
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 29 (2003) 2685–2701 PII: S0954-3899(03)64407-5

Electromagnetic splitting for mesons and baryons
using dressed constituent quarks

Bernard Silvestre-Brac1, Fabian Brau2 and Claude Semay2

1 Laboratoire de Physique Subatomique et de Cosmologie, 53, Av. des Martyrs,
F-38026 Grenoble-Cedex, France
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Abstract
Electromagnetic splittings for mesons and baryons are calculated in a formalism
where the constituent quarks are considered as dressed quasiparticles. The
electromagnetic interaction, which contains coulomb, contact and hyperfine
terms, is folded with the quark electrical density. Two different types of strong
potentials are considered. Numerical treatment is done very carefully and
several approximations are discussed in detail. Our model contains only one
free parameter and the agreement with experimental data is reasonable although
it seems very difficult to obtain a perfect description in any case.

1. Introduction

Quantum chromodynamics (QCD) is believed to be a good theory of strong interaction. It
has met with numerous successes in many domains. However, in the low energy regime, it
is extremely difficult to handle because of its nonperturbative character. Lattice calculations
become more and more reliable but still remain very cumbersome, time consuming and
not always transparent for the underlying physics. This explains why, in the meson and
baryon sectors, a number of alternative simpler models were introduced. Among them, the
nonrelativistic quark model (NRQM) is very appealing because of its high simplicity, ability
to treat properly the centre of mass motion, and the large number of observables that can be
described within its framework.

In NRQM formalism, the dynamical equation is the usual Schrödinger equation including
a nonrelativistic kinetic energy term plus a potential term [1]. There exist a lot of different
numerical algorithms to solve the two-body and three-body problems with a good accuracy
(see for instance [2–4]).

Nowadays, it becomes more and more frequent to use a relativistic expression for the
kinetic energy operator. The resulting dynamical equation is known as a spinless Salpeter
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equation. It has several advantages as compared to the Schrödinger equation [5, 6] and the
corresponding numerical algorithms are now well under control (see for instance [4, 6–9]).
This kind of models and NRQM both use potentials, and are called potential models.

In potential models (and indeed in many other QCD inspired models), the quark degrees
of freedom are no longer the bare quarks of the QCD Lagrangian, but are quasiparticles dressed
by a gluon cloud and quark–antiquark virtual pairs. They are called constituent quarks and the
most visible modification is the necessity to use in potential models a quark mass substantially
larger than the bare mass. In principle the bare quark–quark potential should also be modified
and folded with the quark colour density to give the final potential to be used in a Schrödinger
or in a spinless Salpeter equation. In recent quark–quark potentials appearing on the market,
this effect is taken into account [10–13]. Actually, this effect has been already considered
since a rather long time (see i.e. [14, 15]). The resulting spectra of these models are in correct
agreement with experimental data. However, it seems very difficult to get, in a unified scheme
(same form of the potential and same set of parameters), a good description of both meson and
baryon properties [16, 17]. For example in the well known works of Isgur [14, 15], the string
tension is different in the mesonic and baryonic sectors. Recently, progresses in obtaining a
unified description have been achieved [18].

The spectra are only a part of interesting observables, and the validity of a model should
be tested on other observables, especially if they are very sensitive to the form of the wave
function. Electromagnetic properties are best suited for such a study, because the basic QED
formalism is very well known and precise, and thus the possible uncertainties coming from
mechanisms or wave function (itself depending on the much less known strong interactions)
are more conveniently identified.

In this paper, we focus our study on the electromagnetic splitting between charged hadrons,
both in the meson and baryon sectors, within the framework of potential models. Since the
earliest works on charmed mesons [19], and baryons [20], a number of similar studies were
performed in the past [1, 12, 21–23]. Essentially three different sources for the splitting were
identified: a small mass difference between up and down quarks, the coulomb interaction
between charged quarks and their dipole–dipole interaction [23]. All of them seem to have an
important effect and the final result is a very subtle interplay among them. This explains why
a very proper and precise treatment must be invoked, and also why this observable is very
interesting. The current mass ratio for the u and d quarks is probably comprised between 0.2
and 0.8 [24]. However their absolute values are presumably weak (a few MeV) with respect
to the QCD scale parameter �. Thus the spontaneous symmetry breaking induces large
constituent masses for the u and d quarks; the corresponding values are very close (making
the SU(2) isospin symmetry rather good) but nevertheless different. This small difference is
a first source for the isospin splitting. Moreover, quarks being charged particles, the coulomb
interaction is obviously present (very often, it has been treated as a perturbation). The dipole–
dipole interaction (or hyperfine interaction) is a consequence of relativistic corrections to the
coulomb potential.

