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I. INTRODUCTION AND MAIN RESULTS

The determination in the framework of nonrelativistic quantum mechanics of necessar
sufficient conditions for the existence of bound states in a given potential and, more genera
upper and lower limits for the number of bound states yielded by such a potential, has engag
attention of theoretical and mathematical physicists since the early 1950s, and, notwithstand
fact that, with modern computers, the numerical evaluation of the number of bound states
given potential is an easy task, it continues to be actively pursued: see, for instance, Refs.
7,10–17,19–26, 28–30, as well as the surveys of~some of! these results in Refs. 8 and 32. In th
article we provide new upper and lower limits for the number of S-wave bound states posses
a central potential vanishing at infinity and yielding a nowhere repulsive force and we com
them, for some test potentials, with the exact results and with previously known upper and
limits. These comparisons indicate that these new limits are generally more stringent than h
known results and indeed remarkably cogent, especially for potentials possessing many
states.

Let us briefly review~some of! the previous findings, focusing on those relevant to
treatment, hence restricting attention to the S-wave case~even when results are also known f
higher partial waves!. Hereafter—except in Sec. IV—we use the standard nonrelativistic quan
mechanical units such that\2/(2m)51, which entail that the potentialV(r ) has the dimension o
an inverse square length, and we indicate withN the number of S-wave bound states. We a
assume throughout that the potentialV(r ) is less singular than the inverse square radius at
origin and that it vanishes asymptotically faster than the inverse square radius, say~for some
positive«!

lim
r→0

br 22«V~r !c50, ~1.1a!

lim
r→`

br 21«V~r !c50. ~1.1b!

Note that these assumptions entail that the square root of the~modulus of the! potential is inte-
grable both at the origin and at infinity.

a!Electronic mail: fabian.brau@umh.ac.be
b!Electronic mail: francesco.calogero@roma1.infn.it, francesco.calogero@uniroma1.it
15540022-2488/2003/44(4)/1554/22/$20.00 © 2003 American Institute of Physics

 20 Mar 2003 to 141.108.19.76. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



to it as
e
es

e
t

ling

edy

ve
cilla-

ound

ot

s the

1555J. Math. Phys., Vol. 44, No. 4, April 2003 Limits on the number of bound states

Downloaded
Bargmann2 and Schwinger30 obtained the following upper limit forN:

BS: N<E
0

`

dr r uV~r !u. ~1.2!

This result is generally referred to as the Bargmann–Schwinger bound; we hereafter refer
the BS~upper! limit. This result was obtained after Jost and Pais22 had shown that the fact that th
right-hand side of~1.2! exceeds unity is anecessarycondition for the existence of bound stat
~namely, the special case of the BS limit withN51).

Cohn15,16and Calogero6,7 later obtained another upper limit forN, which is valid provided the
force associated with the potentialV(r ) is nowhere repulsive, namely the potentialV(r ) is a
monotonically nondecreasing function of the radiusr ,

dV~r !/dr>0, ~1.3!

entailing of course that the potential is everywhere negative,V(r )52uV(r )u. This upper limit
reads

CC: N<
2

p E
0

`

dr uV~r !u1/2. ~1.4!

This result has been referred to as the Calogero–Cohn bound;11 hereafter we shall refer to it as th
CC ~upper! limit. This CC limit, ~1.4!, in contrast to the BS limit~1.2!, features the correc
dependence on the strength of the potential; indeed it has been shown8 that, for any potentialV(r ),
if a measure of the strength of the potential is introduced via the introduction of a ‘‘coup
constant’’g2 by setting

V~r !5g2 v~r !, ~1.5!

then asg diverges to positive infinity,N grows proportionally tog. But it is also known10 ~see also
Refs. 7, 14, and 19! that asymptotically, asg diverges,g→`,

N'
1

p E
0

`

dr uV~r !u1/25
g

p E
0

`

dr uv~r !u1/2. ~1.6!

Hence for strongly attractive potentials featuring many bound states the CC limit~1.4! tends to
overestimateN by a factor 2. The main merit of the new limits provided in this article is to rem
this defect~see below!.

Some modifications of the inequality~1.4! and of the condition~1.3! on the shape of the
potential have been introduced by Chadanet al.11 These modifications lead to less restricti
inequalities but more flexible conditions on the shape of the potential, allowing for some os
tions.

Another upper bound, which also gives the correct power behavior of the number of b
states when the strength of the potential diverges, has been obtained by Martin:25

M: N<F E
0

`

dr r 2V2~r !E
0

`

dr V2~r !G1/4

, ~1.7!

whereV2(r ) is thenegativepart of V(r ). This limit is applicable even if the potential does n
satisfy the property to yield a nowhere repulsive force, see~1.3!, but it is nontrivial only for
potentials the nonpositive part of which is integrable at the origin. Hereafter we refer to it a
M ~upper! limit.

The known lower limits onN are scarcer and less neat. A result7 states that
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N>
1

p E
0

`

dr min@1/a, 2a V~r !#2
1

2
, ~1.8a!

wherea is an arbitrarypositiveconstant,a.0, and

min@x,y#5x if x<y, min@x,y#5y if y<x. ~1.8b!

By choosinga proportional tog21 @see~1.5!# it is clear that this limit has the correct powe
growth wheng diverges. The most stringent version of this limit obtains by performing first
integration on the right-hand side of~1.8a!, and by then maximizing the result over allpositive
values of the parametera. For everywhere nondecreasing potentials, see~1.3!, the minimum
definition~1.8b! is easily implemented by splitting the integration range in~1.8a! in two parts, and,
thereby, via standard computations, one arrives at the somewhat neater lower limit

C: N>
2

p
ruV~r!u1/22

1

2
, ~1.9a!

wherer is a root of the equation

r V~r!5E
r

`

dr V~r !. ~1.9b!

This limit will be hereafter referred to as the C~lower! limit.
If the potential, besides satisfying the monotonicity condition~1.3!, is finite at the origin, a

more explicit if less cogent result obtains by settinga5uV(0)u21/2 in ~1.8!:

C0 : N>
1

p E
0

`

dr
uV~r !u

uV~0!u1/22
1

2
. ~1.10!

