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We use the Bohr-Sommerfeld quantization approach in the context of constituent quark models. This
method provides, for the Cornell potential, analytical formulas for the energy spectra which closely approxi-
mate numerical exact calculations performed with the Stihger or the spinless Salpeter equations. The
Bohr-Sommerfeld quantization procedure can also be used to calculate other observables such as the rms radius
or wave function at the origin. The asymptotic dependence of these observables on quantum numbers is also
obtained in the case of potentials which behave asymptotically as a power law. We discuss the constraints
imposed by these formulas on the dynamics of the quark-antiquark interaction.

PACS numbds): 12.39.Pn, 03.65.Sq

[. INTRODUCTION Bohr-Sommerfeld quantizatiofBSQ) approach can provide

It is well known that nonrelativistic or semirelativistic unexpected insight into potential models. We use this
constituent quark models can describe with surprising accunethod to obtain some general characteristics of constituent
racy a large part of the meson and baryon properties. Tha@uark models. In particular, we will show that it is possible
mass spectra of hadrons have been intensively studied siné@ obtain analytical expressions for the spectra, root mean
the pioneering works of, e.g., Eichten al.[1], Stanley and square radii, decay widths, electromagnetic mass splittings,
Robson[2], and Godfrey and Isguf3] (see, for example, Of electric polarizabilities, which closely approximate th_e nu-
[4—6]). Other observables, such as decay widths, have algwerically exact results obtained from full quantum Sehro
been well reproduced within the framework of potentialdinger or spinless Salpeter approaches, and which can thus
models[3]. The success of these calculations shows that it i§€ used, e.g., to derive accurate predictions for the depen-
possible to understand the major part of the hadron obseng@ence of the observables on the quantum numbers. We will
ables using the simple picture for the quark-quark or quarkstudy the constraints imposed by these formulas on the dy-
antiquark interaction provided by constituent quark models.namics of the quark-antiquark interaction within a potential

In this paper, we will focus on meson spectroscopy. Manymodel.
potentials have been proposed to describe the meson proper-
tiesf [4,6]. De;pite this diversity, the central part of the inter—. IIl. BSQ METHOD
action used in the usual models presents similar characteris-
tics: an attractive short range part with a confining long The basic quantities in the BSQ approdéh are the ac-
range interaction. The prototype for these potentials is th&on variables:
so-called Cornell potentigll] which can be used to describe
a large body of the meson masses except the masses of the
pseudoscalar states for which a spin dependent and a flavor Js= 3€ Psdds, (1)
mixing interaction is necessary. Indeed, the role of this ad-

ditional |nterapt|0n_|s too |mp(_)rtan_t, in this sector_, to be ne-Wheres labels the degrees of freedom of the system, and
glected even in a first approximation. Recent lattice calcula-

tions [7] confirm that the Cornell potential fits in a good whe_reqs anqlps are the coordinates and conjugate momenta;
e . . . . the integration is performed over one cycle of the motion.

approximation the static quark-antiquark interaction. The action variables are quantized according to the prescrip-
Most of the models found in Ref§4,6] have a phenom- . q 9 P P

enological nature: whereas the general behavior of potentiaf's
are often dictated by physical considerations, the values of
their parameters are most of the time obtained by trial and Js=(nstcyh, )
error from a comparison with some experimental data. The
values of various observables which can be generated fromvhereh is Planck’s constantis (=0) is an integral quantum
potential models will be strongly constrained by this generahumber, andcg is some real constant, which according to
behavior of potentials and by the values of their parameterd;anger should be taken equal to 18.
however, despite the ease with which the numerical values of To draw some general conclusions about potential models
these observables can be obtained, the exact nature of theseplied to meson spectroscopy we use the BSQ formalism,
constraints is often very difficult to infer from the numerical in the next sections, with the Cornell potential. The proper-
results. ties of various observables are representative of those which
It is the purpose of this work to show that the use of acan be obtained from the usual constituent quark models. In
particular, conclusions about the asymptotic behavitrs
large value of quantum numbeérsf these quantities will be
*Email address: fabian.brau@umh.ac.be quite reliable since most of the potential models use a linear
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confinement. Moreover, we will show that we can also ob-puted from Eq(7), are compared with the results of an exact
tain information about asymptotic behaviors for any power-calculation [5]. The accuracy of the results presented in

