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Universality of Regge and vibrational trajectories in a semiclassical model
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The orbital and radial excitations of light-light mesons are studied in the framework of the dominantly
orbital state description. The equation of motion is characterized by a relativistic kinematics supplemented by
the usual funnel potential with a mixed scalar and vector confinement. The influence of finite quark masses and
potential parameters on Regge and vibrational trajectories is discussed. The case of heavy-light mesons is also
presented.@S0556-2821~98!07223-3#

PACS number~s!: 12.39.Ki, 12.39.Pn, 12.40.Nn
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I. INTRODUCTION

One of the most striking features of the light-light mes
spectra is certainly the existence of the so-called ‘‘Reg
trajectories,’’ that is to say, the linear dependence of
square mass as a function of the total spin quantum num
One can see in Fig. 1 the remarkable linear trajectories of
r,K!, andf families. It is well known that this behavior ca
be obtained in potential models by using a confinement
tential well adjusted for the kinematics. In nonrelativistic d
scriptions of meson spectra, anr 2/3 confining potential must
be used@1#, while in relativistic kinematics the linear Regg
trajectories are obtained with a linear confinement@2# and
results also naturally from the relativistic flux tube model
mesons@3,4#. It is worth noting that this mass behavior
also expected for heavy-light mesons.

An interesting theoretical approach of light-light an
heavy-light mesons is given by the dominantly orbital st
~DOS! description@5# for which the leading Regge trajector
is a ‘‘classical’’ result while radially excited states can
treated semiclassically. In a recent paper@6#, this DOS model
has been applied to study light-light and heavy-light mes
spectra with a confinement potential being a mixture of s
lar and vector components. In the case of one or two qua
with vanishing masses, it was shown that linear Regge~or-
bital! and ‘‘vibrational’’ ~radial! trajectories are obtained fo
an arbitrary scalar-vector mixture but that the ratio of rad
to orbital energies is strongly dependent on the mixture.

In this paper, we extend the result of Ref.@6# for light-
light and heavy-light mesons by considering the presenc
quarks with finite masses and the introduction of a Coulom
like interaction and constant potential in addition to the co
finement. In the limit of small masses and small strength
the short range potential, or in the limit of large angu
momentum, all calculations can be worked out analytica
One could expect that the small quark masses and Coulo
like potential do not need to be taken into account to stu
high orbitally excited states. But we show here that su
effects are interesting to point out. The square mass form
for light-light mesons composed of two identical quarks a
function of quantum numbers and potential parameter
established and discussed in Sec. II. A comparison of
0556-2821/98/59~1!/014019~8!/$15.00 59 0140
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theoretical predictions with data is performed in Sec.
Some concluding remarks are given in Sec. IV.

II. THE MODEL

A. Basic ideas

The starting point of our model is essentially the same
the one presented by Olsson@6#. Consequently, we just reca
the basic ideas and skip a lot of technical details which
be found in that reference. In all our formulas, we use
natural units\5c51.

We consider a system composed of two spinless parti
with the same massm, which are allowed to rotate aroun
their center of mass fixed at the origin, and to vibrate in
radial dimension. The Lagrange coordinates are the inter

FIG. 1. Square massM2 of some light-light mesons as a func
tion of their assumed total orbital angular momentuml. The isovec-

tor nn̄ mesons (r family! are indicated by square boxes, stran

mesons (K! family! by triangles, andss̄ mesons (f family! by
circles. The mesons represented are characterized by an int
total spin quantum number equal to 1. Except for thel 50 states,
each mass is given by the center of gravity of mesons with the s
l but with a different total spin~see Sec. III!. The remarkable linear
dependence is pointed out by straight dashed lines.
©1998 The American Physical Society19-1
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tancer and the rotation anglew, the angle between an arb
trary fixed direction and the line joining the two particle
The free relativistic Lagrangian is very easy to write a
depends on the Lagrange coordinates and their time de
tives. In order to handle the dynamics between the partic
we introduce phenomenologically an interaction poten
which depends on the radial coordinater only. In fact, there
exist two Lorentz structures for this potential: a scalar te
S(r ) which simply modifies the mass@m→m1S(r )/2#, and
a vector termV(r ) which is simply subtracted from the La
grangian. Consequently the starting Lagrangian is given

L~r ,w, ṙ ,ẇ !52@2m1S~r !#A12
1

4
ṙ 22

1

4
ẇ2r 22V~r !.