The same problem was also undertaken using formalisms relying more basically on
fundamental QCD. In [25], a heavy quark effective theory (first order in 1/mQ) is adopted to
study the splitting in heavy mesons, using dispersion relations. In [26] a chiral field theory is
employed to study several splittings in ordinary and strange sectors. In [27], the authors are
interested in the charmed and bottom meson sectors with a formalism based on Cottingham
formula. In [28] a tadpole term is introduced to deal with the u − d mass difference in some
hadrons. But in most of these studies, the authors limit themselves to very restricted samples,
either in meson or in baryon sector. We think that so few states to test the validity of a model
can be questionable.
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In our paper we want to deal with all the known splittings both in mesons and in baryons
in a consistent approach, and to push the potential model study further in several domains.
First we want to perform a precise and complete treatment, avoiding perturbative expressions
as much as possible. Second, we introduce the ‘contact term’, which arises on equal footing
as the dipole–dipole relativistic correction, but which is neglected by most authors [1, 23].

Finally, our most important improvement to our point of view is the use of a dressed
electromagnetic interaction between quarks. Since the constituent quarks are quasiparticles,
the electromagnetic interaction should also be modified as compared to the bare one, in a very
similar way to the quark–quark strong potential. However the electromagnetic Lagrangian is
different from the QCD Lagrangian and the electromagnetic density for the quark, playing
a role in the splitting, has no reason to be identical to the colour density occurring in the
quark–quark strong potential. Such an approach has already been proposed in [21, 22] but
with a different form for the electromagnetic density. Moreover, in these works, different sets
of parameters have been used for mesonic and baryonic sectors separately.

In order to see the sensitivity of the results on the treatment of the strong interactions for
the quark dynamics, we investigate the splitting produced with two types of wave function,
one resulting from a phenomenological nonrelativistic Hamiltonian (AL1) [29, 30] and other
with a semi-relativistic Hamiltonian (called here BSS) [18]. Moreover, since our aim is to
consider mesons and baryons on equal footing, it is important to consider interquark potentials
that lead to a correct description of both sectors. This is rather difficult to encounter. Both
Hamiltonians considered here are suited for that. The first potential (AL1) relies on the so-
called funnel or Cornell potential [31, 32]. It is completely phenomenological and one can
consider that the dressing of the quarks is included and simulated in the value of the various
parameters. The second one (BSS) starts with more fundamental QCD grounds and is based
on instanton induced effects [16, 33]; the dressing is explicitly taken into account but there
remain nevertheless some free parameters that are adjusted on the spectra.

The paper is organized as follows. Section 2 presents in more detail the strong potentials
and the way to solve the two-body and three-body problems. Section 3 deals with the
electromagnetic interaction responsible of the splitting. The results of our calculations are
presented and compared to data in section 4. Conclusions are drawn in the last section.

2. Potentials and wave function

2.1. Strong potentials

As stated in the introduction, we use in this paper two kinds of interquark potentials: one that
must be used in a Schrödinger equation (AL1) and the other in a spinless Salpeter equation
(BSS). They both depend on the relative distance r between the interacting quarks and are
able to describe in a satisfactory way both the meson and the baryon spectra. However the
BSS potential is suited, because of its underlying QCD basis, only for the light quark sectors
(u, d, s quarks). They differ by the type of kinematics and by the manner to deal with spin
splitting; although they give spectra of similar good quality, the corresponding wave functions
can differ appreciably. Their derivation and their parameters have been reported elsewhere,
and here we just want to point out the essential features and stress their differences more
explicitly. In both models, the u and d quarks are assumed to have the same mass. In the
following, they will be noted by the symbol n (normal or nonstrange).

2.1.1. AL1 potential. The AL1 potential [30], developed for a nonrelativistic kinematics,
contains the minimum ingredients necessary to get an overall reasonable description of
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hadronic resonances, a central part VC and a hyperfine term VH

Vij (r) = − 3

16
λi · λj

[
V

(ij)

C (r) + V
(ij)

H (r)
]
. (1)

The central part is merely the Cornell potential composed of a short range coulombic part,
simulating the one-gluon exchange mechanism, and a long-range linear term, responsible for
the confinement (an additional constant is very important to get the good absolute values)

V
(ij)

C (r) = −κ

r
+ ar + C. (2)

The colour dependence through the Gell–Mann matrices λ in relation (1) comes from one
gluon exchange. There is no reason, except simplicity, that such a structure is kept for the
confining and constant parts. Nevertheless, this ansatz works well for both meson and baryon
sectors.

The hyperfine term has a short-range behaviour and is chosen as a Gaussian function

V
(ij)

H (r) = 8π

3mimj

κ ′ exp
(−r2

/
σ 2

ij

)
π3/2σ 3

ij

si · sj . (3)

The interesting property, as compared to Bhaduri’s [32] or Cornell’s [31] potentials, is that the
range σij of that force does depend on the flavour

σij = A

(
2mimj

mi + mj

)−B

. (4)

A kind of dressing is realized with the Gaussian function, since the theory predicts a delta
contribution for the hyperfine potential. The various parameters, including constituent masses,
have been determined on the spectra by a best fit procedure. Although very simple, this
potential does a good job in hadronic spectroscopy.

The AL1 potential depends on quark masses in the strong hyperfine term. So a variation
of the quark masses, as necessary for treating the electromagnetic splitting, has a strong effect
on the meson masses. We have checked that this may induce wrong results in the case of a
perturbative calculation.

