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Abstract

Since the early fifties and the pioneer works of Jost and Pais in 1951 and
Bargmann in 1952, the determination of upper and lower limits on the number
of bound states of a given potential in the framework of non-relativistic quantum
mechanics (Schrödinger equation) and first-quantized mechanics with relativistic
kinematics (Klein-Gordon or spinless Salpeter equations), has never ceased to en-
gage the attention of theoretical and mathematical physicists. We propose in this
article to review some of the results obtained since these pioneer works and to
present some very recent findings as well as some new results. In particular, we
will show that very sharp upper and lower limits, where the leading term is the
semiclassical estimate of the number of bound states, can be obtained for mono-
tonically increasing central potential with vanishing angular momentum. We will
also present some generalizations of these results applicable to non-monotonically
increasing potential and non-vanishing angular momentum. These generalizations
allow us to obtain upper and lower limits on the total number of bound states of
central potentials. These results, initially obtained in three dimensions, are also
modified to be applicable in spaces with one and two dimensions. While in one or
two dimensions, arbitrary weak potentials always possess at least one bound state,
in three dimensions a critical value of the coupling constant, which must be reached
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to allow existence of bound states, exist. Consequently, the potential must be attrac-
tive enough to possess bound states. We present necessary and sufficient condition
for the existence of bound states for central potentials in three dimensions.

1.1 Introduction and historical survey

The determination in the framework of non-relativistic quantum mechanics of nec-
essary and sufficient conditions for the existence of bound states in a given poten-
tial and, more generally, of upper and lower limits on the number of bound states
yielded by such a potential, has engaged the attention of theoretical and mathe-
matical physicists since the early fifties, and, notwithstanding the fact that, with
modern computers, the numerical evaluation of the number of bound states for a
given potential is an easy task, it continues to be actively pursued: see for instance
[1-34] as well as the surveys of (some of) these results in [35-37]. In this article, we
provide new or recent upper and lower limits on the number of bound states pos-
sessed by central potentials in one, two and three dimensions and we compare them,
for some test potentials, with the exact results and with previously known upper
and lower limits. These comparisons indicate that some of these new (or recently
found) limits are generally more stringent than hitherto known results and indeed
remarkably cogent, especially for potentials possessing many bound states. For dis-
cussion about non-central potentials we refer to the excellent review of Blanchard
and Stubbe [37]. We also present necessary and sufficient condition for the existence
of bound states for central potentials in three dimensions.

Let us now review most of the previous findings, focusing on (what we think
to be) the most relevant. Hereafter, except in Sections 1.2.2 and 1.3.2, we use the
standard non-relativistic quantum mechanical units such that ~2/(2m) = 1, which
entails that the potential V (r) has the dimension of an inverse square length. We also
assume throughout that the potential V (r) is less singular than the inverse square
radius at the origin and that it vanishes asymptotically faster than the inverse square
radius, say (for some positive ε)

lim
r→0

[
r2−ε V (r)

]
= 0, (1.1a)

lim
r→∞

[
r2+ε V (r)

]
= 0. (1.1b)

Note that these assumptions entail that the square root of the (modulus of the)
potential is integrable both at the origin and at infinity.

We begin this review with results applicable to central potentials in three di-
mensions (some results are however more general).

Bargmann in 1952 [2] and Schwinger in 1961 [4] have obtained the following
upper limit on the number of `-wave bound states possessed by a central potential
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in three dimensions:
N` <

1
2`+ 1

I, (1.2a)

where I is defined by

I =
∫ ∞

0
dr r V −(r). (1.2b)

The quantity V −(r) is the absolute value of the negative part of the potential:
V −(r) = −V (r)θ[−V (r)], where θ(x) is the usual step function, θ(x) = 1 if x ≥ 0,
θ(x) = 0 if x < 0. This result is generally referred to as the Bargmann-Schwinger
bound. The upper limit (1.2) was obtained after Jost and Pais in 1951 [1] had shown
that the fact that the right-hand side of (1.2) exceed unity is a necessary condition for
the existence of bound states (namely, the special case of the Bargmann-Schwinger
limit with N` = 1). This result (1.2) infer an upper limit on the maximal value,
L, of the angular momentum ` for which bound states do exist, entailing that for
` = L+ 1 the potential does not support any bound states. This upper limit takes
the form

L ≤ L+
BS =

{{
1
2

(I − 1)
}}

, (1.3)

where double brace means integer part.
In general, when a bound on N` like (1.2) is known, it is always possible to infer

a limit on L, like (1.3). From these two limits, it is then possible to derive a limit
on the total number of bound states. Clearly if N−

` respectively N+
` provide lower,

respectively upper, limits on the number N` of `-wave bound states, and likewise
L−, respectively L+, provide lower, respectively upper, limits on L, it is plain that
the quantities

N± = N
(
L±) , (1.4)

where

N (L) =
L∑

`=0

(2`+ 1) N±
` , (1.5)

provide lower respectively upper limits on the total number N of bound states
possessed by the potential V (r). The upper limits (1.2) and (1.3) lead then to the
following upper limit on N :

N <
1
2
I (I + 1). (1.6)

An important property that must ideally satisfy a limit on the number of bound
states is the property to be “best possible”. This means that it is possible to find a
potential that saturate the limit. The Bargmann-Schwinger upper limit is saturate
by the potential

V (r) = −
N∑̀

n=1

αn δ(r− βn), (1.7)
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with an appropriate assignment of the 2N` constants αn and βn. But while the fact
that the formula providing a limit has the property to be best possible entails that
there can be no hope to make it more stringent by just modifying some constant
appearing in it, it does by no means imply that such a bound provides a stringent
limitation for all potentials. Actually, the upper limits (1.2), (1.3) and (1.6) yield
poor results for strong potential possessing many bound states. Indeed, an immedi-
ate hunch on the accuracy of these limits for strong potentials may be obtained via
the introduction of a (dimensionless, positive) “coupling constant” g by setting

V (r) = g2 v(r), (1.8)

where v(r) is assumed to be independent of g, and by recalling that, at large g, N`

grows proportionally to g [35],

N` ∼ g as g → ∞, (1.9)

indeed Chadan has shown in 1968 that [14]

N` ≈
1
π

∫ ∞

0
dr
[
V −(r)

]1/2 as g → ∞. (1.10)

Here, and always below, we denote with the symbols ≈ respectively ∼ asymptotic
equality respectively proportionality. The analogous asymptotic behaviors of L and
of N read

L ∼ g, as g → ∞, (1.11)

indeed Simon in 1969 has obtained that [15]

L ≈ max
0≤r<∞

{
r
[
V −(r)

]1/2
}

as g → ∞, (1.12)

and
N ∼ g3 as g → ∞, (1.13)

indeed as shown by Martin in 1972 [17]

N ≈ 2
3π

∫ ∞

0

dr r2
[
V −(r)

]3/2 as g→ ∞. (1.14)

Actually, Martin has derived the exact asymptotic expression (as g diverges) of the
total number of bound states in n dimensions

N ≈ 1
2nπn/2Γ

(
n
2 + 1

)
∫
dnx

[
V −(x)

]n/2 as g → ∞. (1.15)

The asymptotic behavior (1.9) infers that the Bargmann-Schwinger upper bound
behaves like g2 instead of g which entails that the upper limits on L and N have
also the incorrect behavior as g goes to infinity.
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In 1961, Schwinger has recovered the Bargmann result with the help of a powerful
method: the so-called Birman-Schwinger method [4] (see Ref. [3] for the article of
Birman). This method is very general and is used in this article to obtain results
in non-relativistic as well as in semi-relativistic quantum mechanics. We give the
main line of this method in the Appendice 1.3.2. In his article, Schwinger has also
obtained with the help of this method an upper limit, different from the limit (1.6),
on the total number of bound states of an arbitrary potential:

N <
1

(4π)2

∫
d~r1 d~r2

V −(~r1)V −(~r2)
|~r1 − ~r2|2

, (1.16)

implying, for central potentials,

N <
1
2

∫ ∞

0
dr1 r1 V

−(r1)
∫ ∞

0
dr2 r2V

−(r2) log
∣∣∣∣
r1 + r2
r1 − r2

∣∣∣∣ . (1.17)

Here also the upper limit obtained by Schwinger does not possess the correct de-
pendence on the coupling constant g.

The first upper and lower limits featuring the correct behavior as g goes to
infinity was obtained by Calogero in 1965 [6]. The upper limit reads

N0 <
2
π
S, (1.18a)

with
S =

∫ ∞

0

dr [V −(r)]1/2, (1.18b)

where N0 is the number of S-wave (` = 0) bound states. This result is only
valid provided the force associated with the potential V (r) is nowhere repulsive,
namely the potential V (r) is a monotonically non-decreasing function of the radius
r, dV (r)/dr > 0, entailing of course that the potential is everywhere negative. Hence
for strongly attractive potentials featuring many bound states the limit (1.18) tends
to overestimate N0 by a factor 2, see (1.10). The main merit of the limits found
very recently and reported in the Section 1.2.1 is to remedy this defect (see formulas
(1.50) and (1.52) below). The limit (1.18) is nevertheless best possible and satu-
rated by a square-well potential. Some modifications of the inequality (1.18) and of
the condition dV (r)/dr > 0 on the shape of the potential have been introduced by
Chadan et al. in 1996 [27]. These modifications lead to less restrictive inequalities
but more flexible conditions on the shape of the potential, allowing for some oscil-
lations. The upper limit (1.18) was also uncovered the same year (1965) by Cohn
[7]. This upper limit is now called the Calogero-Cohn bound.

The lower limit found by Calogero in 1965 [6] featuring the correct behavior as
g diverges, see (1.9), has the following expression

N` >
1
π

max
0≤a<∞

{∫ ∞

0
dr min

[
a−1

(r
a

)2`
,−a V (r)

(r
a

)−2`
]}

− 1
2
, (1.19)
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the notation min [x, y] signifies x if x ≤ y, y if y ≤ x. Let us now assume that the
equation

a−1
(r
a

)2`
= −a V (r)

(r
a

)−2`
(1.20)

admits one and only one solution, say r = R(a) (as for monotonic potentials), so
that the lower limit (1.19) can be rewritten as follows:

N` >
1
π

max
0≤a<∞

{∫ R(a)

0
dr a−1

(r
a

)2`
−
∫ ∞

R(a)
dr a V (r)

(r
a

)−2`
}

− 1
2
, (1.21)

where of course r = R(a) is the solution of (1.20). It is then easy, using (1.20),
to calculate the maximum in the right-hand side of this inequality and to obtain
thereby the following lower limit:

N` >
2
π

ρ |V (ρ)|1/2

2`+ 1
− 1

2
, (1.22a)

with the radius ρ defined to be the solution of the following equation:

ρ V (ρ) = (2`+ 1)
∫ ∞

ρ
dr
(ρ
r

)2`
V (r). (1.22b)

This lower limit presents the correct dependence on g since clearly ρ does not depend
on g. It is best possible and the potential that saturates it can be found in the Refs.
[6, 35]. Note that this lower limit has been improved in Ref. [31], but we do not
report this improvement here.

Calogero also found in 1965 two sufficient conditions for the existence of at least
one bound state with angular momentum ` (and therefore also at least one bound
state for every value of the angular momentum less than `) [8, 9]

∫ a

0
dr r |V (r)| (r/a)2`+1 +

∫ ∞

a
dr r |V (r)| (r/a)−(2`+1) > 2`+ 1, (1.23)

and
a

∫ ∞

0

dr |V (r)|
[
(r/a)2` + (r/a)−2` a2|V (r)|

]−1
> 1. (1.24)

Both these conditions apply provided the potential is nowhere positive; in both of
them a is an arbitrary positive constant, and of course the most stringent conditions
obtain by minimizing the left-hand sides of (1.23) and (1.24) over all positive values
of a. These conditions are also best possible and the potentials that saturates them
can be found in the original publications.

