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Bohr-Sommerfeld quantization and meson spectroscopy

F. Brau*
Universitéde Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium

~Received 27 May 1999; published 18 May 2000!

We use the Bohr-Sommerfeld quantization approach in the context of constituent quark models. This
method provides, for the Cornell potential, analytical formulas for the energy spectra which closely approxi-
mate numerical exact calculations performed with the Schro¨dinger or the spinless Salpeter equations. The
Bohr-Sommerfeld quantization procedure can also be used to calculate other observables such as the rms radius
or wave function at the origin. The asymptotic dependence of these observables on quantum numbers is also
obtained in the case of potentials which behave asymptotically as a power law. We discuss the constraints
imposed by these formulas on the dynamics of the quark-antiquark interaction.

PACS number~s!: 12.39.Pn, 03.65.Sq
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I. INTRODUCTION

It is well known that nonrelativistic or semirelativisti
constituent quark models can describe with surprising ac
racy a large part of the meson and baryon properties.
mass spectra of hadrons have been intensively studied s
the pioneering works of, e.g., Eichtenet al. @1#, Stanley and
Robson@2#, and Godfrey and Isgur@3# ~see, for example
@4–6#!. Other observables, such as decay widths, have
been well reproduced within the framework of potent
models@3#. The success of these calculations shows that
possible to understand the major part of the hadron obs
ables using the simple picture for the quark-quark or qua
antiquark interaction provided by constituent quark mode

In this paper, we will focus on meson spectroscopy. Ma
potentials have been proposed to describe the meson pr
ties @4,6#. Despite this diversity, the central part of the inte
action used in the usual models presents similar charact
tics: an attractive short range part with a confining lo
range interaction. The prototype for these potentials is
so-called Cornell potential@1# which can be used to describ
a large body of the meson masses except the masses o
pseudoscalar states for which a spin dependent and a fl
mixing interaction is necessary. Indeed, the role of this
ditional interaction is too important, in this sector, to be n
glected even in a first approximation. Recent lattice calcu
tions @7# confirm that the Cornell potential fits in a goo
approximation the static quark-antiquark interaction.

Most of the models found in Refs.@4,6# have a phenom-
enological nature: whereas the general behavior of poten
are often dictated by physical considerations, the value
their parameters are most of the time obtained by trial
error from a comparison with some experimental data. T
values of various observables which can be generated f
potential models will be strongly constrained by this gene
behavior of potentials and by the values of their paramet
however, despite the ease with which the numerical value
these observables can be obtained, the exact nature of
constraints is often very difficult to infer from the numeric
results.

It is the purpose of this work to show that the use o
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Bohr-Sommerfeld quantization~BSQ! approach can provide
unexpected insight into potential models. We use t
method to obtain some general characteristics of constitu
quark models. In particular, we will show that it is possib
to obtain analytical expressions for the spectra, root m
square radii, decay widths, electromagnetic mass splittin
or electric polarizabilities, which closely approximate the n
merically exact results obtained from full quantum Sch¨-
dinger or spinless Salpeter approaches, and which can
be used, e.g., to derive accurate predictions for the dep
dence of the observables on the quantum numbers. We
study the constraints imposed by these formulas on the
namics of the quark-antiquark interaction within a potent
model.

II. BSQ METHOD

The basic quantities in the BSQ approach@8# are the ac-
tion variables:

Js5 R psdqs , ~1!

where s labels the degrees of freedom of the system, a
whereqs andps are the coordinates and conjugate momen
the integration is performed over one cycle of the motio
The action variables are quantized according to the presc
tion

Js5~ns1cs!h, ~2!

whereh is Planck’s constant,ns (>0) is an integral quantum
number, andcs is some real constant, which according
Langer should be taken equal to 1/2@9#.

To draw some general conclusions about potential mod
applied to meson spectroscopy we use the BSQ formali
in the next sections, with the Cornell potential. The prop
ties of various observables are representative of those w
can be obtained from the usual constituent quark models
particular, conclusions about the asymptotic behaviors~the
large value of quantum numbers! of these quantities will be
quite reliable since most of the potential models use a lin
©2000 The American Physical Society05-1
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confinement. Moreover, we will show that we can also o
tain information about asymptotic behaviors for any pow
law confinement.

A. Nonrelativistic calculations

The nonrelativistic Hamiltonian corresponding to the C
nell potential reads in natural units (\5c51),

H5
1

2m S pr
21

pf
2

r 2 D 2
k

r
1ar. ~3!

