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Integral equation formulation of the spinless Salpeter
equation

F. Braua),b)

Universitéde Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgique

~Received 27 June 1997; accepted for publication 12 November 1997!

The spinless Salpeter equation presents a rather particular differential operator. In
this paper we rewrite this equation into integral and integro-differential equations.
These kinds of equations are well known and can be more easily handled. We also
present some analytical results concerning the spinless Salpeter equation and the
action of the square-root operator. ©1998 American Institute of Physics.
@S0022-2488~98!00403-4#

I. INTRODUCTION

The Schro¨dinger equation is a very well defined partial derivative equation since its diffe
tial operator is a Laplacian. Moreover it reduces to a simple differential equation whe
interaction is central. This equation has been intensively studied and it is well understo
simple relativistic version of the Schro¨dinger equation, the spinless Salpeter equation~SSE!,
presents more difficulties. This equation is

~Ap21m1
21Ap21m2

2!C~r !5~E2V~r !!C~r !, ~1!

wherem1, m2 are the masses of the particles,p is their relative momentum,V(r ) is the potential
interaction andE the eigenenergy of the stationary stateC(r ) (\5c51). p and r are conjugate
variables. Actually, this last equation is not so well defined since the kinetic energy operato
nonlocal one. Its action on a functionf (r ) is known only if f (r ) is an eigenfunction of the
operatorp2. In this case we obtain

Ap21m2f ~r !5Aa1m2f ~r !, ~2!

wherea is the corresponding eigenvalue ofp2. Consequently this operator is difficult to handl
However the SSE is not a marginal equation. The correct description of the bound states
particles is achieved with the Bethe–Salpeter equation.1 This last reduces to the SSE~Ref. 2, p.
297! when the following occurs.

• The elimination of any dependences on timelike variables is performed~which leads to the
Salpeter equation3!.

• Any references to the spin degrees of freedom of particles are neglected as well as n
energy solutions.

Despite the presence of a so particular operator, the SSE is often used~see for instance Refs
4–10! since its numerical resolution is very easy for bound states~see for example Refs. 9,11–13!.
However, it would be interesting to reformulate this equation in a way to better understand
even to better use it. The main problem is the nonlocality hidden inside the kinetic e
operator. The idea is thus to extract this nonlocality to put it into evidence. That is why in
work we rewrite the SSE as integral or integro-differential equations where the nonlocality is
explicit. Moreover these kinds of equations are well known and defined. Another integral
tion, different from those presented here, was found in Ref. 11. This formalism allows us to d
the action of the square-root operator on wave functions and calculate the resulting functio

a!Chercheur I.I.S.N.
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This paper is organized as follows. In Sec. II, we present the integral and integro-differ
equations and we calculate their kernels. In Sec. III, we find some analytical results concern
action of the square-root operator and solutions of the SSE. At last, we present, in Sec
summary of this work.

II. INTEGRAL EQUATION FORMULATION

It is possible to rewrite the SSE into different forms. The first one that we present
integral equation. It is obtained using the Green functions of the kinetic energy operator
corresponding kernels are different depending on whether the particles are identical or no
second one is an integro-differential equation. It is obtained taking the square of the squa
operator and is only valid for two identical particles. For these formulations of the SSE only
interactions can be used contrary to the formulation proposed in Ref. 11.

A. First form

In the Introduction we gave the operator expression of the SSE. We are going now to f
late the integral expression of this equation. To obtain it, we use the Green functions of the k
energy operator. We first present the equal masses case. Let us consider the following fu

G~D!5
1

~2p!3E exp~2 ip.D!

2Ap21m2
dp, ~3!

with D5r2r 8 and D5uDu. Then,G(D) is the Green function of the equal masses square-
operator since

2Ap21m2G~D!5
1

~2p!3E exp~2 ip•D!dp5d3~r2r 8!. ~4!