2.1.2. BSS potential. The BSS potential [18], developed for a semi-relativistic kinematics,
contains the Cornell potential and an instanton induced interaction. The Cornell potential has
the same form as in the AL1 potential, but the constant interaction is different for meson and
baryon sectors. In contrast to the AL1 potential, the instanton formalism is based on a SU(3)
flavour symmetry and can hardly be generalized to the heavy quark sector.

The instanton induced interaction provides a suitable formalism to reproduce well the
spectrum of the pseudoscalar mesons (and to explain the masses of η and η′ mesons). The
interaction between one quark and one antiquark in a meson is vanishing for L �= 0 or S �= 0
states. For L = S = 0, its form depends on the isospin of the qq̄ pair

• For I = 1:

VI (r) = −8gδ(�r); (5)

• For I = 1/2:

VI (r) = −8g′δ(�r); (6)
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• I = 0:

VI (r) = 8

(
g

√
2g′

√
2g′ 0

)
δ(�r), (7)

in the flavour space (1/
√

2(|uū〉 + |dd̄〉), |ss̄〉).

The parameters g and g′ are two dimensioned coupling constants. Between two quarks in a
baryon, this interaction is written [16, 34] as

VI (r) = −4(gP [nn] + g′P [ns])P S=0δ(�r), (8)

where P S=0 is the projector on spin 0, and P [qq ′] is the projector on antisymmetrical flavour
state qq ′. We have shown in [18] that this model is able to describe correctly meson and
baryon spectra in a consistent way if the following interaction is added for baryons only:

V
baryon
I (r) = CI (P

[nn] + P [ns])P S=0P L=0, (9)

where CI is a new constant.
The quark masses used in this model are the constituent masses and not the current ones.

It is then natural to suppose that a quark is not a pure pointlike particle, but an effective degree
of freedom which is dressed by the gluon and quark–antiquark pair clouds. The form that we
retain for the colour charge density of a quark is a Gaussian function

ρ(r) = 1

(	
√

π)3/2
exp(−r2/	2). (10)

It is generally assumed that the quark size 	 depends on the flavour. So, we consider two size
parameters 	n and 	s for n and s quarks respectively. More details are given in [12, 13, 18].

The instanton interaction acts differently on the symmetric (ud + du) and antisymmetric
(ud − du) flavour states; in a framework where mu = md , the isospin formalism can be
introduced to classify the basis states and this property can be taken into account without
problem. As soon as mu �= md , the up and down quark must be considered as different and
the instanton becomes very difficult to handle. Thus, for baryons, the three-body treatment
with BSS is done perturbatively. In this case, the potential has no mass dependence and the
problem mentioned above for the AL1 potential does not appear.

2.2. Numerical techniques

There exist many numerical algorithms to compute the radial function of a meson. In this
paper, we use the method based on Lagrange mesh, which is very simple, precise and fast,
and for which a recent work has shown that relativistic kinematics can be handled without
any problem [8]. Thus the same method can be applied for both AL1 and BSS potentials. To
get a very high relative precision, around 10−10, a typical number of basis states is N = 60.
Technical details can be found in [8].

Our method to solve the three-body problem is based on an expansion of the space wave
function in terms of harmonic oscillator functions with two different sizes. This method,
which is an old one [37], was given up during a long time and renewed recently in [9] (many
authors use a numerical treatment based on harmonic oscillators but with a single variational
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parameter, for instance in [15]). In this paper, it was shown that the precision achieved
was similar to the stochastic variational method [4]. This last method was also shown to be
competitive with more conventional methods, such as Faddeev formalism [38]. The number
of quanta is the relevant quantity for convergence; a very good relative precision of the order
of 10−5, necessary in our study, is achieved if we include all basis states up to 20 quanta. More
details on the method can be found in [9].

3. Electromagnetic interaction

3.1. Bare potential

The electromagnetic interaction between two pointlike particles i and j of charges Qi,Qj

and masses mi,mj is very well known. In addition to the usual coulomb potential Ucoul,
relativistic corrections (at lowest order) give rise to contact, hyperfine, tensor, symmetric
and antisymmetric spin–orbit and Darwin terms. Tensor, spin–orbit, and Darwin terms are
complicated and presumably their effects are weak, so that people neglect them. The hyperfine
interaction Uhyp does play an important role and is included in all serious calculations. The
contact term Ucont is usually discarded with no other justification than simplicity. In this study
we keep it, so that our total bare electromagnetic potential can be written as

U
(b)
ij (r) = (Ucoul)

(b)
ij (r) + (Ucont)

(b)
ij (r) + (Uhyp)

(b)
ij (r), (11)

with

(Ucoul)
(b)
ij (r) = QiQj

α

r
, (12)

(Ucont)
(b)
ij (r) = −π

2
QiQj

(
1

m2
i

+
1

m2
j

)
αδ(r), (13)

(Uhyp)
(b)
ij (r) = −8πQiQj

3mimj

αδ(r)si · sj , (14)

where α is the fine structure constant. Let us stress a point that deserves further discussion. One
can wonder why such a contact term is not kept as well in the strong potential AL1. This term
comes from one gluon exchange and is proportional to αs ; but this parameter is essentially
phenomenological and the Cornell form of the central potential is a kind of averaging of
all unknown effects coming from QCD, including the contact term. Our philosophy is to
maintain as far possible the form of the strong potential, which was shown to do a good job
in hadronic physics. In contrast, the situation is completely different in the electromagnetic
Hamiltonian (11) because the corresponding expression is the exact one and does not suffer
from ambiguities or phenomenological uncertainties. This is why we decided to include the
contact term, which is usually neglected, in order to grasp quantitatively its effect and to justify
a posteriori the validity (or not) of neglecting it.

