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I. INTRODUCTION AND MAIN RESULTS

The determination in the framework of nonrelativistic quantum mechanics of necessary and
sufficient conditions for the existence of bound states in a given potential and, more generally, of
upper and lower limits for the number of bound states yielded by such a potential, has engaged the
attention of theoretical and mathematical physicists since the early 1950s, and, notwithstanding the
fact that, with modern computers, the numerical evaluation of the number of bound states for a
given potential is an easy task, it continues to be actively pursued: see, for instance, Refs. 1,2,5—
7,10-17,19-26, 28-30, as well as the surveysome of these results in Refs. 8 and 32. In this
article we provide new upper and lower limits for the number of S-wave bound states possessed by
a central potential vanishing at infinity and yielding a nowhere repulsive force and we compare
them, for some test potentials, with the exact results and with previously known upper and lower
limits. These comparisons indicate that these new limits are generally more stringent than hitherto
known results and indeed remarkably cogent, especially for potentials possessing many bound
states.

Let us briefly review(some of the previous findings, focusing on those relevant to our
treatment, hence restricting attention to the S-wave ¢agen when results are also known for
higher partial waves Hereafter—except in Sec. IV—we use the standard nonrelativistic quantum
mechanical units such th&f/(2m)= 1, which entail that the potenti&(r) has the dimension of
an inverse square length, and we indicate wthhe number of S-wave bound states. We also
assume throughout that the potent&lr) is less singular than the inverse square radius at the
origin and that it vanishes asymptotically faster than the inverse square radiudpsapme

positivee)
lim{r2~#V(r)]=0, (1.1a
r—0
lim[r?*eV(r)|=0. (1.1b

r—o

Note that these assumptions entail that the square root dfrtbdulus of thg potential is inte-
grable both at the origin and at infinity.

aE|ectronic mail: fabian.brau@umh.ac.be
YElectronic mail: francesco.calogero@romal.infn.it, francesco.calogero@uniromal.it

0022-2488/2003/44(4)/1554/22/$20.00 1554 © 2003 American Institute of Physics

Downloaded 20 Mar 2003 to 141.108.19.76. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 44, No. 4, April 2003 Limits on the number of bound states 1555

BargmanA and Schwingéef obtained the following upper limit foN:
BS: st drr|V(r). (1.2
0

This result is generally referred to as the Bargmann—Schwinger bound; we hereafter refer to it as
the BS(uppe limit. This result was obtained after Jost and Paimd shown that the fact that the
right-hand side of1.2) exceeds unity is aecessarycondition for the existence of bound states
(namely, the special case of the BS limit with=1).

Cohnt>®and Caloger®’ later obtained another upper limit fof, which is valid provided the
force associated with the potentisl(r) is nowhere repulsive, namely the potenti4r) is a
monotonically nondecreasing function of the radiys

dV(r)/dr=0, (1.3

entailing of course that the potential is everywhere negatife) = —|V(r)|. This upper limit
reads

. < 2 (= 1/2
CC: N=< dr|V(r)|¥2 (1.4)
mJo

This result has been referred to as the Calogero—Cohn bidumedeafter we shall refer to it as the
CC (uppeyp limit. This CC limit, (1.4), in contrast to the BS limi{1.2), features the correct
dependence on the strength of the potential; indeed it has beentaurior any potentiaV/(r),

if a measure of the strength of the potential is introduced via the introduction of a “coupling
constant’g? by setting

V(r)=g?uv(r), (1.5

then agy diverges to positive infinityN grows proportionally t@. But it is also knowr (see also
Refs. 7, 14, and 1)%hat asymptotically, ag diverges,g— o,

1 0 g 0
= 12_9 12
N Wjo dr|V(r)| Wfo drjv(r)|*2 (1.6

Hence for strongly attractive potentials featuring many bound states the CQlimjittends to
overestimaté\ by a factor 2. The main merit of the new limits provided in this article is to remedy
this defect(see below.

Some modifications of the inequalif}L.4) and of the condition(1.3) on the shape of the
potential have been introduced by Chadstral!! These modifications lead to less restrictive
inequalities but more flexible conditions on the shape of the potential, allowing for some oscilla-
tions.

Another upper bound, which also gives the correct power behavior of the number of bound
states when the strength of the potential diverges, has been obtained by Martin:

1/4

M: N< , (1.7

f:drrZV‘(r)f;drV‘(r)

whereV™(r) is the negativepart of V(r). This limit is applicable even if the potential does not
satisfy the property to yield a nowhere repulsive force, €e#8), but it is nontrivial only for
potentials the nonpositive part of which is integrable at the origin. Hereafter we refer to it as the
M (uppep limit.

The known lower limits orlN are scarcer and less neat. A reslates that
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1 0
N= —f dr min[1/a, —a V(r)]— =, (1.83
mJo 2
wherea is an arbitrarypositiveconstanta>0, and
min[x,y]=x if x<y, minxy]=y if ysx. (1.8b

By choosinga proportional tog™* [see(1.5)] it is clear that this limit has the correct power
growth wheng diverges. The most stringent version of this limit obtains by performing first the
integration on the right-hand side ¢£.89, and by then maximizing the result over albsitive
values of the parametea. For everywhere nondecreasing potentials, €e8), the minimum
definition(1.8b is easily implemented by splitting the integration rangé€li8g in two parts, and,
thereby, via standard computations, one arrives at the somewhat neater lower limit

c: N=2 IV( )|1/2—E (1.99
: —pIV(p 5 :
wherep is a root of the equation
pV(p)=J drv(r). (1.9b
P

This limit will be hereafter referred to as the (@wer) limit.
If the potential, besides satisfying the monotonicity conditiar8), is finite at the origin, a
more explicit if less cogent result obtains by settarg|V(0)| 2 in (1.8):