Hereafter we shall refer to this result as the C0 ~lower! limit.
By settingN51 in ~1.8! and ~1.9!, respectively~1.10!, one obtains the following three con

ditions, each of which issufficientto guarantee the existence of~at least! one bound state:

E
0

`

dr min@1/a, 2a V~r !#.
3p

2
, ~1.11a!

ruV~r!u1/2.
3p

4
~1.11b!

with r again a root of~1.9b!,

E
0

`

dr uV~r !u.
3p

2
uV~0!u1/2. ~1.11c!

In the first of these inequalities,~1.11a!, a is an arbitrarypositiveconstant; the most stringen
condition obtains of course by performing first the integration on the left-hand side and by
minimizing the result over allpositivevalues ofa; the other two inequalities,~1.11b! and~1.11c!,
are neater but for their validity it is required that the potential satisfies the monotonicity cond
~1.3! @and of course~1.11c! is only applicable if the potential is finite at the origin#.

In view of future applications~see below! let us also report two other conditions which a
sufficientto guarantee that the potentialV(r ) possesses~at least! one bound state:5,8
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a21E
0

a

dr r 2uV~r !u1aE
a

`

dr uV~r !u.1, ~1.12!

aE
0

`

dr uV~r !u/@11a2uV~r !u#.1. ~1.13!

Both these conditions apply provided the potential is nowhere positive,V(r )52uV(r )u; in both of
them a is an arbitrarypositiveconstant, and of course the most stringent conditions obtain
minimizing the left-hand sides over allpositivevalues ofa. It is easily seen that, in the case
~1.12!, the minimizing value ofa is the root of the equation

E
0

a

dr r 2uV~r !u5a2E
a

`

dr uV~r !u ~1.14!

@entailing that the two terms on the left-hand side of~1.12! yield equal contributions# and in the
case of~1.13! it is the root of the equation

E
0

`

dr uV~r !u~12a2uV~r !u!~11a2uV~r !u!2250. ~1.15!

After this terse survey of previous results let us now report the new upper and lower lim
the numberN of S-wave bound states obtained in this article, in which we restrict for simpl
attention to potentials that satisfy the monotonicity condition~1.3! ~we plan to report results
applicable to more general potentials, as well as to higher partial waves, in a subsequent!.
These limits are of two different types.

The ~new! upper limit of the first type reads as follows:

N<
1

p E
0

`

dr uV~r !u1/21
1

4p
logUV~p!

V~q!
U1 1

2
, ~1.16a!

with the two distancesp andq defined by the relations

E
0

p

dr uV~r !u1/25p/2, ~1.16b!

E
q

`

dr uV~r !u1/25p/2. ~1.16c!

Clearly these two formulas,~1.16b!, respectively~1.16c!, provide an unambiguous definition o
the two quantitiesp, respectivelyq, provided the potentialV(r ) possesses at least one bou
state, since it must then satisfy the followingnecessarycondition for the existence of bound state6

@corresponding to~1.4! with N51]:

E
0

`

dr uV~r !u1/2>p/2. ~1.17!

And also note that, due to the assumed monotonicity of the potential, see~1.3!, ~1.16! entails that
a neater albeit less stringent upper limit toN is provided by the formula

N<
1

p E
0

`

dr uV~r !u1/21
1

4p
logUV~0!

V~q!
U1 1

2
, ~1.18!
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with q always defined by~1.16c!. This upper limit is, however, nontrivial only for potentials th
are finite at the origin.

The ~new! lower limit of the first type reads~for potentials that are finite at the origin!

N.
1

p E
0

s

dr uV~r !u1/22
1

4p
logUV~0!

V~s!
U2 1

2
, ~1.19!

with s an arbitrary~of coursepositive! radius. The choice ofs that produces the most stringe
bound is the root of the following nondifferential equation ins ~here, and always below, appende
primes denote differentiations!:

V8~s!54uV~s!u3/2. ~1.20!

Indeed, the values ofs which satisfy this last equation maximize the right-hand side of~1.19!. If
this equation possesses more than one positive root, generally the most stringent bound ob
choosing the largest.

A neater, if generally less stringent, lower bound obtains by choosings5q, since via~1.16c!
one then gets

N.
1

p E
0

`

dr uV~r !u1/22
1

4p
logUV~0!

V~q!
U21. ~1.21!

The analogy of this formula,~1.21!, to ~1.18! is remarkable, and of course this lower limit toN is
also nontrivial only if the potentialV(r ) is finite at the origin.

If the potential is singular at the origin, a neat lower bound, analogous to~1.16a!, reads

N>
1

p E
0

`

dr uV~r !u1/22
1

4p
logUV~p!

V~q!
U2 3

2
, ~1.22!

with p andq defined by~1.16b! and ~1.18c!.
A less neat but generally more stringent~albeit only marginally so! lower bound that looks

somewhat analogous to~1.19! and is also applicable to potentials that are singular at the or
reads

N.
1

p E
t

s

dr uV~r !u1/22
1

4p
logUV~p!

V~s!
U, ~1.23a!

with p defined by~1.16b! and s>t but otherwisearbitrary. As for the positive quantity t, a
characterization of it adequate to guarantee validity of this lower limit,~1.23a!, is the requirement
that it be the smallest positive root of the~nondifferential! equation

t5E
0

t

dr r 2uV~r !u. ~1.23b!

Another characterization oft, which leads to a~generally only marginally! more stringent lower
limit, is provided in Sec. III. Note that, as above, the choice ofs in ~1.23a! that yields the most
stringent bound is the root of the nondifferential equation~1.20! ~provided, of course, such
choice ofs is compatible with the conditions>t, as it is certainly the case for strong potentia
possessing many bound states!. And again, as above, a neater, if generally less stringent, lo
bound obtains by choosings5q, since via~1.16c! one then gets, in place of~1.23a!,

N.
1

p E
t

`

dr uV~r !u1/22
1

4p
logUV~p!

V~q!
U2 1

2
, ~1.23c!
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again of course withq, respectivelyt, defined by~1.16b! and~1.23b! ~of course providedq>t, as
it is certainly the case for strong potentials!.

Let us now report a second type of~new! limits on the numberN of S-wave bound states
which are particularly suitable for numerical computations, although there exist also cases
nable to analytic treatment~see Sec. II!.

First we report an upper limit, valid for potentials finite at the origin, to which considera
is, for simplicity, here restricted. Let us define the radiusq via ~1.16c!, and the sequence o
increasingradii r j

(1) via the explicit recursion relation

r j 11
(1) 5r j

(1)1~p/2!uV~r j
(1)!u21/2, r 0

(1)50, ~1.24!

and let the positive integerJ(1) be defined by the condition that the radiusr J(1)11
(1) yielded by this

recursion~be the first one to! exceed or equalq,

r J(1)
(1)

,q<r J(1)11
(1) . ~1.25!