Of course, since the interaction is central, the orbital ang
momentumpf5L is a constant of motion. The expressio
for the radial momentumpr derives from the conservation o
the total energyE of the system:

pr56
1

r
A22mar312mEr212mkr 2L256

1

r
Ag~r !.

~4!

The radial motion takes place between two turning pointsr 2

and r 1 , which are the two positive zeros ofg(r ); the three
roots r k (k50,1,2) ofg(r ) are

r k52A2P

3
cosS u12pk

3 D1
E

3a
, ~5!

where

P52
1

3a2
~E213ak!, cosu52

Q

2
A 27

2P3
,

Q52
1

27a3 S 2E319akE227
a2

2m
L2D . ~6!

As r 1<0<r 2<r 0, the turning points arer 25r 2 and r 1

5r 0.
Quantization ofJf trivially gives L5 l 1cf ; on the other

hand, quantization ofJr leads to the equation

2mr 1~Er112k!K~h!12mEr1~r 12r 1!E~h!23~ l 1cf!2

3P~p/2,g,h!2
3

2
p~n1cr !r 1Ar 12r 1A2ma

50, ~7!

where

h5
r 12r 2

r 12r 1
and g512

r 2

r 1
, ~8!

K(x), E(x), andP(p/2,x,y) are the complete elliptic inte
grals of the first, second, and third kinds, respectively~@10#
p. 904!, andn is the radial quantum number. This appears
be a rather complicated equation since it cannot be so
explicitly for the energy. However, it leads to very accura
results if we choose the Langer prescriptioncr5cf51/2, as
can be seen in Table I where a selected set of masses,
01400
-
-

-

r

o
d

m-

puted from Eq.~7!, are compared with the results of an exa
calculation @5#. The accuracy of the results presented
Table I is representative of that obtained for the states wh
are not displayed here. One sees that, even for small q
tum numbers, the errors introduced by the BSQ approxim
tion are remarkably small; indeed the errors in the spectr
reported in Table I do not exceed 0.1%.

One of the most useful by-products of the BSQ method
to provide simple asymptotic expressions for the total ene
for large values ofl and n. Indeed, for large angular mo
menta (l @n), the orbits become almost circular, and th
r 2'r 1 and h'0. In this limit, u5p and all the elliptic
integrals are equal top/2; keeping the leading terms in Eq
~7!, we obtain

E;
3

2 S a2

m D 1/3

l 2/3 ~ l @n!. ~9!

This is a well-known result: a linear potential does not le
to linear Regge trajectories in a nonrelativistic descriptio
correct Regge trajectories can only be obtained with con
ing potentials rising asr 2/3 @11#.

For large radial quantum numbers (n@ l ), the orbits have
a large eccentricity, and thusr 1'r 2'0 andh'1. Although
h51 cannot be directly inserted into Eq.~7! because of the
singularity of the elliptic integrals, settingr 15r 250 into
Eq. ~1! and evaluating an elementary integral leads to

E;S 3p

2 D 2/3S a2

2m D 1/3

n2/3 ~n@ l !. ~10!

This is a new result: the radial quantum number does
appear explicitly in the classical Hamiltonian, and thus ‘‘n
ive’’ semiclassical methods fail to reproduce correctly t
spectrum in this sector@12,13#. Equations~9! and~10! show
that the spectrum has the same asymptotic behavior inl and
n. The square of the ratio of the ‘‘slopes,’’R, assumes the
value

R5S p2

3 D 2/3

; ~11!

that is, it does not depend on any physical parameter. In f
these properties remain valid for any power-law confini
potential. Indeed forV(r );ara (a.0), the large-l behavior
is found to be

E;S a2

~2m!aD 1/(a12)S 11
a

2 D S 2

a D a/(a12)

l 2a/(a12) ~ l @n!,

~12!

confirming the result of Ref.@11#; for large n, the turning
points behave as

r 1;S E

a D 1/a

,

r 2;0, ~13!

and Eq.~1! leads to an elementary integral which gives
5-2
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TABLE I. Energies, rms radii, and wave functions at the origin for a selected set of mesons, ob
from the Schro¨dinger equation and from the BSQ approximation for the Cornell potential, using the pa
eters of Ref.@5# ~masses are given in MeV, rms radii in GeV21, and wave functions at the origin in GeV3).