Cot N=— fmd L(r” . 11
- N= 2
o 7)o VO 2" (119

Hereafter we shall refer to this result as thg (@wer) limit.
By settingN=1 in (1.8) and(1.9), respectively(1.10, one obtains the following three con-
ditions, each of which isufficientto guarantee the existence (@t least one bound state:

* 3
f dr min[ 1/a, —aV(r)]>77T, (1.11a
0
3
pIV(p) 12> (1.11b
with p again a root of1.9b),
0 3
f dr|V(r)|>77T|V(0)|1’2. (1.119
0

In the first of these inequalitie$1.113, a is an arbitrarypositive constant; the most stringent
condition obtains of course by performing first the integration on the left-hand side and by then
minimizing the result over afbositivevalues ofa; the other two inequalitie$;l.11h and(1.119,
are neater but for their validity it is required that the potential satisfies the monotonicity condition
(1.3 [and of coursd1.119 is only applicable if the potential is finite at the origin

In view of future applicationgsee below let us also report two other conditions which are
sufficientto guarantee that the potentM(r) possesse&t least one bound state®
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a )

a‘lf drr2|V(r)|+aJ dr |V(r)|>1, (1.12
0 a

af:dr|V(r)|/[1+a2|V(r)|]>1. (1.13

Both these conditions apply provided the potential is nowhere positird = — |V(r)|; in both of
thema is an arbitrarypositive constant, and of course the most stringent conditions obtain by
minimizing the left-hand sides over glbsitivevalues ofa. It is easily seen that, in the case of
(1.12, the minimizing value of is the root of the equation

fadrr2|V(r)|=a2fwdr|V(r)| (1.14
0 a

[entailing that the two terms on the left-hand side(bfl2) yield equal contributionsand in the
case 0of(1.13 it is the root of the equation

f:dflV(r)l(l—aZ|V(r)|)(1+ a?[V(r)])~?=0. (1.19

After this terse survey of previous results let us now report the new upper and lower limits on
the numbemN of S-wave bound states obtained in this article, in which we restrict for simplicity
attention to potentials that satisfy the monotonicity conditi@r8) (we plan to report results
applicable to more general potentials, as well as to higher partial waves, in a subsequent paper
These limits are of two different types.

The (new) upper limit of the first type reads as follows:

(p) 1
= 1/2 Z
N< f dr|V(r)| Ly ‘V(q +5 (1.16a
with the two distancep andq defined by the relations
P
f dr|V(r)|Y?= /2, (1.16h
0
f dr [V(r)|¥2= /2. (1.169
q

Clearly these two formulag1.16b, respectively(1.169, provide an unambiguous definition of
the two quantities, respectivelyq, provided the potential/(r) possesses at least one bound
state, since it must then satisfy the followingcessargondition for the existence of bound st&tes
[corresponding td1.4) with N=1]:

f dr|V(r)|Y?= /2. (1.1
0

And also note that, due to the assumed monotonicity of the potentiall®e(1.16) entails that
a neater albeit less stringent upper limitNois provided by the formula

(1.18

<—f dr|V(r)|1’2+—I og (0)‘

V)| "2
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with g always defined by1.169. This upper limit is, however, nontrivial only for potentials that
are finite at the origin.
The (new) lower limit of the first type readgfor potentials that are finite at the origin

V(0)
V(s)]

1
5 (1.19

N>1de 2 1|
i r|v(r)| P

with s an arbitrary(of coursepositive radius. The choice of that produces the most stringent
bound is the root of the following nondifferential equatiorsithere, and always below, appended
primes denote differentiations

V'(s)=4|V(s)|%> (1.20

Indeed, the values of which satisfy this last equation maximize the right-hand sid€lLdf9. If
this equation possesses more than one positive root, generally the most stringent bound obtains by
choosing the largest.
A neater, if generally less stringent, lower bound obtains by choasing, since via(1.169
one then gets

V(0)

vt (1.20)

1 o
N>—f dr|V(r)|1’2 Iog
™ Jo

The analogy of this formulg1.21), to (1.18 is remarkable, and of course this lower limitKbis
also nontrivial only if the potentiaV/(r) is finite at the origin.
If the potential is singular at the origin, a neat lower bound, analogo(k.163, reads

(1.22

>—f dr | V( r)|1’2 ‘V(p) 3

799V " 2

with p andq defined by(1.16h and(1.180.

A less neat but generally more stringéatbeit only marginally splower bound that looks
somewhat analogous 1d.19 and is also applicable to potentials that are singular at the origin
reads

V(p)

Vis)|’ (1.233

N>1de 2 1|
- |, arIv(n**=zlog

with p defined by(1.160H and s=t but otherwisearbitrary. As for the positive quantity t, a
characterization of it adequate to guarantee validity of this lower lithi233, is the requirement
that it be the smallest positive root of tiieondifferential equation

t
tzf dr r2|V(r)|. (1.23b
0

Another characterization df which leads to dgenerally only marginallymore stringent lower
limit, is provided in Sec. Ill. Note that, as above, the choices@f (1.233 that yields the most
stringent bound is the root of the nondifferential equati@ar20 (provided, of course, such a
choice ofs is compatible with the conditios=t, as it is certainly the case for strong potentials
possessing many bound statesnd again, as above, a neater, if generally less stringent, lower
bound obtains by choosing=q, since via(1.169 one then gets, in place ¢1.233,

1 ‘V(p) 1
—10

N>£fxdr|V(r)|1’2— o —= (1.230
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again of course witlg, respectivelyt, defined by(1.16b and(1.23h (of course provided|=t, as
it is certainly the case for strong potentials

Let us now report a second type @few) limits on the numbeN of S-wave bound states,
which are particularly suitable for numerical computations, although there exist also cases ame-
nable to analytic treatmerisee Sec. )l

