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The spinless Salpeter equation presents a rather particular differential operator. In
this paper we rewrite this equation into integral and integro-differential equations.
These kinds of equations are well known and can be more easily handled. We also
present some analytical results concerning the spinless Salpeter equation and the
action of the square-root operator. 98 American Institute of Physics.
[S0022-24888)00403-4

I. INTRODUCTION

The Schrdinger equation is a very well defined partial derivative equation since its differen-
tial operator is a Laplacian. Moreover it reduces to a simple differential equation when the
interaction is central. This equation has been intensively studied and it is well understood. A
simple relativistic version of the Schiimger equation, the spinless Salpeter equati®8B,
presents more difficulties. This equation is

(VP2 mZ+ \p2+md) W (r)=(E—V(r)¥(r), (1)

wherem,, m, are the masses of the particl@sis their relative momentun¥/(r) is the potential
interaction ancE the eigenenergy of the stationary stdt¢r) (A=c=1). p andr are conjugate
variables. Actually, this last equation is not so well defined since the kinetic energy operator is a
nonlocal one. Its action on a functioi(r) is known only if f(r) is an eigenfunction of the
operatorp?. In this case we obtain

VP2 m2E(r) = Ja+m?f(r), 2

wherea is the corresponding eigenvalue pf. Consequently this operator is difficult to handle.
However the SSE is not a marginal equation. The correct description of the bound states of two
particles is achieved with the Bethe—Salpeter equdtibhis last reduces to the SSRef. 2, p.

297) when the following occurs.

» The elimination of any dependences on timelike variables is perfofmkith leads to the
Salpeter equatioh

» Any references to the spin degrees of freedom of particles are neglected as well as negative
energy solutions.

Despite the presence of a so particular operator, the SSE is ofteriagsetbr instance Refs.
4-10 since its numerical resolution is very easy for bound st@es for example Refs. 9,11913
However, it would be interesting to reformulate this equation in a way to better understand it or
even to better use it. The main problem is the nonlocality hidden inside the kinetic energy
operator. The idea is thus to extract this nonlocality to put it into evidence. That is why in this
work we rewrite the SSE as integral or integro-differential equations where the nonlocality is then
explicit. Moreover these kinds of equations are well known and defined. Another integral equa-
tion, different from those presented here, was found in Ref. 11. This formalism allows us to define
the action of the square-root operator on wave functions and calculate the resulting functions.
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This paper is organized as follows. In Sec. Il, we present the integral and integro-differential
equations and we calculate their kernels. In Sec. lll, we find some analytical results concerning the
action of the square-root operator and solutions of the SSE. At last, we present, in Sec. IV, a
summary of this work.

Il. INTEGRAL EQUATION FORMULATION

It is possible to rewrite the SSE into different forms. The first one that we present is an
integral equation. It is obtained using the Green functions of the kinetic energy operator. The
corresponding kernels are different depending on whether the particles are identical or not. The
second one is an integro-differential equation. It is obtained taking the square of the square-root
operator and is only valid for two identical particles. For these formulations of the SSE only local
interactions can be used contrary to the formulation proposed in Ref. 11.

A. First form

In the Introduction we gave the operator expression of the SSE. We are going now to formu-
late the integral expression of this equation. To obtain it, we use the Green functions of the kinetic
energy operator. We first present the equal masses case. Let us consider the following function:

1 exp(—ip.A)
G(A)_(Zw)J 2yprm P )

with A=r—r’ andA=|A|. Then,G(A) is the Green function of the equal masses square-root
operator since

1
(2m)®

2\p?+m?G(A)=

fexp(—ipA)dp:bQ’(r—r’). (4)
The solution of the SSE can be written as
‘If(r)=‘1’o(r)+J G(A)(E=V(r")Ww(r")dr’, 5

with p?+m?¥y(r)=0. The solutions of this last equation ar&Vy(r)=0 and
Wo(r)=i,(mr)Y,m(), wherei (x) = V(7/2x) |, +1,2(x), | ,(X) is a modified Bessel functiofRef.