States Exact masses BSQ ExactAr̄ 2 BSQ ExactuC(0)u2 BSQ

nn̄ states
1S 681 681 4.04 3.97 7.571531023 7.638331023

2S 1577 1577 7.32 7.30 6.708431023 6.760131023

1P 1240 1242 5.82 5.79
1D 1692 1693 7.32 7.31

ns̄ states
1S 794 794 3.65 3.58 1.065331022 1.078431022

2S 1626 1626 6.68 6.65 9.216931023 9.309931023

1P 1320 1321 5.30 5.28
1D 1738 1739 6.69 6.67

ss̄ states
1S 1004 1002 3.17 3.10 1.734631022 1.766831022

2S 1759 1758 5.87 5.85 1.441631022 1.462331022

1P 1490 1492 4.67 4.65
1D 1869 1870 5.91 5.90

nc̄ states
1S 1973 1972 3.36 3.29 1.419431022 1.441831022

2S 2757 2757 6.19 6.17 1.200431022 1.215431022

1P 2474 2475 4.92 4.89
2P 3125 3126 7.43 7.42

cc̄ states
1S 3067 3062 2.26 2.19 5.802531022 6.023101022

2S 3693 3691 4.38 4.36 4.215331022 4.335131022

1P 3497 3497 3.48 3.46
2P 3991 3991 5.35 5.34
1D 3806 3806 4.47 4.46
2D 4242 4242 6.17 6.17

nb̄ states
1S 5313 5311 3.16 3.09 1.760731022 1.793731022

2S 6066 6065 5.85 5.83 1.461331022 1.482531022

1P 5799 5800 4.65 4.63
2P 6420 6420 7.04 7.03

bb̄ states
1S 9448 9439 1.13 1.04 7.358331021 7.701531021

2S 10007 10003 2.55 2.52 3.390331021 3.559731021

1P 9901 9900 2.04 2.02
2P 10261 10261 3.28 3.28
1D 10148 10148 2.74 2.73
or
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E;S a2

~2m!aD 1/(a12)S ap

B~1/a,3/2!
nD 2a/(a12)

~n@ l !,

~14!

whereB(x,y) denotes the beta function~@10# p. 948!. We
will discuss in Sec. II C the implication of these results f
the meson spectroscopy.

The BSQ method can be used to compute other obs
ables as well. In quantum theory, the value of an observa
A is obtained from the wave function of the system as
01400
v-
le
n

average value. In the BSQ context, we have in contras
evaluate an average over time according to

^A&5
1

TE0

T

A~ t !dt, ~15!

whereT is the period of the radial motion. As an examp
we calculate the mean square radii of the states bound by
Cornell potential, which were reported in Table I. Using t
nonrelativistic equation of motionṙ 5pr /m, we can write
5-3
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F. BRAU PHYSICAL REVIEW D 62 014005
^r 2&5
2m

T E
r 2

r 1 r 2

pr
dr ~16!

and

T52mE
r 2

r 1 1

pr
dr. ~17!

One obtains

^r 2&5
1

15a2 F9ak18E21S 4Ek2
3a~ l 1cf!2

m D
3

K~h!

r 1K~h!1~r 12r 1!E~h!G . ~18!

Inspection of Table I shows again that the accuracy of
formula is excellent. It can be used to derive nice asympt
formulas; indeed one obtains

^r 2&;S 1

am D 2/3

l 4/3 ~ l @n!, ~19!

^r 2&;S 1

am D 2/32

5
~3p4!1/3n4/3 ~n@ l !. ~20!

The behavior of the rms radius is the same for largel and n.
Comparison with Eqs.~9!, ~10! shows that the rms radiu
becomes proportional at largel or n to the total energy. This
behavior is a property of a linear potential. The ratio of t
‘‘slopes’’ of the relations~19!, ~20! does not depend on an
physical parameter as it was the case for the ratioR for the
energy. These properties are still valid for any power-l
confining potential. ForV(r );ara, the large-l and large-n
asymptotic formulas are

^r 2&;S 1

aam D 2/(a12)

l 4/(a12) ~ l @n!, ~21!

^r 2&;S 1

2am D 2/(a12) B~3/a,1/2!

B~1/a,1/2! S ap

B~1/a,3/2!
nD 4/(a12)

~n@ l !. ~22!