The solution of the SSE can be written as

C~r !5C0~r !1E G~D!~E2V~r 8!!C~r 8!dr 8, ~5!

with Ap21m2C0(r )50. The solutions of this last equation areC0(r )50 and
C0(r )5 i l(mr)Ylm( r̂ ), wherei l(x)5A(p/2x) I l 11/2(x), I n(x) is a modified Bessel function~Ref.
14, p. 952!, Ylm( r̂ ) is a spherical harmonic,r 5ur u and r̂ 5r /r . In Appendix B we show that
C0(r )5kl(mr)Ylm( r̂ ) is not a solution, the functionkl(x) being defined as equal t
A(2/px)Kl 11/2(x), with Kn(x) a modified Bessel function~Ref. 14, p. 952!. Thus only the van-
ishing solution is relevant for physical problems. One sees immediately that the utilizati
nonlocal potentials is impossible if we want to obtain a 1-dimensional integral equation. C
lating the 3-dimensional integral~3! we obtain

G~D!5
m

4p2D
K1~mD!. ~6!

If we consider only the case of central potentials, the wave function can be written in the
C(r )5Rl(r )Ylm( r̂ ) whereRl(r ) is the radial part of the wave function. If, moreover, we place
z axis alongr , the angular dependence ofD is just given by the angle between the vectorr 8 and
the z axis. Then knowing that~Ref. 15, p. 158!

Ylm~0,w!5A2l 11

4p
dm0 , ~7!

Eq. ~5! is written as
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Rl~r !A2l 11

4p
dm05

m

4p2E0

`

r 82~E2V~r 8!!Rl~r 8!dr8E
0

p

sin u8
K1~mD!

D
du8E

0

2p

Ylm~ r̂ 8!dw8.

~8!

We can now perform the integration over the angular variables. We have the well known rel

E
0

2p

Ylm~ r̂ 8!dw852pYlm~ r̂ 8!dm0 , ~9!

and ~Ref. 15, p. 133!

Ylm~u,w!5exp~ imw!A2l 11~ l 2m!!

4p~ l 1m!!
Pl

m~cosu!, ~10!

where the functionsPl
m(x) are the Legendre functions~Ref. 14, p. 998!. Finally, using Eqs.

~8!–~10! and the regularized functionul(r )5rRl(r ), we can write the spinless Salpeter equat
on the form of the following integral equation:

ul~r !5
1

2pE0

`

G l~mr,mr8!~E2V~r 8!!ul~r 8!dr8, ~11!

with

G l~mr,mr8!5mrr8E
0

p

sin u8
K1~mD!

D
Pl~cosu8!du8, ~12!

where the functionsPl(x) are the Legendre polynomials~Ref. 14, p. 1025!. The functions
G l(mr,mr8) are analytic for each value of l . Performing the transformation
y5Ar 21r 8222rr 8 cosu8, we obtain

G l~mr,mr8!5mE
ur 2r 8u

r 1r 8
K1~my!PlS r 21r 822y2

2rr 8
D dy. ~13!

For each value ofl , we can find the primitive and thus calculate the kernel. Indeed, we hav
following relations~Ref. 16, p. 87!:

E xn11Kn~x!dx52xn11Kn11~x!, ~14a!

E x2n11Kn~x!dx52x2n11Kn21~x!. ~14b!

With these it is easy to show that

E xnKm~x!dx52xnKm21~x!2~n1m21!xn21Km~x!1~n1m21!~n2m

21!E xn22Km~x!dx. ~15!

This last relation is useful when one calculates the kernel forl>2. The modified Bessel function
recursion relation is~Ref. 14, p. 970!

Kn11~x!5
2n

x
Kn~x!1Kn21~x!. ~16!
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With Eq. ~13! we see that the polynomial under the integral is composed only of even powe
the integration variable. Then with relation~15!, we can calculate analytically the kernel for ea
value ofl . Another way~more simple! to calculate the kernel is to use the relation derived in R
11,

G l~x,x8!52lzl 11S 1

z

]

]zD
l 1

z
@~y2z! l /2Kl~Ay2z!2~y1z! l /2Kl~Ay1z!#, ~17!

with y5x21x82,z52xx8. The kernel has as an expression forl 50 andl 51,

G 0~x,x8!5K0~ ux2x8u!2K0~x1x8!, ~18!