The upper limit is then provided by the inequality

N<$$~J(1)11!/2%%11. ~1.26!

Here and always below the double braces denote the integer part:$$J/2%%5J/2 if J is evenand
$$J/2%%5(J21)/2 if J is odd.

Finally we report an analogous lower limit toN, which does not require thatV(r ) be finite at
the origin to yield a nontrivial result. Again, one first defines the radiusq via ~1.16c!, and then
introduces a series ofdecreasingradii r j

(2) via the explicit recursion relation

r j 11
(2) 5r j

(2)2~p/2!uV~r j
(2)!u21/2, r 0

(2)5q. ~1.27!

Now let the positive integerJ(2) be defined by the condition that the quantityr J(2)
(2) yielded by this

recursion be the last one to bepositive,

r J(2)11
(2) <0,r J(2)

(2) . ~1.28!

The lower limit is then provided by the inequality

N>$$J(2)/2%%. ~1.29!

In Sec. II we provide several tests of the efficacy of our upper and lower limits; in Sec. II
prove them; in Sec. IV we point out that all the results reported herein in the~nonrelativistic!
context of the Schro¨dinger equation can be easily extended to the~kinematically relativistic, if
only first-quantized! Klein–Gordon case.

II. TESTS

Most of the limits on the number of S-wave bound states reported in Sec. I are ‘‘best
sible,’’ namely, it is generally possible to find potentials that saturate them. The shape of
saturating potentials can generally be easily inferred from the very procedure whereby the
were derived; in particular for our new limits the saturating potentials are generally of ladde
~including the simplest such potential, the square-well!, since for such potentials the second te
on the right-hand side of~3.7! tends to vanish~as discussed in some detail in the last part of S
III !. But while the fact that the formula providing a limit has the property to be ‘‘best possi
entails that there can be no hope to make it more stringent by just modifying some co
appearing in it@it is, for instance, impossible to obtain a more stringent upper limit than~1.4! by
just replacing the constant 2/p on the right-hand side by a smaller number#, it does by no means
imply that such a bound provides a stringent limitation for all potentials; far from it~as we will
 20 Mar 2003 to 141.108.19.76. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



ty of
fferent

s

er of

r
few
for the

e
own

1560 J. Math. Phys., Vol. 44, No. 4, April 2003 F. Brau and F. Calogero

Downloaded
presently see!. Indeed, a more interesting question is how different limits behave for a varie
~test! potentials. This section is devoted to such an assessment, for which we use six di
potentials: the square-well potential~hereafter referred to as SW!

SW: V~r !52g2 R22 for r<R, ~2.1a!

SW: V~r !50 for r .R; ~2.1b!

the Pöschl–Teller27 ~or ‘‘single-soliton,’’ see for instance Ref. 9! potential~hereafter referred to a
PT!,

PT: V~r !52g2R22@cosh~r /R!#22; ~2.2!

the exponential potential~hereafter referred to as E!,

E: V~r !52g2R22 exp~2r /R!; ~2.3!

the Hulthén potential~hereafter referred to as H!,

H: V~r !52g2R22@exp~r /R!21#21; ~2.4!

the Yukawa potential~hereafter referred to as Y!,

Y: V~r !52g2~rR!21 exp~2r /R!; ~2.5!

and the following shifted and truncated inverse square potential~hereafter referred to as STIS!,
which has the merit to allow analytic computation of all limits as well as of the exact numb
bound states~see below!:

STIS: V~r !52g2~R1r !22 for 0<r<aR, ~2.6a!

STIS: V~r !50 for r .aR. ~2.6b!

In all these equations, and below,R is an arbitrary~of coursepositive! given radius, andg, as well
asa in the last equation,~2.6!, are arbitrary dimensionlesspositiveconstants.

We only report, for the new limits of the first type, tests of theneatestlimits given in Sec. I,
namely we consider the upper, respectively lower, limits~1.18!, respectively~1.21!, for regular
potentials, and the upper, respectively lower, limits~1.16!, respectively~1.22!, ~only! for singular
potentials; indeed, for regular potentials, the difference between the neater upper limit~1.18! and
the more stringent upper limit~1.16! is generally negligibly small~namely, less than one unit!, and
likewise for the difference between the neater lower limit~1.21! and the more stringent lowe
limits ~1.19! or ~1.23!. ~Let us however emphasize that when one considers potentials with
bound states or searches for constraints on potential parameters necessary or sufficient
existence of one bound state, it is advisable to use the most stringent available limits.! As for the
new limits of the second type, we test the upper, respectively lower, limits~1.26!, respectively
~1.29!, for regular potentials, and the lower limit~1.29! for singular potentials. The tests ar
performed by comparing the new limits with the exact results, and with the previously kn
limits reported~and named! in Sec. I.

The simplest test is provided by the~nonsingular! SW potential~2.1!, for which the exact
number of bound states is given by the formula

N5$$n%%, ~2.7!

with
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n5
g

p
1

1

2
. ~2.8!

In this case the new limits obtained in this article tend to give the exact result~as explained
above!, except for the approximations introduced in order to obtain neater formulas. Indee
upper, respectively lower, limits of the first type~1.18!, respectively~1.21! @with q,R as implied
by ~1.16c!, so that the logarithmic terms in both these formulas vanish#, yield N<n respectively,
N.n2 3

2, while the more stringent lower bound~1.19! with s5R yields N>n21. The upper,
respectively lower, limits of the second type,~1.26!, respectively~1.29!, can as well be computed
analytically for this potential, yieldingN<n1 1

2, respectivelyN>n21. The BS, CC and M uppe
limits do not produce such good results. The BS upper limit yieldsN<g2/2, which gives a very
poor limitation wheng ~hence the number of bound states! grows ~indeed we know that the BS
upper limit is always very poor for strong potentials, see also below!. The CC, respectively M,
upper limits do give the correct linear behavior ing, but with too big a slope, respectivelyN
<2g/p52 (n2 1

2) andN<321/4g5321/4p(n2 1
2)52.387 (n2 1

2). Finally, in this particular case
the C and C0 lower limits coincide and yieldN>n21, namely a slightly more stringent limit tha
~1.21! @indeed, just the same result as~1.19!, see above#.