These expressions can also be used to study the electri
larizability of mesons since the latter is proportional to^r 2&2

@4#.
Other observables can also be evaluated such as, e.g

various decay widths of the system. In the nonrelativis
reduction, the main ingredient in the calculation of the
quantities is the modulus of thel 50 wave function at the
origin, uC(0)u2, a quantity which is not available in our for
malism. However, use of the following relation@4#, valid in
the nonrelativistic case,

uC~0!u25
m

2p K dV~r !

dr L , ~23!
01400
is
ic

po-

the
c
e

makes possible an analytical evaluation of the decay wid
within the BSQ approximation. For a Cornell potential, usi
the definition~15! and the equation of motionṙ 5pr /m, the
square of the modulus of the wave function at the origin
found to be

uC~0!u25
m

2p
~a1k^1/r 2&!, ~24!

with

K 1

r 2L 5
P~p/2,g,h!

r 1@r 1K~h!1~r 12r 1!E~h!#
, ~25!

whereg andh are defined by Eq.~8!. In Table I, we show a
comparison between this formula and values obtained w
an exact calculation using parameters of Ref.@5#. The accu-
racy is here also remarkable especially for light mesons, w
an error smaller than 1% for thenn̄ states. The error is abou
5% for thebb̄ ground state. In this sector the Coulomb pa
of the interaction plays a more active role and more imp
tant errors are introduced since the BSQ result is only ex
for a pure linear potential. However, the error for the ra
uC1S(0)/C2S(0)u2 is always smaller than 1% even for th
heavy mesons.

It is also possible to derive an asymptotic behavior f
mula for uC(0)u2 for a potential which behaves asV(r )
;ara:

uC~0!u2;
maa1/a

pB~1/a,1/2!
E(a21)/a ~n@ l !, ~26!

with the total energyE given by Eq.~14!. The asymptotic
value for the ratio of the wave function at the origin, for tw
states with radial quantum numbers equal tom andn, reads

UCm~0!

Cn~0!
U2

;S m

n D 2(a21)/(a12)

. ~27!

It depends only on the value ofa and the radial quantum
numbers considered.

Note that the BSQ approach can also provide analyt
formulas for electric mass splittings because the wave fu
tion at the origin and the mean value of 1/r , which can be
calculated with Eq.~15!, are the main ingredients for th
evaluation of this quantity.

B. Semirelativistic calculations

Similar calculations can be performed within relativist
kinematics. The semirelativistic Hamiltonian correspondi
to the nonrelativistic Hamiltonian~3! reads

H52Apr
21

pf
2

r 2
1m22

k

r
1ar. ~28!
5-4
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The orbital angular momentumpf5L is still a constant of the motion. The expression of the radial momentumpr derives from
the conservation of the total energyM of the system:

pr56
1

2r
Aa2r 422aMr31~M222ak24m2!r 212Mkr 1k224L2[6

1

2r
Ah~r !. ~29!
y

ng

,

the

it
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d
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e
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n

rge
The polynomialh(r ) is here of fourth order. One can verif
that h(r ) reduces tog(r ) in the nonrelativistic limit (m
→`). The radial motion takes place between two turni
points r 2 and r 1 , which are two zeros ofh(r ); the four
roots ofh(r ) are

r 152
1

2
~AU1AD1!1

M

2a
, r 252

1

2
~AU2AD1!1

M

2a
,

r 35
1

2
~AU2AD2!1

M

2a
, r 45

1

2
~AU1AD2!1

M

2a
,

~30!

with

D652~U12P!6
2Q

AU
,

P52
1

2a2
~M214ak18m2!, Q52

4m2M

a3
,

U52A2S

3
cosS u

3D2
2P

3
, cosu52

T

2
A 27

2S3
,

S52
P2

3
24R, T52

2

27
P31

8

3
PR2Q2,

R5
1

16a4
@M418M2~ak22m2!116a2~k224L2!#.

~31!

The two turning points arer 25r 2 and r 15r 3.
Quantization ofJf leads toL5 l 1cf ; on the other hand

quantization ofJr gives the equation

a1K~h!1a2P~p/2,g,h!1a3PS p/2,
r 1

r 2
g,h D1a4E~h!

22pa~n1cr !Ar 42r 2Ar 12r 150, ~32!

where

h5
r 42r 1

r 42r 2

r 12r 2

r 12r 1
, g5

r 12r 2

r 12r 1
, ~33!

and where

a15
a

2
~r 12r 1!~r 22r 1!@M1a~r 42r 1!#,
01400
a2522~r 22r 1!~ak12m2!,

a3522a2r 1r 4~r 22r 1!,

a45
aM

2
~r 42r 2!~r 12r 1!. ~34!

