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Barrier-Wave–Internal-Wave Interference and Airy Minima in 16O 1 16O Elastic Scattering
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Taking 16O 1 16O elastic scattering at 124 MeV as an example, we show that a barrier-wave–internal-
wave decomposition of the elastic scattering amplitude provides valuable information on the light heavy-
ion interaction and complements the more conventional nearside-farside decomposition. In particular, we
show that the Airy minima present in the angular distributions are due to a barrier-wave–internal-wave
interference mechanism, which sheds additional light on the exceptional transparency displayed by some
light heavy-ion scattering systems. Extension of these ideas to other fields, like atomic and molecular
collision physics, could prove rewarding.

PACS numbers: 24.10.– i, 24.10.Ht, 25.70.Bc
Decisive advances have been reported these last few
years in the understanding of the interaction between light
heavy ions [1]. In particular, the clear observation of rain-
bow scattering features in 16O 1 16O, 16O 1 12C, and
12C 1 12C elastic scattering data has definitely established
the fact that: (i) the real part of the light heavy-ion nucleus-
nucleus optical potential is strongly attractive: the real part
of the optical potential is deep. (ii) In some favorable cases
(in particular, for the three aforementioned systems), the
imaginary part of the potential is weak enough to allow
some information to transpire from the nuclear interior in
the elastic scattering differential cross section: the optical
potential displays some transparency.

The combination of these two features—deep real
potential and incomplete absorption—makes possible the
observation in the elastic scattering data of distinctive re-
fractive effects, like strong Airy minima, superimposed on
more classic diffractive features. This refractive behavior
is conspicuous, e.g., in the systematic analyses carried out
very recently for the 16O 1 16O system by Nicoli et al.
[2] at incident energies between 75 and 124 MeV and by
Khoa et al. [3] between 124 and 1120 MeV, and for the
16O 1 12C system by Nicoli et al. [4] between 62 and
124 MeV and by Ogloblin et al. [5] at 132 MeV. Rain-
bow scattering and Airy minima have been observed for
a long time in medium energy light-ion scattering [6–8],
and are also familiar features in atomic and molecular
collision processes [9].

Because the wavelengths associated with medium and
high-energy heavy-ion scattering are small—and corre-
spondingly because the number of partial waves involved
is large—semiclassical approaches [10,11] have often
proved invaluable for interpreting the optical model calcu-
lation results. The semiclassical analyses presented in this
context have nearly invariably been performed [1,12,13]
within the frame of the so-called “nearside-farside” decom-
position of the elastic scattering amplitude proposed by
Fuller [14]. In this approach, the scattering amplitude f�u�
is decomposed into its nearside fN �u� and farside fF�u�
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components, obtained simply from the partial wave
expansion of f�u�:
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and by decomposing the Rutherford amplitude into its
nearside-farside components fR,N �u� and fR,F�u� [14]. In
a semiclassical interpretation, the nearside and farside con-
tributions correspond to trajectories leading to positive and
negative scattering angles, respectively.

In this decomposition, interference between fN and fF

accounts for the familiar diffractive Fraunhofer oscil-
lations at small angles. In contrast, the Airy minima
observed for moderate absorption appear in the farside
contribution to the amplitude, and are thus understood [1]
to arise from the interference between contributions to fF

originating from different ranges of angular momenta �,

and �., as schematically illustrated in Fig. 1(a). This
interpretation is substantiated by the fact that an increase
of the absorption, which affects preferentially the lower-�
range partial waves, tends to smooth out these minima. It
is however difficult to separate directly fF into subampli-
tudes corresponding to these two ranges; more generally,
it is impossible to obtain the S-matrix contents of fN

and fF , since the latter are expressed in terms of irregular
Legendre functions.

In this Letter, we show that a decomposition of the
scattering amplitude into its barrier-wave and internal-
wave components, first proposed by Brink and Takigawa
[11,15], provides an illuminating understanding of the
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FIG. 1. Schematic representation of the semiclassical trajecto-
ries which contribute (a) to the nearside ( fN ) and farside ( fF),
and (b) to the barrier ( fB) and internal ( fI ) components of the
elastic scattering amplitude. In (a), fF has been further split into
“inner” ( fF,,) and “outer” ( fF,.) components.

salient features of light-heavy ion scattering when absorp-
tion is incomplete, in that it complements the information
supplied by the nearside-farside decomposition.

