, the initial state
of the ESN tends to be forgotten and will not affect the output
signal ŝ(n). This property is respected if the activation function
fNL(.) is Lipschitz continuous and the product of its Lipschitz
constant with the spectral radius of the interconnection matrix
is lower than 1 [20].

IV. ANALOG IMPLEMENTATION OF THE ESN

We propose an optoelectronic implementation of the ESN
using coherent light. This implies that the information can
be coded in both amplitude and phase of the light. A bloc
diagram of this implementation is provided on Fig. 2. For the
simplicity, we consider that no delay is introduced by the analog
components, except the delay lines. This implementation is
based on the recent work [21] and the optical implementations
[16] [22] adapted to give good performance for the present task.

In a first step, we need to recover the amplitude |r(t)| of the
received baseband signal r(t) and a signal proportional to its
phase ∠r(t). These electrical signals are maintained constant
during a symbol duration T with a sample-and-hold circuit.

Then the signal |r(t)| is multiplied with the input mask win(t)
which is a stepwise periodic signal of N steps with period T .
Each value is maintained during θ = T

N seconds. The values
of the input mask win

i are coded in win(t) for nT + iθ < t ≤
nT + (i+ 1)θ.

A continuous-wave laser beam is modulated by a voltage
driven intensity modulator (Lithium Niobate Mach-Zehnder in-
terferometer M-Z), to code win(t)|r(t)|, and a phase modulator,
to code ∠r(t) (part (1) of Fig. 2). The linear transfer function of
the phase modulator and the sinusoidal transfer function of the
M-Z lead to an input signal at the entrance of the first optical
loop defined by:

fin(w
in(t), r(t)) = sin(

π

2
win(t)|r(t)|)ej∠r(t). (8)

All the neurons are temporally multiplexed in the first loop
(part (2) of Fig.2). So, in one specific position, the neuron
xi(n) is coded in the analog signal x(t) when nT + iθ < t ≤
nT + (i+ 1)θ.

The activation function fNL(.) which creates the signal x(t)
from the activation signal a(t) is implemented with a photo-
diode and a second M-Z in the first optical loop. The photo-
diode produces an electrical signal proportional to the square

amplitude of the optical signal at its input. The bias γ is created
with a constant voltage applied on the M-Z.

This loop has a round trip time of duration T ′ = θ(N + 1)
[12]. In that way, the evolution of a(t) defined on the middle
of an interval of duration θ is:

a(nT + (i+ 0.5)θ) = αx(nT + (i+ 0.5)θ − T ′)

+ fin(w
in(nT + (i+ 0.5)θ), r(nT + (i+ 0.5)θ)), (9)

where

x(t) = a(t)sin(
π

2
|a(t)|2 + γ). (10)

As r(t) is constant during T seconds and because the input
mask win(t) is a periodic signal, it is equivalent to:

a(nT + (i+ 0.5)θ) = αx((n− 1)T + (i− 0.5)θ)

+ fin(w
in((i+ 0.5)θ), r(nT )). (11)

So it is equivalent to the digital ESN described by eq. (4)
and (5) where each neuron xi(n) is connected to the previous
one xi−1(n − 1), except for the neuron x0(n) which is now
connected to xN−1(n − 2). The required feedback gain α is
fixed by the couplers coefficients.

The neurons x(t) at the output of the loop are multiplied
with the output mask wout(t) using a third M-Z and a second
phase modulator to produce the signal y(t) (part (3) of Fig. 2).
This produces a signal defined by:

y(t) = x(t)wout(t). (12)

The output mask is a stepwise periodic signal of N steps. The
values of the output mask wout

i are coded in wout(t) when nT+
iθ < t ≤ nT + (i + 1)θ. An experimental implementation of
an analog output is provided in [22].

The summation of the weighted neuron states y(t) is done
in the second optical loop which acts as an optical integrator
(part (4) of Fig. 2) [21]. Its round trip duration is equal to θ.

The output mask must take into account the exponential
decay of the second loop impulse response h(t):

h(t) ∝ e−αOIt, (13)

where αOI is the feedback gain of the optical integrator. It is
fixed by the two optical couplers of the loop.