The second test is performed with the~nonsingular! PT potential~2.2!. For this potential the
exact number of bound states is again given by~2.7! but now with

n5~A114g211!/4, ~2.9a!

which, in the limit of largeg, yields

n5
1

2
g1

1

4
1

1

16g
1O~g23!. ~2.9b!

In this case the new upper and lower limits of the first type,~1.18!, respectively~1.21!, can as well
be computed analytically, and they read

N<
g

2
2

1

2p
logFsinS p

2gD G1
1

2
, ~2.10a!

respectively

N.
g

2
1

1

2p
logFsinS p

2gD G21, ~2.11a!

entailing, in the limit of largeg,

N<
g

2
1

1

2p
logS 2g

p D1
1

2
1

1

12p S p

2gD 2

1O~g24!, ~2.10b!

respectively

N.
g

2
2

1

2p
logS 2g

p D212
1

12p S p

2gD 2

1O~g24!. ~2.11b!

As for the new limits of the second type,~1.26! and~1.29!, in this case they can only be evaluate
numerically. In Fig. 1 we present, for this potential, a comparison between the exact num
bound states, the new limits of the first and of the second type, and the previously known0

lower limits, and BS, CC, M upper limits, all of which can be computed analytically: BSN
< log(2)g2 ~very bad at largeg); CC: N<g; M: N<(p2/12)1/4g'0.95g ~both of which give
roughly twice the correct result at largeg); C: N>(2/p)exp(2x)g21

2'0,336g2 1
2 @wherex is the
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root of 2x511exp(22x)]; C0 : N>g/p2 1
2'0,318g2 1

2 @the C and the C0 lower bounds are less
stringent than the lower bound~2.11! as soon asg exceeds 3.98 and 3.48, respectively#. As it is
clear from Fig. 1, the new bounds are quite cogent. From~2.10b! and~2.11b! one sees that thos
of the first type remain quite stringent as well for rather large values ofg: for instance, when the
exact numberN of bound states is equal to 5000, these upper and lower limits restrict it to
rather small interval@4998,5001#. Likewise, at this value ofg, the new limits of the second type
~1.26!, respectively~1.29!, entail the restrictions 4996<N<5002; while the corresponding valu
of the BS upper limit exceeds 6.93107, the CC upper limit only informs us thatN<104, and the
lower limit C thatN>3360.

The third test is performed with the~regular! E potential~2.3!. In this case the exact numbe
of bound states coincides with the number of zeros of the zeroth-order Bessel functionJ0(x) in the
interval 0,x<2g ~see, for example, Ref. 18, p. 196!. Also in this case the new upper and low
limits of the first type~1.18! and ~1.21! can be computed analytically:

N<
2

p
g1

1

2p
logS 4

p
gD1

1

2
, ~2.12!

N.
2

p
g2

1

2p
logS 4

p
gD21, ~2.13!

while those of the second type must be evaluated numerically. In this case all the prev
known limits can as well be computed analytically: BS:N<g2; CC: N<4/pg; M: N<21/4g; C:
N>2/(pAe)g2 1

2; C0 : N>g/p2 1
2. A comparison between these results is presented in Fig.

is again clear that the new limits are remarkably effective.
The fourth test is performed with the~singular! H potential~2.4!. In this case the exact numbe

of bound states is given simply by the integer part ofg:

N5$$g%%. ~2.14!

The new upper, respectively lower, limits of the first type applicable to singular potentials,~1.16!,
respectively~1.22!, can in this case be computed analytically as well:

FIG. 1. Comparison between the exact number of bound states for the PT potential~2.2! ~ladder curve!, the limits of the
first type~1.18! ~short-dash curve! and~1.21! ~solid curve!, the C~dash-dot curve! and C0 ~dash-double-dot curve! lower
limits, the BS~long-dash curve!, the CC~small-dot curve! and M~sparse-dot curve! upper limits, and the limits of the
second type~1.26! ~black diamond! and ~1.29! ~white diamond!.
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N<g2
1

p
logS tan

p

4gD1
1

2
, ~2.15a!

N.g1
1

p
logS tan

p

4gD2
3

2
, ~2.16a!

yielding asymptotically, for largeg,

N<g2
1

p
logS p

4gD1
1

2
2

p

48g2 1O~g24!, ~2.15b!

N.g1
1

p
logS p

4gD2
3

2
1

p

48g2 1O~g24!. ~2.16b!

The new lower limit of the second type~1.29! must in this case be evaluated numerically, while
the previously known limits~relevant to the case of singular potentials! can be computed analyti
cally: BS: N<(p2/6)g2; CC: N<2g; C: N>(2/p)log(2)g21

2. A comparison between these re
sults is presented in Fig. 3. It is again clear that the new limits are remarkably effective. An
again clear from a comparison of the asymptotic formulas~2.15b! and~2.16b! that the new upper
and lower limits of the first type remain remarkably cogent even at large values ofg: for instance,
when the exact number of bound states is equal toN55000, these limits,~2.15a! and ~2.16a!,
restrictN to the relatively small interval@4996, 5003#. For comparison, the corresponding val
of the BS upper limit exceeds 43107, the CC upper limit is 104, and the lower limit C only
informs us thatN>2207, while the new lower limit of the second type,~1.29!, informs us that
N>4994.

The fifth test is performed with the~singular! Y potential~2.5!. In this case the exact numbe
of bound states must be evaluated numerically: we employed two different methods of calcu
in order to check the numerical results3,4 ~note that these two methods possess a natural link31!.
The new upper and lower limits,~1.16! and~1.22!, respectively, can instead be computed anal
cally:

FIG. 2. Comparison between the exact number of bound states for the E potential~2.3! ~ladder curve!, the limits of the first
type~1.18! ~short-dash curve! and~1.21! ~solid curve!, the C~dash-dot curve! and C0 ~dash-double-dot curve! lower limits,
the BS~long-dash curve!, the CC~small-dot curve! and M~sparse-dot curve! upper limits, and the limits of the second typ
~1.26! ~black diamond! and ~1.29! ~white diamond!.
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N<A2

p
g1

x22y2

2p
1

1

2p
logS x

yD1
1

2
, ~2.17a!