The barrier-wave– internal-wave decomposition method
has been applied to low-energy light-ion elastic scatter-
ing, where it has helped to understand the anomalous large
angle scattering (“ALAS”) observed for several a-nucleus
systems (see, for example, Ref. [16]); curiously enough,
this method has however been practically ignored in the
context of light heavy-ion scattering. One of the advan-
tages of the barrier-internal decomposition is to provide
subamplitudes, with an intuitively very simple physical
meaning, and associated with genuine S-matrices. This
technique could be used with profit in other fields such as
atomic and molecular collisions physics, where rainbow
scattering and Airy minima have up to now also been dis-
cussed only in terms of the nearside-farside approach (see,
e.g., Refs. [17,18]).

The barrier-wave– internal-wave decomposition makes
sense only for potentials which are strong enough for the
effective potentials active in the scattering to display a
“potential pocket”; the scattering amplitude f�u� can then
be split into barrier fB�u� and internal fI �u� components,
which correspond, respectively, to the part of the incident
flux which is reflected at the barrier of the effective
potential, and that which penetrates the nuclear interior
and reemerges in the entrance channel after reflection
from the most internal turning point; this decomposition is
schematically explained in Fig. 1(b). Whereas the barrier
contribution is rather insensitive to absorption, the internal-
wave contribution survives only in the context of incom-
plete absorption; it has been shown to be responsible
for the ALAS phenomenon observed in some light-
ion systems, providing for the first time unquestionable
evidence for transparency in the scattering of composite
nuclear projectiles like the a particle [15].

Although the barrier-wave– internal-wave decomposi-
tion was initially introduced within a semiclassical con-
text— it requires in principle the localization of complex
turning points and the evaluation of action integrals in the
complex plane— it was shown by Albiński and Michel
[19] that it can be performed in many cases in an accu-
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rate way within a full quantum frame using any conven-
tional optical model code. The method of Ref. [19] makes
use of the response of the elastic scattering amplitude to
small modifications of the optical potential inside of the
barrier radius.

We used this method to decompose the 16O 1 16O
elastic scattering amplitude at energies between 75 and
124 MeV, using the phenomenological optical potentials
of Nicoli et al. [2]. We present here the results of our cal-
culations at 124 MeV; this is one of the incident energies
where a minimum is observed in the experimental angular
distribution at 90± [2,20], which corresponds to a deep
minimum in the excitation function at the same angle [21].
The existence of a minimum at 90± in the symmetrized
cross section sS�u� � j f�u� 1 f�p 2 u�j2 guarantees
that such a minimum also exists in the unsymmetrized
cross section s�u� � j f�u�j2 [22]. The differential cross
sections sB�u� � j fB�u�j2 and sI�u� � j fI �u�j2, corre-
sponding to the barrier- and internal-wave components,
fB and fI , of the unsymmetrized scattering amplitude
f�u� � fB�u� 1 fI �u�, are presented in Fig. 2(a). The
decomposition was obtained using the parameter values
r � 3.25 fm, W1 � 2.5 MeV, and W2 � 20 MeV in
formulas (20) and (23) of Ref. [19]; we checked that
the results do not depend sensitively on the precise
values of these parameters. It is seen that the barrier
contribution sB�u� decreases steadily with angle; it
dominates the scattering at small angles, where it accounts
for the diffractive oscillations observed up to about
50±. On the other hand, the internal contribution sI �u�,
which behaves smoothly up to about 120±, dominates
the scattering beyond that angle. At intermediate
angles (50± , u , 120±), the two amplitudes interfere
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FIG. 2. (a) Ratio to Rutherford of the barrier-wave (sB) and
internal-wave (sI ) contributions to the unsymmetrized 16O 1
16O elastic scattering cross section s at 124 MeV; (b) moduli
of the barrier (SB) and internal (SI ) components of the elastic
S matrix.
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strongly; this interference is responsible for the deep
minima seen around 60± and 90± and the shallower one
around 120± in the unsymmetrized cross section s�u�.
Similar results were obtained at the other energies; the
most significant trend is a slow and regular decrease of
the internal contribution at large angles which, because of
the increase of absorption, drops by 2 orders of magnitude
between 75 and 124 MeV.

Figure 2(a) shows that the presence of an internal-wave
contribution is essential to the building up of the cross
section pattern from 50± onwards, and, in particular, in
the reproduction of the minima seen around 60±, 90±, and
120±. Since this contribution arises from the part of the
incident flux which probes the nuclear interior, our re-
sult demonstrates clearly the exceptional transparency of
the 16O 1 16O interaction at the considered energy, which
turns out to be comparable to that displayed by some very
transparent light-ion systems like a 1 16O at a similar in-
cident energy per nucleon [23,24]. We note however that
the modulus of the internal component, SI ,�, of the elas-
tic S matrix S�, which is plotted together with that of the
barrier component SB,� as a function of the angular mo-
mentum � in Fig. 2(b), is about 10 times less than in the
a 1 16O case [23].