law confinement. Table | is representative of that obtained for the states which
are not displayed here. One sees that, even for small quan-
A. Nonrelativistic calculations tum numbers, the errors introduced by the BSQ approxima-

tion are remarkably small; indeed the errors in the spectrum
reported in Table | do not exceed 0.1%.
One of the most useful by-products of the BSQ method is
2 to provide simple asymptotic expressions for the total energy
p? &) KA 3y  for large values ofl andn. Indeed, for large angular mo-
r2 r menta (>n), the orbits become almost circular, and thus
r_=~r, and »~0. In this limit, 6= and all the elliptic

Of course, since the interaction is central, the orbital angulajntegrals are equal tar/2; keeping the leading terms in Eq.
momentump,=L is a constant of motion. The expression (7) we obtain

for the radial momenturp, derives from the conservation of

The nonrelativistic Hamiltonian corresponding to the Cor-
nell potential reads in natural unité €c=1),

H

“2u

the total energyE of the system: 3[a%\
9 y E~=|—]| 1?® (I>n). 9
2
p,= +E\/— 2uard+2uEr?+2ukr —L%= +£\/g(r)
Ty r ' This is a well-known result: a linear potential does not lead

(4)  to linear Regge trajectories in a nonrelativistic description;
correct Regge trajectories can only be obtained with confin-
ing potentials rising as®* [11].

For large radial quantum numbenss¢1), the orbits have
a large eccentricity, and thug~r _~0 andn~1. Although
n=1 cannot be directly inserted into E() because of the

The radial motion takes place between two turning paints
andr ., which are the two positive zeros gfr); the three
rootsr, (k=0,1,2) ofg(r) are

-P 0+ 27k E f . S : .
re=2\/—=—Cco +—, (5)  singularity of the elliptic integrals, settingy=r_=0 into
3 3 3a Eq. (1) and evaluating an elementary integral leads to
where 37\ 23 g2\ 13 /
E~|—| [=—| n?® (n>). (10
2 2
P=—i(E2+3aK) cos¢9=—9 27
3a2 ' 2 NV _p¥ This is a new result: the radial quantum number does not
appear explicitly in the classical Hamiltonian, and thus “na-
1 a2 ive” semiclassical methods fail to reproduce correctly the
Q=-— pen 2E3+ 9aKE—ZYZ LZ). (6)  spectrum in this sectdi2,13. Equations9) and(10) show
a

that the spectrum has the same asymptotic behavibarml

. . n. The square of the ratio of the “slopesR, assumes the
As r;<0=r,=<r,, the turning points are _=r, andr . q PesR

—r value
=ro.
Quantization ofl, trivially gives L=1+c,; on the other AN
hand, quantization o, leads to the equation R=(? ; (1)

_ _ 2
2pr (BN 26)K(9) + 2pBr (1 —r)B(n) = 3(1+¢y) that is, it does not depend on any physical parameter. In fact,

3 these properties remain valid for any power-law confining
XTII(w/2,y, n)—zw(n+c,)r+ Jri—rqiy2ua potential. Indeed fow(r)~ar® (a>0), the large- behavior
is found to be

=0, (7) az l/(a+2)< a) ( 2)a/(a+2) pal(ar2)
E~ 1+ — | catle [>n),
where (2#)01 2\« ( )
T and y=1- = ®) 2
= an =1l-—, _ .
7 ry—rq 4 ry confirming the result of Refi11]; for large n, the turning
o points behave as
K(x), E(x), andII(m/2x,y) are the complete elliptic inte-
grals of the first, second, and third kinds, respectighp] E\ Y
p. 904, andn is the radial quantum number. This appears to re~ al
be a rather complicated equation since it cannot be solved
explicitly for the energy. However, it leads to very accurate r_~o, (13

results if we choose the Langer prescriptmr=c,=1/2, as
can be seen in Table | where a selected set of masses, coand Eq.(1) leads to an elementary integral which gives
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TABLE I. Energies, rms radii, and wave functions at the origin for a selected set of mesons, obtained
from the Schrdinger equation and from the BSQ approximation for the Cornell potential, using the param-
eters of Ref[5] (masses are given in MeV, rms radii in GeY/ and wave functions at the origin in GEV