It is interesting to note that the result (1.23) is actually a byproduct of a more
general sufficient condition for the existence of `-wave bound state also found by
Calogero in 1965 [8] and which reads

∫ ∞

0
dr |V (r)| r−2` g2

` (r) > g`(∞)(2`+ 1), (1.25)
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with g`(r) restricted by the conditions

0 ≤ g`(r) ≤ r2`+1, (1.26a)

lim
r→0

[
r2`+3+η/g`(r)

]
= 0, (1.26b)

dg`(r)
dr

≥ 0, (1.26c)

where η is defined by the behavior of the potential at the origin through

V (r) →
r→0

const × rη, η > −2. (1.27)

Indeed, the sufficient condition (1.23) is obtained from the general relation (1.25)
by choosing

g`(r) = r2`+1 for r < a

= a2`+1 for r ≥ a. (1.28)

The next interesting result is due to Glaser et al. in 1976 [19] and reads

N` < (2`+ 1)1−2pCp

∫ ∞

0

dr

r

[
r2 V −(r)

]p (1.29a)

with

Cp =
(p− 1)p−1 Γ(2p)

pp Γ2(p)
, (1.29b)

and the restriction p ≥ 1. This upper limit is always characterized by an unsatisfac-
tory dependence on g as g diverges: the right-hand side of (1.29a) is proportional
to g2p with p ≥ 1 rather than to g, hence it always yields a result far from the
exact value for strong potentials possessing many bound states. Nevertheless this
inequality provides a very accurate necessary condition for the existence of bound
by setting N` = 1 in (1.29a). Indeed, as we show in the Section 1.3.1, the upper
limit (1.29) with N` = 1 yields a precise lower bound on the critical value of the
coupling constant for which a first bound state appears.

In 1976, Lieb has obtained an upper limit on the total number of bound states
applicable to arbitrary potential in three dimensions [18]:

N < 0.116
∫
d~r [V −(~r )]3/2, (1.30)

(for the origin of the numerical coefficient on the right-hand side of this formula, we
refer to the original paper [18]). For central potentials it reads as follows:

N < 1.458
∫ ∞

0
dr r2 [V −(r)]3/2. (1.31)
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This upper limit on N has the advantage of simplicity but the numerical prefactor is
too large (almost 7 times larger than the semi-classical prefactor (1.14)) and better
results for central potentials can be obtained with other approaches (see tests in
Section 1.2.1). Similar results, but with larger values of the prefactor, has been also
obtained by Rozenblum in 1972 [16] and Cwickel in 1977 [21].

In 1977, Martin has found an upper limit on the number of S-wave bound states
which features the correct power behavior as g diverges

N0 <

[∫ ∞

0

dr r2 V −(r)
∫ ∞

0

dr V −(r)
]1/4

. (1.32)

This limit is applicable to arbitrary potential for which the integrals converge. This
limit can thus be viewed as an upper limit on the number of `-wave bound states
provided the potential used is the negative part of the effective potential, V (r) +
`(`+ 1)/r2.

The Calogero-Cohn upper limit (1.18) is obviously also true for ` > 0 but not
very stringent. In 1995, Chadan et al. has obtained a generalization of this upper
limit with an explicit dependence on the angular momentum [25]

N` < 1 +
2
π
S −

[
1 +

4
π2
`(`+ 1)

]1/2

, (1.33)

where S is defined by (1.18b). A less restrictive but neater version of this inequality
reads

N` < 1 +
2
π
S − 1

π
(2`+ 1). (1.34)

¿From this last relation (1.34) an upper limit on the maximal value, L, of the angular
momentum ` for which bound states do exist can be obtained

L ≤ L+
CMS =

{{
S − 1

2

}}
. (1.35)

As state above, see (1.5), we can then obtain an upper limit on the total number of
bound states with the relations (1.34) and (1.35):

N <
2
3π

[
S3 +

3π
2
S2 +

(
3π
2

− 1
4

)
S +

3π
8

]
<

2
3π

(
S +

π

2

)3
. (1.36)

In 1995, Chadan et al., have (almost) “filled the gap” between the Calogero-
Cohn and the Bargmann-Schwinger upper limits with the following upper bound
[26]

N` < (2`+ 1)1−2p C̃p

∫ ∞

0

dr

r
|r2V (r)|p, (1.37a)

with
C̃p = p(1− p)p−1, (1.37b)
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with the restriction 1/2 ≤ p < 1, and it is valid provided the potential is nowhere
positive and moreover satisfies for all values of r, 0 ≤ r <∞, the relation

d

dr

[
r1−2p |V (r)|1−p

]
≤ 0. (1.38)

For p = 1/2, the limit (1.37) is equivalent to the Calogero-Cohn upper limit but
with a larger prefactor while for p ↑ 1 we recover the Bargmann-Schwinger upper
limit.

Contrary to results obtained for spaces with three dimensions and just reviewed
above, results in one and two dimensions are scarcer, nevertheless some nice findings
exist. One of the first limit of this kind have been obtained by Newton in 1962 [5]
(see also Ref. [38]). This is an upper limit applicable to central potentials in two
dimensions with m = 0 (m is the angular momentum in two dimensions) and reads

Nm=0 < 1 +
1
I

∫ ∞

0

dr

∫ r

0

dr′ rr′ V −(r)V−(r′) ln(r/r′), (1.39)

where I is defined by (1.2b). This upper limit does not feature the correct asymp-
totic behavior as g diverges since it behaves like g2 instead of g.

In 1977, Klauss [20] and later, in 1983, Newton [24] have found the following
upper limit on the number of bound states in one dimension

N < 1 +
[∫ ∞

−∞
dx

∫ ∞

−∞
dy xy V −(x)V −(y) |x− y|

]{∫ ∞

−∞
dz V −(z)

}−1

. (1.40)

This upper limit, as the previous one, will not be very stringent for strong potentials
due to its bad asymptotic behavior.

In 1978, Glaser et al. have obtained a lower bound on the total number of bound
states applicable to central potential in two dimensions:

N > −1
4

∫ ∞

0

dr rV (r). (1.41)

Note that this is not the negative part of the potential that appears in this inequality
but the potential itself.

The problem of finding limits on the number of bound states in space with one
and two dimensions has recently be revisited by Chadan et al. [29]. The authors
have obtained interesting new results. For one spatial dimension the limits read

N < 1 +
∫ +∞

−∞
dx |x|V−(x), (1.42)

N < 1 +
√

2
[∫ +∞

−∞
dx x2V −(x)

∫ +∞

−∞
dx V −(x)

]1/4

. (1.43)



10 Fabian Brau

For two spatial dimensions with central potentials the limits are

Nm=0 < 1 +
∫ ∞

0
dr r |ln(r/R)|V −(r), (1.44)

Nm=0 < 1 +
√

2
[∫ ∞

0
dr r [ln(r/R)]2 V −(r)

∫ ∞

0
dr r V −(r)

]1/4

, (1.45)

where R is arbitrary and chosen to minimize the result. The limits (1.43) and (1.45)
present the correct power behavior as g diverges.

The limits for the one-dimensional case (1.42) and (1.43) are simply obtained
from previous limits derived in three dimensions with ` = 0 (see (1.2) and (1.32)).
This correspondence is simple to obtain. The one-dimensional zero-energy Schrödinger
equation reads (

− d2

dx2
+ V (x)

)
ψ(x) = 0, x ∈ (−∞,∞), (1.46)

with ψ(−∞) = 0. The nodal theorem allows to write that if V (x) has N bound
states, then the wave function ψ(x) has N nodes xp > −∞, p = 1, . . . , N . Let k
such that xk < 0 < xk+1. Then the three-dimensional potential, V1(r) = V (x) with
r = x − xk+1, has N − k − 1 S-wave bound states. Similarly, V2(r) = V (x) with
r = −(x − xk+1), has k S-wave bound states. Hence any three-dimensional limit
gives a one-dimensional limit. We apply below this method to derived stringent
upper and lower limit on the number of bound states in one dimension.

The limits for the two-dimensional case (1.44) and (1.45) are obtained with the
help of the following change of variables used in any one-dimensional result:

x = ln(r/R), 0 ≤ r <∞
V (x) = r2W (r), (1.47)
ψ(x) = φ(r).

Indeed, with this change of variable, the one-dimensional zero-energy Schrödinger
equation (1.5) becomes

(
− d2

dr2
− 1
r

d

dr
+W (r)

)
φ(r) = 0, (1.48)

which is the radial Schrödinger equation in two dimensions with a vanishing angular
momentum m = 0. The change of variables (1.47) apply to the limits (1.42) and
(1.43) leads to the limits (1.44) and (1.45).

Chadan et al. also succeed to find an upper limit on the total number of bound
states applicable to central potential in two dimensions [29]:

N < 1 +
∫ ∞

0
dr r |ln(r/R)|V −(r) +

2√
3

∫ ∞

0
dr r V −(r). (1.49)
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1.2 Limits on the number of bound states

In this Section, we give new or recently obtained lower and upper limits on the
number of bound states in a central potential. These limits are applicable for one,
two and three spatial dimensions. The new limits in one and two dimensions are
derived from the results obtained in three dimensions using the method proposed
by Chadan et al. [29] and explained in Section 1.1. Non-relativistic limits are given
in the first part of this Section while limits applicable to semi-relativistic equation
(spinless Salpeter and Klein-Gordon equations) are reported in the second part.

1.2.1 Non-relativistic quantum mechanics

Three dimensions

Recently, upper and lower limits on the number of S-wave bound states featuring
the correct asymptotic dependence (see (1.10)) were obtained for monotonically
increasing potentials [30] (V −(r) = −V (r)). They read

N0 <
S
π

+
1
4π

ln
[
V (p)
V (q)

]
+

1
2
, (1.50a)

N0 >
S
π
− 1

4π
ln
[
V (p)
V (q)

]
− 3

2
, (1.50b)

where S is defined by (1.18b) and with the two radii p and q defined as the solutions
of the following equations:

∫ p

0
dr [−V (r)]1/2 =

π

2
and

∫ ∞

q
dr [−V (r)]1/2 =

π

2
. (1.50c)

For regular potentials p = 0 can be chosen since |V (p)| ≤ |V (0)|. In this case, one
can show that the constant term in the lower limit (1.50b) can be improved and is
equal to −1.

An important difficulty for obtaining analytical formula from (1.50) is the cal-
culation of p and q since primitive of the square root of the potential is needed. A
first possibility is simply to use in (1.50c) a potential Ṽ (r) such as |Ṽ (r)| ≥ |V (r)|
for all value of r and for which the integrals in (1.50c) have analytical expression. In
this way one get p̃ ≤ p and q ≤ q̃ which can be used in the expression of the limits
(1.50a) and (1.50b). This method is illustrated below with the Morse potential (see
Section 1.2.1).

Another possibility, useful only for regular potential for which V (0) can be used
instead of V (p), is to take advantage of the following lower bound on |V (q)|:

|V (q)| ≥
[

π

2W (α)

] α
α−1

, (1.51a)
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with

W (α) =

[∫ ∞

0
dr

|V (r)|α/2

[V ′(r)]α−1

] 1
α

. (1.51b)

The interest of the expression (1.51) is that only integration of power of the potential
between zero and infinity are involved. The quantity W (α) need of course be finite.
If the potential behaves for large r as an exponential, we have the restriction 1 <
α < 2. If the potential behaves for large r as r−δ (δ > 2), we have the restriction
1 < α < 2δ/(2 + δ). The proof of the lower limit (1.51) is given in Appendice 1.3.2.

The limits (1.50) have been generalized to be applicable to non-monotically
increasing potentials [31]. In the original article, they were given for potentials
possessing only one minimum (for example, Lennard-Jones or Morse potentials).
They read

N0 <
S
π

+
1
2π

ln
[
V −(rmin)

M

]
+ 1, (1.52a)

N0 >
S
π
− 1

2π
ln
[
V −(rmin)

M

]
− 3

2
, (1.52b)

where
M = min

[
V −(p), V−(q)

]
(1.52c)

with the two radii p and q defined as the solutions of the following equations:
∫ p

0
dr
[
V −(r)

]1/2 =
π

2
and

∫ ∞

q
dr
[
V −(r)

]1/2 =
π

2
, (1.52d)

and with the additional condition (which might rule out the applicability of these
limits to potentials possessing very few bound states, but which is certainly satisfied
by potentials that are sufficiently strong to possess several bound states)

p ≤ rmin ≤ q. (1.52e)

The radius rmin is the position of the minimal value of the potential. For a regular
monotonic potential we have rmin = 0, while rmin should be taken to be equal to p
for a singular monotonic potential and we recover the limits (1.50) (except for the
constant in (1.50a)). For a non-monotonic potential, rmin is, of course, the position
where the derivative of potential vanishes.