Minima like those observed around 60± and 90± in the
full (unsymmetrized) cross section, which appear here as
arising from an interference between the barrier and in-
ternal contributions to the scattering amplitude, have re-
peatedly been interpreted as Airy minima [1,7,8], due to
the interference in the farside amplitude of two ranges of
angular momenta, �, and �., contributing to the same
(negative) deflection angle [Fig. 1(a)]. The contributions
of these two ranges, sF,, and sF,., to the farside cross
section sF have sometimes been estimated in an approxi-
mate way by using the so-called interpolated-envelope
technique [7,25].

We found that these two contributions can be obtained
in a much more natural—and at the same time more
rigorous—way by subjecting the barrier- and internal-
wave amplitudes themselves to a nearside-farside de-
composition; this decomposition is performed simply by
modifying the partial wave series for fB and fI accord-
ing to Eq. (2). The nearside and farside components,
sN � j fN j

2 and sF � j fF j
2, of the unsymmetrized

16O 1 16O cross section s at 124 MeV, are plotted in
Fig. 3(a); these components are very similar to those
obtained by Nicoli et al. [2] from their folding model
calculations. The farside contributions, sB,F � j fB,F j

2

and sI ,F � j fI ,F j
2, to the barrier-wave and internal-wave

cross sections sB and sI , are presented in Fig. 3(b),
together with the total farside cross section sF .

It is seen that the strongly oscillating farside cross sec-
tion sF , whose behavior accounts for the Airy structure
of the full cross section, has been decomposed into two
components which, as they originate from the barrier and
internal contributions to the cross section, necessarily
100

10-2

10-4

10-6

(a)

σ
σF

σN

σ/
σ R

θc.m. (deg)

0 30 60 90 120 150 180

10-2

10-4

σ/
σ R

(b)

σF

σI,F
σB,F

FIG. 3. (a) Ratio to Rutherford of the nearside (sN ) and far-
side (sF) contributions to the unsymmetrized 16O 1 16O elastic
scattering cross section s at 124 MeV; (b) farside contributions
to the barrier (sB,F) and to the internal (sI,F) components of
the full farside cross section sF .

correspond to different ranges of angular momentum—
indeed the barrier and internal contributions are nearly
decoupled in angular momentum space [Fig. 2(b)].
Moreover these components now vary smoothly with
angle, like those extracted empirically by the interpolated-
envelope technique [7,25]. These properties prove the
identity of the “inner” sF,, and “outer” sF,. cross
sections with our components sI ,F and sB,F , which
are more firmly grounded within a quantum context
and can be computed much more easily than within a
semiclassical approach [26,27]. We like to note that a
calculation of the nearside and farside components of
the barrier and internal contributions to the 12C 1 12C
elastic scattering amplitude at 51 MeV center of mass
energy was presented in the pioneering paper of Rowley,
Doubre, and Marty [22]; at that time however, the beat
structure observed in the farside amplitude—which was
found here to be due to the interference between the farside
contributions to the barrier and internal components—
was not associated with an Airy mechanism, and the
physical significance of the deep potentials needed to
produce these features was unclear in the context of com-
posite nuclear scattering; to the best of our knowledge,
this type of decomposition was no more attempted in
later studies.
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To summarize, we have shown, taking 16O 1 16O
elastic scattering at 124 MeV as an example, that a
barrier-wave– internal-wave decomposition of the elastic
scattering amplitude provides valuable information on
the light heavy-ion scattering mechanism, and that it
complements nicely the nearside-farside decomposition,
which has been widely used in this context. In particular,
the Airy minima observed in the 16O 1 16O angular
distributions appear in our interpretation to be due to a
barrier-wave– internal-wave interference mechanism,
which sheds additional light on the exceptional trans-
parency displayed by this system. Moreover, the two
components of the farside amplitude, introduced in
the nearside-farside approach to account for the Airy
oscillations seen in the farside cross section, are neatly
disentangled by the barrier-wave– internal-wave decom-
position and acquire a clear physical interpretation.

Further investigation of light heavy-ion scattering within
this approach might help to clarify the mechanism of the
nucleus-nucleus interaction, and thus pave the way to a
better understanding of the cluster structure of the unified
nuclear system. Moreover we believe that extension of
these ideas to other fields, like atomic and molecular col-
lision physics, could prove rewarding.
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