A perturbative treatment is compulsory for such a bare electromagnetic potential, owing
to the presence of the delta function. It was shown that, in some cases, this is a very bad
approximation [12].

3.2. Electromagnetic quark density

One way to introduce the very complicated mechanisms that transform the bare quarks
(pointlike) to constituent quarks is to assume the existence of a phenomenological density
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distribution for a quark. The electromagnetic density should in principle depend on the
internal structure of the system and contain a lot of unknown processes (including probably
interferences between QCD and QED) leading to isospin symmetry breaking.

This means that a constituent quark located at r is generated by a bare quark located in
r′ with a certain probability distribution (or density) ρ(r − r′). To have an appealing physical
meaning this density must be a peaked function around zero with a certain size parameter,
which depends in principle on the quark flavour. Moreover we require the natural property
that, for a vanishing size, the constituent quark becomes pointlike and is identified to the bare
quark. Mathematically, this means that the limit of the density ρ(u) for a vanishing size is the
delta function δ(u). Another natural property is that the density is isotropic. The last required
property is that the integral of the density over the whole space is unity.

The most popular densities are of Lorentzian, Gaussian or Yukawa type. For instance,
the authors of [21, 22] adopted a Gaussian form. In this study we choose an electromagnetic
Yukawa density. There is a precise reason for that: this density is the leading ingredient of the
meson charge form factor. It is an experimental fact that the data accommodate rather nicely
to a Yukawa density, giving a form factor with an asymptotic behaviour Q−2 [35, 36], instead
of a Gaussian density which leads to Gaussian asymptotic behaviour. Keeping in mind the
previous remarks, the adopted density for quark of flavour i is

ρi(u) = 1

4πγ 2
i

e−u/γi

u
, (15)

where γi is the electromagnetic size parameter.
The dressed potential U is obtained from the bare potential U(b) by a double convolution

over the densities of each interacting quark

Uij (r) =
∫

du dv ρi(u)ρj (v)U
(b)
ij (r + v − u). (16)

With a trivial change of variable, it is quite easy to transform this double folding into a single
one

Uij (r) =
∫

dr′ U(b)
ij (r′)ρij (r − r′), (17)

with the definition of the new density

ρij (u) =
∫

dv ρi(v)ρj (u − v). (18)

Applying equation (18) to the Yukawa density (15), one gets

ρij (u) = 1

8πγ 3
i

e−u/γi if γi = γj (19)

and

ρij (u) = 1

4π
(
γ 2

i − γ 2
j

) (
e−u/γi

u
− e−u/γj

u

)
(20)

= 1(
γ 2

i − γ 2
j

) (
γ 2

i ρi(u) − γ 2
j ρj (u)

)
if γi �= γj . (21)
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3.3. Dressed potential

Starting from equation (11) and using equations (17) and (19), it is easy to obtain analytically
the dressed potential

Uij (r) = (Ucoul)ij (r) + (Ucont)ij (r) + (Uhyp)ij (r), (22)

in the case of two interacting constituent quarks with the same size γi = γj = γ . It can be
written as

(Ucoul)ij (r) = αQiQj

[
1

r

(
1 − e−r/γ

) − e−r/γ

2γ

]
, (23)

(Ucont)ij (r) = −αQiQj

16γ 3

(
1

m2
i

+
1

m2
j

)
e−r/γ , (24)

(Uhyp)ij (r) = − αQiQj

3γ 3mimj

e−r/γ si · sj . (25)

Repeating the same thing in equation (21), one obtains the electromagnetic dressed potential
in the case of different interacting quarks

(Ucoul)ij (r) = αQiQj

(
1

r
− γ 2

i

γ 2
i − γ 2

j

e−r/γi

r
+

γ 2
j

γ 2
i − γ 2

j

e−r/γj

r

)
, (26)

(Ucont)ij (r) = − αQiQj

8
(
γ 2

i − γ 2
j

) (
1

m2
i

+
1

m2
j

)
e−r/γi − e−r/γj

r
, (27)

(Uhyp)ij (r) = − 2αQiQj

3mimj

(
γ 2

i − γ 2
j

) e−r/γi − e−r/γj

r
si · sj . (28)

It is possible to treat the electromagnetic potential U as a perturbation. This procedure is
only used for the baryons with the BSS potential (see section 2.1.2).