N.A2

p
g2

x22y2

2p
2

1

2p
logS x

yD2
3

2
, ~2.18a!

with

erf~y!5a, erf~x!512a, a5~p/8!1/2g21, ~2.19!

so that asymptotically~asg→`, and keeping only the first correction term!

N<A2

p
g1

1

p
log~g!, ~2.17b!

N.A2

p
g2

1

p
log~g!. ~2.18b!

The new lower bound of the second type must also be evaluated numerically, while the prev
known limits relevant to the singular case can all be evaluated~almost completely! analytically:
BS: N<g2; CC: N<2(2/p)1/2g; C: N>(2/p)x1/2exp(2x/2)g2 1

250.531(2/p)g2 1
2 @wherex is

the root of exp(2x)5*x
`dy y21 exp(2y)]. A comparison between these results is presented in

4. It is again clear that the new limits are remarkably effective. And it is again clear fro
comparison of the asymptotic formulas~2.17b! and~2.18b! that the new upper and lower limits o
the first type remain remarkably cogent even at large values ofg: for instance, when the exac
number of bound states is equal toN550, these limits,~2.17a! and ~2.18a!, restrict N to the
relatively small interval@49,53#. For comparison, the corresponding value of the BS upper l
exceeds 4000, while the CC upper limit and the C lower limit only informs us that 22<N
<103; as for the new lower limit,~1.29!, it entails thatN>48.

Finally, the sixth test is performed with the~regular! STIS potential~2.6!. As already men-
tioned, this test potential is particularly appealing because in this caseall the relevant calculations
can be performed analytically; moreover, in contrast to the five previous cases, this po
features two dimensionless parameters rather than only one.

FIG. 3. Comparison between the exact number of bound states for the H potential~2.4! ~ladder curve!, the limits of the first
type ~1.16! ~short-dash curve! and ~1.22! ~solid curve!, the C lower limit~dash-dot-curve!, the BS~long-dash curve! and
CC ~dot curve! upper limits, and the lower limit of the second type~1.29! ~white diamond!.
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This potential possesses bound states only if the ‘‘coupling constant’’g exceeds1
2, g. 1

2

~irrespective of the value of the other,positive, parameter it features,a.0), and the exact numbe
N of its bound states is then given again by~2.7!, but now with

n5
1

2p
~l log~11a!12 arctan~l!! ~2.20a!

with l5A4g221, entailing at largeg

n5
1

p S g2
1

8gD log~11a!2
1

2pg
1

1

2
1O~g23!, ~2.20b!

and at largea

n5
l

2p F log~a!1
1

aG1
1

p
arctan~l!1O~a22!. ~2.20c!

The new upper and lower limits of the first type,~1.18! and ~1.21!, respectively, yield

$$n lo%%<N<$$nup%% ~2.21a!

with

nup5
1

p S g1
1

2D log~11a!2
1

4g
1

1

2
, ~2.21b!

respectively

n lo5
1

p S g2
1

2D log~11a!1
1

4g
, ~2.21c!

entailing at largeg

FIG. 4. Comparison between the exact number of bound states for the Y potential~2.5! ~black triangle!, the limits of the
first type ~1.16! ~short-dash curve! and ~1.22! ~solid curve!, the C lower limit~dash-dot curve!, the BS~long-dash curve!
and CC~dot curve! upper limits, and the lower limit of the second type~1.29! ~white dimaond!.
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nup2n lo

n
5

1

g F11
p

2 log~11a!G2
1

g2 F p

log~11a!
1

p2

4 log2~11a!G1O~g23!, ~2.21d!

and at largea

nup2n lo

n
5

2

l H 11
p

2 log~a! F12
1

g
2

4

pl
arctan~l!G J 1O~@ log~a!#22!. ~2.21e!

The new upper and lower limits of the second type,~1.26! and ~1.29!, respectively, yield

$$n2%%<N<$$n1%% ~2.22a!

with

n65
1

2 H H 2

p
g6 log~11a!2

g6

g J J 1
363

4
~2.22b!

where

g65
6~p/2!

log@16p/~2g!#
, ~2.22c!

so that, at largeg,

g65g6
p

4
1O~g21! ~2.22d!

entailing

n65
1

2 H H S 2

p
g6

1

2D log~11a!J J 1
163

4
1O~g21!, ~2.22e!

hence

n12n2

n
5O~g21!. ~2.22f!

Note that the formulas for the lower limit are only applicable ifg.p/2 @see~2.22c!#.
The previously known upper and lower limits can also be evaluated in closed form fo

potential:

BS: N<g2F log~11a!2
a

11aG , ~2.23!

CC: N<
2

p
g log~11a!, ~2.24!

M: N<gF S a22 log~11a!1
a

11a D a

11aG1/4

, ~2.25!

C: N>
2

p
gS 12

1

A11a
D 2

1

2
, ~2.26!
 20 Mar 2003 to 141.108.19.76. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



amples

ted in
cularly
nerally
s.
type

at the

nd-

-
tial

ve

1567J. Math. Phys., Vol. 44, No. 4, April 2003 Limits on the number of bound states

Downloaded
C0: N>
1

p
g

a

11a
2

1

2
. ~2.27!

The merits of the new limits are already apparent from these formulas. Representative ex
are given in Table I.

In conclusion it seems justified to conclude from these tests that the new limits presen
this article are rather cogent and generally superior to those hitherto known. They are parti
effective for strong potentials possessing many bound states, thanks to their capability to ge
reproduce the correct asymptotic~semiclassical! result~1.6! when the coupling constant diverge
Let us also emphasize that, from a computational point of view, the limits of the second
presented herein are particularly convenient, especially in the case of regular potentials.

III. PROOFS

In this section we prove the new results reported in Sec. I. We assume throughout th
potential satisfies the conditions~1.1! as well as~1.3!.

Let u(r ) be the zero-energy S-wave Schro¨dinger wave function, characterized by the seco
order ordinary differential equation

u9~r !2V~r !u~r !50, ~3.1a!

with boundary condition

u~0!50. ~3.1b!

It is well known ~see, for instance, Ref. 8! that the number of zeros of the solution of~3.1a!
with ~3.1b! in the interval 0,r ,` coincides with the numberN of S-wave bound states sup
ported by the potentialV(r ) ~we always exclude, for simplicity, the marginal case of a poten
that features a ‘‘zero-energy bound state or resonance’’!. Let us indicate withzn the successive
zeros ofu(r ), and withbn the successive zeros ofu8(r ) @namely, the locations of the successi
extrema of the wave functionu(r )],

u~zn!50, u8~bn!50. ~3.2!

