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Universality of Regge and vibrational trajectories in a semiclassical model
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The orbital and radial excitations of light-light mesons are studied in the framework of the dominantly
orbital state description. The equation of motion is characterized by a relativistic kinematics supplemented by
the usual funnel potential with a mixed scalar and vector confinement. The influence of finite quark masses and
potential parameters on Regge and vibrational trajectories is discussed. The case of heavy-light mesons is also
presented[ S0556-282(198)07223-3

PACS numbgs): 12.39.Ki, 12.39.Pn, 12.40.Nn

[. INTRODUCTION theoretical predictions with data is performed in Sec. lll.
Some concluding remarks are given in Sec. V.

One of the most striking features of the light-light meson
spectra is certainly the existence of the so-called “Regge
trajectories,” that is to say, the linear dependence of the
square mass as a function of the total spin quantum number. A. Basic ideas
One can see in Fig. 1 the remarkable linear trajectories of the The starting point of our model is essentially the same as

p,K*, and¢ families. It is well known that this behavior can the one presented by Olssfsi. Consequently, we just recall

be qbtained in potential models by.using a confingmgnt POfhe pasic ideas and skip a lot of technical details which can
tential well adjusted for the kinematics. In nonrelativistic de'be found in that reference. In all our formulas. we use the

scriptions of meson spectra, aff® confining potential must
be used1], while in relativistic kinematics the linear Regge
trajectories are obtained with a linear confinemgtitand
results also naturally from the relativistic flux tube model of
mesong[3,4]. It is worth noting that this mass behavior is
also expected for heavy-light mesons.

An interesting theoretical approach of light-light and

Il. THE MODEL

natural unitsh=c=1.

We consider a system composed of two spinless particles
with the same masm, which are allowed to rotate around
their center of mass fixed at the origin, and to vibrate in the
radial dimension. The Lagrange coordinates are the interdis-

heavy-light mesons is given by the dominantly orbital state

(DOS) description5] for which the leading Regge trajectory

is a “classical” result while radially excited states can be > P

treated semiclassically. In a recent paj@@r this DOS model -7 "

has been applied to study light-light and heavy-light meson ~ *1 /////j/

spectra with a confinement potential being a mixture of sca- = //5/////

lar and vector components. In the case of one or two quarks©, 3 1 ////f,//

with vanishing masses, it was shown that linear Re@ge NE //:/j//

bital) and “vibrational” (radia) trajectories are obtained for 2 - //jf/j//

an arbitrary scalar-vector mixture but that the ratio of radial P o I=1

to orbital energies is strongly dependent on the mixture. 1 (fjj/ c I=12
. . o [}

In this paper, we extend the result of RE8] for light- =
light and heavy-light mesons by considering the presence ol

quarks with finite masses and the introduction of a Coulomb- 0 1 2 3
like interaction and constant potential in addition to the con-
finement. In the limit of small masses and small strength of
the short range potential, or in the limit of large angular FIG. 1. Square mass!? of some light-light mesons as a func-
momentum, all calculations can be worked out analytically tion of their assumed total orbital angular momenturfihe isovec-

One could expect that the small quark masses and Coulomlgsr nn mesons f family) are indicated by square boxes, strange
like potential do not need to be taken into account to studynesons K* family) by triangles, andss mesons ¢ family) by

high orbitally excited states. But we show here that suchircles. The mesons represented are characterized by an internal
effects are interesting to point out. The square mass formulgtal spin quantum number equal to 1. Except for thed states,

for light-light mesons composed of two identical quarks as aach mass is given by the center of gravity of mesons with the same
function of quantum numbers and potential parameters isbut with a different total spirisee Sec. ). The remarkable linear
established and discussed in Sec. Il. A comparison of oulependence is pointed out by straight dashed lines.
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tancer and the rotation angle, the angle between an arbi- The idea of the model is to make a classical approximation

trary fixed direction and the line joining the two particles. by considering uniquely the classical circular orliiswest