States Exact masses BSQ Exact\r? BSQ Exact] ¥ (0)|? BSQ
nn states
1S 681 681 4.04 3.97 7.573610°3 7.6383x10°3
2S 1577 1577 7.32 7.30 6.708410 3 6.7601x 10 2
1P 1240 1242 5.82 5.79
1D 1692 1693 7.32 7.31
ns states
1S 794 794 3.65 3.58 1.065310 2 1.0784x 102
2S 1626 1626 6.68 6.65 9.216910 3 9.3099< 103
1P 1320 1321 5.30 5.28
1D 1738 1739 6.69 6.67
ss states
1S 1004 1002 3.17 3.10 1.734610 2 1.7668< 10 2
2S 1759 1758 5.87 5.85 1.44%610? 1.4623<10 2
1P 1490 1492 4.67 4.65
1D 1869 1870 5.91 5.90
nc states
1S 1973 1972 3.36 3.29 1.419410 2 1.4418<1072
2S 2757 2757 6.19 6.17 1.208410 2 1.2154< 102
1P 2474 2475 4.92 4.89
2P 3125 3126 7.43 7.42
cc states
1S 3067 3062 2.26 2.19 5.80251L0 2 6.02< 1010 2
2S 3693 3691 4.38 4.36 4215310 2 4.3351x 10 ?
1P 3497 3497 3.48 3.46
2P 3991 3991 5.35 5.34
1D 3806 3806 4.47 4.46
2D 4242 4242 6.17 6.17
nb states
1S 5313 5311 3.16 3.09 1.768710 2 1.7937 10 2
2S 6066 6065 5.85 5.83 1.46%310 2 1.4825< 102
1P 5799 5800 4.65 4.63
2P 6420 6420 7.04 7.03
bb states
1S 9448 9439 1.13 1.04 7.358310°¢ 7.7015 107!
2S 10007 10003 2.55 2.52 3.39830 1 3.5597x 10!
1P 9901 9900 2.04 2.02
2P 10261 10261 3.28 3.28
1D 10148 10148 2.74 2.73
a2 | Yet2) am 2al(a+2) average value. In the BSQ context, we have in contrast to
(20" (B(l/a,3/2) n) (n>1), evaluate an average over time according to
(14 1T
<A)=—f A(t)dt, (15
Tlo

where B(x,y) denotes the beta functiofil0] p. 948. We

will discuss in Sec. Il C the implication of these results for ) ) ) )
the meson spectroscopy. whereT is the period of the radial motion. As an example,

The BSQ method can be used to compute other obsere calculate the mean square radii of the states bound by the
ables as well. In quantum theory, the value of an observableornell potential, which were reported in Table I. Using the
A is obtained from the wave function of the system as amonrelativistic equation of motion=p, /x, we can write
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2u (1412 makes possible an analytical evaluation of the decay widths
(r3y= T p—df (16)  within the BSQ approximation. For a Cornell potential, using
r_ .
' the definition(15) and the equation of motion=p, /u, the
and square of the modulus of the wave function at the origin is
found to be
r+ 1
T=2,uf —dr. 17 P
- Pr [W(0)[2=5—(a+ K(1r?)), (24)
One obtains
| ) with
1 3a(l+c
(r?)=—|9ax+ 8E2+(4EK— (—"’))
1% 1\ 11(7/2,y,7) 25
K(7) } r2| 1K)+ (r —r)E(m)]’
X . 18
K7+ (1~ TDE(7) 19

wherey and » are defined by Eq8). In Table I, we show a
Inspection of Table | shows again that the accuracy of thisomparison between this formula and values obtained with
formula is excellent. It can be used to derive nice asymptoti@n exact calculation using parameters of R8f. The accu-

formulas; indeed one obtains racy is here also remarkable especially for light mesons, with
120 an error smaﬂer than 1% for then states. The error is about

1y~ —| 198 (I1>n), (199 5% for thebb ground state. In this sector the Coulomb part

au of the interaction plays a more active role and more impor-

tant errors are introduced since the BSQ result is only exact
for a pure linear potential. However, the error for the ratio
|W15(0)/¥,4(0)|? is always smaller than 1% even for the
heavy mesons.