This equation presents some common features with
nonrelativistic formula~7!: it involves complete elliptic inte-
grals, it cannot be solved explicitly for the energy, and
leads to very accurate results if we choose the Langer
scriptioncr5cf51/2. A comparison of the results obtaine
from this equation and exact calculations@5# is given in
Table II. The accuracy is less good for the ground state
the relativistic case. The poorest result is obtained for thr
state with an error of about 2.8%. But the convergence
quite rapid since the error already reduces to about 0.2%
the r(1450) meson.

We can also obtain some simple asymptotic express
for the masses of the states for large values ofl andn. The
condition for circular orbits,r 25r 1 , leads to

2AU5AD11AD2. ~35!

Since the values of the total energyM and the angular mo-
mentuml are important, we have

D15D252~U12P!. ~36!

These two last equations giveU52P from which we obtain
an expression for cos(u/3). Comparison of this expressio
with the definition of cosu ~31! imposesR50, and we find

M;2A2Aal ~ l @n!. ~37!

This is the expected result@4,14,15#: a linear potential leads
to linear Regge trajectories in the relativistic case.

For large values of the radial quantum number, the la
eccentricity of the orbits impliesr 1;r 2;0 and r 1;r 4
;M /a. Setting r 15r 250 into Eq. ~1! and evaluating an
elementary integral leads to

M;2ApAan ~n@ l !. ~38!
5-5
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This result shows that the spectrum has the same asymp
behavior inl and n. The square of the ratio of the slopesR
assumes the value

R5p/2; ~39!

that is, this quantity is still parameter independent. In fact
in the nonrelativistic case, these properties remain valid
any power-law confining potential. ForV(r );ara(a.0),
the large-l behavior is found to be

M;a1/(a11)~a11!S 2l

a D a/(a11)

~ l @n!; ~40!

for largen, the turning points have the forms

r 1;S M

a D 1/a

,

r 2;0, ~41!

and Eq.~1! leads to an elementary integral which gives

M;a1/(a11)S 2p~a11!

a
nD a/(a11)

~n@ l !. ~42!

TABLE II. Energies and rms radii for a selected set of meso
obtained from the spinless Salpeter equation and from the B
approximation for the Cornell potential, using the parameters
Ref. @5# ~masses are given in MeV and rms radii in GeV21).

States Exact masses BSQ ExactAr̄ 2 BSQ

nn̄ states
1S 703 683 3.30 3.22
2S 1416 1413 5.40 5.39
1P 1240 1236 4.62 4.60
1D 1642 1639 5.60 5.60

ss̄ states
1S 1004 991 2.96 2.87
2S 1695 1691 5.04 5.02
1P 1508 1506 4.27 4.25
1D 1885 1884 5.27 5.26

cc̄ states
1S 3067 3056 2.05 1.97
2S 3668 3662 3.89 3.85
1P 3504 3504 3.19 3.18
2P 3970 3970 4.76 4.76
1D 3811 3811 4.07 4.06
2D 4216 4216 5.48 5.48

bb̄ states
1S 9448 9433 1.10 1.01
2S 9999 9993 2.45 2.42
1P 9900 9900 1.99 1.98
2P 10262 10262 3.17 3.17
1D 10150 10150 2.66 2.66
01400
tic

s
r

To calculate the rms radius in the semirelativistic form
lation we use the definition~15! with the equation of motion
ṙ 54pr /@M2V(r )#. The relativistic version of Eq.~16! is
found to be

^r 2&5
1

2TEr 2

r 1 r 2

pr
@M2V~r !#dr, ~43!

with

T5
1

2Er 2

r 1 M2V~r !

pr
dr. ~44!

Using the expression~29! of the radial momentumpr the
integration of Eqs.~43!, ~44! leads to

^r 2&5
1

3a2

b1K~h!1b2P~p/2,g,h!1b3E~h!

b4K~h!1b5E~h!
, ~45!

with

b1522Mr 1~M21ak24m2!22M2k

22a@k224~ l 1cf!2#

1a~M21ak18m2!@r 1~r 11r 1!2r 2~r 12r 1!#,

b2524Mm2~r 22r 1!,

b352a~M21ak18m2!~r 42r 2!~r 12r 1!,

b4522Mr 122k1a@r 1~r 11r 1!2r 2~r 12r 1!#,

b552a~r 42r 2!~r 12r 1!. ~46!