The output of the optical integrator is given by:

ŝ(t) =

∫ ∞

0

y(t− τ)h(τ)dτ. (14)

The signal ŝ(t) is sampled with a sampling period T . At time
nT , we have:

ŝ(nT ) =

∞∑
m=0

y(nT −mθ)h(mθ). (15)

This equation is equivalent to:

ŝ(nT ) =
N−1∑
i=0

wout(T − iθ)x̃i(nT ), (16)



Fig. 2. Structure of the optical implementation of the ESN where the dashed lined are electrical signals and the continuous lines are optical signals. The input
mask is implemented on part (1). The part (2) concerns the neural network itself. Part (3) and (4) concern the output mask. Part (2) and (4) are optical loop
with delay line. The input and output of each loop is defined with optical couplers C. The neurons will be processed sequentially. The real and imaginary part
of the equalized signal ŝ(t) can be recovered with a 90◦ optical hybrid.

where

x̃i(nT ) =

∞∑
j=0

x(nT − jT − iθ)h(jT + iθ). (17)

This expression is used to evaluate the weights wout(t) which
pre-compensate h(t). Let us note that the exponential decay of
h(t) must be slow enough so that all the neurons contribute
significantly to eq. (16).

Note that the optical loops are very sensitive to any kind of
perturbations (e.g. temperature variation, vibration) which can
modify their length and introduce phase noise. For experimental
implementations, a regulation process is thus required. For
example, one can adjust the length of the optical loops with
a piezoelectric stretcher [16].

In experimental implementations, the input and output masks
are generated with Arbitrary Waveform Generators [12] [14]
[16]. This limits the ESN speed because of the high bandwidth
required by these masks. An analog implementation of these
operations should be investigated to avoid this constraint and
fully exploit the capacities of analog ESNs.

V. NUMERICAL RESULTS

We consider a 16-QAM modulation. The imux and omux
filters have a 36 MHz bandwidth. The symbol rate is 30 MHz.
The shaping filter on the terrestrial receiver is an order 3
Butterworth filter with a cut-off frequency equal to the symbol
rate. The roll-off of the half-root Nyquist filer is fixed at 0.25.
The operating point of the power amplifier is defined by a
−2 dB OBO. For the channel, we use the model proposed
in [1]. The functions fPA(.) and gPA(.) are described with a
Ghorbani model [23]:

fPA(u(t)) =
q1|u(t)|q2

1 + q3|u(t)|q2
+ q4|u(t)|, (18)

gPA(u(t)) =
q5|u(t)|q6

1 + q7|u(t)|q6
, (19)

where the following values are used: q1 = 6, q2 = 1.3, q3 =
3.3, q4 = −0.4, q5 = 1.8, q6 = 1.8, q7 = 1.4.

A simulation of the analog ESN described in section 4 is
compared to two digital equalizers. Namely, the Volerra equal-
izer widely used in the state-of-the-art and the ESN described in
section 3. The latter is similar to the digital solutions proposed
in [8] [9].

The ESN and the Volterra filter are trained to recover a
constellation defined on the centroids of the received signal
as described in [8]. In that way, the equalizers will only
compensate for the interferences and not the compression of
the constellation. We consider that the channel is fixed and the
coefficients of the equalizers are known in advance.

The digital and analog ESNs have a feedback gain α of
0.35 and a bias γ of 0.5. Their input mask is composed of
random values with a uniform distribution between −0.2 and
0.2 for an input signal r(t) with a rms amplitude of 1. The
integration loop of the analog ESN has a feedback gain αOI
of 0.95. These values have been determined on the basis of
extensive simulations. Both ESNs are composed of 85 neurons.
The Volterra equalizer has a linear memory of size 10 and an
order 3 memory of size 5. It is therefore also composed by 85
coefficients [2]. We can see on Fig. 3 that the three solutions
offer similar performances.

In order to use low resolution ADCs at the output of the ana-
log equalizer, a pre-distortion of the transmitted constellation
is required. This improves considerably the alignment of the
centroids on the I and Q axis (see Fig. 4). As a consequence,
we can use a 2 bits ADC per axis at the cost of a slight BER
degradation (see Fig. 5). The slight degradation is due to the
fact that the alignment of the constellation points cannot be
made perfect at this high OBO.

With digital implementations, the ADCs are situated before
the equalizer. Fig. 5 shows that in this case the BER degradation
is more important with low resolution ADCs.

VI. CONCLUSION

We have shown by simulations that an analog implementation
of the ESN can be as efficient as a digital one. We have similar
performances as the digital Volterra equalizer used in the state-
of-the-art with identical number of adjustable coefficients. In
addition, we found that the analog equalizer is an interesting ap-
proach to reduce the number of quantization bits of the ADCs.
In parallel, several experimental implementations of the ESN
have been reported in the literature. This shows the viability
of this approach to compensate a non-linear communication
channel.

REFERENCES

[1] Digital video broadcasting (dvb) second generation: Framing structure,
channel coding and modulation systems for broadcasting, interactive



Fig. 3. Performance comparison between digital equalizers and analog ESN.
Each equalizer has 85 adjustable coefficients.