~1!

This formula can be applied to particles with spin in a ve
crude manner by considering spin-dependent potential te
One can see thatL is independent ofw. This means that the
angular momentumJ5]L/]ẇ is a good quantum numbe
Taking into account this condition, the Hamiltonian of th
system can be written as

H~r ,pr ,J!5A4pr
21

4J2

r 2
1@2m1S~r !#21V~r !. ~2!
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The idea of the model is to make a classical approximat
by considering uniquely the classical circular orbits~lowest
energy states with givenJ), defined byr 5r 0 , and thusṙ
50 andpr50. Let us denote

M0~J!5H~r 5r 0 ,pr50,J!. ~3!

By using the condition]L/]r (r 5r 0)50 and performing a
number of analytical transformations~see Ref.@6#!, one finds
the fundamental equations@with the conventions S0
5S(r 0), and so on#

M0~J!5
r 0

2 FV0812
V0

r 0

1AV08
214

~2m1S0!

r 0
2 @~2m1S0!1S08r 0#G

~4!

and
t

ain, the
J5
r 0

2

2 F1

2
V08S V081AV08

214
~2m1S0!

r 0
2 @~2m1S0!1S08r 0# D 1

~2m1S0!S08

r 0
G 1/2

. ~5!

Equation~5! ~which is in general a transcendental equation! allows us to calculater 0(J). Once this value is obtained, it is pu
into Eq. ~4! to getM0(J). Up to now, we are in position to obtain only the ground state energy for a givenJ. In order to get
the radial excitations, it is useful to make a harmonic approximation around the previous classical orbits. Here ag
details can be found in Ref.@6#. The harmonic quantum energy is given by

V~J!52
$@M0~J!2V0#V091S08

21~2m1S0!S091~12J2/r 0
4!2V08

2%1/2

M0~J!2V0
. ~6!
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Then the mass of the system with an orbital excitationJ and
a radial excitationn (0, 1, . . . ) isgiven, within this approxi-
mation, by

M ~J,n!5M0~J!1V~J!S n1
1

2D . ~7!

In this general formulation, one sees that there exists, in p
ciple, a coupling between the orbital and the radial exc
tions. In relativistic descriptions of two particle systems~for
example in the meson sector!, it is generally the square of th
mass which is considered as the function of the orbital
radial quantum numbers. If one assumes thatV(J)!M0(J)
~see Ref.@6#!, then one can write

M2~J,n!5M0
2~J!1M0~J!V~J!~2n11!. ~8!
n-
-

d

B. The meson case

1. The potential

In the previous subsection, we gave a formalism ap
cable to any type of potential. Such a study could be und
taken from the numerical point of view, by solving the equ
tions giving r 0 and reporting the value in the expression
M0 andV. However, there are some drawbacks to proce
that way. First, because of nonlinearity, there can exist s
eral solutions for Eq.~5! and it may be difficult to discrimi-
nate between them. Second, the physical analysis is less
vious when the results originate from a numerical treatme
So, it is highly desirable to study a model for which a
analytical solution is available.

In Ref. @6#, the author studied the spectra of the meso
or, more precisely, the Regge trajectories for a system c
posed of a quark and an antiquark withm50 interacting via
9-2
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UNIVERSALITY OF REGGE AND VIBRATIONAL . . . PHYSICAL REVIEW D59 014019
a linear confinement potential that is partly scalar and pa
vector. He showed that a linear behaviorM0

2(J)}J automati-
cally emerges.

In this paper, we revisit this study, but in a more gene
framework. First, we relax the constraint of zero mass a
consider the mass of the quarksm as a free parameter. Se
ond, we admit a long range linear confinement supplemen
by a short range Coulomb part and constant potential. Ind
quantum chromodynamics tells us that it should be so.
one-gluon exchange process gives rise to a Coulomb ter
vector type, while multigluon exchanges are responsible
the linear confinement. As in Ref.@6#, we suppose that con
finement is partly scalar and partly vector. The importance
each one is reflected through a parameterf whose value is 0
for a pure vector, and 1 for a pure scalar.