G 1~x,x8!5K0~ ux2x8u!1K0~x1x8!1
1

xx8
@~x1x8!K1~x1x8!2ux2x8uK1~ ux2x8u!#.

~19!

The expressions~18! and ~19! show that kernels decrease exponentially when arguments
important enough~(x1x8) and ux2x8u@1) sinceKn(x);Ap/(2x)exp(2x) when uxu@1 ~Ref.
14, p. 961!. This behavior indicates that when the masses of particles are large, the nonlo
becomes negligible, the SSE becomes almost local and its spectrum coincides with the¨-
dinger spectrum. However the explicit limit cannot be done in this formalism. One can remar
these kernels present a logarithmic singularity forr 5r 8.

We treat now the unequal masses case. After the previous calculations, it is obvious th
Green function for the unequal masses kinetic energy operator is given by

G̃~D!5
1

~2p!3E exp~2 ip.D!

Ap21m1
21Ap21m2

2
dp. ~20!

This equation becomes, ifm1Þm2,

G̃~D!5
1

~2p!3

1

m1
22m2

2E ~Ap21m1
22Ap21m2

2! exp~2 ip.D!dp. ~21!

The solution of the SSE can be written as a form similar to Eq.~5! and the functionC0(r ) is here
always null. One can find it easily by acting the operator (Ap21m1

22Ap21m2
2) on the equation

(Ap21m1
21Ap21m2

2)C0(r )50. Extracting the operator (2D1m2) from Eq. ~21!, performing
the integration over the momenta and using the Green’s theorem~see Ref. 11!, one can show tha

C~r !5
m1

2p2~m1
22m2

2!
E K1~m1D!

D
~2D r 81m1

2!~E2V~r 8!!C~r 8!dr 81~m1→m2!. ~22!

Again, placing thez axis alongr and repeating the previous calculation we obtain

ul~r !5
1

p~m1
22m2

2!
E

0

`

G̃ l~m1r ,m1r 8!~E2V~r 8!!ul~r 8!dr81~m1→m2!, ~23!

with

G̃ l~mr,mr8!5G l~mr,mr8!F2
d2

dr82
1

l ~ l 11!

r 82
1m2G . ~24!

B. Second form

This second rewriting of the SSE leads to an integro-differential equation. By acting
kinetic energy operator on the left of the equal masses SSE we obtain
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4~p21m2!C~r !5E~E2V~r !!C~r !22Ap21m2V~r !C~r !. ~25!

Thus, we must calculate the action of the square-root operator on the product of fun
V(r )C(r ). If we consider only central potentials this product gives a function for which
angular dependence is a spherical harmonic. One can show, with the formalism developed
11, that the radial partg(r ) of the functiong(r )Ylm( r̂ ), resulting from the action of the kineti
energy operator on the functionh(r )Ylm( r̂ ), is given by

g~r !5
1

pr E0

`

G̃ l~mr,mr8! h̃~r 8!dr8, ~26!

with h̃(x)5xh(x). When the right-hand side integral is relevant, this rewriting gives meanin
the action of the kinetic energy operator on a central problem wave function. With this resul
obtains from Eq.~25!,

F d2

dr2
2

l ~ l 11!

r 2
2m21

E~E2V~r !!

4 Gul~r !5
1

2pE0

`

G̃ l~mr,mr8!V~r 8!ul~r 8!dr8. ~27!

This last equation is interesting because this is a kind of nonlocal Klein–Gordon Equation~KGE!.
This shows how the SSE differs from KGE when a nonvanishing interaction is introduced~the
free SSE leads to a the free KGE with a different wave numberk). Thus the difference is partially
given by the nonlocal right-hand side of Eq.~27!.