Fig. 4. Centroids of a received constellation with and without pre-distortion
on the transmitter side

Fig. 5. Performance comparison between digital and analog ESN with a pre-
distorted constellation when the number of quantization bits of the ADC is
reduced.

services, news gathering and other broad band satellite application, etsi
en 302 307 version 1.2.1. ETSI, April 2009.

[2] S. Benedetto. Principles of Digital Transmission: With Wireless
Applications. Kluwer, 1999.

[3] A. Gutierrez and W. E. Ryan. Performance of adaptative volterra
equalizers on nonlinear satellite channels. IEEE International Conference
on Communication, Vol.1, p.488-492, June 1995.

[4] G. Kechriotis, E. Zervas, and E.S. Manolakos. Using recurrent neu-
ral networks for adaptive communication channel equalization. IEEE
Transactions on Neural Networks, vol.5, issue 2, p.267-278, March 1994.

[5] H. Jaeger. The "echo state" approach to analysing and training recur-
rent neural networks. Fraunhofer Institute for Autonomous Intelligent
Systems, Technical report 148, 2001.

[6] M. Lukosevicius and H. Jaeger. Reservoir computing approaches to
reccurent neural network training. Computer Science Review 3, Elsevier,
pp 127-149, 2009.

[7] M. Lukosevicius, H. Jaeger, and B. Schrauwen. Reservoir computing
trends. KI - Künstliche Intelligenz, pp. 1-7, May 2012.

[8] M. Bauduin, A. Smerieri, S. Massar, and F. Horlin. Equalization of the
non-linear satellite communication channel with an echo state network.
IEEE 81st Vehicular Technology Conference, May 2015.

[9] M. Bauduin, S. Massar, and F. Horlin. Non-linear satellite channel
equalization based on a low complexity echo state network. 50th Annual
Conference on Information Sciences and Systems, 2016, Accepted.

[10] D. A. Sobel and R. W. Brodersen. A 1 gb/s mixed-signal baseband analog
front-end for a 60 ghz wireless receiver. IEEE Journal of Solid-State
Circuits, vol. 4, no. 4, p. 1281-1289, April 2009.

[11] X. Feng, G. He, and J. Ma. A new approach to reduce the resolution
requirement of the adc for high data rate wireless receivers. IEEE 10th
International Conference on Signal Processing, p. 1565 - 1568, October
2010.

[12] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Hael-
terman, and S. Massar. Optoelectronic reservoir computing. Scientific
Reports 2, 287, February 2012.

[13] L. Larger and al. Photonic information processing beyond turing: an
optoelectronic implementation of reservoir computing. Optics Express
20, pp. 3241-3249, 2012.

[14] F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar.
All-optical reservoir computing. Optics Express 20, pp. 22783-22795,
2012.

[15] D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer. Parallel photonic
information processing at gigabyte per second data rates using transient
state. Nature Communications 4, 1364, 2013.

[16] Q. Vinckier, F. Duport, A. Smerieri, K. Vandoorne, P. Bienstman,
M. Haelterman, and S. Massar. High-performance photonic reservoir
computer based on a coherently driven passive cavity. Optica, vol. 2, no.
5, p. 438-446, May 2015.

[17] K. Hassan, T. S. Rappaport, and J. G. Andrews. Analog equalization
for low power 60 ghz receivers in realistic multipath channels. IEEE
Global Telecommunications Conference (GLOBECOM 2010), pp. 1-5,
December 2010.

[18] R. De Gaudenzi and M. Luise. Analysis and design of an all-digital
demodulator for trellis coded 16-QAM transmission over a nonlinear
satellite channel. IEEE Transaction on Communication, Vol. 43, No.
2, pp 659-668, February 1995.

[19] P. Tino A. Rodan. Minimum complexity echo state network. IEEE
Transactions On Neural Networks, Vol 22, Issue 1, pp 131-144, January
2011.

[20] R. Labahn T. Strauss, W. Wustlich. Design strategies for weight matrices
of echo state networks. Neural Computation, MIT Press, vol. 24, issue
12, pp. 3246-3276, January 2012.

[21] Q. Vinckier, M. Haelterman, and S. Massar. Information processing
using an autonomous all-photonic reservoir computer based on coherently
driven passive cavities. Frontiers in Optics. Optical Society of America,
October 2015.

[22] F. Duport, A. Smerieri, A. Akrout, M. Haelterman, and S. Massar. Analog
photonic reservoir computer. Scientific Reports, 6, 22381, 2016.

[23] A. Ghorbani and M. Sheikhan. The effect of solid state power am-
plifiers (sspas) nonlinearities on mpsk and m-qam signal transmission.
Sixth International Conference on Digital Processing of Signals in
Communications, 193 - 197, September 1991.