It is then clear that, since the potentialV(r ) is nowherepositive@as implied by~1.1! with ~1.3!#,

V~r !52uV~r !u, ~3.3!

the zero-energy wave functionu(r ) is an everywhere convex function ofr , entailing the ‘‘inter-
lacing’’ relations

TABLE I. Comparison between the exact number of bound statesN, the bounds of the first type~1.18! and ~1.21!, see
~2.21!, the limits of the second type~1.26! and~1.29!, see~2.22!, the BS, CC and M upper limits, and the C and C0 lower
limits, for the STIS potential~2.6! with a representative set of values ofa andg.

(a,g) N $$n lo%% $$nup%% $$n2%% $$n1%% BS CC M C C0

~1,10! 2 2 2 2 4 19 4 4 2 2
(1,102) 22 21 22 22 24 1931 44 48 19 16
(1,103) 221 220 221 220 222 .105 441 488 186 159
(102,10) 15 13 15 13 17 362 29 30 6 3
(102,102) 147 146 148 146 150 36250 293 308 57 32
(104,10) 29 27 31 27 33 821 58 99 6 3
(104,102) 293 291 295 291 297 82105 586 999 63 32
(106,10) 44 41 46 40 49 1281 87 316 6 3
(106,102) 440 437 442 436 445 .105 879 3162 64 32
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05z0,b1,z1,b2,¯,zN21,bN,zN,`. ~3.4!

Note that these formulas imply thatu8(r ) doesnot vanish in the intervalzN<r ,`, namely a
bN11,` does not exist@otherwise it would be inevitably followed byzN11,`, and this is
excluded sinceN is the number of zeros ofu(r )].

Following Refs. 7 and 8 we now introduce a functionh(r ) defined via the relation

tan@h~r !#5uV~r !u1/2u~r !/u8~r !, ~3.5a!

with

h~0!50, ~3.5b!

and the requirement thath(r ) be a continuous function ofr @to lift the mod~p! ambiguity entailed
by the definition~3.5a!#. It is then clear that the properties~3.4! together with the definition~3.5a!
imply the relations

h~zn!5np, h~bn11!5~2n11!p/2, n50,1,...,N21, ~3.6a!

h~zN!5h~`!5Np, ~3.6b!

and that the value ofh(r ) inside the intervals~3.4! lies between the values taken at the extrem
points of these intervals, namely, forzn<r<bn11 with n50,...,N21, np<h(r )<(2n
11)p/2, and forbn<r<zn with n51,...,N, (2n21)p/2<h(r )<np, except of course for the
last interval,zN<r ,`, whereNp<h(r ),(2N11)p/2. Note that these results also imply tha
for all values ofr ,

0<h~r !,~N1 1
2!p ~3.6c!

~indeed the value at which the second inequality was violated would qualify asbN11 , which, as
already noted, would then inevitably be followed byzN11 , violating the hypothesis that th
number of zeros beN).

Moreover, from~3.1a! we obtain via~3.5a! and ~3.3! the nonlinear first-order differentia
equation

h8~r !5uV~r !u1/22
V8~r !

4uV~r !u
sin@2h~r !#, ~3.7!

which, together with the ‘‘initial condition’’~3.5b!, determines the functionh(r ) and, therefore,
via ~3.6b!, the numberN of S-wave bound states. This equation will be our main tool to de
~upper and lower! limits on N.

It is indeed clear from~3.7! and ~1.3! that

h8~r !<uV~r !u1/21
V8~r !

4uV~r !u
, ~3.8!

h8~r !>uV~r !u1/22
V8~r !

4uV~r !u
. ~3.9!

These inequalities~3.8!, respectively~3.9!, together with~3.5b! and~3.6!, will be our main tool to
derive upper, respectively lower, limits onN. ~Note that more stringent conditions might b
written by considering separately all the intervals of typezn<r<bn11 where sin@2h(r)# is clearly
non-negative, see~3.4! and ~3.6a!, respectively, and all the intervals of typebn<r<zn where
sin@2h(r)# is clearlynonpositive, see~3.4! and~3.6a!; but it does not appear that such a distincti
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might be maintained to the end without having to renounce the goal to obtain reasonably ne
formulas for the limits; we will, however, take advantage of this improvement for certain inter
see below.!

Let us now focus first on the derivation of the upper limit~1.16!. To this end we integrate~3.8!
from b1 to zN21 , and via~3.6a! and ~3.3! we get

S N2
3

2Dp<E
b1

zN21
dr uV~r !u1/21

1

4
logU V~b1!

V~zN21!
U. ~3.10!

On the other hand we know, as already noted above, that in the intervals 0<r<b1 and zN21

<r<bN ~where sin@2h(r)# is non-negative, see~3.4! and~3.6a!# ~3.8! can be replaced by the mor
stringent inequality@see~3.7!#

h8~r !<uV~r !u1/2, ~3.11a!

and the integration of this inequality over these intervals yields@via ~3.6a!#

p

2
<E

0

b1
dr uV~r !u1/2, ~3.11b!

p

2
<E

zN21

bN
dr uV~r !u1/2. ~3.11c!

Hence by summing~3.10!, ~311b! and ~3.11c! ~and dividing byp! we get

N2
1

2
<

1

p E
0

bN
dr uV~r !u1/21

1

4p
logU V~b1!

V~zN21!
U, ~3.12!

and thereforea fortiori @thanks to the monotonicity ofV(r ), see~1.3!#

N<
1

p E
0

`

dr uV~r !u1/21
1

4p
logUV~p!

V~q!
U1 1

2
, ~3.13a!

provided

p<b1 , ~3.13b!

q>zN21 . ~3.13c!

To complete the proof of the first upper limit reported in Sec. I, see~1.16!, we must show that the
radii p, respectivelyq, defined by~1.16b!, respectively~1.16c!, satisfy ~3.13b!, respectively
~3.13c!. For p this is immediately implied by a comparison of~1.16b! and~3.11b!; and, likewise,
indeeda fortiori, this is as well implied forq by a comparison of~1.16c! and ~3.11c!.

Let us now proceed and prove the first lower limit of Sec. I. We treat firstly the case in w
the potential is finite at the origin, see~1.19!. To this end we integrate~3.9! from 0 to an arbitrary
~of coursepositive! radiuss getting thereby the inequality

h~s!>E
0

s

dr uV~r !u1/22
1

4
logUV~0!