4. Results

4.1. Determination of the parameters

We do not want to introduce a lot of new parameters; here we restrict the number of free
parameters to the minimum unavoidable. In particular the parameters of the strong potential are
maintained without modification. Important information is contained in the electromagnetic
size of the quarks γi . This size could depend on the flavour and on the electrical charge of
the quark. If the dependence on charge were dominant, we could expect that sizes of quarks
with the same charge are similar. Preliminary calculations have shown that the size must be
strongly reduced for heavy quarks, showing that the dependence on mass must be dominant.
Consequently, in order to restrict again the number of parameters, we assume that the sizes of
the u and d quarks are the same. Thus we impose γu = γd = γn. For AL1 and BSS models,
we have γn and γs as free parameters. An observable that is very sensitive to those parameters
is the charge mean square radius.

In the mesonic sector, the bare charge square radius operator for pointlike quarks is
defined by

(r2)(b) =
2∑

i=1

ei(ri − R)2, (29)
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Table 1. Electromagnetic sizes γf of the constituents quarks (in GeV−1), for different flavours f ,
and for the two different strong potentials.

γn γs γc γb

AL1 1.225 0.200 0.040 0.013
BSS 1.330 0.450 – –

where ei is the charge for quark i, ri its position, and R the position of the centre of mass. For
constituent quarks, this expression has to be folded with quark density and should be written
instead

(r2) =
2∑

i=1

ei

∫
dr′(r′ − R)2ρi(r′ − ri ). (30)

Averaging quantity (30) on the meson wave function provides us with the charge mean square
radius of the meson. Performing the calculation, one finds that this observable is a sum of a
term, that can be called the bare radius 〈r2〉(b) (which is essentially the mean value of quantity
(29) on meson wave function), plus a term which is essentially the dipole moment of the
density. With a Yukawa density, one has explicitly

〈r2〉 = 〈r2〉(b) + 6
2∑

i=1

eiγ
2
i . (31)

The dynamical contribution to the square radius is entirely contained in the bare quantity,
whose expression is very well known and is not recalled here.

From relation (31), one sees that the pion radius depends only on γn and it is used to
determine this parameter. The kaon radius depends on γn and γs ; since γn has already been
determined from the pion, the kaon radius is used to determine γs . In addition, the AL1
potential needs the further determination of γc and γb. Since the radii for D and B resonances
are not known experimentally, we determine the corresponding sizes by requiring a smooth
behaviour versus the mass. Moreover, the uncertainty on the kaon radius is rather large.
Fortunately, we checked that the isospin splitting does not depend too much on the precise
value of the quark size. Our accepted values for the electromagnetic sizes are summarized in
table 1.

Other parameters that need to be changed are the quark masses. In fact, the only
important ingredient for the splittings is the mass difference between the down and up quarks:
� = m̃d − m̃u. In view of this, we choose to maintain the s, c and b quark masses at their
nonperturbative value m̃i = mi , and to keep the average value of the isospin doublet at its
nonperturbative value (m̃d + m̃u)/2 = mn. The size parameters being determined once and
for all on charge radii, we have only one free parameter � at our disposal to try to reproduce
all the known electromagnetic splittings. To really see that this is a very big constraint, let us
recall that for doing the same job, authors of [21, 22] used four free parameters and Genovese
et al two free parameters. The π0 and ρ0 resonances are considered here as nn systems,
composed of fictitious quark and antiquark of mass m̃n = (m̃u + m̃d)/2 = mn. Doing this, we
neglect mixing of I = 0 and I = 1 components; this is a good approximation up to second
order in �/mn. One can imagine several strategies to determine the parameter �. We first
remarked that if we fit � on the mesons, the baryons were very badly reproduced, while if
we fit it on the baryons, the mesons were spoiled less dramatically. Moreover, among the
baryons, some splittings are more affected than others by a small change of �. Thus, we
decided to fit this parameter on one of the most sensitive and well known splitting, namely
− − 0 = 4.807 ± 0.04 MeV.
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Table 2. Values of the parameter � = m̃d − m̃u (in MeV), for the two potentials, and for the four
different approximations presented in the text.

C CC CH T

AL1 13.2 14.4 12.6 13.6
BSS 7.2 9.4 6.2 8.4

One aim of our study is to see the respective influence of each component of the
electromagnetic potential (22). The coulomb part seems to us unavoidable, so we will consider
four different approximations in the following:

• C: Electromagnetic potential restricted to the coulomb term (23) or (26) alone.
• CC: Electromagnetic potential restricted to coulomb and contact (24) or (27) terms alone.
• CH: Electromagnetic potential restricted to coulomb and hyperfine (25) or (28) terms

alone.
• T: Total electromagnetic potential (22) taken into account.

Each approximation requires its own � parameter, but the γi parameters can be maintained to
their values of table 1. The corresponding results are gathered in table 2. It is worth noting
that the study of any of these approximations is a complete calculation by its own and needs a
computational effort identical to the total treatment.

It is funny that for both potentials, increasing values of � are obtained with approximations
CH, C, T, CC respectively. Is it a property independent of the strong potential (realistic enough
to reproduce baryon and meson spectra)? We have no answer.

4.2. Experimental data

A number of experimental data, concerning the electromagnetic splittings, exist for both the
mesonic and baryonic sectors, and for both light quark (u, d and s) systems and systems
containing at least a heavy quark (c and b). The use of AL1 potential allows to study all data,
while BSS is restricted to the light quark domain for the reasons mentioned in section 2.1.2.
The values for the splittings are of order of some MeV and some of them are known with good
accuracy.