14, p. 952, Y;m(r) is a spherical harmonia,=|r| andr=r/r. In Appendix B we show that
\Ifo(r)=k|(mr)Y|m(F) is not a solution, the functiork,(x) being defined as equal to
V@ITX)K| £ 1AX), with K,(x) a modified Bessel functiofRef. 14, p. 952 Thus only the van-
ishing solution is relevant for physical problems. One sees immediately that the utilization of
nonlocal potentials is impossible if we want to obtain a 1-dimensional integral equation. Calcu-
lating the 3-dimensional integréB) we obtain

G(A)=

o Ka(ma). ®)

If we consider only the case of central potentials, the wave function can be written in the form

W (r)=Ry(r)Y,m(r) whereR(r) is the radial part of the wave function. If, moreover, we place the
z axis alongr, the angular dependence &fis just given by the angle between the veatband
the z axis. Then knowing thatRef. 15, p. 158

21+1
Yim(0,0)= ﬁ%o, (7)

Eq. (5) is written as
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21+1 m (= , . R ,Kl(mA) (2 ., )
R(D\ 5 5mo:_4772f0r (E=V(r')R,(r")dr fo sin ' ———do fo Y, (F)de’.
8

We can now perform the integration over the angular variables. We have the well known relations

2w N A
jo Yim(r")de'=27Ym(r") 8mo, ©)

and(Ref. 15, p. 133

. [+ 1(0—-m)!
Ylm( 0, QD) = eX[XIm(,D) mﬂ (COS 0), (10)

where the functionsP["(x) are the Legendre functiond®ef. 14, p. 998 Finally, using Egs.
(8)—(10) and the regularized functiom(r)=rR,(r), we can write the spinless Salpeter equation
on the form of the following integral equation:

1 ©
u|(r)=ﬂf0 cimr,mr")(E=V(r")u(r')dr’, (19
with
7 Ky(ma)
.Z/,(mr,mr’)=mrr’JO sin 0’ A P,(cos@’)dé’, (12

where the functions?|(x) are the Legendre polynomiaiRkef. 14, p. 1025 The functions
Z(mr,mr’) are analytic for each value ofl. Performing the transformation
y=\r?+r'?=2rr’ cosé’, we obtain

!

%(mr,mr»:mfl'” K,(my)P,
r—r

_"

13

r2+r'2— 2
_y)dy_

!

For each value of, we can find the primitive and thus calculate the kernel. Indeed, we have the
following relations(Ref. 16, p. 87:

f X" PIK () dx=—x""1K ,;1(X), (14a
j X VPR () dx=—x""TIK, 4 (X). (14b)
With these it is easy to show that
J’ XK, (x)dx=—=Xx"K , _1(X) = (v+u— l)x”*lKM(x) +(v+tu—1)(v—pu

- 1)f X" 72K, (x)dx. (15)

This last relation is useful when one calculates the kerndl#&. The modified Bessel functions
recursion relation igRef. 14, p. 970

2v
KV+1(X)=7KV(X)+KV71(X). (16)
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With Eqg. (13) we see that the polynomial under the integral is composed only of even powers of
the integration variable. Then with relatigh5), we can calculate analytically the kernel for each
value ofl. Another way(more simple to calculate the kernel is to use the relation derived in Ref.
11,

19\"1
f91<x,x'>=2'z'+1(—i ~[y=2"K(Wy =2~ (y+2)"*K|(Wy+2)], (17

Z 0z

with y=x2+x'2,z=2xx’. The kernel has as an expression lfer0 andl=1,

Zo(x,x")=Ko([x=x"]) = Ko(x+x'), (18

1
G(X,X")=Ko(|x=x"]) + Ko(x+x") + ;[(erx’)Kl(xﬂLx’)— [x—x'"|Kq(|x=x"])].
(19

The expressiong18) and (19) show that kernels decrease exponentially when arguments are
important enough(x+x’) and|x—x’|>1) sinceK ,(x)~ /(2x)exp(—x) when|x|>1 (Ref.
14, p. 96). This behavior indicates that when the masses of particles are large, the nonlocality
becomes negligible, the SSE becomes almost local and its spectrum coincides with the Schro
dinger spectrum. However the explicit limit cannot be done in this formalism. One can remark that
these kernels present a logarithmic singularity rferr’.