Thus, in this paper, we apply the previous formalism, w
potentials given by

S~r !5 f ar ~9!

in which a is the usual string tension, whose value should
around 0.2 GeV2, and

V~r !5~12 f !ar2
k

r
~10!

in which k is proportional to the strong coupling consta
as . A reasonable value ofk should be in the range 0.1 t
0.6. We will show below that we are able to obtain an a
lytical solution for this rather realistic situation.
uc

ol
ds
m
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2. Scaling properties

In our case, we are faced with a number of paramet
whose origin is very different: the massm ~in GeV!, the
string constanta ~in GeV2), and the Coulomb constantk
~dimensionless! are dynamical parameters; thef parameter
~dimensionless! reflects our ignorance about the Loren
structure of the confinement; the quantum numbersJ andn
of the state. In what follows, we will be interested by th
variation of M2(m,a,k, f ,J,n) as a function of quantum
numbersJ andn, and for a given set of physical paramete
m,a,k, f . M0 does not depend onn, as well asV, so that the
n dependence is rather obvious@see Eq.~8!#. Let us focus on
the dependence onJ and on the physical parameters. Act
ally, it is possible to exploit a scaling law in our equatio
One can remark thatAa is an energy unit, and 1/Aa a length
unit, so that it is advantageous to work with these natu
units. Let us define reduced dimensionless quantities, lab
with an overhead bar, relative to these units. Explicitly, w
have

m̄5
m

Aa
, M̄05

M0

Aa
, M̄5

M

Aa
, V̄5

V

Aa
, r̄ 05r 0Aa.

~11!

If we put these values into our fundamental Eq.~5!, with
application to our particular potentials~9!, ~10!, we find, af-
ter some manipulations, the equation forr̄ 0
f 2~2 f 21! r̄ 0
814m̄f ~2 f 21! r̄ 0

712@2m̄2~2 f 21!2k f 2~12 f !# r̄ 0
628km̄f ~12 f ! r̄ 0

52$4~12 f !@~12 f !J212km̄2#

1 f 2~k218J2!% r̄ 0
424m̄f ~k214J2! r̄ 0

324k@km̄212J2~12 f !# r̄ 0
214J2~4J22k2!50. ~12!

Equation~4! giving the value ofM0 leads in this case to

M̄05
~122 f ! r̄ 0

422m̄f r̄ 0
314J22k2

r̄ 0@~12 f ! r̄ 0
21k#

. ~13!

Similarly, Eq. ~6! giving the value ofV leads to

V̄52$@~12 f !~2 f 21! r̄ 0
613k~2 f 21! r̄ 0

414km̄f r̄ 0
313~12 f !~4J22k2! r̄ 0

21~4J22k2!k#@~12 f ! r̄ 0
21k#%1/2/$ r̄ 0 @2 f 2r̄ 0

4

22m̄f r̄ 0
314J2#%. ~14!
d in

re-
and

e-
The following comments are in order.
We see that the use of this scaling law allows us to red

the number of parameters to four (m̄,k, f ,J) in the dimen-
sionless quantities.

If both m̄50 andk50, only the powers~0,4,8! remain in
Eq. ~12! so that the equation is always soluble by usingr̄ 0

4 as
a variable; one can see that only one relevant physical s
tion exists. It should be stressed that this case correspon
the study of Ref.@6#; we checked that our general formalis
e

u-
to

applied to that peculiar case gives the solution presente
that reference.

The complicated equation~5! simplifies in our particular
case to a polynomial of eighth order inr̄ 0 @Eq. ~12!#. In
principle, there could exist eight solutions, but we must
ject the nonphysical complex and real negative values,
the real positive values which lead to negative values forM̄0

and V̄. Starting from the unique physical solutionr̄ 0(m̄
50,k50), we can expect, by continuity, that there still r
9-3
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mains only one physical solution for small values ofm̄ and
k. Although we are not able to prove that the physical so
tion is always unique, it seems that this is a general prope
we remarked that this was always true for a wide range
parameters and for the cases for which an analytical solu
can be found~see below!.

The linear term inr̄ 0 is always missing in all expression
The special valuesf 50 ~pure vector confinement! and f

51/2 ~half scalar-half vector! lead Eq.~12! to a polynomial
of sixth order only. Moreover, in the casef 50, the polyno-
mial is of third order inr̄ 0

2 .

Odd powers ofr̄ 0 disappear in Eq.~12! when m̄50. By
t
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choosing r̄ 0
2 as a variable, we are left with a fourth orde

polynomial.
Although things look quite nice now, it is possible t

simplify further, using another scaling law. As one will se
this new scaling law is very powerful and allows us to deri
universal conclusions concerning Regge trajectories. Ind
it is possible to eliminate theJ dependence with the help o
the following changes of variables;

x5 r̄ 0J21/2, u5m̄J21/2, v5kJ21. ~15!