To show how the square-root operator can be particular, we give a simple example in
we show how the hidden nonlocality of the kinetic energy operator could lead to some prob
Let us consider a square well with a ranger c and a depth2V0. In this case, according tor is less
thanr c or not, the right-hand side of equal masses SSE is a constant (E or E1V0) times the wave
function. Then one can think that in each area this equation leads to

@D1Sgn~r c2r !k2#C~r !50, ~28!

with

k25
~E1V0!2

4
2m2, if r ,r c ,

k25m22
E2

4
, if r .r c .

The continuity conditions, for the interior and exterior solutions, at distancer 5r c , fix the wave
function and the energy. But this method to resolve the SSE does not take into accou
nonlocality of the kinetic operator and we obtain the same kind of solution as the KGE. Actu
the problem is the discontinuity. The potential is not a constant for all values ofr and the kinetic
operator does not commute with it. Thus the equal masses SSE does not lead to Eq.~28!. How-
ever, in Eq.~27! the nonlocality is contained in the potential part and we can now write
equation for each area (r ,r c andr .r c). We remark that this equation does not reduce to the
KGE whenr .r c because the right-hand side does not vanish. Thus Eq.~27! leads to different
solutions that these obtained with KGE for the same square well.

We conclude this section with some remarks concerning these integral equations. The
tion derived in Ref. 11 is, for the equal masses case,

@E2V~r !#ul~r !5
2

pE0

`

G̃ l~mr,mr8!ul~r 8!dr8. ~29!

Thus if the potential is just a constant,V(r )5V, using this equation and Eq.~27! we obtain
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F d2

dr2
2

l ~ l 11!

r 2
2m21

~E2V!2

4 Gul~r !50. ~30!

The nonlocality disappears and we find the corresponding Klein–Gordon equation.
It is easy to show, with the operator expression of the SSE, that the free radial solutio

Rl(r )} j l(kr) where the functionj l(kr) is the regular spherical Bessel function defined as

j l~x!5Ap

2x
Jl 1 1/2~x!, ~31!

where the functionJn(x) is the Bessel function of the first kind~Ref. 14, p. 951!. The wave
numberk is given by

k25S 1

4E2
~m1

22m2
21E2!22m1

2D . ~32!

In Appendix A we show that

E
0

`

G l~mr,mr8!gr 8 j l~gr 8!dr85
p

Ag21m2
gr j l~gr !. ~33!

Then one can verify that Eqs.~11!, ~23! and ~27! are true for a vanishing potential wheng is
replaced byk. In Appendix B, we show that the situation is rather different if one considers
irregular spherical Bessel functions.

III. ANALYTICAL RESULTS

In this section we present some analytical results concerning both the action of the squa
operator and solutions of the SSE. We first calculate the action of the kinetic energy opera
the functionsr n exp(2mr) (n>21 andn integer!. The Fourier transform,f̃ (p), of these func-
tions are

f̃ ~p!5~2 !n11A2

p

]n11

]mn11

1

p21m2
. ~34!

Then for each value ofn we can calculate the action of the square-root operator. We have
n521 andn50,

Ap21m2
exp~2mr!

r
5

2m

pr
K1~mr!, ~35!

Ap21m2 exp~2mr!5
4m

p
K0~mr!. ~36!

We can get two more relations knowing the following integrals~Ref. 14, p. 429!:

E
0

` x2b11 sin~ax!

~m21x2!n1 1/2
dx5~2 !b11

Ap

2n mn GS n1
1

2D
] 2b11

] a2b11
@an Kn~ma!#, ~37!

with a.0, Rem.0, 21<b<n and

E
0

`x2b11 sin~ax!