First we report an upper limit, valid for potentials finite at the origin, to which consideration
is, for simplicity, here restricted. Let us define the radiquvia (1.169, and the sequence of
increasingradii r]“) via the explicit recursion relation

r =r{+ (w2 v )22 1P =0, (1.24

and let the positive integel ™) be defined by the condition that the rad'rl§§2)+1 yielded by this
recursion(be the first one tbexceed or equal,

rg(t))<q$rg(t))+1. (125)

The upper limit is then provided by the inequality
N<{{(IFP)+1)/2}}+1. (1.26

Here and always below the double braces denote the integer{p#@}}=J/2 if J is evenand
{{JI12}}=(3—-1)/2 if J is odd

Finally we report an analogous lower limit d, which does not require thaf(r) be finite at
the origin to yield a nontrivial result. Again, one first defines the radjusa (1.169, and then
introduces a series afecreasingadii rJH via the explicit recursion relation

H=rD =@V ()7 7 =q. (1.27)

Now let the positive integed~) be defined by the condition that the quantify”, yielded by this
recursion be the last one to Ipesitive

rg(_,))ﬂs 0<rg(_,)). (1.28
The lower limit is then provided by the inequality
N={{3(/2}}. (1.29

In Sec. Il we provide several tests of the efficacy of our upper and lower limits; in Sec. I, we
prove them; in Sec. IV we point out that all the results reported herein inrtberelativistig
context of the Schidinger equation can be easily extended to @kieematically relativistic, if
only first-quantized Klein—Gordon case.

II. TESTS

Most of the limits on the number of S-wave bound states reported in Sec. | are “best pos-
sible,” namely, it is generally possible to find potentials that saturate them. The shape of these
saturating potentials can generally be easily inferred from the very procedure whereby the limits
were derived; in particular for our new limits the saturating potentials are generally of ladder type
(including the simplest such potential, the square-wslhce for such potentials the second term
on the right-hand side df3.7) tends to vanistias discussed in some detail in the last part of Sec.
III'). But while the fact that the formula providing a limit has the property to be “best possible”
entails that there can be no hope to make it more stringent by just modifying some constant
appearing in ifit is, for instance, impossible to obtain a more stringent upper limit tha# by
just replacing the constant2/on the right-hand side by a smaller numpétr does by no means
imply that such a bound provides a stringent limitation for all potentials; far frofasitwe will
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presently see Indeed, a more interesting question is how different limits behave for a variety of
(tesh potentials. This section is devoted to such an assessment, for which we use six different
potentials: the square-well potenti@lereafter referred to as SW

SW: V(r)=—g?R™? for r<R, (2.1a
SW: V(r)=0 for r>R; (2.1b

the Pschl-Tellef’ (or “single-soliton,” see for instance Ref) otential(hereafter referred to as

PT),

PT: V(r)=—g?R ?[cosir/R)]?; (2.2
the exponential potentidhereafter referred to as)E

E: V(r)=—g°R ?exp(—r/R); (2.3

the Hulthen potential(hereafter referred to as)H

H: V(r)=—g°R expr/R)—1]%; (2.9
the Yukawa potentialhereafter referred to as)Y

Y: V(r)=—g%rR) texp—r/R); (2.5

and the following shifted and truncated inverse square potefiteakafter referred to as SIS
which has the merit to allow analytic computation of all limits as well as of the exact number of
bound stategsee below

STIS: V(r)=—g%(R+r) 2 for O0<r=<aR, (2.6a
STIS: V(r)=0 for r>aR. (2.6b

In all these equations, and belo®js an arbitrary(of coursepositive given radius, angd, as well
asa in the last equation(2.6), are arbitrary dimensionlegmsitive constants.

We only report, for the new limits of the first type, tests of tieatestimits given in Sec. |,
namely we consider the upper, respectively lower, linits8), respectively(1.21), for regular
potentials, and the upper, respectively lower, linfitsl6), respectively(1.22), (only) for singular
potentials; indeed, for regular potentials, the difference between the neater uppét [ir8itand
the more stringent upper limif..16) is generally negligibly smallnamely, less than one upitnd
likewise for the difference between the neater lower lifdi21) and the more stringent lower
limits (1.19 or (1.23. (Let us however emphasize that when one considers potentials with few
bound states or searches for constraints on potential parameters necessary or sufficient for the
existence of one bound state, it is advisable to use the most stringent available Asitst the
new limits of the second type, we test the upper, respectively lower, lifhi&5), respectively
(1.29, for regular potentials, and the lower limil.29 for singular potentials. The tests are
performed by comparing the new limits with the exact results, and with the previously known
limits reported(and namejin Sec. I.

The simplest test is provided by tlaonsingular SW potential(2.1), for which the exact
number of bound states is given by the formula

N={{v}}, (2.7

with
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+ . (2.9

In this case the new limits obtained in this article tend to give the exact rémilexplained
above, except for the approximations introduced in order to obtain neater formulas. Indeed the
upper, respectively lower, limits of the first typ&.18), respectively(1.21) [with g<R as implied
by (1.169, so that the logarithmic terms in both these formulas vanigkld N< v respectively,
N> »— 3, while the more stringent lower bour(d.19 with s=R yields N=v—1. The upper,
respectively lower, limits of the second typé,26), respectively(1.29, can as well be computed
analytically for this potential, yieldingN< v+ 3, respectivelN=»— 1. The BS, CC and M upper
limits do not produce such good results. The BS upper limit yidldsg?/2, which gives a very
poor limitation wheng (hence the number of bound statgsows (indeed we know that the BS
upper limit is always very poor for strong potentials, see also beldWwe CC, respectively M,
upper limits do give the correct linear behaviordn but with too big a slope, respectively
<2g/m=2 (v—3%) andN=<3 Yg=3"Y7(v—1)=2.387 (v— 3). Finally, in this particular case
the C and G lower limits coincide and yieltN=»— 1, namely a slightly more stringent limit than
(1.21 [indeed, just the same result @s19, see abovg