We treat now the unequal masses case. After the previous calculations, it is obvious that the
Green function for the unequal masses kinetic energy operator is given by

E(A)= 1 f exp(—ip.A) d 20
" @m?) Ve Jpremg
This equation becomes, iifi; # m,,
~ 1 1 2 2 2 2 :
G(a)- | (o o) exi—ip.A)dp. (21
(2m)® mf—m3

The solution of the SSE can be written as a form similar to(Bgand the functionV y(r) is here
always null. One can find it easily by acting the operatgp{+m;— \p?+m3) on the equation
(Vp?+mi+ \p?+m3)W(r)=0. Extracting the operator{A +m?) from Eq. (21), performing
the integration over the momenta and using the Green’s the@@eenRef. 1], one can show that

W (r)= (—Ap+m2)(E=V(r'))W(r')dr’ +(m—m,). (22

my f K1(miA)
2n¥(mi-mj)) A

Again, placing thez axis alongr and repeating the previous calculation we obtain

J:g‘u(mlhmlf')(E—V(f'))u|(r')dr’+(m1—>mz), (23

= )

with

d>  1(1+1)

-— +m?|. 24
dr12 r/2 ( )

Z(mr,mr’")=%,(mr,mr’)

B. Second form

This second rewriting of the SSE leads to an integro-differential equation. By acting the
kinetic energy operator on the left of the equal masses SSE we obtain
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4(p2+m?) W (r)=E(E-V(r))¥(r)—2p?>+m?V(r)¥(r). (25

Thus, we must calculate the action of the square-root operator on the product of functions
V(r)W¥(r). If we consider only central potentials this product gives a function for which the
angular dependence is a spherical harmonic. One can show, with the formalism developed in Ref.

11, that the radial pa(r) of the functiong(r)Y,,(r), resulting from the action of the kinetic
energy operator on the functidr(r)Y,,(r), is given by

1 (=- -
g(r)=;fo c(mr,mr’)h(r")dr’, (26)

with h(x)=xh(x). When the right-hand side integral is relevant, this rewriting gives meaning to

the action of the kinetic energy operator on a central problem wave function. With this result, one

obtains from Eq(25),
d> 1(1+1) , E(E—-V(r))
—_— m _—
dr? r2 4

1 (>
u,(r)=zfo S(mrmr)V(rHu(rHdr’. (27

This last equation is interesting because this is a kind of nonlocal Klein—Gordon Eq(&G&).
This shows how the SSE differs from KGE when a nonvanishing interaction is introdtieed
free SSE leads to a the free KGE with a different wave nurkethus the difference is partially
given by the nonlocal right-hand side of EQ7).

To show how the square-root operator can be particular, we give a simple example in which
we show how the hidden nonlocality of the kinetic energy operator could lead to some problems.
Let us consider a square well with a rangeand a depth-V,. In this case, according tois less
thanr or not, the right-hand side of equal masses SSE is a con&ank +V;) times the wave
function. Then one can think that in each area this equation leads to

[A+Sgr(r,—r)k?]W(r)=0, (28)
with

_(E+Vp)?
-

—m?, if r<ry,

k2
E2

kzzmz—z, if r>r,.

The continuity conditions, for the interior and exterior solutions, at distaree,, fix the wave
function and the energy. But this method to resolve the SSE does not take into account the
nonlocality of the kinetic operator and we obtain the same kind of solution as the KGE. Actually,
the problem is the discontinuity. The potential is not a constant for all valuesanl the kinetic
operator does not commute with it. Thus the equal masses SSE does not lead28) Bqow-
ever, in Eq.(27) the nonlocality is contained in the potential part and we can now write an
equation for each area€r, andr>r.). We remark that this equation does not reduce to the free
KGE whenr>r. because the right-hand side does not vanish. ThugZ.leads to different
solutions that these obtained with KGE for the same square well.

We conclude this section with some remarks concerning these integral equations. The equa-
tion derived in Ref. 11 is, for the equal masses case,

2 (=
[E—V(r)]uu(r)=;J i(mr,mr")u(r’)dr’. (29)
0
Thus if the potential is just a constaM(r) =V, using this equation and ER7) we obtain
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d>  1(1+1) 2, (E—V)?

dr? r2 m 4

u(r)=0. (30)

The nonlocality disappears and we find the corresponding Klein—Gordon equation.
It is easy to show, with the operator expression of the SSE, that the free radial solutions are
Ri(r)ej,(kr) where the functiorj;(kr) is the regular spherical Bessel function defined as

Ji(x)= \/g']w 12AX), (3D

where the function],(x) is the Bessel function of the first kingRef. 14, p. 951 The wave
numberk is given by

1
kZZ(E(mi—ngrEz)z—mi). (32)
In Appendix A we show that
[ “memey e = i 0 (33
Si(mr,mr’)yr r')dr’ =——=—=yrj,(yr).
o | ey \/?2+—m27“ Y

Then one can verify that Eq$ll), (23) and (27) are true for a vanishing potential whenis
replaced byk. In Appendix B, we show that the situation is rather different if one considers the
irregular spherical Bessel functions.