The behavior of the rms radius is the same for ldrgad n It is also possible to derive an asymptotic behavior for-
Comparison with Egs(9), (10) shows that the rms radius mula for |¥(0)|? for a potential which behaves a#(r)
becomes proportional at larger n to the total energy. This ~ar®:

behavior is a property of a linear potential. The ratio of the

“slopes” of the relations(19), (20) does not depend on any paale

physical parameter as it was the case for the r&tfor the W (0)|%~ m’f(wwa (n>1), (26
energy. These properties are still valid for any power-law '

confining potential. Fol(r)~ar¢, the larget and largen
asymptotic formulas are

2/3

§(3w4)1’3n4’3 (n>1). (20)

(1)~

au

with the total energ)E given by Eq.(14). The asymptotic
value for the ratio of the wave function at the origin, for two

1\ 2Na+2) states with radial quantum numbers equaht@andn, reads
(r3y~| — |#@t2) (> n) (22)
a 1
\I,m(o) 2 m 2(a—1)/(a+2)
o [ 1\ 2@DBE12)  am 4(a+2) V(0] \n @
()~ 224 B(l/a,l/Z)(B(l/a,S/Z)n)

It depends only on the value @f and the radial quantum
(n>1). (22)  numbers considered.
Note that the BSQ approach can also provide analytical
These expressions can also be used to study the electric pgrmulas for electric mass splittings because the wave func-
larizability of mesons since the latter is proportionaf{td)?  tion at the origin and the mean value of livhich can be
[4]. calculated with Eq.(15), are the main ingredients for the
Other observables can also be evaluated such as, e.g., tgaluation of this quantity.

various decay widths of the system. In the nonrelativistic
reduction, the main ingredient in the calculation of these B. Semirelativistic calculations

guantities is the modulus of tHe=0 wave function at the . , - .
origin, | (0)|2, a quantity which is not available in our for- Similar calculations can be performed within relativistic
malisr,n. Howe,ver use of the following relati¢a], valid in kinematics. The semirelativistic Hamiltonian corresponding

the nonrelativistic case to the nonrelativistic HamiltoniafB) reads

2
dV(r Py K
|\P(0)|2=£<d—(r)>, (23) H=2/p;+ r_2+m2_7+ar' (28)
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The orbital angular momentupy,= L is still a constant of the motion. The expression of the radial momeptutierives from

the conservation of the total enerdyy of the system:

1 1
P, = iE\/azr“—ZaMr3+(M2—2aK—4m2)r2+ 2Mkr + k2 —4L%= e h(r).

The polynomialh(r) is here of fourth order. One can verify

that h(r) reduces tog(r) in the nonrelativistic limit (

—). The radial motion takes place between two turning

pointsr_ andr ., which are two zeros oh(r); the four
roots ofh(r) are

1 M 1 M
rlz—z(\/UJr\/E)Jrﬁ, rzz—i(\/U—\/E)Jr%,

1 M 1 M
r3=§(\/U— VA D)+ 23 f4=§(\/U+\/I)+ 23

(30
with
2Q
Ai=—(U+2P)=—,
) Ju
P ! (M?+4ak+8m?), Q 4m°M
=—— ak+8m°), =- ,
2a? a’
U2 [-S (6| 2P LN
= ?CO § —?, COSQ——E —_83’
S= i 4R, T=— 2Pt pR-Q?
— T3 AR TET P PRI
R=L[M4+8M2(af<—2m2)+16a2(K2—4L2)].
16a*
31

The two turning points are_=r, andr, =rs.
Quantization ofl, leads toL=1+c,; on the other hand,
guantization of], gives the equation

r
a1K(n) + all(7/2,y,m)+ asll 77/2,r—1'y,77 + a,4E(7)
—2ma(n+c)\rg—r_+r,—r;=0, (32
where
Ty r T rre
.- YT = (33)
and where

=5 (r =)~ 1M+ 1),

(29)
|
ay=—2(r_—ry)(ak+2m?),
ag=—2a%r T4(r_—ry),
ay= g(u—rf)(u—rl)- (34)

This equation presents some common features with the
nonrelativistic formula7): it involves complete elliptic inte-
grals, it cannot be solved explicitly for the energy, and it
leads to very accurate results if we choose the Langer pre-
scriptionc,=c,=1/2. A comparison of the results obtained
from this equation and exact calculatioff§| is given in
Table II. The accuracy is less good for the ground states in
the relativistic case. The poorest result is obtained forpthe
state with an error of about 2.8%. But the convergence is
quite rapid since the error already reduces to about 0.2% for
the p(1450) meson.