The second test is performed with ttronsingular PT potential(2.2). For this potential the
exact number of bound states is again given(dy) but now with

v=(J1+4g2+1)/4, (2.99

which, in the limit of largeg, yields
et o(g® 2.9h
V—§g+2+@+ (g ) ( . )

In this case the new upper and lower limits of the first ty{iel8), respectively(1.21), can as well
be computed analytically, and they read

NS e | 2.10
g___ —_— —
5 27Togsng +2, (2.10a
respectively
N>g lI in| — 1 2.11
§+Eogsm5 -1, (2.11a
entailing, in the limit of largey,
N< |2@Jl 17Tzo—4 2.10
\§+2_09?+§+ET5 + (g ), ( b
respectively
g 1 29 1 ()2 L

As for the new limits of the second typ€l,.26) and(1.29), in this case they can only be evaluated
numerically. In Fig. 1 we present, for this potential, a comparison between the exact number of
bound states, the new limits of the first and of the second type, and the previously known C, C
lower limits, and BS, CC, M upper limits, all of which can be computed analytically: BS:
<log(2)g? (very bad at largeg); CC: N<g; M: N=<(7?/12)"4g~0.95 (both of which give
roughly twice the correct result at largd; C: N=(2/7)exp(—x)g— 3~0,336y— 1 [wherex is the
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80
I Exact
—— Lower bound (1.21)
70 l — — Upper bound (1.18)
—- C lower bound
60 —- C, lower bound
/ —— BS upper bound
so4d CC upper bound
f » ++ + M upper bound

¢ Lower bound (1.29)
/ ¢ Upper bound (1.26) .;=*"

30 4

20

10

FIG. 1. Comparison between the exact number of bound states for the PT pa2@idladder curvg the limits of the
first type (1.18 (short-dash curyeand(1.21) (solid curve, the C(dash-dot curveand G (dash-double-dot curydower
limits, the BS(long-dash curvg the CC(small-dot curvé and M(sparse-dot curyeupper limits, and the limits of the
second typg1.26) (black diamong and(1.29 (white diamongl.

root of 2x=1+exp(—2X)]; Co: N=g/7— 3~0,318— 1 [the C and the glower bounds are less
stringent than the lower boun@.11) as soon ag exceeds 3.98 and 3.48, respectijelys it is

clear from Fig. 1, the new bounds are quite cogent. F(@rh0b and(2.11h one sees that those

of the first type remain quite stringent as well for rather large values &6r instance, when the
exact numbeN of bound states is equal to 5000, these upper and lower limits restrict it to the
rather small interval4998,5001. Likewise, at this value ofj, the new limits of the second type,
(1.26), respectively(1.29, entail the restrictions 4986N<5002; while the corresponding value

of the BS upper limit exceeds 6:QL0’, the CC upper limit only informs us that<10*, and the
lower limit C thatN=3360.

The third test is performed with theegula) E potential(2.3). In this case the exact number
of bound states coincides with the number of zeros of the zeroth-order Bessel fuly¢tidpin the
interval 0<x=<2g (see, for example, Ref. 18, p. 19&lso in this case the new upper and lower
limits of the first type(1.18 and(1.21) can be computed analytically:

" 2 1I 4 1 21

= — JRE— J— —

—g+5_log —g|+3, (212
N 2 —1I 4 1 2.1
SRR P (213

while those of the second type must be evaluated numerically. In this case all the previously
known limits can as well be computed analytically: B$=g?; CC: N<4/7g; M: N=<2%4g; C:
N=2/(m\e)g—% Co: N=g/m— % A comparison between these results is presented in Fig. 2. It
is again clear that the new limits are remarkably effective.

The fourth test is performed with th{gingula)y H potential(2.4). In this case the exact number
of bound states is given simply by the integer pargof

N={{g}}. (2.14

The new upper, respectively lower, limits of the first type applicable to singular potefiiidl§),
respectively(1.22), can in this case be computed analytically as well:
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Exact

90 - — Lower bound (1.21)
— — Upper bound (1.18)
80 - — - C lower bound
— - C, lower bound

100 I

70 1 —— BS upper bound
/ ------- CC upper bound
+ + « » M upper bound e
©  Lowerbound (1.29) 7" .
, ¢ Upper bound (1.26)',.-"_': <"

60

40 A

30 4

20

10 4

FIG. 2. Comparison between the exact number of bound states for the E pat2@lidladder curvg the limits of the first
type(1.18 (short-dash curyeand(1.21) (solid curve, the C(dash-dot curveand G, (dash-double-dot curydower limits,
the BS(long-dash curvg the CC(small-dot curvgé and M(sparse-dot curyeupper limits, and the limits of the second type
(1.26) (black diamongl and (1.29 (white diamondl.

N ! I ! 2.15
<0— — — —
g og tan4g + > (2.153
N ! I 2.16
>g+ —log tanE X (2.163
yielding asymptotically, for large,
N=< —ll — +—1 ——+0(g™* 2.15
N +—1I ———3+—+O -4 2.16

The new lower limit of the second typgé&.29 must in this case be evaluated numerically, while all
the previously known limitgrelevant to the case of singular potentiatan be computed analyti-
cally: BS: N<(7?/6)g?; CC: N=<2g; C: N=(2/m)log(2)g—3. A comparison between these re-
sults is presented in Fig. 3. It is again clear that the new limits are remarkably effective. And it is
again clear from a comparison of the asymptotic form@?a$5h and(2.16b that the new upper
and lower limits of the first type remain remarkably cogent even at large valugsfor instance,
when the exact number of bound states is equdll 05000, these limits(2.153 and (2.163,
restrictN to the relatively small intervdl4996, 5003 For comparison, the corresponding value
of the BS upper limit exceeds>410’, the CC upper limit is 1) and the lower limit C only
informs us thatN=2207, while the new lower limit of the second tyf&,29, informs us that
N=4994.