This rather complicated equation gives very accurate res
as it can be seen in Table II where they are compared w
exact calculations. It can be used to obtain some sim
asymptotic formulas:

^r 2&;
2

a
l ~ l @n!, ~47!

^r 2&;
4p

3a
n ~n@ l !. ~48!

As in nonrelativistic calculations the asymptotic behavior
the same inl and n. Comparison with Eqs.~37!, ~38! shows
that the rms radius becomes proportional to the total ene
for large values of quantum numbers, which is a charac
istic of a linear potential. The ratio of the slopes which a
pear in these asymptotic formulas is parameter independ
These properties are, here also, still valid for the power-
potentialV(r );ara. In this case the asymptotic formulas a

^r 2&;S 2

aa D 2/(a11)

l 2/(a11) ~ l @n!, ~49!

^r 2&;
1

3 S 2p~a11!

aa
nD 2/(a11)

~n@ l !. ~50!

,
Q
f
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C. Discussion

Application of the results obtained in Secs. II A and II
to meson spectroscopy could prove to be of great inter
Indeed, if we want to produce linear Regge trajector
~which are well observed experimentally in the light mes
sector! within a potential model, we must use a potent
which behaves at larger like r 2/3 in the nonrelativistic case
and liker for a semirelativistic kinematics. In both cases, w
have just shown that the trajectories for radial excitation
then necessarily also linear; moreover, the square of the
of the slopesR is completely determined by the asympto
behavior of the potential and the kinematics used, and ta
here the value

R5A3 ~51!

in the nonrelativistic case and

R5p/2 ~52!

in the semirelativistic case. This is an additional strong c
straint, especially as these ratios are parameter indepen
But since we have chosen the confining potential to rep
duce the energy orbital trajectories~Regge trajectories!, the
asymptotic behavior of orbital and radial trajectories of oth
observables is determined. These results imply that the
rently investigated potential models@4,6#, which use power-
law confining interactions, can only describe a restric
class of experimental data. This remark could prove decis
in the ~near?! future, when new experimental information o
the radial excitations of light mesons, which are still ve
scarce, becomes available. For example, if the experime
energy radial trajectories differ from a straight line or ifR
does not assume the values of Eq.~51! or ~52!, the under-
standing of the physics underlying the confinement co
become more problematic, and a simple power-law poten
would not be sufficient to describe the confinement of qua
~the above arguments remain valid if one considers the p
sibility that the asymptotic behavior of the Regge trajecto
could not be exactly linear!.

If the experimental radial trajectories prove in the end
be linear, but if the ratioR differs significantly from the
values of Eq.~51! or ~52!, the introduction of a scalar com
ponent in the confining potential could be a possible w
out; indeed we have performed calculations using the B
method, which show that this additional flexibility~which
only makes sense within a relativistic approach! allows the
ratio R to take any value betweenp/2 and 2. Of course, a
quantum-number-dependent confining potential could ea
lead to a complete decoupling of the Regge and radial
jectories. A better kinematical treatment of the problem,
the use of full covariant equations~see, for example, Ref
@16#!, could also alter the predicted large-l and large-n be-
haviors of the trajectories.

A limited set of additional experimental informations o
the radial excitations of light mesons could already be su
cient to draw important conclusions. Indeed, the linear
havior of the Regge trajectories, which is governed by
long range part of the interaction, is already reached exp
01400
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mentally for the very first orbital excitations. The situatio
seems to be even more favorable for the radial trajector
since, as the masses grow faster as a function ofn than as a
function of l, the asymptotic regime is expected to be
tained at very lown; most potential models@4,6# predict that
this regime is already effective from the first radial excit
tion.

To conclude this discussion, it is worth noting that t
calculations presented in this paper allow to understand s
well-observed properties of potential models. It is know
that the use of a semirelativistic kinematics yields a be
description of radial excitations such asr(1450) for the me-
sons andN(1440) for the baryons. Actually a nonrelativist
description gives in general too high masses for these st
~see, for example,@17–19#!. Indeed, a correct description o
Regge trajectories leads to heavier masses for radial ex
tions in nonrelativistic calculations since Eqs.~51! and ~52!
show that the ratioR is higher when the Schro¨dinger equa-
tion is used.