V~s!
U, ~3.14!

namelya fortiori, via ~3.6c!,

S N1
1

2Dp.E
0

s

dr uV~r !u1/22
1

4
logUV~0!

V~s!
U, ~3.15!
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which clearly immediately implies~1.19!.
If the potential diverges at the origin, to get the lower bound~1.22! we integrate~3.9! from p

to q and we then get via~1.16b! and ~1.16c!

h~q!2h~p!>E
p

q

dr uV~r !u1/22
1

4
logUV~p!

V~q!
U5E

0

`

dr uV~r !u1/22p2
1

4
logUV~p!

V~q!
U, ~3.16!

and via~3.6c! this clearly yields~1.22!.
A generally more stringent but less explicit bound obtains by integrating~3.9! from b1 to s

getting thereby@see~3.6a!#

h~s!2
p

2
>E

b1

s

dr uV~r !u1/22
1

4
logUV~b1!

V~s!
U, ~3.17a!

hencea fortiori, via ~3.6c!,

Np.E
b1

s

dr uV~r !u1/22
1

4
logUV~b1!

V~s!
U, ~3.17b!

hencea fortiori @see~3.13b! and ~1.3!#

Np.E
b1

s

dr uV~r !u1/22
1

4
logUV~p!

V~s!
U, ~3.18!

hence finally

Np.E
t

s

dr uV~r !u1/22
1

4
logUV~p!

V~s!
U, ~3.19a!

provided there holds the inequality

t>b1 . ~3.19b!

This condition is clearly equivalent to the requirement that the potentialV(r ) amputated of its part
extending beyondt possess at least one bound state.@Since whenV(r ) vanishes,u(r ) is linear,
u(r )5ar 1b, see~3.1a!, hence the condition~3.19b! with V(r ) vanishing beyondt guarantees
the existence ofz1,`.] It is therefore sufficient, to make sure that~3.19b! holds, that this
amputated potential,V(r )u(t2r ) @whereu(x) is the step function,u(x)51 if x>0, u(x)50 if
x,0] satisfy one of thesufficientconditions for the existence of at least one bound state repo
in Sec. I, see~1.11!–~1.13!. Here for simplicity we restrict attention to thesufficientcondition
~1.12!, and we thereby conclude that a formula adequate to guarantee that the inequality~3.19b! be
satisfied is validity, for somepositivevalue ofa of either one of the following two inequalities, se
~1.12! @below we write> in place of., sincet might coincide withb1 , see~3.19b!, which would
correspond to an amputated potential possessing only a zero-energy bound state or reson#:

a21E
0

a

dr r 2uV~r !u1aE
a

t

dr uV~r !u>1 with a<t, ~3.20a!

a21E
0

a

dr r 2uV~r !u>1 with a>t. ~3.20b!

And clearly the choicea5t leads to~1.23b!, thereby completing the proof of the first lower lim
to N for potentials singular at the origin as reported in Sec. I, see~1.23!.
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Let us now proceed and prove the second type of limits toN. For simplicity, in the case of the
upper bound we restrict attention to the case of potentials which are finite at the origin, a
course we always assume the potential to satisfy the monotonicity condition~1.3!.

First of all we introduce the potential amputated of its part beyondq

V̄~r !5V~r ! for 0<r ,q, ~3.21a!

V̄~r !50 for r>q. ~3.21b!

Hereq is defined by~1.16c!, hence it satisfies the condition~3.13c!; therefore, if we indicate with
N̄ the number of bound states possessed by the potentialV̄(r ), either N̄5N21 @if zN21<q

,bN ; indeed the zero-energy wave functionū(r ) corresponding to the potentialV̄(r ) is linear for
r .q, see~3.21b!, hence it has one less zero than the zero-energy wave functionu(r ) correspond-
ing to the potentialV(r ) if the cutoff pointq comes before the point,bN , at whichu(r ) bends
over for the last time, namely where it has its last extremum# or N̄5N @if q>bN ; we include in
the count of the numberN̄ of bound states ofV̄(r ) also a zero-energy one, should it happen t
there be one, namely thatq5bN]. So, in any case,

N̄<N<N̄11. ~3.22!

Our strategy is now to introduce two monotonically increasing ladder-type poten
V(1)(r ), respectivelyV(2)(r ), both vanishing beyondq just asV̄(r ) does@see~3.21b!#, which
minorize, respectively majorize,V̄(r ),

V(1)~r !<V̄~r !<V(2)~r !, ~3.23!

so that the number of bound states,N(1), respectivelyN(2), possessed by them majorize, respe
tively minorize,N̄, yielding, via ~3.22!,

N(2)<N<N(1)11. ~3.24!

And these potentials,V(1)(r ), respectivelyV(2)(r ), shall now be manufactured so that one c
easily compute the numbers of bound states they possess.

Indeed the potentialV(1)(r ) is now defined by the rule

V(1)~r !5V~r j
(1)! for r j

(1)<r ,r j 11
(1) , j 50,1,...,J(1)21, ~3.25a!

V(1)~r !5V~r J(1)
(1)

! for r J(1)
(1) <r ,q, ~3.25b!

V(1)~r !50 for r>q, ~3.25c!

with the increasing radiir j
(1) defined by the recurrence relation~1.24!, and thepositive integer

J(1) defined by the condition that the radiusr J(1)11
(1) yielded by this recursion~be the first one to!

exceed or equalq, see~1.25!. It is plain that this potential minorizes, see~3.23!, the truncated
potentialV̄(r ) for all values ofr ~if in doubt, draw a graph!, and it is moreover easy to compu
the numberN(1) of bound states it possesses, since for this potential

h (1)~r j
(1)!5 j p/2, j 50,1,...,J(1)11. ~3.26!

This result is implied by the differential equation satisfied byh (1)(r ), which reads simply

h8(1)~r !5uV(1)~r !u1/2, ~3.27a!

namely@see~3.25a!#
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h8(1)~r !5uV(1)~r j
(1)!u1/2 for r j

(1)<r ,r j 11
(1) , j 50,1,...,J(1), ~3.27b!

since the second term on the right-hand side of~3.7! vanishes forr j
(1),r ,r j 11

(1) because
V(1)(r )5V(1)(r j

(1)) is constant there hence its derivative vanishes, and atr 5r j
(1) because

sinb2h(1)(r j
(1))c vanishes due to~3.26! and therefore kills the contribution that would otherwi

come from the delta function produced by the derivative of the discontinuity of the pote
occurring there. And the consistency of~3.26! with ~3.27! is of course guaranteed by~3.25b! and
~1.24!.