The fifth test is performed with thesingulay Y potential (2.5). In this case the exact number
of bound states must be evaluated numerically: we employed two different methods of calculation,
in order to check the numerical resdifgnote that these two methods possess a naturai'link
The new upper and lower limit$1.16) and(1.22), respectively, can instead be computed analyti-
cally:
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FIG. 3. Comparison between the exact number of bound states for the H pot2didladder curvg, the limits of the first
type (1.16 (short-dash curyeand(1.22 (solid curve, the C lower limit(dash-dot-curve the BS(long-dash curveand
CC (dot curve upper limits, and the lower limit of the second ty(e29 (white diamongl.

N \F oy’ !, ! 2.17
g — — p— —
7Tg+ 2m +271'0g +2’ (2.173
N \F x2—y? 1 I x) 3 518
“NZI 2 27y 2 (2.188
with
erfly)=a, erf(x)=1—a, a=(w/8)"qg 1, (2.19

so that asymptoticallyasg— o, and keeping only the first correction term

2 1
N= \/;g-i-glog(g), (2.17h

\F 1
N> ;g—;log(g). (2.18h

The new lower bound of the second type must also be evaluated numerically, while the previously
known limits relevant to the singular case can all be evaluédédost completelyanalytically:
BS: N=<g? CC:N=<2(2/7)Y%g; C: N=(2/m)x*?exp(—x/2)g— =0.531(24r)g— % [wherex is
the root of expt-x)=J5dy y~ ! exp(—y)]. A comparison between these results is presented in Fig.
4. It is again clear that the new limits are remarkably effective. And it is again clear from a
comparison of the asymptotic formuléa17bh and(2.18b that the new upper and lower limits of
the first type remain remarkably cogent even at large valuas ébr instance, when the exact
number of bound states is equal fb=50, these limits(2.179 and (2.183, restrictN to the
relatively small interva[49,53. For comparison, the corresponding value of the BS upper limit
exceeds 4000, while the CC upper limit and the C lower limit only informs us thaNe2
<103; as for the new lower limit(1.29), it entails thatN=48.

Finally, the sixth test is performed with tHeegula) STIS potential(2.6). As already men-
tioned, this test potential is particularly appealing because in thisatb#e relevant calculations
can be performed analytically; moreover, in contrast to the five previous cases, this potential
features two dimensionless parameters rather than only one.
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FIG. 4. Comparison between the exact number of bound states for the Y pof@rijablack triangle, the limits of the
first type (1.16 (short-dash curyeand (1.22 (solid curve, the C lower limit(dash-dot curve the BS(long-dash curve
and CC(dot curve upper limits, and the lower limit of the second ty(e29 (white dimaond.

This potential possesses bound states only if the “coupling consrgkceedss, g> 3
(irrespective of the value of the oth@gsitive parameter it featureg;,>0), and the exact number
N of its bound states is then given again (&7), but now with

V:%()\ log(1+ a)+ 2 arctari))) (2.20a

with A= \4g%—1, entailing at largey

1 ! log(1+ ! +1+o -3 2.20
=719 8g og( a)—% > (977, (2.20b
and at largex
1 1
v==—/|log(a)+ —|+ —arctarir) + O(a " ?). (2.200
21 a T

The new upper and lower limits of the first typd,.18 and(1.21), respectively, yield

{{ro=N={{vyp}} (2.21a
with
! ! log(1 1.1 2.21
vup= | 9+ 5]l0g( +a)_E+§’ (2.21b
respectively
1 1 1
Vlo:; g—z log(1+a)+ @, (2.219

entailing at largey
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2

Mo Yo 21s u : G— T 10(a-%). (2.21
v gt Zlogir @) g?lloglita)  Alog(iray OO ) (221
and at largex
Vo _Zlqy T g2 2 et || +o(l -2 2.21
v M Zlogiay | 1T g ARty ([log(a)]172). (2.218

The new upper and lower limits of the second tyfe26) and(1.29, respectively, yield

{v-H=sN=<{{v.}} (2.22a
with
- 9= ||, 33 2.22
ve=51],9=l0g( +C¥)—E Y (2.22h
where
B *(7l2) 9 22
9= log 1= 7/(29)]’ (2.229
so that, at large,
o
9-=g*7+0(g™ (2.229
entailing
C1([(2 L1, 1+3 »
Vt—z ;g_z og(1+a) +T+O(g ), (2.22¢
hence
P oy, (2.226

14

Note that the formulas for the lower limit are only applicableyif #/2 [see(2.229].
The previously known upper and lower limits can also be evaluated in closed form for this

potential:
2 o
BS: N<g Iog(1+a)—m, (2.23
2
CC: Ns;glog(lJra), (2.29
o a 1/4

M: N=g (a—ZlOg(l—l—a)-l—m 1ral (2.25

C: N 2 1 ! ! 2.2

: N=— —— = .
: -9 e 2 (2.26
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TABLE I. Comparison between the exact number of bound stidtethe bounds of the first typ€l.18 and(1.21), see
(2.21), the limits of the second typd..26) and(1.29, see(2.22), the BS, CC and M upper limits, and the C anglI@ver
limits, for the STIS potential2.6) with a representative set of values @fandg.