Ill. ANALYTICAL RESULTS

In this section we present some analytical results concerning both the action of the square-root
operator and solutions of the SSE. We first calculate the action of the kinetic energy operator on

the functionsr™ exp(~mr) (n=—1 andn intege). The Fourier transformf (p), of these func-

tions are
\F PURE |
rs —(_\n+1 - -
f(p)=(-) P (34)

Then for each value of we can calculate the action of the square-root operator. We have, for
n=-1 andn=0,

exp(—mr) 2m

PP Em? ————=—Ky(mn), (39
4m
VpZ+m? exp(—mr)=7Ko(mr). (36)
We can get two more relations knowing the following integr@ef. 14, p. 42%

»x2b+1 gin(ax g 2b+1
j#”()d =(—)b*t ym [a" Ky(ma)], (37)

0 (m +x )n+ 1/2 non 1 a2b-%—1

2"m" T’ n+ >

with a>0, Rem>0, —1<b=<n and

(9!'1

~(7" exp(—ayy))
dy

: (39)

woy2b+1 o
f x?P*T1 sin(ax) dx=(— )b T
y=m2

0 (m2+x2)n+1 2n!
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with a>0, 0<b=n, |arg(m?)|< . Rewriting these integrals as 3-dimensional integrals, extract-
ing the square-root operator and integrating the resulting integrals one obtains the following

formulas:
1) gn 2n! (92b+1
¢p2+m"’[; p 7n(«y” exp(— 1)) ]=(—)”+1 T n—Di r 3 r2b+1[r“ Ka(mn],
—m2 T — 1)
! (39)
and
1 g2+t mm'i2n+ 1)
2 2 +1 __(_\n+1
Vpitm |F(9 el Kn+1(mr))]—( )" TN
0—,n
X (Yexp—rvy)| . (40
ay"

y=m?

These two equations are valid fob=<n.
With these results we can find easily some analytical solutions of the SSE with a nonlocal
interaction. Let us consider the following equation:

2\p 2+ m? Ry(r)=E Ro(r)—rW(r,r') Ro(r’) dr'. (41
0
If we choose
8m
W(r,r')=|a exq—mr)—7(,8+m) Ko(mr) | exp—Br’'), (42
then using Eq(36) we obtain the solution
Ro(r)ocexp(—mr), (43
. o
E= Brm: (44)

Thus it is easy to construct a set of solutions with the operator expression of the SSE, we must just
consider a well chosen interaction. We can also find analytical solutions usin@®quith a
nonlocal interaction:

2 o __ o
—f gitmr,mr’) u(r’) dr'=E u,(r)—f W(r,r") u(r") dr’. (45)
mJo 0

Choosing, for exampld,=0 and

2 28
W(r,r’)z—; Zo(mr,mr’) r—,+(m2—,82) +yr exp(—Br—ar’), (46)
then we get the solution
Uo(r)ecr exp(—Br), (47)
Y
=—. 48
(a+p)? 9

Again we can construct with this representation of the SSE a set of analytical solutions corre-
sponding to a set of well chosen interactions.
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IV. SUMMARY

In this work our purpose was to rewrite the spinless Salpeter equation into forms more easy to
handle, since its differential operator is so particular. To perform it we have extracted the hidden
nonlocality of the kinetic energy operator to get it really explicit. Thus we have obtained in Sec.
Il the following equations:

* For m;=mo,,

1 )
u|(r)=ﬂf0 S(mr,mr’) (E=V(r")) u(r’) dr’,

and

d2_|(|+1)_ , E(E—V(r))

dr? r2 4

1 (>_
u,(r)=ﬂfo Sy (mr,mr’) V(r") u(r’) dr’,

with

7= " — & "l _
gmr,mr’)=9% (mr,mr") _dr’2 2

a2 1(1+1) 2]
+me|.