Let us recall that a simple upper limit L+ on the largest value L of ` for which
the potential V (r) possesses bound states (entailing of course that for ` > L+ the
potential V (r) certainly does not possess any `-wave bound state) reads

L ≤ L+ =
{{

σ − 1
2

}}
, (1.53a)

with
σ = max[r

√
V −(r)], (1.53b)
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and where the double brace means integer part. [Indeed, it is an immediate con-
sequence – via a standard comparison argument – of the well-known fact that
the solution u(r) characterized by the boundary condition u(0) = 0 of the ODE
r2 u′′(r)+ c u(r) = 0 features a zero in 0 < r <∞ only if the real constant c exceeds
1
4 , c >

1
4 ].

It appears that the upper limit L+ (1.53) is very efficient (see for example tests
performed in Ref. [31]). This quantity can thus be used in the formula (1.5) to
obtain upper limit an the total number of bound states. In particular we can used
L+ with the upper bound on N0 (1.52) to obtain:

N <
1
4π

(2σ + 1)2
{
S +

1
2

log
[
V −(rmin)

M

]
+ π

}
, (1.54)

with M defined by (1.52c), σ defined by (1.53b), S defined by (1.18b) and V −(rmin)
the minimal value of (the negative part of) the potential. For a monotonic potential
this upper limit takes the simpler form

N <
1
4π

(2σ + 1)2
{
S +

1
4

log
[
V (p)
V (q)

]
+
π

2

}
, (1.55)

where p and q are defined by (1.50c). It is remarkable that, in spite of the drastic
approximation N` ≤ N0 used to get these two limits, they turn out, in all the tests
performed in Ref. [31] and below, to be more stringent than all previously known
results.

The quantity L+ can also be used with other upper bounds on N` to improve
the upper limit on the total number of bound states. We discuss this possibility
below during the tests performed with an exponential potential.

The limits (1.50) and (1.52) are close to semi-classical expressions except for
the logarithmic term. Actually, if the potential is everywhere negative and satisfies
a given condition, the limits (1.50) and (1.52) can be written under semi-classical
expressions. Indeed, let H(r) be defined by the relation

H(r) =
5
4

(
V ′(r)
V (r)

)2

− V ′′(r)
V (r)

, (1.56)

where appended primes signify of course differentiation with respect to the radius
r. The limits (1.50) and (1.52) can then be written in the following form provided
H(r) has a given sign:

N0 >
S
π
− 1 if H(r) ≥ 0 for 0 ≤ r <∞, (1.57a)

N0 <
S
π

if H(r) ≤ 0 for 0 ≤ r <∞. (1.57b)
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This obviously means that, for a given potential, the simplification (1.57) of the
limits (1.50) and (1.52) eventually applies either for the lower bound either for the
upper bound (but not for both limits).

Several other new limits have been obtained in the Ref. [31], we just report the
following lower limit

N` > ν − `

π
ln
(
q

p

)
, (1.58a)

where

ν = S − 1
4π

ln

{
[V −(rmin)]

2

V −(p)V −(q)

}
− 3

2
. (1.58b)

This formula is written for a non-monotonically increasing potential with only one
minimum. This lower limit on N` provides a lower limit, L−, on L, the maximal
value of the angular momentum for which a bound states do exist:

L ≥ L− =
{{ν

λ

}}
(1.59a)

with

λ =
1
π

ln
(
q

p

)
(1.59b)

¿From this lower limit on the number of `-wave bound states and the lower limit on
L, we can obtain a lower limit on the total number of bound states (see (1.5))

N >
ν

6λ2
(2ν + λ)(ν + λ). (1.60)

Up to our knowledge, it was the first time that a lower limit on the total number of
bound state in three dimensions was obtained.

To prove the accuracy of the limits reported in this Section, we test them with
two typical potentials: the exponential potential (hereafter referred to as E)

V (r) = −g2R−2 exp
(
− r

R

)
, (1.61)

and the Morse potential [39] (hereafter referred to as M)

V (r) = −g2R−2
{
2 exp

[
−
( r
R

− α
)]

− exp
[
−2
( r
R

− α
)]}

. (1.62)

The first test is performed with the E potential (1.61). In this case the exact
number of bound states for ` = 0 coincides with the number of zeros of the zeroth-
order Bessel function J0(x) in the interval 0 < x ≤ 2g (see, for example, Ref. [40],
p. 196). The exact number N`>0 of bound states for this potential is computed
numerically.

For ` = 0, the upper limit (1.50a) reads

N0 <
2
π
g +

1
2π

ln
(

4
π
g

)
+

1
2
. (1.63)
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For this potential, the lower limit (1.50b) can be improved since the function H(r)
defined by (1.56) is always positive. Thus we have

N0 >
2
π
g − 1. (1.64)

To obtain information for ` > 0 we consider the limits (1.52) with the effective
potential V`,eff = V (r) + `(`+ 1)/r2, they read:

N` <
1
π
F (g, `; x−, x+) +

1
2π

log

∣∣∣∣∣
V min

`,eff

M

∣∣∣∣∣+ 1, (1.65a)

N` >
1
π
F (g, `; x−, x+) − 1

2π
log

∣∣∣∣∣
V min

`,eff

M

∣∣∣∣∣−
3
2
, (1.65b)

where

F (g, `; a, b) =
∫ b

a

dx

x

√
g2x2 exp(−x) − `(`+ 1), (1.65c)

and
M = min [|V`,eff(p)|, |V`,eff(q)|] (1.65d)

where p and q are solutions of

F (g, `; x−, p/R) =
π

2
, F (g, `; q/R, x+) =

π

2
, (1.65e)

where x± are the two solutions of

`(`+ 1) = g2 x2
± exp(−x±), (1.65f)

and where V min
`,eff is the minimal value of the effective potential.

The lower limit (1.58) has a much simpler expression:

N` >
2
π
g − 1

2π
ln
(

4
π
g

)
− 3

2
− `

π
ln
[

lnx
ln(1− x)

]
, (1.66)

with x = π/(4g).
Results for previously known limits are listed below. The Bargmann-Schwinger

upper limit (1.2) takes the simple form

N` <
g2

2`+ 1
. (1.67)

The Calogero-Cohn upper limit (1.18) is given by

N0 <
4
π
g. (1.68)
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The upper limit (1.33) found by Chadan et al. read

N` <
4g
π

+ 1−
√

1 +
4 ` (`+ 1)

π2
. (1.69)

The upper limit (1.32) found by Martin read for ` = 0

N0 < 21/4 g. (1.70)

But this limit take a more complicated form for ` > 0:

N` < (AB)1/4 (1.71a)

where A and B are given by

A = g2
[
exp(−x−)(x2

− + 2x− + 2)− exp(−x+)(x2
+ + 2x+ + 2)

]

− `(`+ 1)(x+ − x−), (1.71b)

B = g2 [exp(−x−) − exp(−x+)] − `(`+ 1)
(

1
x−

− 1
x+

)
, (1.71c)

with x− and x+ given by (1.65f). The upper limit (1.29) obtained by Glaser et al.
takes the form

N` ≤ g2p(2`+ 1)(1−2p) CpΓ(2p)
p2p

, (1.72)

with Cp defined by (1.29b). The Calogero lower bound (1.22) is only cogent for
` = 0 (see below) and reads

N0 >
2g
π
√
e
− 1

2
, (1.73)

A comparison between exact results for the S-wave (` = 0) case, recent limits
and previously known results is reported in the Fig 1.1. This shows clearly that the
limits (1.63) and (1.64) are very stringent and seem difficult to improve significantly.

Comparisons between various limits on N`>0 and exact results are presented in
Table 1.1. We refer to the name of the limits given in this Table for the discussion.
The BS limit gives poor results when g becomes large but becomes slightly better
as ` grows. The CMS gives better restrictions when ` is small but behaves like the
BS limit when ` grows. The M limit overestimates the number of bound states by a
factor 2 when ` is small; it is no better for larger `, yet better than the BS and CMS
limits. The GGMT limit (with, in each case, the optimized value of the parameter
p, see (1.29)) gives similar results to those yielded by the BS limit when ` is small
and becomes better and equivalent to the M limit for larger values of `. The results
obtained with the Chadan et al. (1.37) limit are uninteresting hence not reported:
indeed, the values of p which minimize the value of the limit are either p = 1/2 for
small values of ` (in which case this limit is analogous but less stringent than the
Calogero-Cohn limit, see (1.18)), or p = 1 for larger values of ` (and this yields the
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Figure 1.1: Comparison between the exact number of S-wave (` = 0) bound states
for the E potential (1.61) (ladder curve), the limits (1.63) (short dash) and (1.64)
(solid), the Calogero (1.73) (dash dot) lower limits, the Bargmann-Schwinger (1.67)
(dash dot dot), the Calogero-Cohn (1.68) (dash) and Martin (1.70) (dot) upper
limits.
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Table 1.1: Comparison for the E potential (1.61) between the exact number N`>0 of
bound states (column Ex), various upper and lower limits on N` previously known
(Bargmann-Schwinger (1.67): BS; Chadan et al. (1.69): CMS; Martin (1.71): M;
Glaser et al. (1.72): GGMT) and new upper and lower limits on N` (upper limit
(1.65a): Nup; lower limit (1.65b): N (1)

lo ; lower limit (1.66): N (2)
lo ), for several values

of g and `.

g ` N
(2)
lo N

(1)
lo Ex Nup BS CMS M GGMT

8 1 3 3 4 5 21 9 8 21
3 1 1 2 3 9 8 5 6

13 2 4 5 7 8 33 15 13 31
6 0 2 3 4 13 13 7 7

18 3 6 7 9 10 46 21 18 43
9 0 2 4 4 17 17 9 8

24 4 8 10 12 13 64 28 24 60
12 0 4 5 6 23 23 13 11

29 5 9 13 15 16 76 34 29 71
15 0 4 6 7 27 28 15 13

35 6 11 16 18 19 94 41 35 88
18 0 6 7 8 33 33 18 16

40 7 12 18 20 21 106 47 40 100
21 0 6 8 9 37 38 20 18
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BS limit). The new limitsNup and N (1)
lo clearly yield the most stringent results. The

N
(2)
lo lower limit works reasonably well for small values of ` but becomes poor for

higher values of the angular momentum. Finally, we note that the results obtained
with the Calogero lower limit (1.22) for ` > 0 are not reported because they are
very poor. This limit gives N` ≥ 1 for small value of ` and N` ≥ 0 for large value of
`. This defect comes from the presence of the factor 1/(2`+ 1) which for instance
implies that this lower bound becomes three times smaller when ` goes from 0 to 1
while the actual number of bound states N` decreases generally only by one or two
units.

We now test the limits on the total number of bound states N with the E
potential. We will not test the Schwinger limit (1.16) due to its bad behavior at
large g. We do however test the Bargmann-Schwinger limit (1.6) which yields the
same incorrect behavior but is simpler to compute.

The upper limit (1.55) takes the simple form

N <
1
8

(
4g
e

+ 1
)2 (4g

π
+

1
π

log
4g
π

+ 1
)
. (1.74)

The lower limit (1.60) reads

N >
ν

6

(
2
(
L−)2 + 7L− + 6

)
, (1.75a)

with L− and ν given by
L− =

{{ν
λ

}}
, (1.75b)

with

ν =
2g
π

− 1
2π

log
[
1 − x

x

]
− 3

2
, (1.75c)

λ =
1
π

log
[

logx
log(1 − x)

]
, (1.75d)

and x = π/(4g).
Results for previously known limits are listed below. The Bargmann-Schwinger

upper limit (1.6) takes the simple form

N <
1
2
g2(g2 + 1). (1.76)

The simple upper limit (1.31) obtained by Lieb reads

N < 0.864 g3. (1.77)

The upper limit (1.36) obtained by Chadan et al. thanks to an extension of the
Calogero-Cohn upper limit to ` > 0 takes the form

N < 1.698 (g3 + 2.356 g2 + 1.116 g+ 0.1473). (1.78)
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The Bargmann-Schwinger (1.76) and the Chadan et al. (1.78) upper limits can
be improved: instead of using the limit on L provided by these limits (L+

BS (1.3)
and L+

CMS (1.35)), we can use the nice upper limit L+ (1.53); the improved limits
obtained in this manner are:

N <
1
2
g2

(
4g
e

+ 1
)
, (1.79)

N < 0.5202 (g3 + 2.179 g2 + 1.726 g+ 0.4806). (1.80)

Fig. 1.2 presents a comparison between the various limits and the exact result.
It shows that the limits on the total number of bound states which can be expressed
in a neat form are not very stringent. [Indeed, the best results are yielded by the
upper limit (1.74) which is obtained using only a limit on the number of S-wave
bound states, N0, and the simple limit L+ on the maximal value L of ` for which
bound states do exist]. There are at least three reasons for this. First, most of the
limits do not contain the appropriate functional of the potential (as identified by
the asymptotic behavior at large g of N, see (1.14)): only the Lieb limit, see (1.31),
features the correct form, but the numerical factor is not optimal indeed too large
(by approximately a factor 7). The second reason is that for every value of `, there
is a round-off error introduced by the limit; to obtain the limit on the total number
of bound states we sum all these errors. The third reason is that to be able to make
the summation over the values of ` we must have an explicit dependence of the limits
on `, and this entails that we cannot use some of the limits we found; in particular
we cannot use the upper and lower limits (1.52a) and (1.52b) (with V (r) replaced
by the effective potential), which are quite stringent, to obtain a neat formula.