The free relativistic Lagrangian is very easy to write andenergy states with gived), defined byr=r,, and thusr

depends on the Lagrange coordinates and their time deriva=g andp,=0. Let us denote

tives. In order to handle the dynamics between the particles,

we introduce phenomenologically an interaction potential

which depends on the radial coordinatenly. In fact, there Mo(J)=H(r=rq,p,=0.J). 3)

exist two Lorentz structures for this potential: a scalar term

S(r) which simply modifies the magsn—m+ S(r)/2], and

a vector termV(r) which is simply subtracted from the La- By using the conditiorsL/dr (r=ry)=0 and performing a

grangian. Consequently the starting Lagrangian is given bynumber of analytical transformatiofsee Ref[6]), one finds
the fundamental equationgwith the conventions S,

L(re.1,0)=—[2m+S(r)]\/1- %'rz— %épzr?—wr). =S(ro), and so of

()
This formula can be applied to particles with spin in a very = My(J)= fo Vi+ zb
crude manner by considering spin-dependent potential terms. 2 lo
One can see thdt is independent ofp. This means that the
angular momentund=JL/d¢ is a good quantum number. i \/V’2+4(2m+30)[(2m+50)+8(’)r ]
Taking into account this condition, the Hamiltonian of the 0 rS 0
system can be written as @
2 452 2
H(r,p; . J)= \/ 4p; + — +[2m+S(r)]*+V(r). (2)
r and
|
r21 (2m+Sy) (2m+Sy) )]
J= 50 EV(’) Vi+ \/V{)2+4—2[(2m+ So) +Sprol | + — | - 5)
rg 0

Equation(5) (which is in general a transcendental equatialiows us to calculatey(J). Once this value is obtained, it is put

into Eq. (4) to getM(J). Up to now, we are in position to obtain only the ground state energy for a divienorder to get

the radial excitations, it is useful to make a harmonic approximation around the previous classical orbits. Here again, the
details can be found in Ref6]. The harmonic quantum energy is given by

{I[Mo(J) = Vo]Vg+ Sp2+ (2m+ So) Sp+ (1202/rg) — V22

0J)=2 . 6
) Mo(J)—V, (6)
|
Then the mass of the system with an orbital excitati@and B. The meson case
a radial excitatiom (0, 1, .. .) isgiven, within this approxi-

. 1. The potential
mation, by P I

In the previous subsection, we gave a formalism appli-
cable to any type of potential. Such a study could be under-

. (7)  taken from the numerical point of view, by solving the equa-
tions givingry and reporting the value in the expression of

M, and Q). However, there are some drawbacks to proceed

Ir_1 this generall formulation, one S€es that there exists, in p.rint’nat way. First, because of nonlinearity, there can exist sev-
ciple, a coupling between the orbital and the radial excita | solutions for Eq(5) and it may be difficult to discrimi-

tions. Iln rEIaﬁ'V'St'C descrlptlpns of two Iﬁ)arﬁcle syste(ft:rh nate between them. Second, the physical analysis is less ob-
examp eh!nr;[ e mesqg Se((;lplt |shge?era vt efs?]uareb(_) tI € yious when the results originate from a numerical treatment.
mass which Is considered as the function of the orbital ang, it is highly desirable to study a model for which an

radial quantum numbers. If one assumes &) <M (J) analytical solution is available.

(see Ref[6]), then one can write In Ref. [6], the author studied the spectra of the mesons
, 5 or, more precisely, the Regge trajectories for a system com-
M=(J,n)=Mg(J) +Mo()Q(I)(2n+1). (8)  posed of a quark and an antiquark with=0 interacting via

L2
n+3

M(J,n)=Mq(J)+Q(J)
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a linear confinement potential that is partly scalar and partly 2. Scaling properties
vector. He showed that a linear behavi¢g(J) = J automati- In our case, we are faced with a number of parameters,
cally emerges. whose origin is very different: the mass (in GeV), the