From the splitting in the nucleon case and many others, the d quark mass is presumably
larger than the u quark mass. From a naive argument based on rest masses only, the hierarchy of
the splittings can be explained although the quantitative value needs much refined explanation.
However, in contrast to this naive argument, a number of puzzling questions still arise and
some of them are not solved in a satisfactory manner by the up to date theoretical studies. Let
us list some of them:

• n − p = 1.293 MeV is much weaker than π+ − π0 = 4.594 MeV, despite the fact that
a very naive quark model gives n(udd) − p(duu) = � and π+(ud̄) − π0([uū − dd̄]/√

2) = 0;
• π+ − π0 has a large positive value while ρ+ − ρ0 has a small negative value (a positive

value is compatible with the error bar but with a very low value in any case);
• D+

2 − D0
2 ≈ 0 (or even may be negative) while the values for other cn̄ states are largely

positive;
• ++

c is the highest level of the multiplet, in contradiction to what one expects from naive
arguments where it should be the lowest one;
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Table 3. Meson electromagnetic splittings (in MeV) calculated for four different approximations
C, CC, CH and T, as explained in the text. The wave functions result from the strong potential
AL1 and the numerical treatment are same. The experimental values (Exp) are taken from [24].

Splitting Exp C CC CH T

π+ − π0 4.594 ± 0.001 1.239 0.828 2.111 1.693
ρ+ − ρ0 −0.5 ± 0.7 1.009 0.857 0.870 0.713
K0 − K+ 3.995 ± 0.034 8.096 9.290 7.054 8.109
K0∗ − K+∗ 6.7 ± 1.2 1.132 1.458 1.139 1.436
K0

2 − K+
2 6.8 ± 2.8 −0.794 −0.793 −0.763 −0.757

D+ − D0 4.78 ± 0.10 2.478 1.977 2.821 2.308
D+∗ − D0∗ 2.6 ± 1.8 1.513 1.120 1.428 1.037
D+

1 − D0
1 6.8 ± 5 −2.038 −2.409 −1.839 −2.161

D+
2 − D0

2 0.1 ± 4 −2.058 −2.411 −1.937 −2.235

B0 − B+ 0.33 ± 0.28 −1.877 −1.715 −1.891 −1.713

Table 4. Same as table 3 for baryons. The theoretical uncertainty may affect only the last digit.

Splitting Exp C CC CH T

n − p 1.293 0.89 1.15 0.91 1.15
�0 − �++ 2.25 ± 0.68 2.68 3.68 2.79 3.72
�+ − �++ 1.2 ± 0.6 0.57 1.22 0.73 1.35
− − 0 4.807 ± 0.04 4.82 4.82 4.81 4.76
− − + 8.08 ± 0.08 7.87 8.41 8.27 8.55
−∗ − 0∗ 2.0 ± 2.4 3.26 3.23 3.04 2.94
−∗ − +∗ 0 ± 4 1.71 1.99 1.68 1.96
�− − �0 6.48 ± 0.24 7.12 7.21 7.38 7.38
�−∗ − �0∗ 3.2 ± 0.6 3.01 2.91 2.80 2.66
++

c − 0
c 0.35 ± 0.18 1.00 −0.02 1.35 0.37

0
c − +

c 0.9 ± 0.4 0.32 0.64 0.02 0.33

++∗
c − 0∗

c 1.9 ± 1.7 1.37 0.27 1.33 0.19

�0
c − �+

c 5.5 ± 1.8 2.81 3.28 3.01 3.42

�0′
c − �+′

c 	4.2 ± 3.5 0.20 0.49 −0.08 0.20

�+∗
c − �0∗

c 	2.9 ± 2.0 −0.08 −0.31 −0.03 −0.25

�0∗∗
c − �+∗∗

c 	4.1 ± 2.5 3.09 3.42 3.24 3.51

• All the members of the charmed � verify �0
c > �+

c except the particular states �0∗
c < �+∗

c

which satisfy the opposite relation.

These remarks illustrate the fact that the mass difference between down and up quarks cannot
be the only—or even leading—ingredient to explain the splitting; the internal dynamics also
plays an important role. An important aim of this paper is devoted to examine this question.

4.3. Influence of various approximations

In this part we want to study the effect of using various approximations C, CC, CH and T of
the electromagnetic Hamiltonian. An exact treatment is performed, except for the baryons
with BSS potential, as explained previously.

Let us first present the results obtained with AL1 potential. They are gathered in table 3
for the mesons and in table 4 for the baryons. Few comments are in order:
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Table 5. Meson electromagnetic splittings (in MeV) calculated for four different approximations
C, CC, CH and T, as explained in the text. The wave functions result from the strong potential
BSS and the numerical treatment is exact. The experimental values (Exp) are taken from [24].