The second potential we use to test the new limits is the M potential (1.62).
This is a non-monotonic potential for which the number N0 of S-wave (` = 0)
bound states is known; we indeed consider for this potential only the ` = 0 case.
The exact formula for the number of S-wave bound states for the M potential is

N0 =
{{

g +
1
2

}}
, (1.81)

where {{x}} means integer part of x. Note that the exact relation (1.81) is inde-
pendent of the value of the constant α which appears in the potential (see (1.62)).

For this potential, the limits (1.52) can be computed (almost completely) ana-
lytically:

N0 < g − 1
2π

log s + 1, (1.82)

N0 > g +
1
2π

log s − 3
2
, (1.83)
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Figure 1.2: Comparison for the E potential (1.61) between the exact value of the
total number of bound statesN (diamond), the upper limits obtained by Bargmann-
Schwinger (1.76) (solid), Lieb (1.77) (short dash), Chadan et al. (1.78) (long dash),
the improved Bargmann-Schwinger (1.79) (dot), improved Chadan et al. (1.80)
upper limits (sparse dot), the limits (1.74) (dash dot dot) and the lower limits
(1.75) (dash dot).
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with s = min(2y − y2, 2x− x2) and x, y solutions of

π −
√

2y − y2 − 2 arcsin
(y

2

)
=

π

2g
, (1.84)

√
2x− x2 + 2 arcsin

(x
2

)
=

π

2g
(1.85)

The calculation of the cutoff radii p and q, see (1.52d), cannot be evaluated ana-
lytically. But one can compute upper and lower limits, p̃ < p and q̃ > q, on these
radii by using only the attractive part of the potential in the definition (1.52d) of
p and q. When p̃ and q̃ are used in place of p and q we obtain the (marginally less
stringent) limits

N0 < g +
1
2π

log
[

z4

4(z2 − 1)

]
+ 1, (1.86)

N0 > g − 1
2π

log
[

z4

4(z2 − 1)

]
− 3

2
, (1.87)

with z = 8g/π. As mentioned in above, validity of the inequalities p̃ ≤ rmin ≤ q̃

is required in order to use the limits (1.86) and (1.87); this leads to the restriction
g ≥ π

√
2/(8(

√
2 − 1)) ∼= 1.34.

The previously known limits applicable to this potential are listed below. The
Bargmann-Schwinger upper limit (1.2) takes the form:

N0 ≤ 2g2

(
α+ log 2 +

3
2

)
. (1.88)

The upper limit (1.32) found by Martin reads

N0 ≤
√

2g(α2 + (3 − 2 log 2)α+ 1.901)1/4; (1.89)

The Calogero lower bound (1.19) reads

N0 > −1
2

+
2
π
g T (α), (1.90a)

T (α) = max
0≤γ≤1

{
1
γ

[
eα − e2α

4
−
√

1 − γ2 +
γ2

2
log

(
1 +

√
1 − γ2

1−
√

1 − γ2

)]}
. (1.90b)

Note that for α > α0
∼= 1.386, with 4 exp(α0) = exp(2α0), this lower limit (1.90) is

trivial because T (α) is then negative.
Fig. 1.3 displays these limits as a function of g. Note that some limits depend

on α while the exact result does not. We tested the results for the α = 1 case (not
α = 0, in order to have a non-monotonic potential). It is clear from this figure that
the limits (1.86) and (1.87) are quite cogent. This remains true even for large values
of g: for instance, when the exact number N0 of bound states is 5000, these upper
and lower limits restrict its value to the rather small interval [4996, 5003]. In this
case the Bargmann-Schwinger upper limit exceeds 1.5 108, the Martin upper limit
only informs us that N < 10307, the Calogero lower limit that N > 2879.
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Figure 1.3: Comparison for the M potential (1.62) between the exact value (1.81)
of the number of S-wave bound states N0 (ladder), the Bargmann-Schwinger (1.88)
(dash dot dot), Martin (1.89) (dot) upper limits, the upper limit (1.86) (short dash)
and the Calogero lower limits (1.90) (dash dot) and the lower limit (1.87) (solid)
(all with ` = 0 and α = 1).



24 Fabian Brau

Ideas of the proofs

We propose to give in this Section, the main line of the proof of the upper and lower
limits (1.50). We refer to the original article [30, 31] for more details and proofs of
other limits.

Let u(r) be the zero-energy S-wave Schrödinger wave function, characterized by
the second order ordinary differential equation

u′′(r)− V (r)u(r) = 0, (1.91)

with boundary condition
u(0) = 0. (1.92)

It is well known (see, for instance, Ref. [35]) that the number of zeros of the
solution of (1.91) with (1.92) in the interval 0 ≤ r < ∞ coincides with the number
N0 of S-wave bound states supported by the potential V (r) (we always exclude, for
simplicity, the marginal case of a potential that features a “zero-energy bound state
or resonance”). Let us indicate with zn the successive zeros of u(r), and with bn
the successive zeros of u′(r) (namely, the locations of the successive extrema of the
wave function u(r)),

u(zn) = 0, u′(bn) = 0. (1.93)

It is then clear that, since we suppose the potential V (r) to be nowhere positive,

V (r) = −|V (r)|, (1.94)

the zero-energy wave function u(r) is an everywhere convex function of r, entailing
the “interlacing” relations

0 = z0 < b1 < z1 < b2 < · · ·< zN0−1 < bN0 < zN0 <∞. (1.95)

Note that these formulas imply that u′(r) does not vanish in the interval zN0 ≤ r <
∞, namely bN0+1 <∞ does not exist (otherwise it would be inevitably followed by
zN0+1 <∞ and this is excluded since N0 is the number of zeros of u(r)).

Following Refs. [6, 30, 31, 35] we now introduce a function η(r) defined via the
relation

tan[η(r)] = |V (r)|1/2 u(r)
u′(r)

. (1.96a)

with
η(0) = 0, (1.96b)

and the requirement that η(r) be a continuous function of r (to lift the mod(π)
ambiguity entailed by the definition (1.96)). It is then clear that the properties
(1.95) together with the definition (1.96) imply the relations

η(zn) = nπ, η(bn+1) = (2n+ 1)π/2, n = 0, 1, . . . , N0 − 1, (1.97a)
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η(zN0) = η(∞) = N0π, (1.97b)

and that the value of η(r) inside the intervals (1.95) lies between the values taken
at the extremal points of these intervals, namely, for zn ≤ r ≤ bn+1 with n =
0, . . . , N0 − 1, nπ ≤ η(r) ≤ (2n + 1)π/2, and for bn ≤ r ≤ zn with n = 1, . . . , N0,
(2n− 1)π/2 ≤ η(r) ≤ nπ, except of course for the last interval, zN0 ≤ r <∞, where
N0π ≤ η(r) < (2N0 + 1)π/2. Note that these results also imply that, for all values
of r,

0 ≤ η(r) <
(
N0 +

1
2

)
π, (1.97c)

(indeed the value at which the second inequality was violated would qualify as bN0+1

, which, as already noted, would then inevitably be followed by zN0+1 , violating
the hypothesis that the number of zeros be N0).

Moreover, from (1.91) we obtain via (1.96a) and (1.94) the nonlinear first-order
differential equation

η′(r) = |V (r)|1/2 − V ′(r)
4|V (r)|

sin[2η(r)], (1.98)

which, together with the “initial condition” (1.96b), determines the function η(r)
and, therefore, via (1.97b), the number N0 of S-wave bound states. This equation
will be our main tool to derive (upper and lower) limits on N0. It is indeed clear
from (1.98) that

η′(r) ≤ |V (r)|1/2 +
V ′(r)

4|V (r)| , (1.99a)

η′(r) ≥ |V (r)|1/2 − V ′(r)
4|V (r)| . (1.99b)

Let us now focus first on the derivation of the upper limit (1.50a). To this end
we integrate (1.99a) from b1 to zN0+1, and via (1.97a) we get

(
N0 −

3
2

)
π ≤

∫ zN0−1

b1

dr |V (r)|1/2 +
1
4

ln
∣∣∣∣
V (b1)

V (zN0−1)

∣∣∣∣ . (1.100)

On the other hand in the intervals 0 ≤ r ≤ b1 and zN0−1 ≤ r ≤ bN0 (where sin[2η(r)]
is non-negative, see (1.97a)] (1.99a) can be replaced by the more stringent inequality

η′(r) ≤ |V (r)|1/2, (1.101)

and the integration of this inequality over these intervals yields

π

2
≤
∫ b1

0
dr |V (r)|1/2, (1.102a)

π

2
≤
∫ bN0

zN0−1

dr |V (r)|1/2. (1.102b)
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Hence by summing (1.100), (1.102a) and (1.102b) (and dividing by π) we get

N0 −
1
2
≤ 1
π

∫ bN0

0
dr |V (r)|1/2 +

1
4π

ln
∣∣∣∣
V (b1)

V (zN0−1)

∣∣∣∣ , (1.103)

and therefore a fortiori (thanks to the monotonicity of V (r))

N0 <
1
π

∫ ∞

0
dr |V (r)|1/2 +

1
4π

ln
∣∣∣∣
V (p)
V (q)

∣∣∣∣+
1
2
, (1.104)

provided
p ≤ b1, (1.105a)

q ≥ zN0−1. (1.105b)

With the definitions (1.50c) of p and q, it is clear that the relations (1.105) are
satisfied which complete the proof for the upper bound (1.50a).

The proof for the lower limit (1.50b) is similar. For a regular potential, we
integrate the inequality (1.99b) from 0 to q and we use the relation (1.97c). For a
singular potential, we integrate the inequality (1.99b) from p to q and we use also
the relation (1.97c).

One and two dimensions

The upper and lower limits (1.52) presented in the previous Section 1.2.1 can be
generalized to be applicable to potentials possessing more than one minimum. With
an inspection of the proof given in the original article [31], it is easy to see that
a possible generalization (not the most stringent but perhaps the neater version)
takes the form

N0 <
S
π

+
ν

2π
ln
[
V −(Rmin)

M

]
+ 1, (1.106a)

N0 >
S
π
− ν

2π
ln
[
V −(Rmin)

M

]
− 3

2
, (1.106b)

where
M = min

[
V −(p), V−(q), V−(r1max), . . . , V

−(rν−1
max)

]
, (1.106c)

where Rmin is the position of the absolute minima of the potential, ri
max is the

position of the ith maxima of the potential (0 < r1max < . . . < rν−1
max < ∞) and ν is

the number of minima of the potential. The additional necessary condition for the
applicability of these limits reads now

p ≤ r1min and rν
min ≤ q, (1.106d)

where ri
min is the position of the ith minima (0 ≤ r1min < . . . < rν

min <∞) and p and
q are still given by (1.52d). Different versions of the limits (1.106) are possible, but
the difference is only located in the logarithmic term and thus plays a minor role.
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¿From the limits (1.106) we could obtain limits on the number of bound states
in one dimension using the method proposed by Chadan et al. and explained in the
Section 1.1. But in doing so we would obtain only an upper bound with moreover
a large constant term. We prefer to derive explicitely upper and lower limits in one
dimensions from the corresponding Schrödinger equation without any reference to
limits applicable in three dimensions.