It is also known that experimentally the mass of t
K* (892) meson is in good approximation the average of
masses of ther(770) and thef(1020) mesons. This prop
erty is also verified for each orbital excitation of these stat
This behavior is well reproduced within the usual potent
models. But the strong relation between orbital and rad
trajectories obtained for the energy in the previous secti
shows that this remarkable property will be also verified
radial excitations within a potential model description. Th
leads to a mass for theK* (2S) of about 1565 MeV which is
approximately the value found with the usual models; t
value is just between the masses of the two possible ca
dates for these statesK* (1410) andK* (1680). This is a
major problem of usual potential models: the radial exci
tions of light strange mesons cannot be satisfactorily be
scribed~see, for example,@6,19,20#!.

III. ONE-DIMENSIONAL BSQ APPROACH

In this section we show that a one-dimensional BSQ
proach can be used to derive some simple formulas wh
can be applied to the three-dimensionall 50 states. For a
central potential, odd states of the one-dimensional Sch¨-
dinger equation remain solutions of the three-dimensionl
50 Schrödinger equation~considering only thex>0 part of
the x axis!. This property can be used within a BSQ a
proach.

In a three-dimensional calculation, if we use the Lang
prescription, the centrifugal term never vanishes. But in
pure one-dimensional case, the absence of this centrif
term simplifies the evaluation of the action variable and le
to very simple formulas. Indeed, in the nonrelativistic ca
we have

p56A2m@E2V~x!#. ~53!

With V(x)5auxua, the quantization of the action variableJ
leads to an equation which can be solved for the energy
5-7
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E5S a2

~2m!aD 1/(a12)S ap

B~1/a,3/2!
~n13/4! D 2a/(a12)

,

~54!

where we have changedn11/2 into (2n11)11/2 to only
take into account odd states. This last result is an exten
to the three-dimensional case of a formula obtained pr
ously from a one-dimensional calculation@21#. This formula
is very close to Eq.~14!, but here it can be used, in principle
to approximate all the three-dimensionall 50 states of a pure
power-law potential.

It is well known, from scaling properties~see, for ex-
ample, @4#!, that the energy obtained with the Schro¨dinger
equation for a power-law potential can be written as

E5S a2

~2m!aD 1/(a12)

e, ~55!

wheree is a solution of a dimensionless Schro¨dinger equa-
tion. Since the BSQ approach gives the correct dimensio
factor, the error depends only ona andn. Figure 1 shows the
evolution of errors witha for n51 and n52. For the
ground states the errors are about 1%~or smaller! for a
<4. As expected, the errors decrease rapidly with the
crease of the radial quantum number.

In general it is not obvious to understand why the form
~54! works so well since the exact solution is not known. F
the harmonic oscillator case this formula gives the corr
position of the energy levels. But it is more instructive
consider the case of a linear potential. Indeed, fora51, Eq.
~54! leads to

e5S 3p

4
~n13/4! D 2/3

[z2/3. ~56!

This expression is just the leading term of an expansionz
@1) for the values of the zeros of the Airy function~@22#, p.
450!. The exact solution is obtained by the summation of
the terms present in the expansion. In this particular case

FIG. 1. Evolution of the errors introduced by Eq.~54! as a
function of a for the ground state and the first radial excitation.
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can see how Eq.~54! approximates the exact solution an
how evolves this approximation. The formula~56! gives
much better results than variational methods using trial w
functions for which the accuracy decreases rapidly as a fu
tion of n ~see, for example,@23#, p. 267!.

It is worth noting that a three-dimensional calculation u
ing BSQ approach introduces smaller errors than the o
dimensional formulas obtained here. For example, for a
ear potential the error is about 0.5% for the ground st
when a three-dimensional calculation is performed and ab
0.75% with the one-dimensional formula. But in general t
three-dimensional calculations do not lead to analytical f
mulas or lead to complicated ones.

We can also calculate the mean square radius for a po
law potential. Using the definition~15! we can write

^r 2&5S 1

2am D 2/(a12) B~3/a,1/2!

B~1/a,1/2!

3S ap

B~1/a,3/2!
~n13/4! D 4/(a12)

. ~57!

The calculation of the values of the wave functions at
origin leads to

uC~0!u25
maa1/a

pB~1/a,1/2!
E(a21)/a, ~58!

but this time with the expression~54! for the energy. The
evolution of the accuracy of formulas~57! and ~58! with a
andn is similar to that shown in Fig. 1 for the energy.