In this paper, we revisit this study, but in a more generakiring constant (in GeV?), and the Coulomb constant
framework. First, we relax the constraint of zero mass anqgimensionlessare dynamical parameters; tfieparameter
consider the mass of the quarksas a free parameter. Sec- (dimensionless reflects our ignorance about the Lorentz
ond, we admit a long range linear confinement supplementegty,cture of the confinement; the quantum numbeasid n
by a short range Coulomb part and constant potential. Indeegk the state. In what follows, we will be interested by the
quantum chromodynamics tells us that it should be so. Thgariation of M2(m,a,«,f,d,n) as a function of quantum
one-gluon exchange process gives rise to a Coulomb term ¢fympers) andn, and for a given set of physical parameters
vector type, while multigluon exchanges are responsible fofn,a,x,f. M, does not depend am as well as2, so that the
the linear confinement. As in R€6], we suppose that con- |, dependence is rather obviolsee Eq(8)]. Let us focus on
finement i; partly scalar and partly vector. The importgnce Ofhe dependence ahand on the physical parameters. Actu-
each one is reflected through a paramétghose value is 0 g1y it is possible to exploit a scaling law in our equation.
for a pure ve_ctor, and 1 for a pure scalgr. . __One can remark thata is an energy unit, and {aa length

Thu_s, In t_h's paper, we apply the previous formalism, W'thunit, so that it is advantageous to work with these natural
potentials given by units. Let us define reduced dimensionless quantities, labeled

S(r)=far 9) \r/1vith an overhead bar, relative to these units. Explicitly, we
ave
in which a is the usual string tension, whose value should be
around 0.2 Ge¥, and
Q=

r_0:"0\/5-

(11)

Mo - M Q
va' o a Va’

m
V(r):(l—f)ar—g (10) Va'

in which « is proportional to the strong coupling constant ) )
as. A reasonable value of should be in the range 0.1 to If we put these values into our fundamental Eg), with
0.6. We will show below that we are able to obtain an ana2pplication to our particular potential8), (10), we find, af-
lytical solution for this rather realistic situation. ter some manipulations, the equation fgr

f2(2f—1)r&+4amf(2f — 1)rf+2[2m?(2f — 1) — kf2(1— ) Jr8— 8xmf(1—f)r3—{4(1—F)[(1—£)I?+2xm?]
+12(k2+ 832 r 2 — Amf (k% + 43213 — 4x[ km?+23%(1— ) ]r3+4J%(43%— k?)=0. (12)

Equation(4) giving the value oM leads in this case to
_ (1-2f)rd-2mfri+43%—«?

° Tol(1—)r2+«]

(13

Similarly, Eq.(6) giving the value of(} leads to

Q=2{[(1—)(2f = 1)r3+3k(2f — 1)ra+4xmfr3+3(1—)(432— )2+ (432— k) k][ (1— F)r2+ & P2 {ro [ — 22

—2mfr3+43%]}. (14
|
The following comments are in order. applied to that peculiar case gives the solution presented in
We see that the use of this scaling law allows us to reducthat reference_. _ S _
the number of parameters to fouﬁ(K,f“]) in the dimen- The complicated equatiofd) simplifies in our particular
sionless quantities. case to a polynomial of eighth order my [Eq. (12)]. In

If both m=0 and«=0, only the power$0,4,8 remain in  Principle, there could exist eight solutions, but we must re-

Eq. (12) so that the equation is always soluble by us?é@s ject the nonphysical complex and real negative vaIuEs, and
a variable; one can see that only one relevant physical soldhe real positive values which lead to negative valuesvigr

tion exists. It should be stressed that this case corresponds amd . Starting from the unique physical solutiar(m
the study of Ref[6]; we checked that our general formalism =0,x=0), we can expect, by continuity, that there still re-
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mains only one physical solution for small valuesmofand choosing?% as a variable, we are left with a fourth order

«. Although we are not able to prove that the physical solupolynomial.

tion is always unique, it seems that this is a general property; Although things look quite nice now, it is possible to

we remarked that this was always true for a wide range o&implify further, using another scaling law. As one will see,

parameters and for the cases for which an analytical solutiothis new scaling law is very powerful and allows us to derive

can be foundsee below universal conclusions concerning Regge trajectories. Indeed,
The linear term i, is always missing in all expressions. it is possible to eliminate thé dependence with the help of
The special value$=0 (pure vector confinemenandf  the following changes of variables;

=1/2 (half scalar-half vectgrlead Eq.(12) to a polynomial

of sixth order only. Moreover, in the ca$e=0, the polyno- X=rgd ¥ u=m3 Y3 y=«kJ7L (15)

mial is of third order inrg.