Let u(x) be the zero-energy Schrödinger wave function in one dimension, char-
acterized by the second order ordinary differential equation

u′′(x)− V (x)u(x) = 0, (1.107)

with boundary condition
u(−∞) = 0. (1.108)

It is well known that the number of zeros of the solution of (1.107) with (1.108) in
the interval −∞ < x <∞ coincides with the number N of bound states supported
by the potential V (x). We will use the same notation than whose used in Section
1.2.1. Let us indicate with zn the successive zeros of u(x), and with bn the successive
zeros of u′(x) (namely, the locations of the successive extrema of the wave function
u(x)),

u(zn) = 0, u′(bn) = 0. (1.109)

We introduce a function η(x) defined via the relation

tan[η(x)] = |V (x)|1/2 u(x)
u′(x)

. (1.110)

The function η(x) satisfies the equation

η′(x) = |V (x)|1/2 − V ′(x)
4|V (x)|

sin[2η(x)]. (1.111)

We will now consider potentials that satisfies the condition

V (x) > 0 for x < x−, (1.112a)

V (x) < 0 for x− < x < x+, (1.112b)

V (x) > 0 for x+ < x. (1.112c)

This condition entails that
η(x−) = 0, (1.113)

as well as the fact that u(x) is concave in the interval −∞ < x < x−, hence it has
no zero in that interval, hence

x− < b1 < z1. (1.114)
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Likewise the fact that u(x) is also concave in the interval x+ < x <∞, hence it has
no extremum in that interval, entails

zN−1 < bN < x+. (1.115)

Now we integrate (1.111) from z1 to zN−1 to get

η(zN−1) − η(z1) = (N − 2)π =

=
∫ zN−1

z1

dx
[
V −(x)

]1/2 − 1
4

2ν−1∑

i=0

∫ xki+1

xki

dx
V ′(x)

4|V (x)| sin[2η(x)], (1.116)

where xk0 = z1, xk2ν = zN−1 and xki is the position of the extrema of the potential
between x− and x+. Thus, in the sum of the relation (1.116) we have 2ν integrals
and for each integral, V ′(x) has a given sign. This allows an easy majorization
or minorization of the right-hand side of (1.116). For a majorization, we replace
sin[2η(x)] by 1 whenever V ′(x) is negative and by −1 when V ′(x) is positive. The
contrary applies for a minorization. We then simply obtain

(N − 2)π <
∫ zN−1

z1

dx
[
V −(x)

]1/2 +
1
2

ln
[
A
B

]
, (1.117a)

with

A =
ν∏

i=1

V −(xi
min) and B = (V −(z1)V −(zN−1))1/2

ν−1∏

i=1

V −(xi
max) (1.117b)

and where xi
max is the position of the ith maxima of the potential (x+ < x1

max <

. . . < xν−1
max < x+) and xi

min is the position of the ith minima of the potential
(x+ < x1

min < . . . < xν
min < x+).

We now need to find quantities p and q, defined only in terms of the potential,
such that p ≤ z1 and q ≥ zN−1 (to majorize the integral appearing in (1.117a))
and also such that |V −(p)| ≤ |V −(z1)| and |V −(q)| ≤ |V −(zN−1)| (to majorize the
logarithmic term of the inequality (1.117a)). Let us first consider the “favorable”
case (which obtains for a sufficiently attractive potential): z1 ≤ x1

min and zN−1 ≥
xν

min. In this case, we integrate (1.111) from b1 to z1 and since in this interval both
V ′(x)/|V (x)| and sin[2η(x)] are negative, we infer

η(z1) − η(b1) =
π

2
≤
∫ z1

b1

dx
[
V −(x)

]1/2
, (1.118)

hence a fortiori (see (1.114))
∫ z1

−∞
dx
[
V −(x)

]1/2
>
π

2
. (1.119)
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If we define p via the formula
∫ p

−∞
dx
[
V −(x)

]1/2 =
π

2
, (1.120)

then we conclude (by comparing (1.119) with (1.120)) that p < z1. Moreover, since
we have supposed z1 ≤ x1

min, we have also |V (p)| < |V (z1)|. We then integrate
(1.111) from zN−1 to bN , and taking advantage of the fact that in this interval both
V ′(x)/|V (x)| and sin[2η(x)] are positive, we infer

η(bN) − η(zN−1) =
π

2
≤
∫ bN

zN−1

dx
[
V −(x)

]1/2
, (1.121)

hence a fortiori (see (1.115))

π

2
<

∫ ∞

zN−1

dx
[
V −(x)

]1/2
. (1.122)

Analogously, if we define q via the formula
∫ ∞

q

dx
[
V −(x)

]1/2 =
π

2
, (1.123)

we conclude that q > zN−1. Moreover, since we have supposed zN−1 ≥ xν
min, we have

also |V (q)| < |V (zN−1)|. Thus if these two relations, z1 ≤ x1
min and zN−1 ≥ xν

min,

hold, we obtain

N <
1
π

∫ ∞

−∞
dx
[
V −(x)

]1/2 +
1
2

ln
[
A
B

]
+ 1, (1.124a)

where A is still defined by (1.117b) and where

B = (V −(p)V −(q))1/2
ν−1∏

i=1

V −(xi
max), (1.124b)

where we have used the equations (1.120) and (1.123).
We need now to consider the cases where z1 > x1

min and/or zN−1 < xν
min and

to prove that it is still possible to define quantities p and q such as p < z1 and
q > zN−1 and such as a majorization of B is possible. This difficulty is easily in two
step solved. Firstly, We simply impose the additional requirement on p and q:

p ≤ x1
min and xν

min ≤ q. (1.125)

This indeed ensure that p < z1 and q > zN−1. Indeed, we have just proved above
that it was the case provided that z1 ≤ x1

min and zN−1 ≥ xν
min. Now if one (or both)

of these last conditions is not satisfy (which could be the case for weak potentials),
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the conditions p < z1 and q > zN−1 are still satisfy thanks to the relations (1.125),
this ensure the majorization of the integral of (1.117a). Secondly, we must now
majorize B. We have shown above that the relations z1 ≤ x1

min and zN−1 ≥ xν
min

entails that |V −(p)| ≤ |V −(z1)| and |V −(q)| ≤ |V −(zN−1)|. It is obvious that, if
z1 > x1

min, then
|V −(z1)| ≥M, (1.126)

where
M = min

[
V −(p), V−(q), V−(x1

max), . . . , V
−(xν−1

max)
]
. (1.127)

Similarly, if zN−1 < xν
min, then |V −(zN−1)| ≥M .

We choose now to write the neater upper limit by replacing all factors in the
expression of B by M and to replace all factors in the expression of A by V −(Xmin),
where Xmin is the position of the absolute minima of the potential. The upper limit
on the number of bound states in spaces with one dimensions reads

N <
1
π

∫ ∞

−∞
dx
[
V −(x)

]1/2 +
ν

2π
ln
[
V −(Xmin)

M

]
+ 1, (1.128)

with M defined by (1.127) and provided the potential satisfies (1.112) (note also
that ν, the number of minima of the potential between x− and x+ must be finite).

The lower limit is obtained in the same way except that we integrate (1.111)
between p and q defined by (1.120) and (1.123). We have

η(q)− η(p) ≥
∫ q

p
dx
[
V −(x)

]1/2 − 1
2

ln
[
A
B

]
. (1.129)

Now since η(p) ≥ 0 and η(q) < (N + 1/2)π (otherwise, if the last inequality was
violated, this would ensure the existence of bN+1 and then of zN+1, which is not
possible since we have supposed that the potential possess only N bound states),
we obtain

N >
1
π

∫ ∞

−∞
dx
[
V −(x)

]1/2 − ν

2π
ln
[
V −(Xmin)

M

]
− 3

2
, (1.130)

where we have used the definitions of p and q.
We are now in position to derive limits for spaces with two dimensions. The

change of variable (1.47) applied to the limits (1.128) and (1.130) leads to the
following limits applicable to spaces with two dimensions provided the potential is
central and that the angular momentum, m is equal to zero:

Nm=0 <
1
π

∫ ∞

0
dr [V −(r)]1/2 +

ν

2π
ln
[
V −(Rmin)

M

]
+
ν

π
ln
[
Rmin

R̄min

]
+ 1, (1.131a)

Nm=0 >
1
π

∫ ∞

0
dr [V −(r)]1/2 − ν

2π
ln
[
V −(Rmin)

M

]
− ν

π
ln
[
Rmin

R̄min

]
− 3

2
, (1.131b)
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where M , Rmin, p and q are defined as for the formulas (1.106), and where R̄min is
the radius among p, q, r1max, . . ., rν−1

max, for which V −(R̄min) take the minimal value.
Note that the last logarithmic term in (1.131) could be negative. Note also that
when Rmin is vanishing, it should be replaced by p.

It is well known that a correspondence exists between spaces with two and three
dimensions when the potential is central (this is easily seen from the Schrödinger
equation). The formal change of angular momentum, m = `+1/2, applied to results
applicable in three dimensions yields formulas for two dimensions. In particular, the
relation (1.53) (see also (1.164) below) becomes

m ≤ m+ = {{σ}} , (1.132)

with σ defined by (1.53b). We are now in position to obtain a limit on the total
number of bound states for a central potential in two dimensions (remember that for
m = 0 the multiplicity equals 1 while for m > 0 the multiplicity equals 2). Trivially,
we have

N ≤ Nm=0 + 2
m+∑

m=1

Nm=0 < (1 + 2σ)Nm=0. (1.133)

Thus any upper limit on Nm=0, for example (1.131a), provides an upper limit on
N .

We see that the formulas (1.128) and (1.130) for one spatial dimensions and
the formulas (1.131) for two spatial dimensions (with m = 0) have the correct
asymptotic expression (see (1.15) with n = 1). Thus, for potentials strong enough
to bind several bound states, the new limits will be better than those presented
in Section 1.1. Consequently, we do not present any test since the situation is
comparable to what we have presented in Section 1.2.1.

The situation is different for the upper limit on the total number of bound states
in two dimensions. We then compare, as a test, the leading term of our upper limit
on N (1.133) with (1.131a), with the upper limit of Chadan et al. (1.49) and with
the exact asymptotic expression of N (see (1.15) with n = 2)

N ≈ 1
2

∫ ∞

0
dr r V −(r). (1.134)

For a square-well potential, V (r) = −g2R−2 θ(R− r), we found that our limit gives

N ≈ 0.318 g2. (1.135)

The limit (1.49) of Chadan et al. takes the asymptotic form

N ≈ 0.751 g2. (1.136)

The exact asymptotic expression is

N ≈ 1
4
g2. (1.137)
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Clearly for g large enough our limit will be better. The same calculation can be
performed for an exponential potential, V (r) = −g2R−2 exp(−r/R), and we found
for our bound that

N ≈ 0.937 g2. (1.138)

The limit of Chadan et al. (1.49) yields

N ≈ 1.78 g2, (1.139)

while the exact asymptotic expression is

N ≈ 1
2
g2. (1.140)

Again, as for the square-well potential, our limit will be more stringent for g large
enough.