The formula for the ratio of the wave function at the o
gin is given by

UCm~0!

Cn~0!
U2

5S m13/4

n13/4D 2(a21)/(a12)

. ~59!

Some connection with previous general results can be d
If we suppose thatm52 andn51, formula~59! shows that
the ratio is greater than 1 ifa.1 @d2V(r )/dr2.0# and
smaller than 1 ifa,1 @d2V(r )/dr2,0#. This behavior is
predicted by a general result obtained in Ref.@24#. Equation
~54! shows that the energy behaves with the reduced mas
E}m2a/(a12). Thus we can calculate that

d

dm S uCn~0!u2

m D}
12a

a12
m2(112a)/(a12). ~60!

This quantity is positive if a,1 @d2V(r )/dr2,0 and
dV(r )/dr>0] and negative ifa.1. This property is proved
for n51 in Ref. @25#.

The same calculations, for the energy and the rms rad
can be done for semirelativistic kinematics but unfortunat
they lead to complicated equations involving hypergeome
functions. The relativistic version of Eq.~54! can only be
solved explicitly for the energy when one conside
asymptotic behaviors. Thus further information about the
servables cannot be extracted within the frame of a o
dimensional semirelativistic approach.
5-8
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To conclude this section, we show that the on
dimensional BSQ approach can also be used to deriv
simple formula giving the number ofl 50 bound states~a
generalization tol 5” 0 states can easily be done!. We con-
sider an attractive potential which vanishes at infinity~for
example a Gaussian or a Yukawa potential!. We calculate the
value of the radial quantum numbern for E50:

n5
2A2m

p E
0

`
A2V~r !dr2

1

2
. ~61!

In general this number is not an integer except if the ene
level E50 is a real solution. But the integer part ofn gives
the radial quantum numbernmax of the highest energy level
The formula for the number of bound states,N5nmax11, of
a given potential reads

N5F2A2m

p E
0

`
A2V~r !dr1

1

2G , ~62!

where@x# denotes the integer part ofx. For example, ifV(r )
is of the formV(r )52a f(br), we have

N5F2A2ma

pb E
0

`
Af ~y!dy1

1

2G . ~63!

The remaining integral is a pure number and we can
immediately the dependence of the number of bound st
on the potential parameters.

The same calculation can be performed in the semir
tivistic case and we find

N5F 1

pE0

`
AV~r !224mV~r !dr1

1

2G . ~64!

In this case the simple reduction performed in Eq.~63! can-
not be obtained.

IV. SUMMARY

We have shown in this paper that the Bohr-Sommerf
quantization procedure is an accurate and powerful meth
It makes possible the derivation of reliable analytical form
las, from which one can easily study, e.g., the dependenc
d
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some physical quantities on the quantum numbers. Our s
emphasizes the strong connection existing between
Regge and radial trajectories for the energy within a poten
model, which could play an important role in elucidating t
confining properties of the quark-antiquark interaction wh
additional experimental information is obtained on the rad
excitations of light mesons; the study of other observab
~decay widths, mean square radii, electromagnetic m
splittings, etc.! could put supplementary constraints on th
interaction.

We have also shown that even if semirelativistic calcu
tions yield results quantitatively different compared wi
nonrelativistic calculations some common general feature
observables are observed. The asymptotic behavior of or
and radial trajectories, for the energy and the rms radius,
the same for a potential which behaves asymptotically a
power-law. Moreover, the ratio of the slopes of these traj
tories depends only on the value of the power of the con
ing potential.

At last, we have shown in Sec. II C that one-dimensio
calculations lead to a very simple approximated formula
the energy, the rms radius and the wave function at the or
in the l 50 sector. We have also obtained formulas whi
give the number of bound states of a given potential for
nonrelativistic and semirelativistic case.

Of course, a BSQ approach cannot replace a correct q
tum description since it is only an approximate meth
which is not completely self-consistent. For example,
need to use the Schro¨dinger equation to give a definition o
the wave function at the origin to be able to calculate t
quantity with this formalism. Moreover, some quantum co
cepts have no meaning in this framework. But we emphas
that for some cases the evaluation of observables~evaluation
of average values! can be performed using this old metho
even if calculations yield complicated formulas it is ofte
possible to extract interesting information from an analyti
relation and in this way guide full quantum calculations.
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