Using these variables, our polynomial~12! is rewritten
.

f 2~2 f 21!x814u f~2 f 21!x712@2u2~2 f 21!2v f 2~12 f !#x628vu f~12 f !x52@4~3 f 222 f 11!18~12 f !u2v

1 f 2v2#x424u f~v214!x324v@vu212~12 f !#x214~42v2!50. ~16!

The interest of this equation is that the variablex now depends only on 3 variablesx5x( f ,u,v). Alternatively, one can put Eq
~13! under the form

M̄05J1/2g~ f ,u,v !,

g~ f ,u,v !5
~122 f !x422u f x3142v2

x@~12 f !x21v#
, ~17!

and Eq.~14! under the form

V̄52J21/2h~ f ,u,v !,

h~ f ,u,v !5$@~12 f !~2 f 21!x613v~2 f 21!x414vu f x313~12 f !~42v2!x21~42v2!v#@~12 f !x21v#%1/2/$x@2 f 2x4

22u f x314#%. ~18!
-

r
ed

-

the
Under these forms, the formalism is the most general and
simplest possible. Except for very specific cases that we h
studied, it is not possible to get an analytical solution for t
general formulation. To proceed further, we need to m
some kind of approximations.

3. Regge and vibrational trajectories

From now on, we are interested only in Regge trajecto
which give the behavior ofM2 in term ofJ for large value of
J. It is thus natural to consider the values ofu andv defined
by Eq. ~15! as small quantities and to developg andh func-
tions, given by Eqs.~17! and~18!, up to orderJ21, that is to
say keeping constant terms, terms withu, terms withu2 and
terms withv. Such a calculation is very painful and we ha
been helped a lot by theMATHEMATICA software. We skip
below all the cumbersome details to retain only the import
things. Basically we expandx as

x5a~ f !1b~ f !u1g~ f !u21d~ f !v. ~19!

We put this expression into Eq.~16! up to the given order
and identify to zero to get the expressions
he
ve
s
e

s

t

f

a( f ),b( f ),g( f ), and d( f ). Then we report the resulting
value of x in g( f ,u,v) and h( f ,u,v), limited again to the

desired order to getM̄0 and V̄. Lastly we used these quan
tities in Eq.~7! to obtainM. It is important to point out that
the expression~8! is valid up to our order~the term inV2 is
of higher order!. At the end of this study, the behavior fo
large J can be traced back, after reintroducing dimension
quantities, under the exact form

M25aA~ f !J1B~ f !mAaJ1C~ f !m2

1aD~ f !k1aE~ f !~2n11!1O~J21/2!. ~20!

The coefficientsA,B,C,D, and E can be obtained analyti
cally. Another coefficientR( f )52E( f )/A( f ) is specially
important and will be discussed below. Let us define
auxiliary functionss( f ),t( f ),y( f ) by

s~ f !5~12 f !212 f 25122 f 13 f 2,

t~ f !5As~ f !16 f 2,
9-4
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y~ f !45
8

s~ f !1~12 f !t~ f !
. ~21!

Our coefficients are given by

A~ f !5
y2

4
@ t13~12 f !#2,

B~ f !5
y

f
@~11 f !~3 f 21!1t~12 f !#,

C~ f !5
1

f 2t
@ t~s1 f 2!1~12 f !~2 f 21!#,

D~ f !52@ t13~12 f !#,

E~ f !5A~ f !A t

t112 f
,

R~ f !52A t

t112 f
. ~22!

We plot the various coefficients in Fig. 2. All these quantit
are monotonic functions off and their ranges fromf 50 to

FIG. 2. Coefficients giving the square mass~20! as a function of
parameterf. The ratioR( f )52E( f )/A( f ) is also given.
01401
f 51 are as follows: 8>A( f )>4, 0<B( f )<4A2, 8>C( f )
>3, 24<D( f )<22A2, 4A2>E( f )>4, A2<R( f )<2.

Equation~20! is the exact expression valid for largeJ; we
succeeded in getting an analytical expression in our mode
is very powerful since it is universal and the various dep
dencies are explicitly seen. One can make the follow
comments.