We can also obtain some simple asymptotic expressions
for the masses of the states for large value$ afidn. The
condition for circular orbitsy _=r _, leads to

2Uu=\A,+\A_.

(39

Since the values of the total enerlyy and the angular mo-
mentuml are important, we have

Ay=A_=—(U+2P). (36)

These two last equations gite= — P from which we obtain
an expression for co@f3). Comparison of this expression
with the definition of co® (31) imposesR=0, and we find

M~2y2 al

(I>n). (37)

This is the expected resyi,14,13: a linear potential leads
to linear Regge trajectories in the relativistic case.

For large values of the radial quantum number, the large
eccentricity of the orbits implies;~r_~0 andr, ~r,
~M/a. Settingr,;=r_=0 into Eq. (1) and evaluating an
elementary integral leads to

M~2ymJ/an (n>1). (38)
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TABLE II. Energies and rms radii for a selected set of mesons, To calculate the rms radius in the semirelativistic formu-
obtained from the spinless Salpeter equation and from the BSGation we use the definitiofil5) with the equation of motion

approximation for the Cornell potential, using the parameters otr:4 ITM = V(r The relativistic version of Eq(16) is
Ref.[5] (masses are given in MeV and rms radii in G&Y. P/l (] a16

found to be
States Exact masses BSQ Exact\/ﬁ BSQ 1 (ry r2
= <r2>=ﬁf —[M=V(r)]dr, (43
nn states ro Pr
1S 703 683 3.30 3.22 with
2S 1416 1413 5.40 5.39
1P 1240 1236 4.62 4.60 1(rs M=V(r)
1D 1642 1639 5.60 5.60 T= Efr —p I (44)
ss states B
1S 1004 991 2.96 2.87  Using the expressio29) of the radial momentunp, the
2S 1695 1691 5.04 5.02 integration of Eqs(43), (44) leads to
1P 1508 1506 4.27 4.25
1D 1885 1884 5.27 5.26 o L1 BiK(7)+ BoAl(7/2,y,m) + B3E(7)
— (rey=— , (45
cc states 3a’ BaK(7)+ BsE(7)
1S 3067 3056 2.05 1.97 ]
2S 3668 3662 3.89 385  Wwith
1P 3504 3504 3.19 3.18 81— — 2Mr (M2 + ax— 4m?)— 2M?x
2P 3970 3970 4.76 4.76
1D 3811 3811 4.07 4.06 —2a[k?—4(1+cy)?]
2D 4216 4216 5.48 5.48 - a(M2+ ax+ BT Fo(F s 41— (Fa—1D)]
bb states x ey e T
1S 9448 9433 1.10 1.01 By=24Mm3(r_—r),
2s 9999 9993 2.45 2.42
1P 9900 9900 1.99 1.98 BBI _a(M2+ ak+ 8m2)(r4_r7)(r+_rl),
2P 10262 10262 3.17 3.17
1D 10150 10150 2.66 2.66 Bs=—2Mr—2x+a[rq(ro+ry)—r_(ro—ryl,

. . Bs=—a(rg—r_)(r,—ry). (46)
This result shows that the spectrum has the same asymptotic
behavior inl and n The square of the ratio of the slopBs This rather complicated equation gives very accurate results

assumes the value as it can be seen in Table Il where they are compared with

exact calculations. It can be used to obtain some simple
R=m/2; (399  asymptotic formulas:

that is, this quantity is still parameter independent. In fact, as (r2y~ E| (I1>n) (47)

in the nonrelativistic case, these properties remain valid for a '

any power-law confining potential. Fof(r)~ar“(«>0),

the largel behavior is found to be (r2y~ 4_77n (n>1). 48)