Splitting Exp C CC CH T

π+ − π0 4.594 ± 0.001 1.22 −0.21 4.11 2.97
ρ+ − ρ0 −0.5 ± 0.7 1.00 0.40 0.59 −0.01
K0 − K+ 3.995 ± 0.034 1.54 3.68 −0.97 1.17
K0∗ − K+∗ 6.7 ± 1.2 2.88 4.50 2.63 4.25
K0

2 − K+
2 6.8 ± 2.8 2.41 3.49 2.07 2.83

Table 6. Same as table 5 for baryons. The theoretical uncertainty may affect only the last digit.
Let us recall that, for technical reasons, the theoretical values were obtained with a perturbative
treatment.

Splitting Exp C CC CH T

n − p 1.293 2.78 4.28 2.62 4.08
�0 − �++ 2.25 ± 0.68 4.24 8.21 4.37 8.34
�+ − �++ 1.2 ± 0.6 1.18 3.69 1.59 4.09
− − 0 4.807 ± 0.035 4.83 4.81 4.81 4.80
− − + 8.08 ± 0.08 7.68 8.90 8.47 9.69
−∗ − 0∗ 2.0 ± 2.4 4.98 5.37 4.06 4.43
−∗ − +∗ 0 ± 4 3.12 4.54 2.88 4.33
�− − �0 6.48 ± 0.24 4.82 4.50 5.87 5.55
�−∗ − �0∗ 3.2 ± 0.6 5.09 5.38 4.17 4.46

• The various approximations differ significantly from other. This proves again that the
electromagnetic splitting is an observable very sensitive to the physical content put in it.
A more quantitative comparison is relegated later on.

• Although the experimental data cannot be reproduced with good precision, the calculated
values have the good order of magnitude and respect more or less the hierarchy. We mean
by this that the order of a given multiplet is generally the good one and that a large (small)
theoretical splitting corresponds to a large (small) experimental one. Let us recall that we
have only one free parameter �, which has been fitted on the − − 0 value.

• From time to time the sign is wrong (order is opposite to the experimental one), but this
effect occurs generally when compatibility is not excluded due to error bars, or at least
when the experimental uncertainty is large.

• Let us comment on the puzzling questions raised in the introduction of this section. The
splitting among the pions is larger than the splitting among the nucleons, but not enough
to claim that the problem is solved. The ρ+ − ρ0 mass difference is still wrong but the
value is lower than the naive expected one. The characteristic pattern for the D mesons is
good but the quantitative values fail. The order in the c multiplet is a good one and the
quantitative value is also very good; this case is really a success (let us mention that in
[22] the theoretical value agrees well with the experimental data, but since then the data
changed and the agreement is less good with the new value). The problem for the �c is
not solved but the order is the good one for 3 resonances over 4.

Let us now have a look on the situation concerning the wave functions arising from the
BSS potential. The mesonic sector is presented in table 5 and the baryonic sector in table 6.
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Table 7. Chi-square values divided by the number of data in the sample. The meaning of
approximations C, CC, CH, and T have been explained in the text. The meaning of the rows
is related to the sub-samples taken into account: ‘l’, ‘h’, ‘a’ for light, heavy and all sectors
respectively; ‘M’, ‘B’, ‘H’ for meson, baryon, hadron sectors respectively.

AL1 BSS

χ2 C CC CH T C CC CH T

lM 568 851 317 513 350 464 500 213
lB 3.3 3.0 3.8 5.0 34 127 23 129
lH 205 306 116 186 147 247 194 159
hM 119 169 90 134 – – – –
hB 3.0 1.5 5.9 1.2 – – – –
hH 51 73 41 56 – – – –
aM 344 510 204 324 – – – –
aB 3.2 2.4 4.7 3.3 – – – –
aH 134 198 81 127 – – – –

The same comments as for AL1 can be made for BSS generally, but in this case the puzzle
concerning the ρ has found a solution. Unfortunately, the nucleon splitting is much too
large.

Moreover the BSS results are quite different from AL1 results, indicating that, in order
to describe the electromagnetic splitting, not only a good form for the electromagnetic part of
the interaction is important, but also the strong one via the wave function. This conclusion is
very important. In order to draw this conclusion, it was necessary to use very different strong
potentials that lead equally good results on spectra both in the mesonic and in the baryonic
sectors. These requirements are not easy to be met. AL1 and BSS allow such a fruitful
comparison.

In order to grasp more quantitatively the influence of each approximation, as well as to
compare the effect of the strong potential, we calculate a chi-square value on the experimental
sample (in fact a chi-square divided by the number of data in the set). In order to avoid a too
much important weight on very precise values, a minimum uncertainty at 0.1 MeV has been
assigned arbitrarily to those values. The results are gathered in table 7. Let us note that this
chi-square has no precise statistical relevance; it is just a convenient way to get a synthetic
view of the comparison between the various approximations. To have a more refined analysis,
we separate the sample for meson (denoted by ‘M’ in the table), for baryon (‘B’ in the table),
or the entire sample of hadrons (‘H’ = ‘M’ + ‘B’ in the table). Moreover we also distinguish
between light sector (u, d, s denoted by ‘l’ in the table), heavy sector (c, b denoted by ‘h’ in
the table), or all sectors (denoted by ‘a’ = ‘l’ + ‘h’ in the table). For instance the line ‘hB’
means a chi-square calculated on heavy baryons, ‘lM’ calculated on light mesons, ‘aH’ on the
entire sample and so on.