~m21x2!n11
dx5~2 !b1n

p

2 n! F ]n

] gn
~gb exp~2aAg!!G

g5m2

, ~38!
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with a.0, 0<b<n, uarg(m2)u,p. Rewriting these integrals as 3-dimensional integrals, extr
ing the square-root operator and integrating the resulting integrals one obtains the foll
formulas:

Ap21m2H 1

r F ]n

] gn
~gb exp~2rAg!!G

g5m2
J 5~2 !n11

2 n!

p mn ~2n21!!! r

] 2b11

] r 2b11
@r n Kn~mr!#,

~39!

and

Ap21m2H 1

r

] 2b11

] r 2b11
~r n11 Kn11~mr!!J 5~2 !n11

p mn11~2n11!!!

2 n! r

3F ]n

] gn
~gb exp~2rAg!!G

g5m2

. ~40!

These two equations are valid for 0<b<n.
With these results we can find easily some analytical solutions of the SSE with a non

interaction. Let us consider the following equation:

2Ap 21m2 R0~r !5E R0~r !2E
0

`

W~r ,r 8! R0~r 8! dr8. ~41!

If we choose

W~r ,r 8!5Fa exp~2mr!2
8m

p
~b1m! K0~mr!G exp~2br 8!, ~42!

then using Eq.~36! we obtain the solution

R0~r !}exp~2mr!, ~43!

E5
a

b1m
. ~44!

Thus it is easy to construct a set of solutions with the operator expression of the SSE, we m
consider a well chosen interaction. We can also find analytical solutions using Eq.~29! with a
nonlocal interaction:

2

pE0

`

G̃ l~mr,mr8! ul~r 8! dr85E ul~r !2E
0

`

W~r ,r 8! ul~r 8! dr8. ~45!

Choosing, for example,l 50 and

W~r ,r 8!52
2

p
G 0~mr,mr8!F2b

r 8
1~m22b2!G1gr exp~2br 2ar 8!, ~46!

then we get the solution

u0~r !}r exp~2br !, ~47!

E5
g

~a1b!2
. ~48!

Again we can construct with this representation of the SSE a set of analytical solutions
sponding to a set of well chosen interactions.
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IV. SUMMARY

In this work our purpose was to rewrite the spinless Salpeter equation into forms more e
handle, since its differential operator is so particular. To perform it we have extracted the h
nonlocality of the kinetic energy operator to get it really explicit. Thus we have obtained in
II the following equations:

• For m15m2,

ul~r !5
1

2pE0

`

G l~mr,mr8! ~E2V~r 8!! ul~r 8! dr8,

and

F d2

dr2
2

l ~ l 11!

r 2
2m21

E~E2V~r !!

4 G ul~r !5
1

2pE0

`

G̃ l~mr,mr8! V~r 8! ul~r 8! dr8,

with

G̃ l~mr,mr8!5G l~mr,mr8!F2
d2

dr82
1

l ~ l 11!

r 82
1m2G .

• And for m1Þm2,

ul~r !5
1

p~m1
22m2

2!
E

0

`

G̃ l~m1r ,m1r 8! ~E2V~r 8!! ul~r 8! dr81~m1→m2!.

The kernelG l(mr,mr8) was first derived in Ref. 11. It is analytic for each value of angu
momentum and is given in Sec II. There are two integral equations and one integro-differ
equation. These kind of equations are well known. The problem of a definition, connected
particular kinetic energy operator, are removed when the spinless Salpeter equation is re
into these forms or into the form~29! ~derived in Ref. 11!. Moreover with this last one we ca
calculate the action of the square-root operator on any functions of the formh(r ) Ylm( r̂ ) and find
the radial part of the resulting functions. Ifg(r ) is this radial part, we have

g~r !5
1

pr E0

`

G̃ l~mr,mr8! h̃~r 8! dr8,

with h̃(x)5x h(x). When the integral in the right-hand side is relevant, this expression g
meaning to the action of the square-root operator on central problem wave functions. Indee
last relation allows us to explicitly calculate the resulting functions.