1.2.2 Semi-relativistic quantum mechanics

Klein-Gordon equation

In the context of first-quantized mechanics with relativistic kinematics, a zero-spin
particle of (positive) mass m moving in an external potential W (~r ), which is the
fourth-component of a relativistic 4-vector, can be described (in self-evident nota-
tion, and with the choice of units ~ = c = 1 throughout this Section 1.2.2!) by the
following Klein-Gordon equation:

(
~p 2 +m2

)
Ψ(~r ) = [E −W (~r )]2 Ψ(~r ) (1.141)

In the spherically-symmetrical case, W (~r ) = W (r), the zero-kinetic-energy (namely,
E = m) S-wave radial equation coincides with the corresponding equation for the
Schrödinger case, (1.91), with the following definition of V (r) in terms of W (r):

V (r) = 2mW (r)−W 2(r). (1.142)

Note that, if the potential W (r) is monotonically non-decreasing and vanishes at
infinity (and is therefore non-positive, W (r) = −|W (r)|), the same property holds
as well for the potential V (r). And the following conditions on the behavior of at
the origin and at infinity are clearly sufficient to guarantee the validity of (1.1):

lim
r→0

[
r1−εW (r)

]
= 0, (1.143a)

lim
r→∞

[
r1+εW (r)

]
= 0. (1.143b)

All the results reported above in the Schrödinger context can therefore be imme-
diately taken over to the Klein-Gordon case. Note however that, as a consequence
of the relation (1.142), if one introduces a coupling constant g as a measure of the
strength of the potential by setting W (r) = g2w(r), then one sees that in the Klein-
Gordon case as g diverges the number of S-wave bound states grows proportionally
to g2 (rather than proportionally to g as is the case in the Schrödinger context).
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Spinless Salpeter equation

We present in this Section results about the spinless Salpeter equation character-
ized by a pseudo-differential operator. The spinless Salpeter equation is a simple
relativistic version of the Schrödinger equation which can be obtained, with some
approximations, from the covariant Bethe-Salpeter equation [41, 42] and takes the
form [√

~p 2 +m2 + V (~r )
]

Ψ(~r ) = M Ψ(~r ), (1.144)

where m is the mass of the particle and M is the mass of the eigenstate (M = m+E,
E is the binding energy). We restrict our attention to time component vector
potentials. This equation is generally used when kinetic relativistic effects cannot
be neglected and when the particles under consideration are bosons or when the
spin of the particles is neglected or is only taken into account via spin-dependent
interactions. Despite its apparent complexity, this equation is often preferred to the
Klein-Gordon equation. The equation (1.144) appears, for example, in mesons and
baryons spectroscopy in the context of potential models (see for example [43, 44,
45, 46, 47, 48, 49, 50]).

Due to the pseudo-differential nature of the kinetic energy operator, few exact
results are known about this equation. Most of these results have been obtained
for a Coulomb potential (for example, upper and lower bounds on energy levels)
[51, 52, 53, 54, 55]. Recently, upper and lower limits on energy levels have been
obtained for some other particular interactions [56].

Conversely to the Schrödinger equation, for which a fairly large number of results
giving both upper and lower limits on the number of bound states can be found in
the literature (see Section 1.1), only one (very nice) result, concerning the total
number of bound states, is known for the spinless Salpeter equation [57]

N < K

∫
d~r
[
V −(~r )(V−(~r ) + 2m)

]3/2
, (1.145)

with K = 0.239 for arbitrary values of m and K = 0.103 for m = 0. This inequality
shows that N grows with strength of the potential, g (V (~r ) = g2v(~r )), at most as
g6.

In contrast with previous Sections, we also present here results applicable to non-
central potential. To obtain an upper limit on the total number of bound states of
the spinless Salpeter equation we use the Birman-Schwinger method (see Appendice
1.3.2). We then need to calculate the Green function of the kinetic energy operator.
Similar calculations have already been performed previously [58, 59]. In contrast
to calculations found in [59], we need here to calculate the Green function of the
following operator

T
(
~p 2
)

=
√
~p 2 +m2 −m. (1.146)
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This is done by performing the integral

G(m,∆) =
1

(2π)3

∫
d~p

exp(−i ~p · ~∆)√
p2 +m2 −m

, (1.147)

where ~∆ = ~r − ~r ′. We find that

G(m,∆) =
m

4π∆

[
1 +

2
π
F (m∆)

]
≡ m

4π∆
H(m∆), (1.148a)

with
F (y) =

∫ ∞

y

dz

z
K1(z) +

π

2
, (1.148b)

where Kν(y) is a modified Bessel function (see for example [60, p. 374]). The
symmetrical kernel, see (1.201), is then given by

K(m,~r,~r ′) = [V −(~r )]1/2G(m,∆)[V−(~r ′)]1/2. (1.149)

The Birman-Schwinger method yields the following upper limit on the total
number of bound states of the spinless Salpeter equation

N <
1
αn

∫
d~r1 . . .d~rn V

−(~r1) . . .V −(~rn)G(m,∆12) . . .G(m,∆n1), (1.150)

where ∆ij = |~ri − ~rj | and n ≥ 4 (the integral diverges for smaller values of n). We
have introduced in (1.150) the parameter α which takes the value 1 respectively 2
for one respectively two (identical) particle problems.

Now, we need to calculate the Green function (1.148) in a closed form, that is
to say, to compute F (y), see (1.148b). An integration by part leads to

F (y) = K1(y) +
π

2
−
∫ ∞

y

dzK0(z). (1.151)

To obtain an upper limit for the number of bound states, a majorization of the
kernel (1.149) is enough. Since the Bessel function K0(z) is positive for 0 ≤ z <∞,
and that its integration between 0 and ∞ is equal to π/2 (see [60, p. 486]), the
integral in (1.151) is not only positive but also small compared to the other terms
of this equation. Indeed, in the region (y ≈ 0) where this integral takes its maximal
value (π/2), this quantity is still small compared to the value taken by the singular
Bessel function K1(y). Thus the majorization obtained by replacing the integral in
(1.151) by 0, namely

F (y) ≤ K1(y) +
π

2
, (1.152)

should not spoil too much the upper limit. Another majorization, which leads to
a simpler kernel, is obtained by replacing the Bessel function K1(y) by 1/y. This
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additional approximation is however exact in the case of a vanishing mass (m = 0)
since mK1(my) = 1/y in this limit. The kernel is then given by

G(m,∆ij) ≤ m

2π∆ij
+
mK1(m∆ij)

2π2∆ij
= G(1)(m,∆ij) (1.153a)

≤ m

2π∆ij
+

1
2π2∆2

ij

= G(2)(m,∆ij). (1.153b)

The upper limit (1.150) can then be used with either G(1)(m,∆ij) or G(2)(m,∆ij).
Of course, using the function G(1)(x, y) yields more stringent results than those
obtained by using the function G(2)(x, y).

We will discuss more specifically the case of a central potential below but we
already write here the upper limit (1.150), using the kernel G(2)(x, y), for this class
of potentials. In this way, we introduce some quantities which will be useful later.
Integrating over angular variables, the limit (1.150) reads

N <

∞∑

ν=0

(2ν + 1)
∫ ∞

0
dr1 . . . drn V

−(r1) . . .V −(rn)Aν(m, r1, r2) . . .Aν(m, rn, r1),

(1.154a)
with

Aν(m, x, y) =
1
α

4π
2ν + 1

xy aν(m, x, y), (1.154b)

and

aν(m, x, y) =
m

2π
rν
< r

−(ν+1)
> +

1
2π3/2

Γ(ν + 1)
Γ(ν + 1/2)

(xy)ν

(x+ y)2(ν+1)
×

× F

(
ν + 1, ν + 1, 2(ν + 1),

4xy
(x+ y)2

)
, (1.154c)

where r< = min[x, y], r> = max[x, y] and F (a, b, c, z) is the hypergeometric function.
A simpler upper limit can be obtained with additional approximations in the

ultra-relativistic case (m = 0). Using n times (n ≥ 4) the Hölder inequality we
obtain

N < B(n, p, p′)
[∫ ∞

0
dr r2(p−1)/pV −(r)

][∫ ∞

0
dr [V −(r)]pp′

]1/(pp′)

×

×
[∫ ∞

0
dr r(p

′−1)/p′ [V −(r)]p
]1/p [∫ ∞

0
dr rp−1 [V −(r)]p

](n−3)/p

,(1.155a)

with the constant B(n, p, p′) given by

B(n, p, p′) =
∞∑

ν=0

(2ν + 1) [C(ν, p/(p− 1))]n−1C(ν, pp′/(p′ − 1)), (1.155b)
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and

C(ν, q) =
1

α
√
π

Γ(ν + 1)
22ν+2Γ(ν + 3/2)

·

·
[∫ 1

0

dx (1 + x−2)
(
zν+1F (ν + 1, ν + 1, 2(ν + 1), z)

)q
]1/q

, (1.155c)

with z = 4x/(1 + x)2, p > 1 and p′ > 1. All the complexity of the problem is
now located in the calculation of the constant B(n, p, p′). Analytical calculations
for small values of ν and numerical investigations up to ν = 100 seems to prove that
for all values of ν we have

C(ν, 2) = 1/(α
√

2ν + 1), (1.156a)

C(ν, 3) ≤ 1/[α(2ν + 1)1/3]. (1.156b)

In this case, we find that B(n, 2, 3) ≤ (1− 2−w)ζ(w), with w = (3n− 7)/6 and ζ(x)
is the Riemann Zeta function. This implies n ≥ 5 to obtain non-trivial results and
in particular B(5, 2, 3) ≤ 2.172.

We are now focusing on central potentials. To obtain an upper limit on the
number of `-wave bound states of the spinless Salpeter equation, we need to derive
the radial expression of the symmetrical kernel (1.149). This can be achieved by
performing similar calculations than those done in Ref. [59, p. 2255-2257]. We have
(see the original article for more details [34])

G`(m, r, r′) =
mrr′

2

∫ π

0

dθ′ sin θ′
H(m∆)

∆
P`(cos θ′), (1.157)

where H(x) is defined by (1.148a) and P`(cos θ) are Legendre polynomials. The
symmetrical kernel is then given by

K`(m, r, r′) = [V −(r)]1/2G`(m, r, r′) [V −(r′)]1/2. (1.158)

We can now again use the Birman-Schwinger method, see Appendice 1.3.2, to
obtain an upper limit on the number of `-wave bound states. With the help of the
majorization (1.152) we have

N` <

∫ ∞

0

dr1 . . . drn V
−(r1) . . .V −(rn)T`(m, r1, r2) . . .T`(m, rn, r1), (1.159a)

with
αT`(m, r, r′) =

1
π
G`(m, r, r′) + S`(m, r, r′), (1.159b)

and

G`(m, r, r′) = m

∫ r+r′

|r−r′|
dyK1(my)P`

(
r2 + r′2 − y2

2rr′

)
, (1.159c)
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S`(m, r, r′) = m

∫ r+r′

|r−r′|
dy P`

(
r2 + r′2 − y2

2rr′

)
=

2m
2`+ 1

r`+1
< r−`

> , (1.159d)

where r< = min[r, r′] and r> = max[r, r′]. The kernel S`(m, r, r′) is actually the
Green function of the non-relativistic kinetic energy operator and takes a simple
form while the kernel G`(m, r, r′) can be calculated analytically for each value of `
[58, 59]. We have, here also, introduced in (1.159b) the parameter α which takes the
value 1 respectively 2 for one respectively two (identical) particle problems. We can
use an additional approximation and majorizeK1(y) by 1/y. In this case, T`(m, r, r′)
is replaced by A`(m, r, r′), see (1.154b). Note that T`(0, r, r′) = A`(0, r, r′) since in
this limit (m→ 0) mK1(my) = 1/y.

Obviously simplifications occur in the ultra-relativistic case (m = 0). With the
help of the Hölder inequality we obtain

N` < B̃(n, `, p, p′)
[∫ ∞

0

dr r2(p−1)/pV −(r)
][∫ ∞

0

dr [V −(r)]pp′
]1/(pp′)

×

×
[∫ ∞

0
dr r(p

′−1)/p′ [V −(r)]p
]1/p [∫ ∞

0
dr rp−1 [V −(r)]p

](n−3)/p

, (1.160a)

with
B̃(n, `, p, p′) = [C(`, p/(p− 1))]n−1C(`, pp′/(p′ − 1)), (1.160b)

and where n ≥ 2, p > 1, p′ > 1 and C(`, q) defined by (1.155c). The upper limit
on the total number of bound states that can be obtained from the upper limit
on the number of `-wave bound states (1.160) is very similar to the upper limit
(1.155) except that the sum would stop at ` = L (the largest value of the angular
momentum ` for which bound states do exist) and that n is only restricted to be
greater than two!

For some clarity reasons we also gives here a necessary condition for the existence
of bound states obtained from (1.160) which allows us to derive an interesting upper
limit on the total number of bound states of the spinless Salpeter equation for central
potentials.

Taking the limit n→ ∞ in the relation (1.160), we obtain the following necessary
condition for the existence of at least one `-wave bound state:

∫ ∞

0

dr

r

[
C(`, p/(p− 1)) rV −(r)

]p ≥ 1. (1.161)

This simple relation yields a lower limit, glo
c , on the (numerically) exact critical value

of g, gc, for which a first bound state appears, gc ≥ glo
c and yields an upper limit

L+ on L. We can obtain a simpler expression by considering now the limit p→ ∞.
We find that a necessary condition for the existence of at least one `-wave bound
state is also given by

C(`, 1)M≥ 1, (1.162a)
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Table 1.2: Values of the function c(`), see (1.163), for several values of `. Note that
c(0) = ∞ and c(∞) =

√
2π.