Odd powers ofr_o disappear in Eq(12) when m=0. By Using these variables, our polynomidR) is rewritten

f2(2f—1)x8+4uf(2f — 1)x"+ 2[2u?(2f — 1) — v f?(1—f)]x®—8vuf(1—f)x°—[4(3f2—2f+ 1)+ 8(1— f)u?v
+f202)x*— 4uf(v?+ 4)x3—dv[vu+2(1—f)]x?+4(4—v?)=0. (16)

The interest of this equation is that the variableow depends only on 3 variablgs x(f,u,v). Alternatively, one can put Eq.
(13) under the form

Mo=J3Y2g(f,u,v),

f _(1-2f)x*—2ufxP+4-0v? a7
O o]

and Eqg.(14) under the form
Q=232 (f,u,v),

h(f,u,v)={[(1—)(2f—1)x®+3v(2f — 1)x*+ doufx®+3(1— ) (4—v2)x2+ (4—v2)v ][ (1— H)x®+ v ]} YA {x[ — f2x*
—2ufx®+4]}. (18

Under these forms, the formalism is the most general and the(f),8(f),v(f), and &(f). Then we report the resulting

simplest possible. Except for very specific cases that we hawalue of x in g(f,u,v) and h(f,u,v), limited again to the

studied, it is not possible to get an analytical solution for thisyesired order to gdﬁo and Q. Lastly we used these quan-

general formulation. To proceed further, we need to makgjties in Eq.(7) to obtainM. It is important to point out that

some kind of approximations. the expressioni8) is valid up to our ordefthe term inQ)? is

of higher ordey. At the end of this study, the behavior for

large J can be traced back, after reintroducing dimensioned
From now on, we are interested only in Regge trajectoriegjuantities, under the exact form

which give the behavior df1? in term ofJ for large value of

3. Regge and vibrational trajectories

J. It is thus natural to consider the valuesw#éndv defined M2=aA(f)J+B(f)myad+ C(f)m?
by Eq.(15) as small quantities and to develgmndh func- s
tions, given by Eqs(17) and(18), up to order %, that is to +aD(f)k+aE(f)(2n+1)+0(J" ). (20

say keeping constant terms, terms wittterms withu? and

terms withv. Such a calculation is very painful and we have The coefficientsA,B,C,D, and E can be obtained analyti-
been helped a lot by thRaTHEMATICA software. We skip cally. Another coefficientR(f)=2E(f)/A(f) is specially
below all the cumbersome details to retain only the importantmportant and will be discussed below. Let us define the
things. Basically we expanx as auxiliary functionss(f),t(f),y(f) by

X=a(f)+,8(f)u+y(f)u2+5(f)v. (19) S(f):(l_f)2+2f2:1—2f+3f2,

We put this expression into E¢l6) up to the given order
and identify to zero to get the expressions of t(f)=/s(f)+6f

014019-4
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FIG. 2. Coefficients giving the square md&6) as a function of

parametef. The ratioR(f)=2E(f)/A(f) is also given.

8

y(f)t= S(H+(1-H)t(f)”

Our coefficients are given by

y2
A(f)= 7 [t+3(1-D?

B(f)= %[(1+f)(3f—1)+t(1—f)],

1.0

(1)

C(f)= %[t(s+f2)+(1—f)(2f—l)],

D(f)=—[t+3(1—-1)],

t
E( =AM 77—
t
RO=2N 1=t

(22

PHYSICAL REVIEW D59 014019

f=1 are as follows: 8&A(f)=4, 0<B(f)<4.2, 8=C(f)
=3, —4<D(f)<-22, 4J2=E(f)=4, 2<R(f)=<2.

Equation(20) is the exact expression valid for lardewe
succeeded in getting an analytical expression in our model. It
is very powerful since it is universal and the various depen-
dencies are explicity seen. One can make the following
comments.

The dominant term for larg&is linear, so that we recover
pure Regge trajectories. As far as the string tension is con-
sidered as a constant, the slope of the Regge trajectories
aA(f) is universal in the sense that it is independent of the
system(it is also independent on the strong coupling con-
stan}. Only the confinement drives the behavior; moreover
the slope depends dnthe percentage of scalar confinement.

The slope of the vibrational trajectorieaB(f) presents
the same characteristics. Even more important, the ratio of
the slopes for radial and orbital trajectorigf) depends
only onf. This ratio is greater than 1, as indicated by experi-
mental data.