In Sec. III we have found some analytical results concerning the action of the squar
operator on some particular functions. With these results and the integral formalism we
shown how to construct a set of analytical solutions of the SSE with well chosen interactio
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APPENDIX A: FREE SOLUTIONS OF THE INTEGRAL FORM OF THE SPINLESS
SALPETER EQUATION

In this section we show, with the integral equation formalism, that the free radial solution
the regular spherical Bessel functions. It is easy to prove it with the operator expression of th
because one can rewrite it as

~D1k2! C~r !50, ~A1!
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wherek is given by Eq.~32!.
To prove it with the integral formulation, we use the integral expression of the ke

G l(mr,mr8) @see Eq.~25!, Ref. 11#,

G l~mr,mr8!5
m2

2
r r 8 E

0

`

expF2
1

u
2

m2

4
~r 21r 82!uG i l S 1

2
m2rr 8uD du. ~A2!

Then knowing that

j l~x!5Ap

2x
Jl 1 1/2~x!, i l~x!5Ap

2x
I l 1 1/2~x!, ~A3!

and ~Ref. 14, p. 718!

E
0

`

x exp~2ax2! I n~bx! Jn~gx! dx5
1

2a
expS b22g2

4a D JnS bg

2a D ~A4!

~with Re a.0, Ren.21), we have

E
0

`

G l~mr,mr8! gr 8 j l~gr 8! dr85
Ap

m
gr j l~gr ! E

0

` exp@~2 1/u!~11 g2/m2!!]

u3/2
du

5
p

Ag21m2
gr j l~gr !. ~A5!

APPENDIX B: SINGULARITY AND THE RELATIVISTIC COULOMB PROBLEM

We know that the relation

A2D1m2 G~r !5A6b21m2 G~r !, ~B1!

leads toG(r )} j l(br ) ~plus sign! or G(r )} i l(br ) ~minus sign!. The situation is rather differen
for the irregular spherical Bessel functionsnl(x) and kl(x) (nl(x)5A(p/2x)Nl 11/2(x), where
Nn(x) is the Bessel function of the second kind!. To illustrate, we just consider the functio
k0(x)5exp(2x)/x. We see that the right-hand side of Eq.~35! is different from zero as we could
expect from Eq.~B1!. Then we can write

Ap 21m2
exp~2gr !

r
5Am22g2

exp~2gr !

r
1 f ~r !, ~B2!

where

~Ap 21m21Am22g2! f ~r !54pd~r !, ~B3!

since

~D2g2!
exp~2gr !

r
524pd~r !. ~B4!

From Eq.~B3! we deduce

f ~r !5
2

pr E0

` p sin~pr !

Ap21m21Am22g2
dp. ~B5!

Thus we see that the singularity at the origin of the functionsnl(x) andkl(x) is very important
and very annoying. Indeed, iff (r ) was null it would be easy to solve the equal masses relativ
Coulomb problem forl 50. In this case one can show that
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Let

ical
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Downloaded
Ap 21m2exp~2gr !5Am22g2exp~2gr !1
g

Am22g2

exp~2gr !

r
~B6!

and

Ap 21m2r exp~2gr !5Am22g2r exp~2gr !1
2g

Am22g2
exp~2gr !2

m2

~m22g2!3/2

exp~2gr !

r
.

~B7!

Acting as the square-root operator on the left of these relations one can verify them. The eq
to solve is

2 Ap21m2Rl~r !5S E1
k

r DRl~r !. ~B8!

Using Eq.~B6!, we find that the ground state is

R0~r !}expS 2
km

A41k2
r D , ~B9!

with

E5
2m

A11~k/2!2
. ~B10!

Using Eqs.~B6! and ~B7!, the first excited state is given by

R0~r !}S 12
16km

~161k2!3/2
r D expS 2

km

A161k2
r D , ~B11!

with

E5
2m

A11~k/4!2
. ~B12!

This spectrum is a rather good approximation. For example, the error is' 0.25%, for the ground
state, ifk50.456 andm51 GeV ~see Ref. 13!. These energies were first obtained in Ref. 17.
us remark that the wave functions are Schro¨dinger-like wave functions.
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