3a
2| al(a+1)
M~ae (g +1) E) (I>n); (40 As in nonrelativistic calculations the asymptotic behavior is

the same il and n Comparison with Eq9.37), (38) shows
that the rms radius becomes proportional to the total energy
for large values of quantum numbers, which is a character-
Ve istic of a linear potential. The ratio of the slopes which ap-

for largen, the turning points have the forms

M X . . :
ro~{—| , pear in these asymptotic formulas is parameter independent.
a These properties are, here also, still valid for the power-law
potentialV(r) ~ar<. In this case the asymptotic formulas are
r_~0, (41)
2/(a+1)
2| 2 2/(a+1) s
and Eq.(1) leads to an elementary integral which gives (ro aa ! (I>n), (49
2m(a+1) |¥(etD) 1/ 2m(a+1 2/(a+1)
M~a1/<a+l><(Tn (n>1). (42 ()~ % (n>1). (50)
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C. Discussion mentally for the very first orbital excitations. The situation
Application of the results obtained in Secs. Il A and Il B seems to be even more favorable for the radial trajectories,

to meson spectroscopy could prove to be of great interesfiNCe: as the masses grow faster as a functiomtoin as a
Indeed, if we want to produce linear Regge trajectoriegunction ofl, the asymptotic regime s expected to be at-
(which are well observed experimentally in the light mesont@ined at very loan; most potential modelgt,6] predict that
sectoj within a potential model, we must use a potential t_hlS regime is already effective from the first radial excita-

which behaves at largelike r?2 in the nonrelativistic case . o :

and liker for a semirelativistic kinematics. In both cases, we 10 conclude this discussion, it is worth noting that the
have just shown that the trajectories for radial excitation ar&alculations presented in this paper allow to understand some
then necessarily also linear; moreover, the square of the ratjjéll-observed properties of potential models. It is known
of the slopesR is completely determined by the asymptotict at the use of a semirelativistic kinematics yields a better

behavior of the potential and the kinematics used, and takedeScription of radial excitations such ag1450) for the me-
here the value sons andN(1440) for the baryons. Actually a nonrelativistic

description gives in general too high masses for these states
R=3 (51 (see, for exampld,17—-19). Indeed, a correct description of
Regge trajectories leads to heavier masses for radial excita-
in the nonrelativistic case and tions in nonrelativistic calculations since E4S1) and (52)
show that the ratidR is higher when the Schdinger equa-
R= /2 (52)  tionis used.

It is also known that experimentally the mass of the
in the semirelativistic case. This is an additional strong conK™(892) meson is in good approximation the average of the
straint, especially as these ratios are parameter independeRtasses of the(770) and theg(1020) mesons. This prop-
But since we have chosen the confining potential to repro€rty is also verified for each orbital excitation of these states.
duce the energy orbital trajectoriéRegge trajectoriesthe ~ This behavior is well reproduced within the usual potential
asymptotic behavior of orbital and radial trajectories of othermodels. But the strong relation between orbital and radial
observables is determined. These results imply that the cuftajectories obtained for the energy in the previous sections
rently investigated potential model4,6], which use power- Shows that this remarkable property will be also verified for
law confining interactions, can only describe a restricted@dial excitations within a potential model description. This
class of experimental data. This remark could prove decisivéads to a mass for the€* (2S) of about 1565 MeV which is
in the (near? future, when new experimental information on @pproximately the value found with the usual models; this
the radial excitations of light mesons, which are still veryValue is just between the masses of the two possible candi-
scarce, becomes available. For example, if the experimentéptes for these statds* (1410) andK*(1680). This is a
energy radial trajectories differ from a straight line orRf ~ major problem of usual potential models: the radial excita-
does not assume the values of Egl) or (52), the under- tions of light strange mesons cannot be satisfactorily be de-
standing of the physics underlying the confinement coulcscribed(see, for example6,19,20).
become more problematic, and a simple power-law potential
would not be sufficient to describe the confinement of quarks
(the above arguments remain valid if one considers the pos- IIl. ONE-DIMENSIONAL BSQ APPROACH
sibility that the asymptotic behavior of the Regge trajectory

! In this section we show that a one-dimensional BSQ ap-
could not be exactly linear