* And for my#m,,

o0

u(r)= Zi(myr,myr’) (E=V(r") uy(r’) dr’+(mg—my).

w(m%—mg)fo

The kernel:s,(mr,mr") was first derived in Ref. 11. It is analytic for each value of angular
momentum and is given in Sec Il. There are two integral equations and one integro-differential
equation. These kind of equations are well known. The problem of a definition, connected to the
particular kinetic energy operator, are removed when the spinless Salpeter equation is rewritten
into these forms or into the forr29) (derived in Ref. 11 Moreover with this last one we can
calculate the action of the square-root operator on any functions of thehfgnmy,(r) and find
the radial part of the resulting functions.df{r) is this radial part, we have

1 (>~ —
o (( ! ! !
a(r) _ero gy (mr,mr’) h(r’) dr’,

with h(x)=x h(x). When the integral in the right-hand side is relevant, this expression gives
meaning to the action of the square-root operator on central problem wave functions. Indeed, this
last relation allows us to explicitly calculate the resulting functions.

In Sec. lll we have found some analytical results concerning the action of the square-root
operator on some particular functions. With these results and the integral formalism we have
shown how to construct a set of analytical solutions of the SSE with well chosen interactions.
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APPENDIX A: FREE SOLUTIONS OF THE INTEGRAL FORM OF THE SPINLESS
SALPETER EQUATION

In this section we show, with the integral equation formalism, that the free radial solutions are
the regular spherical Bessel functions. It is easy to prove it with the operator expression of the SSE
because one can rewrite it as

(A+k?) W(r)=0, (A1)
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wherek is given by Eq.(32).
To prove it with the integral formulation, we use the integral expression of the kernel
Z(mr,mr’) [see Eq.(25), Ref. 11,

g; ’ _m2 ’ fw 1 mz 2+ 12
,(mr,mr)—7rr 0ex m T(r r'<yu

(1
n(zmzrr’u) du. (A2)
Then knowing that

ji(x)= V2x J|+ 2AX), (x)= \/ T Iy 12(X), (A3)

and(Ref. 14, p. 718

f x exp(— ax?) 1 ,(Bx) J,(yX) dx— p{'g _Y ) ( ) (A4)
(with Re >0, Rev>—1), we have

= exf (— Lu)(1+ y2/m?))]
3/2 du

fm Zymrmr’) yr’ iy’ dr’ =£ 2 (o) f
0 u

(A5)

== I i(yr)

r r).

(24 m2 h

APPENDIX B: SINGULARITY AND THE RELATIVISTIC COULOMB PROBLEM

We know that the relation

J=A+m? G(r)=\/i,82+mz G(r), (B1)

leads toG(r)«<j;(Br) (plus sign or G(r)ci;(Br) (minus sign. The situation is rather different
for the irregular spherical Bessel functiongx) and k;(x) (n;(x)=V(7/2X)N,, 1,2(X), where
N,(x) is the Bessel function of the second kindo illustrate, we just consider the function
ko(x) =exp(—x)/x. We see that the right-hand side of Eg5) is different from zero as we could
expect from Eq(B1). Then we can write

mﬂz W=7 M+f(r), (82)

where
(Vp 2+ P+ P = ) f(r) = 4w (r), B3

since
(A—’VZ)M:_47T5(r)- (B4)

r

From Eq.(B3) we deduce

_ 2 p sin(pr)
0 VpZ+m2+Jm?— 92

dp. (B5)

Thus we see that the singularity at the origin of the functimiis) andk,(x) is very important
and very annoying. Indeed, f{r) was null it would be easy to solve the equal masses relativistic
Coulomb problem fot=0. In this case one can show that
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Vp 2+ mlexp — yr)=Jm?— y’exp(— yr)+ mzy 2exp(—yr) (B6)

—y r
and

2

2y m exp(— yr)
VP 2Hmer exp(— yr) = Vm*— y°r exp(— yr)+ ———=exp— yr)— :
m2— 2 52 (m2— 72)3/2 r

(B7)

Acting as the square-root operator on the left of these relations one can verify them. The equation
to solve is

2 JpZr MR, (1) = E+§ R(r). (B8)

Using Eq.(B6), we find that the ground state is

KM
RO(I')MEX[{—\/TKZF), (Bg)

with

2m
E=— (B10)

V1+(k/2)2

Using Eqgs.(B6) and (B7), the first excited state is given by

(B11)

Re(1) 1 16km [{ Km

I)oc — = |exXp — ——r
0 (16+ «2)372 16+ K2
with

2m
E=—— (B12)

V1+ (k42

This spectrum is a rather good approximation. For example, the errori25%, for the ground
state, ifk=0.456 andn=1 GeV (see Ref. 18 These energies were first obtained in Ref. 17. Let
us remark that the wave functions are Sdhinger-like wave functions.
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