` c(`) ` c(`) ` c(`) ` c(`)
1 3.205 8 2.557 15 2.531 40 2.515
2 2.795 9 2.550 16 2.529 50 2.513
3 2.678 10 2.545 17 2.528 60 2.512
4 2.625 11 2.541 18 2.526 70 2.511
5 2.596 12 2.538 19 2.525 80 2.511
6 2.578 13 2.535 20 2.524 90 2.510
7 2.566 14 2.533 30 2.518 100 2.510

where
M = max[r V −(r)]. (1.162b)

This last necessary condition have only a sense for ` > 0 because C(0, 1) diverges.
Of course, this does not mean that there always exist bound states for ` = 0. For
this value of the angular momentum, one needs to use the relation (1.161) to draw
conclusions about existence of bound states. The constant C(`, 1) (see (1.155c)) can
be rewritten as

C(`, 1) =
1

α
√
π

Γ(` + 1)
Γ(`+ 3/2)

c(`)√
2`+ 1

. (1.163)

The interest of this rewritten is that the function c(`) varies very slowly with `
and can then be easily and usefully tabulated, see Table 1.2. A possible simple
majorization of c(`) is c(`) <

√
2π + a`b with a = 0.7 and b = −1.18 (valid at

least for 1 ≤ ` ≤ 100). Note also that the necessary condition (1.162) is the ultra-
relativistic counterpart of the well known non-relativistic necessary condition (see
for example [61])

(`+ 1/2)−2 max[r2 2mV −(r)] ≥ 1, (1.164)

which yields the non-relativistic upper limit (1.53) on L.
We are now able to obtain an upper limit on the total number of bound states,

applicable only to central potentials in the ultra-relativistic regime, which possess
the correct g6 asymptotic behavior. We choose in (1.160) n = 2, p = 2 and p′ → ∞
and with the help of (1.156a) (which is certainly correct up to ` = 100) we obtain

N` <
1

α2(2`+ 1)
M̃I, (1.165a)

with
M̃ = max[V −(r)], (1.165b)

I =
∫ ∞

0
dr r V −(r). (1.165c)
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To some extend, the limit (1.165) is the ultra-relativistic counterpart of the non-
relativistic Bargmann-Schwinger upper bound (1.2). The upper limit on N is ob-
tained with a summation over the right-hand side of (1.165a) from ` = 0 to ` = L
taking into account the multiplicity of each `-wave bound states. To this end, an up-
per limit on L is needed. The best limit, which behaves linearly with the strength
of potential, is obtained, not from (1.165a), but instead from the simple relation
(1.162). We have

N <
1
α2

(L+ + 1)M̃I. (1.166)

The optimal value for L+ is obtained by solving (1.162) but a neater, if generally
less stringent, upper limit L++ (L+ ≤ L++) is given by

L++ =
1
4

(√
1 + 8s2 − 1

)
≤ s√

2
, (1.167a)

with
s =

c(1)
α
√
π
M. (1.167b)

The expression (1.167) for the upper limit on L is obtained using (1.162), (1.163)
and the second part of the inequalities

√
x + 1 ≥ Γ[x + 3/2]/Γ[x + 1] ≥

√
x for

x ≥ 0. c(1) could even be replaced by c(L++) in (1.167b). The transcendental
equation obtained would then be solved very quickly after few iterations thanks to
the slow variation of c(`) as a function of `. If we believe that the relation (1.156a)
is always true for all values of the angular momentum, we can write the asymptotic
expression of the upper limit (1.166) when the strength of the potential, g, goes to
infinity:

N(g→ ∞) <
1
α3

MM̃I, (1.168)

where c(∞) were used to obtain the asymptotic expression of L+, L+ ≈ M/α,
where the symbol ≈ means asymptotic equality. This last expression is useful to
compare the upper limit (1.166) with the Daubechies upper limit (1.145) since we
clearly have ∫ ∞

0
dr r2 [V −(r)]3 ≤ MM̃I. (1.169)

This last inequality means that the upper limit (1.145) would always be better than
the limit (1.166) if its coefficient was equal to 1. Since the coefficient is greater
than unity, 4πK = 1.294 > 1, there is some room for the limit (1.166) to be more
stringent. A square-well potential is an example:

V (r) = −V0 θ[(R1 − r)(r− R2)], (1.170)

where R2 ≥ R1 are two arbitrary positive radius and θ(x) is the step function. When
the ratio of the radius, R1/R2, is in the interval [0.4859, 1), the upper limit (1.166)
is better than the Daubechies upper limit.
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Actually, with the upper limit (1.160) on N` (with n = 2) and the upper limit,
L+, on L obtained with (1.162) (or with L++), we have a family of upper limit
depending on two parameters p and p′ which, being less neat than the limit (1.166),
could prove to be more stringent.

1.3 Conditions for the existence of bound states

In Section 1.1, we have reviewed the most relevant results concerning the limits
on the number of bound states supported by a central potential V (r). It is well
known that, in three dimensions, a critical value, gc, for strength g of the potential
should be reached to obtain a first bound states g ≥ gc. Necessary conditions for
the existence of at least one bound state are obtained from upper limits on N0 or N
(N is the total number bound states) by setting N0 = 1 or N = 1 which yields lower
limits on the critical value of g. Similarly, sufficient conditions for the existence of at
least one bound state are obtained from lower limits on N0 or N by setting N0 = 1
or N = 1 which yield upper limits on gc.

As indicated in Section 1.1, an important theorem for classifying the numerous
limits on the number of bound states was found by Chadan [14], and generalized
by Martin [17], and gives the asymptotic behavior of the number of bound states as
the strength, g, of the central potential goes to infinity:

N ≈ g1/2

π

∫ ∞

0
dr v(r)1/2 as g → ∞, (1.171)

where the symbol ≈ means asymptotic equality and V −(r) = −g v(r) (note that
we use here g as coupling constant instead of g2 in previous Sections!). This result
implies that any upper and lower limit which could yield cogent results should behave
asymptotically as g1/2. More importantly, the relation (1.171) gives the functional
of the potential, that is to say the coefficient in front of g1/2, that appears in the
asymptotic behavior. Upper and lower limits featuring the correct g1/2 dependency
was first obtained in the Ref. [6] (see (1.18) and (1.19)). Upper and lower limits
featuring the correct asymptotic behavior (1.171) was first derived in Refs. [30, 31]
(see (1.50) and (1.52)). In practice, the asymptotic regime is reached very quickly
when the strength of the potential is large enough to bind two or three bound states.

The situation is completely different when one consider the transition between 0
and 1 bound state and in particular upper and lower limit on the critical value of the
strength of the potential, gc, for which a first bound state appears. In this case, there
is no theorem to know in advance which limit yield the most stringent restriction on
gc. It is then of interest to obtain various limits, since the limit yielding the most
stringent restriction change from one potential to another.

In the next Section 1.3.1, we present very recent necessary and sufficient condi-
tions for existence of bound states. In all tests we performed, it appears that, among
previously known results, the most stringent necessary conditions for the existence
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of bound states is given by the Glaser et al. relation (1.29). We will thus only refer
to this result to test our new results. The situation is less clear for sufficient condi-
tions but as we will see, we do not need precise comparison in this case. In Section
1.3.2, we present a necessary conditions for existence of bound states applicable to
the spinless Salpeter equation for which few results are known.

1.3.1 Non-relativistic quantum mechanics

The necessary conditions for the existence of bound states derived in this section is
obtained with the help of a simple extension of the Birman-Schwinger method (see
Appendice 1.3.2). The Schrödinger equation for a central potential V (r) reads

(
− d2

dr2
+
`(`+ 1)
r2

)
u`(r) = (E − V (r)) u`(r). (1.172)

The Green function, G(∆) ≡ g`(r, r′), of the kinetic energy operator (see (1.197))
takes the explicit form

g`(r, r′) =
1

2`+ 1
r`+1
< r−`

> , (1.173)

where r< = min[r, r′] and r> = max[r, r′]. The symmetrical kernel K(r, r′) ≡
K`(r, r′) (see (1.201)) reads

K`(r, r′) = [V −(r)]1/2 g`(r, r′) [V −(r′)]1/2. (1.174)

The expression of the iterated kernels is given by (see (1.203))

K
(n)
` (s, t) =

∫ ∞

0
du K`(s, u)K

(n−1)
` (u, t), (1.175a)

with
K

(1)
` (s, t) ≡ K`(s, t), (1.175b)

and n = 1, 2, . . .. Finally, the upper limits on the number of `-wave bound states
reads

N` <

∫ ∞

0
drK

(n)
` (r, r), (1.176)

with n = 1, 2, . . ..
In his article, Schwinger consider only the case n = 1 for the equation (1.176)

which yields the Bargmann-Schwinger upper limit (1.2). Indeed, greater values of
n would yield upper limits which possess a worse dependency on the strength of
the potential g than the upper limit (1.2) and which would be very poor for strong
potentials. But it appears that, as illustrated below, the larger the value n the
better the lower limit on the critical value of strength of the potential.
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The necessary conditions for the existence of `-wave bound states obtained from
(1.176) read respectively for n = 1, 2, 3:

1
2`+ 1

∫ ∞

0

dr r V −(r) ≥ 1, (1.177)

2
(2`+ 1)2

∫ ∞

0

dr1 r
−2`
1 V −(r1)

∫ r1

0

dr2 r
2`+2
2 V −(r2) ≥ 1, (1.178)

6
(2`+ 1)3

∫ ∞

0
dr1 r

−2`
1 V −(r1)

∫ r1

0
dr2 r2 V

−(r2)
∫ r2

0
dr3 r

2`+2
3 V −(r3) ≥ 1, (1.179)

The improvements of the lower limits on gc implied by the relations (1.178) and
(1.179) over the lower limit inferred by the well known relation (1.177) are illustrated
below for a square-well potential and an exponential potential.

The sufficient condition is obtained with the help of a generalization of the
comparison theorem proved recently and where the comparison potentials intersect
(Theorem 7 of Ref. [62]). The new theorem reads

Theorem. If two monotonic potentials V1(r) and V2(r) cross twice for r > 0 at
r = r1, r2 (r1 < r2) with

(i) V1(r) < V2(r) for 0 < r < r1 and

(ii)
∫ r2

0

dy [V1(y)− V2(y)] y2 ≤ 0,

then E1 < E2, where E1,2 are the ground states of the potentials V1,2(r).
As comparison potential V2(r), we choose a simple square-well

V2(r) = −V0 θ(R− r), (1.180)

where θ(x) is the step function. Moreover, we choose this potential such as a zero-
energy bound state exists: V0R

2 = π2/4. This implies that the potential V1(r)
possesses at least one bound state. For this particular choice of V2(r) we have
r2 = R. We write the potential V1(r) under the form

V1(r) = −gs−2 v(r/s, k), (1.181)

where k are the other parameters of the potential. The hypothesis (ii) above yields
the following upper bound gup

c on the critical coupling constant gc

gup
c =

π2

12
α∫ α

0 dy y2 v(y, k)
, (1.182)

where α = R/s. The best restriction is obviously obtained with the value of α
minimizing the right-hand side of (1.182). The upper limit can thus be written as

gup
c =

π2

12
1

α2 v(α, k)
, (1.183a)
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where α is the unique solution of
∫ α

0

dy y2 v(y, k) = α3v(α, k). (1.183b)

The definition (1.183b) of α has a simple geometric significance which implies that
α > max[y2v(y, k)].

Obviously, we have used a very particular comparison potential V2(r) to write a
neat formula for the upper limit on the critical coupling constant gc. In practice, a
better upper limit could be obtained by the use of a more appropriate comparison
potential for which the exact value of the critical coupling constant is known (and
for which the conditions (i) and (ii) apply!).

We propose now to test these necessary and sufficient conditions for existence
of bound states. The first potential we consider to test the limits is a square-well
potential that we write in the convenient form

V (r) = −gR−2 θ(1 − r/R). (1.184)

The sufficient condition (1.183), applicable only for ` = 0, is saturated for this
potential (with α = 1) and thus leads to the exact result. The necessary conditions
(1.177)-(1.179) give the following lower limits

glo
c = 2(2`+ 1), (1.185)
glo
c = (2`+ 1)[2(2`+ 3)]1/2, (1.186)
glo
c = (2`+ 1)[(2`+ 3)(2`+ 5)]1/3. (1.187)

The comparison between the new lower limits on gc, the limit (1.29) and the exact
results is reported in Table 1.3 and shows that the new limits are quite cogent and
converge quickly to the exact result especially for small value of `.