: . . . _ proach can be used to derive some simple formulas which
If the experimental radial trajectories prove in the end tog5, pe applied to the three-dimensiohalO states. For a

be linear, but if the raticR differs significantly from the  cenial potential, odd states of the one-dimensional Schro
values of Eq/(51) or (52), the introduction of a scalar com- ginqer equation remain solutions of the three-dimensional

ponent in the confining potential could be a possible way_ Schralinger equatioriconsidering only the=0 part of

out; indeed we have performed calculations using the BSQ,4 « axis. This property can be used within a BSO ap-
method, which show that this additional flexibiiwhich 1o > 1> ProPerY peed W Q@

only makes sense within a relativistic appropaliows the In a three-dimensional calculation, if we use the Langer

ratio R to take any value between/2 and 2. Of course, @ prescription, the centrifugal term never vanishes. But in the
quantum-number-dependent confining potential could easily .o one-dimensional case, the absence of this centrifugal
lead to a complete decoupling of the Regge and radial tragy, gimplifies the evaluation of the action variable and leads

jectories. A better kinematical treatment of the problem, ag, yery simple formulas. Indeed, in the nonrelativistic case,
the use of full covariant equatiorisee, for example, Ref. | o have

[16]), could also alter the predicted largeand largen be-
haviors of the trajectories.

A limited set of additional experimental informations on p=*+\2u[E—V(x)]. (53
the radial excitations of light mesons could already be suffi-
cient to draw important conclusions. Indeed, the linear be-
havior of the Regge trajectories, which is governed by thewith V(x)=a|x|*, the quantization of the action variahle
long range part of the interaction, is already reached experieads to an equation which can be solved for the energy:
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FIG. 1. Evolution of the errors introduced by E(4) as a
function of @ for the ground state and the first radial excitation.
2 2al(a+2)
(n+3/4) ,

a
(2m)*

1/(a+2)(

AT
B(1/a,3/2)
(54)

where we have changett1/2 into (2n+1)+1/2 to only

take into account odd states. This last result is an extension
to the three-dimensional case of a formula obtained previ-

ously from a one-dimensional calculatif®l]. This formula

PHYSICAL REVIEW D 62 014005

can see how Eq(54) approximates the exact solution and
how evolves this approximation. The formu({&6) gives
much better results than variational methods using trial wave
functions for which the accuracy decreases rapidly as a func-
tion of n (see, for exampl€g23], p. 267.

It is worth noting that a three-dimensional calculation us-
ing BSQ approach introduces smaller errors than the one-
dimensional formulas obtained here. For example, for a lin-
ear potential the error is about 0.5% for the ground state
when a three-dimensional calculation is performed and about
0.75% with the one-dimensional formula. But in general the
three-dimensional calculations do not lead to analytical for-
mulas or lead to complicated ones.

We can also calculate the mean square radius for a power-
law potential. Using the definitiofil5) we can write

1
2au

Met2) B(3/a,1/2)
B(1/a,1/2)
)4/(a+ 2)

(r?)=

aTr
X m(n+3/4) (57)

The calculation of the values of the wave functions at the
origin leads to

Maal/a

2_
¥ (0)] - 7B(1/a,1/2)

E(a*l)/a, (58)

is very close to Eq(14), but here it can be used, in principle, but this time with the expressiof64) for the energy. The

to approximate all the three-dimensiohalO states of a pure
power-law potential.

It is well known, from scaling propertieésee, for ex-
ample,[4]), that the energy obtained with the Sctiirger
equation for a power-law potential can be written as

U(a+2)
€, (59

a2
(2u)*

wheree is a solution of a dimensionless ScHioger equa-

evolution of the accuracy of formulgs7) and (58) with «
andn is similar to that shown in Fig. 1 for the energy.

The formula for the ratio of the wave function at the ori-
gin is given by

m++ 3/4 2(a—1)/(a+2)
n+3/4

‘womz_
v, (0)]

(59

Some connection with previous general results can be done.
If we suppose thain=2 andn=1, formula(59) shows that

tion. Since the BSQ approach gives the correct dimensionahe ratio is greater than 1 i&>1 [d?V(r)/dr?>0] and

factor, the error depends only anandn. Figure 1 shows the
evolution of errors witha for n=1 and n=2. For the
ground states the errors are about 186 smallej for «

smaller than 1 ifa<<1 [d?V(r)/dr2<0]. This behavior is
predicted by a general result obtained in Re#]. Equation
(54) shows that the energy behaves with the reduced mass as

<4. As expected, the errors decrease rapidly with the inExu~%(“*2) Thus we can calculate that

crease of the radial quantum number.