The dominant term for largeJ is linear, so that we recove
pure Regge trajectories. As far as the string tension is c
sidered as a constant, the slope of the Regge trajecto
aA( f ) is universal in the sense that it is independent of
system~it is also independent on the strong coupling co
stant!. Only the confinement drives the behavior; moreov
the slope depends onf, the percentage of scalar confineme

The slope of the vibrational trajectories 2aE( f ) presents
the same characteristics. Even more important, the ratio
the slopes for radial and orbital trajectoriesR( f ) depends
only on f. This ratio is greater than 1, as indicated by expe
mental data.

The next to dominant term behaves asAJ and deforms the
straight trajectories for low values ofJ. It must be empha-
sized that this term is due only to a nonzero mass an
independent of the strong coupling constant. Moreover,
term is absent whatever the system if the confinemen
purely of vector type, sinceB(0)50.

The displacement of the trajectories from the origin h
three contributions; oneC( f )m2 is due to the mass, anothe
aD( f )k is due to the strong coupling constant, and the l
one aE( f ) reflects the zero point motion of the harmon
vibration. The position above or below the origin depen
upon the relative importance of each contribution~do not
forget thatC andE are always.0 but thatD is always,0).
The zero point energy of the orbital motion cannot obviou
be calculated in our model.

There is no coupling between orbital and radial moti
for large J values ~absence of termsnJ). This is only a
consequence of the Coulomb1linear nature of the quark
antiquark potential. This may not be true for other types
potentials.

C. Addition of a constant term

It is well known that, in traditional spectroscopy relyin
upon Schro¨dinger or spinless-Salpeter equations, it is nec
sary to add a constant term to the potential in order to get
absolute values of the spectra. In those models, the effec
this constant is just to shift the absolute spectrum keeping
same relative spectrum. One can raise the question of ad
a constant potential in our model. We will see that it is not
difficult to answer this question in our framework.

In principle it is possible to add a constantCV to the
vector potential and a constantCS to the scalar potential. Le
us discuss these two cases separately.

If we add a constantCV to V(r ), this does not affect the
functionsV8(r ),S(r ), and S8(r ). From Eq.~5!, it is clear
that the valuer 0 remains unchanged, and thus all the qua
tities depending onr 0 remain unchanged exceptV0 which is
changed toV01CV . Consequently, from Eq.~4!, M0 is
changed toM01CV andV remains unchanged since it de
9-5
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pends only onM02V0 @see Eq.~6!#. ThenM is changed to
M1CV . Squaring this quantity and keeping only the term
to good order, the net effect ofCV is to add supplementar
terms to theB andC coefficients.

Let us now add a constant termCS to S(r );V(r ) and all
the derivatives are unchanged. Since, in Eq.~5!, J depends
on S(r ), r 0 does depend onCS. But we see that it is always
the value@2m1S(r )# which appears. If we introduce a ne
massm85m1CS/2, we see that the new value ofr 0 is sim-
ply r 0(m8,J) instead ofr 0(m,J). Making this replacemen
in M0 and V, we see that we now haveM0(m8,J) and
V(m8,J) instead of the nonprimed values. So, the on
modification in our formalism is just a change fromm to m8.
But in doing so, we must consider the new value ofu defined
with the modified massm8 for applying a limited expansion
in terms ofJ (m8/Aa can be small with respect to 1, whilem
can be large with respect toAa). Assuming that such an
expansion is justified, the only effect ofCS is to modify the
terms in theAJ and the constant contributions.

One can now gather both effects into a single formula.
us define the dimensionless quantitiese511CS/2m and h
5CV /m. The only effect of adding the constantsCV andCS
is to replace, in the universal equation~20!, the B( f ) and
C( f ) coefficients by new onesB8( f ,e,h) and C8( f ,e,h)
defined by

B8~ f ,e,h!5eB~ f !12hAA~ f !,

C8~ f ,e,h!5e2C~ f !1h212eh
t2~12 f !

2 f
. ~23!

In particular, theA,D, andE coefficients are unchanged, s
that the slopes of the orbital and radial trajectories are
unchanged in this more elaborated potential, and appear
ally as universal quantities depending only on scalar-ve
mixture in the confinement.