We now note that, for this potentialV(1)(r ), ~3.26! implies

r j
(1)5zj /2

(1) if j is even, j 50,2,...,J(1)21 or J(1), ~3.28a!

r j
(1)5b( j 11)/2

(1) if j is odd, j 51,3,...,J(1)21 or J(1), ~3.28b!

where the radiizj
(1) , respectivelybj

(1) , are of course the successive zeros, respectively
extrema, of the zero-energy wave functionu(1)(r ) corresponding to the potentialV(1)(r ) @see
~3.4!#. Moreover, for a potential amputated of its part beyondq @as is the case ofV(1)(r )], the
numberN(1) of bound states is characterized by the conditionbN(1)

(1) <q @since the zero-energy
wave function is a straight line forr .q, see~3.1a! and~3.25c!#. Hence after considering the tw
possible parities, even or odd, ofJ(1), we conclude that, in both cases,

N(1)5$$~J(1)11!/2%%, ~3.29!

and via~3.24! this completes our proof of the upper limit~1.26!.
To prove the lower limit~1.29! we introduce the following ladder-type potential:

V(2)~r !5V~r J(2)
(2)

! for 0<r<r J(2)
(2) , ~3.30a!

V(2)~r !5V~r j 21
(2) ! for r j

(2),r<r j 21
(2) , j 5J(2),J(2)21,...,2,1, ~3.30b!

V(2)~r !50 for q5r 0
(2),r ,`, ~3.30c!

with the sequence ofdecreasingradii r j
(2) defined by the recursion relation~1.27!. It is plain that

this potential majorizes, see~3.23!, the truncated potentialV̄(r ) for all values ofr ~if in doubt,
draw a graph!; hence ifN(2) is the number of S-wave bound states possessed by this potentia
~first part of the! inequality ~3.24! holds. As we know, since the potentialV(2)(r ) vanishes
identically beyondq (and bN(2)

(2) <q), see~3.30c!, this numberN(2) is given by

N(2)5$$h (2)~q!/p%%. ~3.31!

Hereh (2)(r ) is of course the solution of the differential equation~3.7! for the potentialV(2)(r ),
namely

h8(2)~r !5uV(2)~r !u1/22
V8(2)~r !

4uV(2)~r !u
sin@2h (2)~r !#, ~3.32!

with the initial condition

h (2)~0!50. ~3.33!

Since the ladder-type potentialV(2)(r ) presents some discontinuities, see~3.30!, the integration of
~3.32! from the initial condition~3.33! onward shall encounter some delta functions, but th
integrable singularities of the right-hand side of~3.32! do not destroy the properties of existenc
uniqueness and continuity of the solutionh (2)(r ) of ~3.32! with ~3.33!.
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Let nowh̃(r ) be another solution of the same differential equation~3.32!, characterized by the
initial condition

h̃~0!52r J(2)
(2) uV~r J(2)

(2)
!u1/2. ~3.34!

Since clearly@see~3.33! and ~1.28!#

h (2)~0!.h̃~0! ~3.35a!

and the two functionsh (2)(r ) andh̃(r ) satisfy the same differential equation, there follows th
for every finite value ofr an analogous inequality holds@indeed, the graph of the continuou
function h̃(r ) as function ofr can never overtake the graph of the continuous functionh (2)(r ) as
function of r , since at the point of crossing their slopes must coincide becauseh̃(r ) satisfies the
same differential equation ash (2)(r ), see~3.32!, hence no crossing can occur#:

h (2)~r !.h̃~r !. ~3.35b!

Hence as well

h (2)~q!.h̃~q!, ~3.35c!

entailinga fortiori, via ~3.31!,

N(2)>$$h̃~q!/p%%. ~3.36!

@Note that, though a strict inequality sign appears in~3.35c!, one must allow for the possibility o
equality in this formula,~3.36!, because twodifferentnumbers may have thesameinteger part#.

But the initial condition~3.34! and the recursion relation~1.27! defining the radiir j
(2) have

been adjusted, as it can be easily verified in analogy to the argument used above,
h̃(r J(2)

(2) )50, h̃(r J(2)21
(2) )5p/2, h̃(r J(2)22

(2) )5p, and so on, entailing@see~1.27!#

h̃~r 0
(2)!5h̃~q!5J(2) p/2. ~3.37!

Via ~3.31! and ~3.24! this implies the lower limit~1.29!, which is thereby proven.

IV. THE KLEIN–GORDON CASE

In the context of first-quantized mechanics with relativistic kinematics, a zero-spin partic
~positive! massm moving in an external potentialW(r ), which is the fourth-component of a
relativistic four-vector, is described~in self-evident notation, and with an appropriate choice
units! by the following Klein–Gordon equation:

~P21m2!c~r !5@E2W~r !#2c~r !. ~4.1!

In the spherically symmetrical case,W(r )5W(r ), the zero-kinetic-energy~namely, E5m)
S-wave radial equation coincides with the corresponding equation for the Schro¨dinger case,~3.1!,
with the following definition ofV(r ) in terms ofW(r ):

V~r !52mW~r !2W2~r !. ~4.2!

Note that, if the potentialW(r ) is monotonically nondecreasing and vanishes at infinity@and is
thereforenonpositive, W(r )52uW(r )u], the same property, see~1.3!, holds as well for the po-
tentialV(r ). And the following conditions on the behavior ofW(r ) at the origin and at infinity are
clearly sufficient to guarantee the validity of~1.1!:

lim
r→0

br 12«W~r !c50, ~4.3a!
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lim
r→`

br 21«W~r !c50. ~4.3b!

All the results reported above in the Schro¨dinger context can therefore be immediately tak
over to the Klein–Gordon case. Note, however, that, as a consequence of the relation~4.2!, if one
introduces a ‘‘coupling constant’’g as a measure of the strength of the potential by set
W(r )5g2w(r ), then one sees that in the Klein–Gordon case asg diverges the number of S-wav
bound states grows proportionally tog2 @rather than proportionally tog as is the case in the
Schrödinger context, see~1.6!#.
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