In general it is not obvious to understand why the formula
(54) works so well since the exact solution is not known. For

1-«a
oC

—(1+2a)/(a+2)
a+2 ’

2
2 {12el0) 0

du )

the harmonic oscillator case this formula gives the correct
position of the energy levels. But it is more instructive to This quantity is positive ifa<<1 [d?V(r)/dr?<0 and

consider the case of a linear potential. Indeed,dferl, Eq.
(54) leads to

37 2/3
€= (T(n + 3/4)) =728 (56)

dV(r)/dr=0] and negative itx>1. This property is proved
for n=1 in Ref.[25].

The same calculations, for the energy and the rms radius,
can be done for semirelativistic kinematics but unfortunately
they lead to complicated equations involving hypergeometric
functions. The relativistic version of E¢54) can only be

This expression is just the leading term of an expansion (solved explicitly for the energy when one considers

>1) for the values of the zeros of the Airy functi¢i22], p.

asymptotic behaviors. Thus further information about the ob-

450). The exact solution is obtained by the summation of allservables cannot be extracted within the frame of a one-
the terms present in the expansion. In this particular case wdimensional semirelativistic approach.
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To conclude this section, we show that the one-some physical quantities on the quantum numbers. Our study
dimensional BSQ approach can also be used to derive amphasizes the strong connection existing between the

simple formula giving the number df=0 bound statega

generalization td #0 states can easily be don&Ve con-
sider an attractive potential which vanishes at infir(ityr

example a Gaussian or a Yukawa potentile calculate the
value of the radial quantum numbeifor E=0:

22k [ e 3.
a 0 2

n= (61

Regge and radial trajectories for the energy within a potential
model, which could play an important role in elucidating the
confining properties of the quark-antiquark interaction when
additional experimental information is obtained on the radial
excitations of light mesons; the study of other observables
(decay widths, mean square radii, electromagnetic mass
splittings, eto. could put supplementary constraints on this
interaction.

We have also shown that even if semirelativistic calcula-

In general this number is not an integer except if the energyions yield results quantitatively different compared with

level E=0 is a real solution. But the integer part oigives

the radial quantum number;,,, of the highest energy level.

The formula for the number of bound statdsy n,,,,+ 1, of
a given potential reads

N:[”_

: (62

2u (= 1
MJ V=V(r)ydr+ =
a 0 2

where[x] denotes the integer part &f For example, ifV(r)
is of the formV(r)=—af(br), we have

2\2pa (= 1
N:{ — fo Vi(y)dy+ 5

. (63

nonrelativistic calculations some common general features of
observables are observed. The asymptotic behavior of orbital
and radial trajectories, for the energy and the rms radius, are
the same for a potential which behaves asymptotically as a
power-law. Moreover, the ratio of the slopes of these trajec-
tories depends only on the value of the power of the confin-
ing potential.

At last, we have shown in Sec. Il C that one-dimensional
calculations lead to a very simple approximated formula for
the energy, the rms radius and the wave function at the origin
in the |=0 sector. We have also obtained formulas which
give the number of bound states of a given potential for the
nonrelativistic and semirelativistic case.

Of course, a BSQ approach cannot replace a correct quan-

The remaining integral is a pure number and we can se#im description since it is only an approximate method
immediately the dependence of the number of bound stateshich is not completely self-consistent. For example, we
on the potential parameters. need to use the Schiimger equation to give a definition of

The same calculation can be performed in the semirelathe wave function at the origin to be able to calculate this
tivistic case and we find quantity with this formalism. Moreover, some quantum con-

cepts have no meaning in this framework. But we emphasize
1= NOZ=amvird 1 that for some cases the evaluation of observaf@ealuation
;fo (N*=4mV(r)dr+ 2 of average valugscan be performed using this old method;
even if calculations yield complicated formulas it is often
possible to extract interesting information from an analytical
relation and in this way guide full quantum calculations.

N= . (64)

In this case the simple reduction performed in E&f) can-
not be obtained.

IV. SUMMARY
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