D. Heavy-light mesons

The same formalism can be applied to the case of hea
light mesons in the limit of infinite heavy quark mass,
mentioned in Ref.@6#. In light-light mesons considered her
two identical quarks orbit at the same distancer /2 from the
center of mass. For a heavy-light meson, the light qu
orbits around the fixed infinitely massive quark at the d
tance r. To obtain the heavy-light Hamiltonian, one mu
perform the following replacements in the light-light Ham
tonian~2!: r /2→r , 2m1S(r )→m1S(r ), V(r )→V(r ). Af-
ter calculation, one obtains

M 25
a

2
A~ f !J1

1

23/2
B~ f !mAaJ1C~ f !

m2

4

1aD~ f !k1aE~ f !~2n11!1O~J21/2!. ~24!

III. DISCUSSION OF THE MODEL

Formula~20! gives the meson square mass dependenc
a function of parameters. One can ask whether it is poss
01401
s

t

ill
re-
r

y-

k
-

as
le

to extract from this relation values for the parameters
comparing with available data. The value generally cons
ered for the string tensiona is around 0.260.03 GeV2. Tak-
ing mu'md'0.200 GeV andms'0.450 GeV, we can see
that the parameterm̄ runs from 0.5 to 1. The Coulomb
strengthk is not exactly known, but in potential models
range from 0.1 to 0.6 is currently accepted. So we have
check that formula~20! can be applied for this range of pa
rameters. In Figs. 3 and 4, we compare the reduced sq
massM̄2 calculated exactly by formulas~8!, ~12!–~14! with
the one given by Eq.~20!, as a function of the total angula
momentumJ for some values off ,m̄,k and with CS5CV
50. One can expect that the quality of the approximation
better for smallm̄ andk parameters. This is precisely wha
we get. We present the figure form̄51, a value already large
and, nevertheless, the approximation still works reasona
well. For f 50, the approximate value is a pure straight li

FIG. 3. Comparison of the reduced square massM̄2 given by
formulas~8!, ~12!–~14! ~exact!, and the approximate one given b
Eq. ~20!, as a function of the total angular momentumJ, for f 50

and for values ofm̄ andk equal to 0 and 1, andCS5CV50.

FIG. 4. Comparison of the reduced square massM̄2 given by
formulas~8!, ~12!–~14! ~exact!, and the approximate one given b
Eq. ~20!, as a function of the total angular momentumJ, for f 51

and for values ofm̄ andk equal to 0 and 1, andCS5CV50.
9-6
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@B(0)50#. The deviation is maximum for largek values, as
expected. Forf 51, there is a small deformation both for th
exact solution and the approximate one. Moreover, the
vature is the same in both cases. Note that the concavit
the curve may be inverted by introducing nonvanishing v
ues forCS and/orCV . For large values ofJ, it is apparent
that our approximate expression is always good. For sm
values ofJ, the deviation is maximum fork50, but we are
in a region (m̄ large andJ small! for which we expect some
error. By continuity, other values off give intermediate situ-
ations.

We see that, even in the rather unfavorable case, the
proximate expression does not differ so much from the ex
results. Consequently, we will base our further discussion
Eq. ~20!. This last equation can rewritten in the form

M2~J,n!5AJ1BAJ1C1Dn ~25!

with A,B,C, and D depending only on paramete
f ,a,m,k,CS, andCV . Knowing three orbital excitations, fo
instanceM2(J,n),M2(J11,n) and M2(J12,n), it is pos-
sible to calculateA andB quantities. Adding a radial exci
tation, for instance,M2(J,n11), the quantitiesC andD can
also be calculated. So we can compute the quantitiesA,B,C,
andD from experimental data by solving the linear equati
system obtained by putting in Eq.~25! the four experimenta
square masses mentioned above, for instance. The sol
of this system is given by the following formulas:

A5K1,0~J!M2~J12,n!2K2,0~J!M2~J11,n!

1K2,1~J!M2~J,n!,

B5D~J!21@2M2~J11,n!2M2~J12,n!2M2~J,n!#,

D5M2~J,n11!2M2~J,n!,

C5K1,0~J!AJ~J11!M2~J12,n!

1K2,1~J!A~J11!~J12!M2~J,n!

2K2,0~J!AJ~J12!M2~J11,n!2nD, ~26!

where

D~J!52AJ112AJ122AJ

and

Ki , j~J!5
AJ1 i 2AJ1 j

D~J!
. ~27!