The next to dominant term behaves\Akand deforms the
straight trajectories for low values df It must be empha-
sized that this term is due only to a nonzero mass and is
independent of the strong coupling constant. Moreover, this
term is absent whatever the system if the confinement is
purely of vector type, sinc&(0)=0.

The displacement of the trajectories from the origin has
three contributions; on€(f)m? is due to the mass, another
aD(f)« is due to the strong coupling constant, and the last
one aE(f) reflects the zero point motion of the harmonic
vibration. The position above or below the origin depends
upon the relative importance of each contributi@o not
forget thatC andE are always>0 but thatD is always<0).

The zero point energy of the orbital motion cannot obviously
be calculated in our model.

There is no coupling between orbital and radial motion
for large J values (absence of term&J). This is only a
consequence of the Coulonitinear nature of the quark-
antiquark potential. This may not be true for other types of
potentials.

C. Addition of a constant term

It is well known that, in traditional spectroscopy relying
upon Schrdinger or spinless-Salpeter equations, it is neces-
sary to add a constant term to the potential in order to get the
absolute values of the spectra. In those models, the effect of
this constant is just to shift the absolute spectrum keeping the
same relative spectrum. One can raise the question of adding
a constant potential in our model. We will see that it is not so
difficult to answer this question in our framework.

In principle it is possible to add a consta@t, to the
vector potential and a consta@t to the scalar potential. Let
us discuss these two cases separately.

If we add a constant,, to V(r), this does not affect the
functionsV'(r),S(r), and S'(r). From Eq.(5), it is clear
that the value ; remains unchanged, and thus all the quan-
tities depending ong remain unchanged exceyt which is

We plot the various coefficients in Fig. 2. All these quantitieschanged toVy+C,,. Consequently, from Eq4), Mg is

are monotonic functions dfand their ranges froni=0 to

changed tavi,+ Cy, and ) remains unchanged since it de-
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pends only orM,—V, [see Eq.6)]. ThenM is changed to
M +Cy, . Squaring this quantity and keeping only the terms f=0

to good order, the net effect @, is to add supplementary 801
terms to theB and C coefficients.
Let us now add a constant ter@y to S(r);V(r) and all 60 |

the derivatives are unchanged. Since, in &), J depends <«
onS(r), rgdoes depend 0€6s. But we see that it is always =

the valuel 2m+ S(r) ] which appears. If we introduce a new 40 1
massm’ =m+ Cg/2, we see that the new value f is sim-
ply ro(m’,J) instead ofry(m,J). Making this replacement
in Mgy and (), we see that we now havely(m’,J) and 20
Q(m’,J) instead of the nonprimed values. So, the only
modification in our formalism is just a change framto m’.

But in doing so, we must consider the new valueialefined
with the modified massn’ for applying a limited expansion FIG. 3. Comparison of the reduced square misésgiven by

in terms ofJ (m’/+/a can be small with respect to 1, white  formulas(8), (12—(14) (exacj, and the approximate one given by
can be large with respect tga). Assuming that such an Ed.(20), as a function of the total angular momentufor f=0
expansion is justified, the only effect &f5 is to modify the  and for values ofn and « equal to 0 and 1, an@s=C,=0.

terms in the\J and the constant contributions.

One can now gather both effects into a single formula. Leto extract from this relation values for the parameters by
us define the dimensionless quantities 1+ Cg/2m and»  comparing with available data. The value generally consid-
=Cy/m. The only effect of adding the constar@g andCs  ered for the string tensioais around 0.2-0.03 Ge\f. Tak-
is to replace, in the universal equati¢20), the B(f) and  ing m,~my=0.200 GeV andn,~0.450 GeV, we can see

C(f) coefficients by new one8’(f,e,7) and C'(f,e,7)  that the parametem runs from 0.5 to 1. The Coulomb

=1,k =0 (exact)
......... = LK =1 (exact)
——-m=1,k=0(app.)
—-—Ta=1,x=1(app.)