(@,9) N et et el el BS cc M c G

(1,10 2 2 2 2 4 19 4 4 2 2
(1,1%) 22 21 22 22 24 1931 44 48 19 16
(1,169 221 220 221 220 222 >10° 441 488 186 159
(10%,10) 15 13 15 13 17 362 29 30 6 3
(107,15 147 146 148 146 150 36250 293 308 57 32
(10,10) 29 27 31 27 33 821 58 99 6 3
(104,1®) 293 291 295 291 297 82105 586 999 63 32
(10f,10) 44 41 46 40 49 1281 87 316 6 3
(10°,10%) 440 437 442 436 445 >10° 879 3162 64 32
C N= 1 o 1 59
oo N=297 . 2 .29

The merits of the new limits are already apparent from these formulas. Representative examples
are given in Table I.

In conclusion it seems justified to conclude from these tests that the new limits presented in
this article are rather cogent and generally superior to those hitherto known. They are particularly
effective for strong potentials possessing many bound states, thanks to their capability to generally
reproduce the correct asymptotgemiclassicalresult(1.6) when the coupling constant diverges.

Let us also emphasize that, from a computational point of view, the limits of the second type
presented herein are particularly convenient, especially in the case of regular potentials.

lIl. PROOFS

In this section we prove the new results reported in Sec. I. We assume throughout that the
potential satisfies the conditioii$.1) as well as(1.3).

Letu(r) be the zero-energy S-wave Sctiimger wave function, characterized by the second-
order ordinary differential equation

u”(r)—V(ryu(r)=0, (3.139
with boundary condition
u(0)=0. (3.1b

It is well known (see, for instance, Ref.) &hat the number of zeros of the solution (@f13
with (3.1b in the interval G<r <« coincides with the numbeX of S-wave bound states sup-
ported by the potentiaV(r) (we always exclude, for simplicity, the marginal case of a potential
that features a “zero-energy bound state or resonandsst us indicate withz, the successive
zeros ofu(r), and withb, the successive zeros of (r) [namely, the locations of the successive
extrema of the wave functioua(r)],

u(z,)=0, u’(b,)=0. (3.2
It is then clear that, since the potenti4(r) is nowherepositive[as implied by(1.1) with (1.3)],
V(r)=—|Vv(r)], (3.3

the zero-energy wave functian(r) is an everywhere convex function of entailing the “inter-
lacing” relations
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0220<b1<zl<b2<'"<ZN_1<bN<ZN<OO. (34)

Note that these formulas imply that (r) doesnot vanish in the intervaky<r<, namely a
by.1<e does not exis{otherwise it would be inevitably followed byy.;<e°, and this is
excluded sinceN is the number of zeros af(r)].

Following Refs. 7 and 8 we now introduce a functigfr) defined via the relation

tar 7(r)]=|V(r)|Y2u(r)/u’(r), (3.59
with
7(0)=0, (3.5b

and the requirement that(r) be a continuous function af[to lift the mod w) ambiguity entailed
by the definition(3.53]. It is then clear that the properti€3.4) together with the definitio3.53
imply the relations

n(z,)=nm, n(b,.1)=(2n+1)7/2, n=0,1,..N—-1, (3.63
7(zy) = () =N, (3.6b

and that the value of;(r) inside the interval$3.4) lies between the values taken at the extremal
points of these intervals, namely, fa,<r<b,,; with n=0,...N—1, nw<5(r)<(2n
+1)m/2, and forb,<r=z, with n=1,... N, (2n—1)#/2< »(r)<n, except of course for the
last interval,zy<r <o, whereNw=< 7(r)<(2N+ 1)#/2. Note that these results also imply that,
for all values ofr,

0<7(r)<(N+ Y (3.60

(indeed the value at which the second inequality was violated would qualify, as, which, as
already noted, would then inevitably be followed by, ,, violating the hypothesis that the
number of zeros bél).

Moreover, from(3.138 we obtain via(3.53 and (3.3) the nonlinear first-order differential
equation

!

. VD
7' (0= IV g sin2a) @7

which, together with the “initial condition”(3.5b), determines the functiom(r) and, therefore,
via (3.6b), the numbeN of S-wave bound states. This equation will be our main tool to derive
(upper and lowerlimits on N.

It is indeed clear from(3.7) and(1.3) that

V(r)
7' (N=<|V(r)|*?+ Vo’ (3.9
V'(r)

These inequalitie€3.8), respectively3.9), together with(3.5b and(3.6), will be our main tool to
derive upper, respectively lower, limits dd. (Note that more stringent conditions might be
written by considering separately all the intervals of tgpesr<b,, . ; where sifi27(r)] is clearly
non-negative see(3.4) and (3.63, respectively, and all the intervals of tyfg<r=<z, where
sin2#7(r)] is clearlynonpositive see(3.4) and(3.63; but it does not appear that such a distinction
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might be maintained to the end without having to renounce the goal to obtain reasonably neat final
formulas for the limits; we will, however, take advantage of this improvement for certain intervals,
see below.

Let us now focus first on the derivation of the upper lifditl6). To this end we integrate3.8)
from b, to zy_,, and via(3.63 and(3.3) we get

V(b,)
V(zy-1)|

(3.10

N 3) <fZ'Hd V2
Ak b, riv(r) 4og

On the other hand we know, as already noted above, that in the inter#alssb, and zy_,
<r=<by (where sif27(r)] is non-negativesee(3.4) and(3.63] (3.8) can be replaced by the more
stringent inequalityfsee(3.7)]

7' (N=<|V(r)|*?, (3.113

and the integration of this inequality over these intervals yiglis (3.63 ]

T b
Esf “dr[V(n)| Y2, (3.11h
0

b
zsf " dr|v(n)|v2 (3.119
2 IN-1

Hence by summing3.10, (311b and(3.119 (and dividing byw) we get

N——<—f dr|V(r)|1’2+ ! —lo g’v(ibl)) (3.12
and therefore fortiori [thanks to the monotonicity of (r), see(1.3)]
N<—J dr | V( r)|1’2+ ‘VEE) 1, (3.133
provided
p<b,, (3.13b
4=2y 1. (3.130

To complete the proof of the first upper limit reported in Sec. |I,(@e&6), we must show that the
radii p, respectivelyq, defined by(1.16bh, respectively(1.169, satisfy (3.13h, respectively
(3.130. For p this is immediately implied by a comparison @f.160H and(3.11h; and, likewise,
indeeda fortiori, this is as well implied foig by a comparison 0€1.169 and(3.110.