The interest of such formulas is that they are universal in
sense that the quantitiesA,B,C, andD are independent onJ
and n. Within the framework of our model, the quantitie
appearing in the right hand sides of Eqs.~26!, as calculated
from an experimental triplet (J,n;J11,n;J12,n) and an ex-
perimental doublet (J,n;J,n11), should be independent o
J and n. Given a flavor sector, they could be, in principl
checked for various orbital and radial multiplets. Moreov
the quantitiesA andD are even independent onm, so that
01401
r-
of
l-

ll

p-
ct
n

ion

e

,

they can be checked independently in several flavor sec
Finally, the ratioD/A depends onf only and thus can pro-
vide a strong test.

In principle, one could obtain physical quantities from t
experimental masses. Starting fromD/A5R( f ), one can de-
termine the value of f ~see Fig. 2!. The quantities
A( f ),B( f ),C( f ),D( f ), andE( f ) can then be calculated. Th
A andD quantities can provide us with crosschecked valu
of the string tension. IfCS5CV50, theB term gives the
quark massm; if CSÞ0 and CVÞ0, only the quark mass
difference in two flavor sectors can be obtained. Calculat
parameterk is more involved.

Unfortunately, our model is only valid for high values o
J, and, for such quantum numbers, a few ground states
known and none are radial excitation@7#. Moreover, uncer-
tainties exist about meson masses. Nevertheless, we ca
to obtain an estimation of parameterf by considering the
mesons of ther andf families ~see Fig. 1!.

The meson masses used to perform calculations are ce
of gravity of meson multiplets whose members are char
terized by an internal total spin quantum number equal to
They are calculated, as well as the corresponding uncert
ties, with the procedure given in Ref.@8#. Using the only
three available massesJ51,2, and 3 for ther family and
taking into account the error on these data, we can determ
the range possible for the functionA5aA( f ). Assuming
usual values for the string tensiona, we can deduce the pos
sible range forf. Unfortunately, we obtain no constraint o
this parameter since values from 0 to 1 are compatible w
data. The same calculation done for thef family leads to the
conclusion thatf must be very close to 0, that is to say th
the confinement is only of vector type. We have remark
that the results are very sensitive to the value of the mas
If other states with higher values ofJ were known, our con-
clusion could be changed.

It is also possible to calculatef by considering a meson
and its radial excitations@D52aE( f )#. This procedure is
more questionable since only the first radial excitation of
J51 meson is known in ther andf families. Nevertheless
if the calculation is performed for the two families, we fin
that all values forf from 0 to 1 are compatible with the data

IV. CONCLUDING REMARKS

We have shown that light-light and heavy-light meso
exhibit linear orbital and radial trajectories in the dominan
orbital states~DOS! model. Slopes of both types of trajecto
ries depend only on the string tension and on the vec
scalar mixture in the confinement potential. From our wo
it turns out that small finite quark masses do not alter sign
cantly the linearity, especially in the case of domina
vector-type confining potential. As expected, the Coulom
like potential has no effect on trajectories but its influence
the meson masses has been determined in the approxim
of the DOS description. Lastly, we have shown that the ra
of radial to orbital energies depends on the scalar-vector c
finement mixture only.

Formula ~20! gives the parameter dependence of squ
mass in the limit of small masses and small strength of
9-7
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short-range potential, or in the limit of large angular mome
tum. Outside these limits, we have remarked that this
mula only differs slightly from exact results in a large ran
of parameters. This allows us to apply our approximation
physical situations and to compare our calculations with
periment.

From data available, it is difficult to determine the val
of the parameterf, that is to say the scalar-vector mixture
the confinement. Strictly speaking, our results are only se
classical ones, and experimental radially excited me
masses are only known for small value of total spin. Nev
theless, our calculations favor a dominant vector-type c
fining interaction.

In our study, we completely neglect the quark spin. Ac
ally, this is not an important drawback. Regge and vib
tional trajectories concern only mesons with an assumed
ternal total spin quantum number equal to 1@7#. In usual
models the spin-dependent part of the potential is the hy
01401
-
r-

r
-

i-
n

r-
-

-
-
n-

r-

fine interaction stemming from the one-gluon exchange
teraction~and may be from the vector part of the confin
ment! @2#. In other models, this spin-dependent part ste
from an instanton induced interactions@4,9#. In both cases,
the contribution of the spin to the meson masses is sma
vanishing for mesons with total spin equal to 1.

In Sec. II D, we mentioned a method to study the hea
light mesons in the limit of an infinitely massive heav
quark. Such a method is used in Ref.@6#. It could also be
interesting to develop the calculations in the more gene
case of two finite different masses.
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