The last test is performed with an exponential potential written as

V (r) = −gR−2 exp(−r/R). (1.188)

For ` = 0, the sufficient condition (1.183) leads to gup
c = 2.118 while the exact

result is given by gc = z2
0/4 ∼= 1.4458 (z0 = 2.4048 is the first zero of the Bessel

function J0(x)). The upper limit is not very stringent for this potential because
the comparison potential that we choose (a square-well) is very different from an
exponential potential. The upper limit yields more cogent result, for example, for
a Wood-Saxon potential. For an exponential potential a better upper limit can be
obtained with the Calogero lower bound (1.22): gup

c = 1.677.
The comparison between the news lower limits on gc, the limit (1.29) and the

exact result is reported in the Table 1.4. The new lower limits on gc are quite
cogent and converge quickly to the exact results especially for small value of `, but
this convergence is slower than in the case of a square-well potential.
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Table 1.3: Comparison between the exact values of the critical coupling constant
gc of a square-well potential for various values of ` and the lower limits, glo

c ≤ gc,
obtained with the relations (1.185)-(1.187), the lower limit obtained with the relation
(1.176) with n = 4 and N` = 1 (calculated numerically) and the lower limit obtained
with the formula (1.29) (with the optimal value of p).

` n = 1 n = 2 n = 3 n = 4 Eq. (1.29) Exact
0 2 2.4495 2.4662 2.4672 2.3593 2.4674
1 6 9.4868 9.8132 9.8592 9.1220 9.8696
2 10 18.708 19.895 20.120 18.454 20.191
3 14 29.699 32.383 32.981 30.245 33.217
4 18 42.214 47.064 48.272 44.425 48.831
5 22 56.089 63.788 65.868 60.947 66.954

Table 1.4: Comparison between the exact values of the critical coupling constant
gc of an exponential potential for various values of ` and the lower limits, glo

c ≤ gc,
obtained with the relations (1.185)-(1.187), the lower limit obtained with the relation
(1.176) with n = 4 and N` = 1 (calculated numerically) and the lower limit obtained
with the formula (1.29) (with the optimal value of p).

` n = 1 n = 2 n = 3 n = 4 Eq. (1.29) Exact
0 1 1.4142 1.4422 1.4453 1.4383 1.4458
1 3 6.2700 6.8546 6.9913 7.0232 7.0491
2 5 13.145 15.257 15.804 16.277 16.313
3 7 21.593 26.265 27.364 29.218 29.259
4 9 31.363 39.616 41.296 45.849 45.893
5 11 42.297 55.120 57.480 66.173 66.219
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1.3.2 Semi-relativistic quantum mechanics

As explained in Section 1.2.2, results for the Klein-Gordon equation can be obtained
from results applicable to Schrödinger with the help of a simple correspondence, see
(1.142). We will then discuss here results concerning the spinless Salpeter equation.
Actually the relevant necessary conditions have essentially been given in Section
1.2.2 but we recall them explicitely here for completeness and for a potential written
as V (r) = −gR−1v(r/R). We also perform some tests of these formulas.

The first necessary condition is obtained from the Daubechies upper limit and
reads

4πKg3

∫ ∞

0
dx x2 [v(x)(v(x)+ 2β/g)]3/2 > 1, (1.189)

with K = 0.239 for arbitrary values of m, K = 0.103 for m = 0 and where β = mR.
The second necessary condition is derived from the upper limit (1.159) with

` = 0
g2

(πα)2

∫ ∞

0
dx v(x)

∫ ∞

0
dy v(y)×

× [(K0(β|x− y|)−K0(β(x+ y))) + πβ(x+ y − |x− y|)]2 > 1. (1.190)

Simplifications obviously occur in the case of a vanishing mass and the limit reads

g2

(πα)2

∫ ∞

0
dx v(x)

∫ ∞

0
dy v(y) ln2

∣∣∣∣
x + y

x − y

∣∣∣∣ > 1. (1.191)

The third necessary condition is only applicable in the ultra-relativistic regime
(m = 0) is (see (1.161))

∫ ∞

0

dr

r

[
C(`, p/(p− 1)) rV −(r)

]p ≥ 1. (1.192)

The last necessary condition is also only applicable in the ultra-relativistic regime
(m = 0) and for ` > 0 reads (see (1.162))

C(`, 1)M≥ 1, (1.193a)

where
M = max[r V −(r)]. (1.193b)

We test these limits with two simple central potentials. This first one is an
exponential potential

v(x) = exp(−x). (1.194)

The second one is a Pöschl-Teller potential

v(x) =
1

cosh2 x
. (1.195)
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Table 1.5: Comparison, for the exponential and the Pöschl-Teller potentials, between
the lower limit glo

c on the critical values gc yielded by the limits (1.190) and (1.191),
the lower limit glo

c,D, of g yielded by the Daubechies upper limit (1.189) and the exact
critical value gc, obtained by solving numerically the spinless Salpeter equation.

Exponential Pöschl-Teller
β glo

c glo
c,D gc glo

c glo
c,D gc

0 4.443 4.370 5.574 4.126 3.886 5.008
1 1.223 0.6574 1.361 1.512 0.8631 1.742
2 0.6739 0.3374 0.7133 0.8912 0.4582 0.9598
3 0.4604 0.2261 0.4804 0.6233 0.3092 0.6549
4 0.3487 0.1698 0.3616 0.4769 0.2329 0.4956
5 0.2803 0.1360 0.2898 0.3854 0.1867 0.3981

The comparison between the (numerically) exact results, gc, and the lower limits
on gc, obtained from (1.189), (1.190) and (1.191) is displayed in Table 1.5 for a two-
particles problem (α = 2). The results obtained with the upper limits (1.190) and
(1.191) are rather satisfactory especially when β is large and are always better than
the results obtained with the Daubechies upper limit (1.189).

We can also test the necessary condition (1.192) (valid only when m = 0) for
` = 0 by the computation of glo

c . we obtain glo
c = 4 for the exponential potential

and glo
c = 3.685 for the Pöschl-Teller potential.

We also test the relations (1.192) and (1.193) by computing the lower limit gc for
` > 0 with the potentials (1.194) and (1.195). The comparison of these lower limits
with the (numerically) exact critical coupling constant is given in the Table 1.6. The
lower limits yielded by the relation (1.192) are always better than those obtained
with the relation (1.193) but the differences become smaller as ` grows. These lower
limits are quite satisfactory compared to the exact results and the relative differences
between these quantities decrease from 22% to 10% for ` increasing from 1 to 5 for
both potentials.

To conclude, we compare the upper limit, L+, obtained with (1.193), with the
exact largest value, L, of the angular momentum for which bound states do exist.
The results obtained for an exponential and the Pöschl-Teller potential are reported
in the Table 1.7. The bounds on L obtained with (1.193) are very stringent for
both potentials. These excellent results are not so surprising since the same strong
limitations on L are obtained with the non-relativistic counterpart of (1.193) (see
(1.53)).
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Table 1.6: Comparison, for the exponential and the Pöschl-Teller potentials, between
the lower limit on the critical values gc yielded by the limits (1.192) (glo

c,I) and (1.193)
(glo

c,II) and the exact critical value gc, obtained by solving numerically the spinless
Salpeter equation.

Exponential Pöschl-Teller
` glo

c,I glo
c,II gc glo

c,I glo
c,II gc

1 8.524 6.922 10.98 7.437 5.687 9.545
2 13.67 12.81 16.39 11.59 10.53 14.04
3 19.03 18.46 21.81 15.91 15.17 18.52
4 24.44 24.02 27.24 20.30 19.73 22.99
5 29.88 29.53 32.67 24.73 24.27 27.46

Table 1.7: Comparison, for the exponential and the Pöschl-Teller potentials, between
the upper limit, L+, obtained with (1.193), with the exact largest value, L, (obtained
by solving numerically the spinless Salpeter equation) of the angular momentum for
which bound states do exist.

Exponential Pöschl-Teller
g L+ L L+ L

10 1 0 1 1
20 3 2 4 3
30 5 4 6 5
40 6 6 8 7
50 8 8 10 10
100 17 17 21 21
150 27 26 33 32
200 36 35 44 43
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Appendix A: Birman-Schwinger method

Birman [3] and Schwinger [4] have shown how to obtain an upper limit on the
number of bound states once the Green function of the kinetic energy operator of
a wave equation is known. In this section, we recall briefly the main line of the
method; for more details see the original articles [3, 4].

Let T
(
~p 2
)

be a general kinetic energy operator and let

[
T
(
~p 2
)

+ V (~r )
]
Ψ(~r ) = EΨ(~r ) (1.196)

be the wave equation, in three dimensions, that satisfy the wave function Ψ(~r )
(eigenstates) and where E is the energy (eigenvalues). Let G(∆) be the Green
function of T

(
~p 2
)
:

T
(
~p 2
)
G(∆) = δ3(~∆), (1.197)

where ~∆ = ~r − ~r ′, ∆ = |~∆| and δ3(~x ) is the Dirac function. We can write (1.196),
with E = 0, using this Green function as

Ψ(~r ) = −
∫
d~r ′G(∆)V (~r ′) Ψ(~r ′). (1.198)

Since the purpose of the method is to obtain an upper limit on the number of bound
states, we can replace V (~r ) by −V −(~r ) where V −(~r ) is the negative part of the
potential obtained by setting the positive part of the potential equal to zero. Indeed,
a decrease of the potential in some region must lower the energies of the bound states
and therefore cannot lessen their number. Moreover, we introduce the parameter
0 < λ ≤ 1 by the substitution V −(~r ) → λV −(~r ). As λ increases from 0, we reach
a critical value, λ1, at which a bound state first appears with a vanishing binding
energy, E = 0. With further growth of λ, the energy of this state decreases until
we reach a second critical value, λ2, at which a second bound state appears and so
on. When λ has attained the value unity and, λN ≤ 1 < λN+1, there are N bound
states.

We now introduce, to obtain a symmetrical kernel, a new wave function as

Φ(~r ) = [V −(~r )]1/2 Ψ(~r ). (1.199)

The equation (1.198) becomes

Φ(~r ) = λ

∫
d~r ′K(~r,~r ′) Φ(~r ′), (1.200)

where K(~r,~r ′) is given by

K(~r,~r ′) = [V −(~r )]1/2G(∆) [V−(~r ′)]1/2. (1.201)
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If the kernel is positive, we have 0 < λ1 < λ2 < · · · < λN ≤ 1 and 0 < λk < ∞ (λk

denotes each eigenvalue of (1.200)). It is well known that the trace of the iterated
kernels equals the sum of the eigenvalues of the integral equation (1.200) as follow

∞∑

k=1

1
(λk)n

=
∫
d~rK(n)(~r,~r ), (1.202)

where the iterated kernel K(n)(~s,~t ) is given by

K(n)(~s,~t ) =
∫
d~uK(~s, ~u )K(n−1)(~u,~t ), (1.203a)

with
K(1)(~s,~t ) ≡ K(~s,~t ), (1.203b)

and n = 1, 2, . . .. Now it is plain that the following inequalities hold

∞∑

k=1

1
(λk)n

≥
N∑

k=1

1
(λk)n

> N, (1.204)

where N is the number of bound states. From (1.202), (1.203) and (1.204) we find
that an upper limit on the total number of bound states of the wave equation (1.196)
is given by

N <

∫
d~rK(n)(~r,~r ). (1.205)

Appendix B: Proof of the lower bound on |V (q)|
¿From the definition (1.50c) of q we have

π

2
=
∫ ∞

q
dr |V (r)|1/2 ≡

∫ ∞

q
dr

|V (q)|1/2

[V ′(r)]1/β
[V ′(r)]1/β. (1.206)

Now we use the Hölder inequality with 1/α+ 1/β = 1, α > 1. We obtain

π

2
≤

[∫ ∞

q
dr

|V (q)|1/2

[V ′(r)]1/β

] 1
α [∫ ∞

q
dr V ′(r)

] 1
β

. (1.207)

The last integral is equal to |V (q)| and knowing that β = α/(α− 1), we obtain the
lower bound (1.51).
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