1 2 3 4 5 6 7 8 9 10

defined by strengthk is not exactly known, but in potential models a
, B range from 0.1 to 0.6 is currently accepted. So we have to
B'(f,€,7)=eB(f) +27VA(T), check that formulg20) can be applied for this range of pa-

rameters. In Figs. 3 and 4, we compare the reduced square
ﬂ. (23 massM? qalculated exactly by formyle(sS), (12)—(14) with
2f the one given by Eq(20), as a function of the total angular
In particular, theA,D, andE coefficients are unchanged, so momentumJ for some values of,m,« and with Cs=Cy,
that the slopes of the orbital and radial trajectories are stil=0. One can expect that the quality of the approximation is
unchanged in this more elaborated potential, and appears rBetter for smallm and x parameters. This is precisely what
aII_y as qniversal qgantities depending only on scalar-vectoy,o get. We present the figure for=1, a value already large
mixture in the confinement. and, nevertheless, the approximation still works reasonably
well. For f =0, the approximate value is a pure straight line

C'(f,e,7)=€’C(f)+ n’+2en

D. Heavy-light mesons

The same formalism can be applied to the case of heavy: 70
light mesons in the limit of infinite heavy quark mass, as f=1
mentioned in Ref6]. In light-light mesons considered here, 60 1
two identical quarks orbit at the same distamé2 from the
center of mass. For a heavy-light meson, the light quark 50 1
orbits around the fixed infinitely massive quark at the dis-
tancer. To obtain the heavy-light Hamiltonian, one must |5 401
perform the following replacements in the light-light Hamil-
tonian(2): r/2 —r, 2m+S(r)—m+S(r), V(r)—V(r). Af- 30 1
ter calculation, one obtains

— m=1, k =0 (exact)
S m=1,k=1 (exact)
20 ¢ ——- m=1,%=0 (app)

, @ 1 m2 — - m=1Lx=1(@pp)
MZ=3 A3+ —B(Hmyal+ o) 4 10 -
1 2 3 4 5 6 7 8 9 10
+aD(f)k+aE(f)(2n+1)+ 013, (24 J

FIG. 4. Comparison of the reduced square nﬁﬁsgiven by
formulas(8), (12)—(14) (exac}, and the approximate one given by
Formula(20) gives the meson square mass dependence &. (20), as a function of the total angular momentupfor f=1

a function of parameters. One can ask whether it is possibland for values ofn and « equal to 0 and 1, an@s=C,=0.

Ill. DISCUSSION OF THE MODEL
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[B(0)=0]. The deviation is maximum for large values, as they can be checked independently in several flavor sectors.
expected. Fof =1, there is a small deformation both for the Finally, the ratioD/ A depends orf only and thus can pro-
exact solution and the approximate one. Moreover, the curide a strong test.

vature is the same in both cases. Note that the concavity of In principle, one could obtain physical quantities from the
the curve may be inverted by introducing nonvanishing val-experimental masses. Starting frdbh.A=R(f), one can de-
ues forCg and/orC,,. For large values o, it is apparent termine the value off (see Fig. 2 The quantities
that our approximate expression is always good. For smal\(f),B(f),C(f),D(f), andE(f) can then be calculated. The
values ofJ, the deviation is maximum fok=0, but we are A andD quantities can provide us with crosschecked values

in a region M large andJ smal) for which we expect some ©f the string tension. IfCs=Cy =0, the B term gives the

error. By continuity, other values dfgive intermediate situ- guark massm; if Cs#0 andCy#0, only the quark mass

ations. difference in two flavor sectors can be obtained. Calculating
We see that, even in the rather unfavorable case, the aparameteix is more involved.

proximate expression does not differ so much from the exact Unfortunately, our model is only valid for high values of

results. Consequently, we will base our further discussion od, and, for such quantum numbers, a few ground states are

Eq. (20). This last equation can rewritten in the form known and none are radial excitatipn]. Moreover, uncer-
tainties exist about meson masses. Nevertheless, we can try
MZ(J,n)=AJ+B\/3+C+ Dn (25)  to obtain an estimation of parameteby considering the