Let us now proceed and prove the first lower limit of Sec. I. We treat firstly the case in which
the potential is finite at the origin, s€&.19. To this end we integrat€8.9) from 0 to an arbitrary
(of coursepositive radiuss getting thereby the inequality

0
n(s)>f dr|V(r)[¥*= 2 V((s)) (3.14
namelya fortiori, via (3.60,
V(O)
N+ = w>f dr|V(r)|1/2 V)" (3.15
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which clearly immediately implie§1.19).
If the potential diverges at the origin, to get the lower bo(th®2 we integratg3.9) from p
to g and we then get vigl.16bh and (1.169

1 \% o 1 \%
@)= (= [ "avin 2 Jiog g B = [ “arivio) - Zlog‘ o

W , (3.1@

and via(3.69 this clearly yields(1.22).
A generally more stringent but less explicit bound obtains by integrd8r® from b, to s
getting therebysee(3.63]

T S 1 V(bl)
o 1/2__ —
7(S) > beldr|V(r)| 4Iog‘ oIk (3.17a
hencea fortiori, via (3.60),
s 1 V(b,)
12—
N> fbldr|V(r)| 4Iog ok (3.170b
hencea fortiori [see(3.13h and(1.3)]
s 1 |V(p)
12—
N> fbldr|V(r)| 4Iog Vs’ (3.18
hence finally
s 1 |V(p)
12—
N7r>ft dr|V(r)] 4Iog Vo) (3.19a9
provided there holds the inequality
t=h;,. (3.19h

This condition is clearly equivalent to the requirement that the potevifigl amputated of its part
extending beyond possess at least one bound stg&nce whenV(r) vanishesu(r) is linear,
u(r)=ar+ B, see(3.1a, hence the conditio3.19h with V(r) vanishing beyond guarantees

the existence ofz;<«.] It is therefore sufficient, to make sure thég.19h holds, that this
amputated potential/(r) 8(t—r) [where (x) is the step functiong(x)=1 if x=0, 6(x)=0 if

x< 0] satisfy one of thesufficientconditions for the existence of at least one bound state reported
in Sec. |, seq1.11)—(1.13. Here for simplicity we restrict attention to theufficientcondition
(1.12, and we thereby conclude that a formula adequate to guarantee that the ind@uiditybe
satisfied is validity, for sompositivevalue ofa of either one of the following two inequalities, see
(1.12 [below we write= in place of>, sincet might coincide withb;, see(3.19b, which would
correspond to an amputated potential possessing only a zero-energy bound state or resonance

a t
a’lj drr2|V(r)|+af dr[V(r)|=1 with a<t, (3.203
0 a
a
aflf drr?|V(r)|=1 with a=t. (3.20b
0

And clearly the choice=t leads to(1.23h, thereby completing the proof of the first lower limit
to N for potentials singular at the origin as reported in Sec. |,(4€23.
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Let us now proceed and prove the second type of limitd.té-or simplicity, in the case of the
upper bound we restrict attention to the case of potentials which are finite at the origin, and of
course we always assume the potential to satisfy the monotonicity conditi®n

First of all we introduce the potential amputated of its part beygpnd

V(r)=V(r) for O<r<q, (3.213

V(r)=0 for r=q. (3.21h

Hereq is defined by(1.169, hence it satisfies the conditidB.139; therefore, if we indicate with
N the number of bound states possessed by the poten{igl, eitherN=N:1 [if zy-_1<q

<by; indeed the zero-energy wave functiofr) corresponding to the potentis(r) is linear for
r>q, see(3.21h, hence it has one less zero than the zero-energy wave fungtigrcorrespond-
ing to the potentiaM(r) if the cutoff pointq comes before the poinby, at whichu(r) bends

over for the last time, namely where it has its last extrethamN=N [if q=by; we include in

the count of the numbeX of bound states of/(r) also a zero-energy one, should it happen that
there be one, namely thgt=b,]. So, in any case,

N<N<N-+1. (3.22

Our strategy is now to introduce two monotonically increasing ladder-type potentials,
V(F)(r), respectivelyW(~)(r), both vanishing beyond just asV(r) does[see(3.21b], which
minorize, respectively majoriz&/(r),

VO (H)<V(r)sVv)(r), (3.23

so that the number of bound statd;”), respectivelyN(™), possessed by them majorize, respec-
tively minorize, N, yielding, via(3.22),

NOIsN=sNP +1. (3.29

And these potentiald/(*)(r), respectivelyv{~)(r), shall now be manufactured so that one can
easily compute the numbers of bound states they possess.
Indeed the potentia¢™)(r) is now defined by the rule

V)=Vt for r{P<r<rl), j=01,..,3-1, (3.253
v =vr) for r{)=r<q, (3.25h
v)(r)=0 for r=q, (3.250

with the increasing radii](” defined by the recurrence relatioh.24), and thepositive integer
J™) defined by the condition that the radit§?, , , yielded by this recursiotbe the first one tp
exceed or equal), see(1.29. It is plain that this potential minorizes, s¢€&.23, the truncated

potentiaIV(r) for all values ofr (if in doubt, draw a graph and it is moreover easy to compute
the numbemN(™) of bound states it possesses, since for this potential

PN =j w2, j=01,.. 3" +1. (3.26
This result is implied by the differential equation satisfied#8y(r), which reads simply
7' )=V () (3.273

namely[see(3.253]
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7' DO =V M2 for r(D<r<r{l), j=0,1,..,30), (3.27h

since the second term on the right-hand side(@f) vanishes forr{*)<r<r{) because
VI(r)=v()(r(1)) is constant there hence its derivative vanishes, and=at{") because
S|r1277(+)(r(+))J vanlshes due t@3.26) and therefore kills the contribution that Would otherwise
come from the delta function produced by the derivative of the discontinuity of the potential
occurring there. And the consistency (@26) with (3.27) is of course guaranteed 1§8.25h and
(1.24.

We now note that, for this potentisi™)(r), (3.26 implies

riD=z5 it jis even, j=02,..3%)=1 or J*), (3.283

ri9=blt,, it jis odd,  j=13,..,3 -1 or I, (3.280
where the raduz(”, respectlvelyb(”, are of course the successive zeros, respectively the
extrema, of the zero-energy wave functloh”(r) corresponding to the potentlad(*)(r) [see
(3.4)]. Moreover, for a potential amputated of its part beyanfhs is the case of(™)(r)], the
numberN(") of bound states is characterized by the condihx,‘{@)\q [since the zero-energy
wave function is a straight line far>q, see(3.189 and(3.259]. Hence after considering the two
possible parities, even or odd, #"), we conclude that, in both cases,

N ={(IP)+1)/2}}, (3.29

and via(3.24) this completes our proof of the upper lingit.26).
To prove the lower limit(1.29 we introduce the following ladder-type potential:

v =v(r!2) for osr=r{?), (3.303
VO =v(ri)) for r{D<r=r{7), j=30000-1,..21, (3.300
VE(r)=0 for g=r{l<r<e, (3.309

with the sequence afecreasingadii rj(_) defined by the recursion relatidt.27). It is plain that

this potential majorizes, sd8.23, the truncated potentiaT(r) for all values ofr (if in doubt,

draw a graph hence ifN(™) is the number of S-wave bound states possessed by this potential, the
(first part of the inequality (3.24 holds. As we know, since the potentis(~)(r) vanishes
identically beyondy (and b{))=q), see(3.309, this numbemN(~) is given by

N ={7 (@) }}. (3:3)
Here »(7)(r) is of course the solution of the differential equati@?) for the potentiaV{~)(r),
namely
') Oy YOM oo
7' () =|V(r)] IS (r)|5""[277 (N], (3.32
with the initial condition
~)(0)=0. (3.33

Since the ladder-type potentidf ~)(r) presents some discontinuities, $8680), the integration of
(3.32 from the initial condition(3.33 onward shall encounter some delta functions, but these
integrable singularities of the right-hand side(8f32 do not destroy the properties of existence,
uniqueness and continuity of the solutigh™(r) of (3.32 with (3.33.
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Let now7(r) be another solution of the same differential equat®B?2), characterized by the
initial condition

7(0)=—r{V(rid) |2 (3.3
Since clearly{see(3.33 and(1.28]
7(7)(0)>7(0) (3.353

and the two functions;™)(r) and%(r) satisfy the same differential equation, there follows that,
for every finite value ofr an analogous inequality holdéndeed, the graph of the continuous
function7(r) as function ofr can never overtake the graph of the continuous function(r) as
function ofr, since at the point of crossing their slopes must coincide beca(rjesatisfies the
same differential equation ag' ~)(r), see(3.32, hence no crossing can ocgur

7 () >7(r). (3.350
Hence as well
7 (@)>7(q), (3.350
entailinga fortiori, via (3.31),
NO={{7(a)/ m}}. (3.39

[Note that, though a strict inequality sign appear$3r359, one must allow for the possibility of
equality in this formula(3.36), because twadlifferentnumbers may have threameinteger part

But the initial condition(3.34) and the recursion relatiof1.27) defining the radiirj(’) have
been adjusted, as it can be easily verified in analogy to the argument used above, so that
({2 =072 _p=m2 7'’ _,)=m and so on, entailingsee(1.27]

B(r§)=n(a)=30) 7/2. (3.3

Via (3.31) and(3.24) this implies the lower limit(1.29), which is thereby proven.

IV. THE KLEIN-GORDON CASE

In the context of first-quantized mechanics with relativistic kinematics, a zero-spin particle of
(positive massm moving in an external potential(r), which is the fourth-component of a
relativistic four-vector, is describe@n self-evident notation, and with an appropriate choice of
units) by the following Klein—Gordon equation:

(PP+m?)g(r)=[E—W(r)]?(r). 4.1

In the spherically symmetrical cas®/(r)=W(r), the zero-kinetic-energynamely, E=m)
S-wave radial equation coincides with the corresponding equation for thediuieo case(3.1),
with the following definition ofV(r) in terms ofW(r):

V(r)=2mWr)—W?3(r). (4.2

Note that, if the potentialV(r) is monotonically nondecreasing and vanishes at infifatyd is
thereforenonpositive W(r)=—|W(r)|], the same property, s€&.3), holds as well for the po-
tential V(r). And the following conditions on the behavior bf(r) at the origin and at infinity are
clearly sufficient to guarantee the validity ¢f.1):

lim[rt~sW(r)|=0, (4.39

r—0
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lim|[r2*2W(r)|=0. (4.3

r—o

All the results reported above in the Sctiilmger context can therefore be immediately taken
over to the Klein—Gordon case. Note, however, that, as a consequence of the (dl&ioihone
introduces a “coupling constanty as a measure of the strength of the potential by setting
W(r)=g?w(r), then one sees that in the Klein—Gordon casg diverges the number of S-wave
bound states grows proportionally & [rather than proportionally tg as is the case in the
Schralinger context, seél.6)].
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