. . mesons of the and ¢ families (see Fig. 1
with A,B,C, and D depending only on parameters  The meson masses used to perform calculations are center
f,a,m,«,Cg, andCy . Knowing three orbital excitations, for of gravity of meson multiplets whose members are charac-
instanceM?(J,n),M?(J+1,n) and M?(J+2,n), it is pos-  terized by an internal total spin quantum number equal to 1.
sible to calculated and B quantities. Adding a radial exci- They are calculated, as well as the corresponding uncertain-
tation, for instanceM?(J,n+1), the quantitie€’ andD can  ties, with the procedure given in Rei8]. Using the only
also be calculated. So we can compute the quanttigsC,  three available massek=1,2, and 3 for thep family and
andD from experimental data by solving the linear equationtaking into account the error on these data, we can determine
system obtained by putting in E(R5) the four experimental the range possible for the functiod=aA(f). Assuming
square masses mentioned above, for instance. The solutiQual values for the string tensianwe can deduce the pos-
of this system is given by the following formulas: sible range forf. Unfortunately, we obtain no constraint on
this parameter since values from 0 to 1 are compatible with
A=K IM “(I+2n)- Kz JIM “I+1n) data. The same calculation done for théamily leads to the

+Kz1(J)M?(J,n), conclusion thaf must be very close to 0, that is to say that
’ the confinement is only of vector type. We have remarked
B=A(J) " Y{2M?(J+1,n)—M?JI+2n)—M23(J,n)], that the results are very sensitive to the value of the masses.
If other states with higher values dfwere known, our con-
D=M?(J,n+1)—M?2(J,n), clusion could be changed.
It is also possible to calculateby considering a meson
C=KyNVII+1)M2(I+2,n) and its radial excitation§D=2aE(f)]. This procedure is
more questionable since only the first radial excitation of the
+Ko4(3)V(I+1)(I+2)M?(J,n) J=1 meson is known in thg and ¢ families. Nevertheless,
—_— if the calculation is performed for the two families, we find
~Kd)I(I+2)M*(JI+10)—nD, (28)  that all values foff from O to 1 are compatible with the data.
where

IV. CONCLUDING REMARKS

A(D)=2yI+1-I+2-3
We have shown that light-light and heavy-light mesons
and exhibit linear orbital and radial trajectories in the dominantly
orbital stateDOS) model. Slopes of both types of trajecto-
VI =Vt ries depend only on the string tension and on the vector-
ij(J)= AQJ) . (27) scalar mixture in the confinement potential. From our work,
it turns out that small finite quark masses do not alter signifi-
The interest of such formulas is that they are universal in theantly the linearity, especially in the case of dominant
sense that the quantitie$, 5,C, andD are independent o  vector-type confining potential. As expected, the Coulomb-
and n. Within the framework of our model, the quantities like potential has no effect on trajectories but its influence on
appearing in the right hand sides of E¢®6), as calculated the meson masses has been determined in the approximation
from an experimental tripletJ;n;J+1,n;J+2,n) and an ex- of the DOS description. Lastly, we have shown that the ratio
perimental doubletJ,n;J,n+1), should be independent of of radial to orbital energies depends on the scalar-vector con-
J andn. Given a flavor sector, they could be, in principle, finement mixture only.
checked for various orbital and radial multiplets. Moreover, Formula(20) gives the parameter dependence of square
the quantities4 and D are even independent an, so that mass in the limit of small masses and small strength of the
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short-range potential, or in the limit of large angular momen-fine interaction stemming from the one-gluon exchange in-
tum. Outside these limits, we have remarked that this forteraction(and may be from the vector part of the confine-
mula only differs slightly from exact results in a large rangemend [2]. In other models, this spin-dependent part stems
of parameters. This allows us to apply our approximation fofrom an instanton induced interactiof%,9]. In both cases,
physical situations and to compare our calculations with exthe contribution of the spin to the meson masses is small or
periment. vanishing for mesons with total spin equal to 1.

From data available, it is difficult to determine the value In Sec. Il D, we mentioned a method to study the heavy-
of the parametef, that is to say the scalar-vector mixture in light mesons in the limit of an infinitely massive heavy
the confinement. Strictly speaking, our results are only semiguark. Such a method is used in RES]. It could also be
classical ones, and experimental radially excited mesomteresting to develop the calculations in the more general
masses are only known for small value of total spin. Nevercase of two finite different masses.
theless, our calculations favor a dominant vector-type con-
fining interaction. . ACKNOWLEDGMENTS
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