Interesting remarks can be emphasized:

• The baryonic sector is explained in a much more satisfactory way, whatever the chosen
strong potential. This is the consequence of our arbitrary choice to adjust the free
parameter � on a baryon resonance. Should we have chosen to fit � on a meson
resonance, the mesonic sector would have been much best reproduced, but at the price
of a dramatic spoiling of the baryonic sector, and with an overall worse description. It
appears that a consistent description of electromagnetic splittings for both mesons and
baryons is hardly feasible with a model containing only one free parameter. Let us stress



2698 B Silvestre-Brac et al

that our model probably does not contain all possible sources of splitting. For instance,
the pion mass difference can be explained with the vector meson dominance assumption
[39]. Nevertheless, this last model relies on pointlike pion while mesons are composite
particles in our approach. So it is difficult to compare such so different phenomenological
models of QCD.

• Concerning the BSS calculation, the exact formalism (T approximation) is the best one for
mesons, but it is the CH approximation that is the best for baryons and the C approximation
(presumably the crudest one) for the entire set. Anyhow, addition of the contact term
deteriorates seriously the results.

• Concerning the AL1 calculation, several conclusions are drawn. For baryons, all
approximations are roughly of the same quality. What is gained in data by one
approximation versus the others is lost in another data. But curiously CC is the
best approximation and T the worse one, so that the conclusion is rather different from
BSS case. For mesons, CH is always the best approximation and CC the worse. For the
totality of the sample this conclusion remains, while the exact treatment (T) is just a bit
better than the crudest one (C). Here again the contact term has a very bad influence.

• AL1 and BSS calculations give results of comparable quality for the whole set, but BSS is
much better for mesons, and AL1 much better for baryons. This may be explained by the
fact that only a perturbative treatment (and not an exact one as in AL1) can be performed
with BSS in the baryonic sector.

• It is interesting to compare our results with some previous studies treating both meson
and baryon electromagnetic splittings:

(i) In [21, 22], the results look at least as good as ours, but we want to address two
comments. First, some data have changed since that time (for instance, the old value
of 1.8 MeV for the ++

c − 0
c splitting is now 0.35 MeV) and new ones are now

available (for instance, their calculated value of 4.4 MeV for the D+
2 − D0

2 is now
experimentally estimated at 0.1 MeV). Second, the value of the electromagnetic quark
size is determined by a best fit on the splittings, while in our case, the same parameter
is fixed by meson form factors and cannot be considered as a free parameter.

(ii) In [23], the results look also rather good, but there exist several differences with the
present work. First, the contact term is absent. Second, only the hyperfine term is
dressed in order to avoid a collapse. Third, two free parameters were used, the u and
d masses separately.

No doubt that if we have allowed more free parameters in our model (for example releasing
the constraint (m̃u + m̃d)/2 = mn), our results would have appeared better. But this was
not the ultimate goal of our paper; we were interested in discovering what are the necessary
ingredients to explain the splittings.

Another important point for the consistency of our approach is that, with the new values
of the u and d masses, the absolute masses for the meson and baryon resonances are also well
reproduced. This point is not often studied in previous works. Just to convince the reader that
our formalism is able to provide a good description of meson and baryons simultaneously,
we present below the absolute masses of one member of the multiplet (the other can be
obtained using the values of the splittings given above) for both mesons (table 8) and baryons
(table 9). The T approximation is used and the treatment is exact except for baryons with the
BSS potential.

The small discrepancy for light baryons in the case of AL1 potential can be attributed
to a three-body force [32], which is mass dependent. The instanton does not give rise to
a three-body force for the baryon [16, 34], and the parameters have been fitted directly to



Electromagnetic splitting for mesons and baryons using dressed constituent quarks 2699

Table 8. Absolute masses for some mesons. Calculations are done with strong potentials AL1 and
BSS, and with the total electromagnetic Hamiltonian. The experimental values (Exp) are taken
from [24].

System Exp AL1 BSS

π0 134.98 137.3 145.8
ρ0 769.0 769.7 756.2
K+ 493.68 486.6 491.2
K+∗ 891.66 902.7 888.7
K+

2 1425.6 1333.4 1377.5

D+ 1869.3 1863.2 –
D+∗ 2010.0 2016.4 –
D+

1 2427 2419.6 –

D+
2 2459 2451 –

B+ 5279 5295 –

Table 9. Same as table 8 for baryons.

System Exp AL1 BSS

p 938 994 935
�0 1234 1308 1260
� 1116 1149 1105
− 1197 1233 1201
−∗ 1387 1439 1395
�− 1321 1343 1323
�−∗ 1535 1560 1522
� 1672 1675 1646
�+

c 2285 2290 –

++
c 2453 2466 –

�+
c 2466 2467 –

�+′
c 2574 2572 –

�+∗
c 2647 2650 –

�+∗∗
c 2815 2788 –

�0
c 2697 2675 –

�0
b 5624 5635 –

the absolute masses of mesons and baryons. The agreement with experimental data is rather
satisfactory.

5. Conclusions

In this paper, we calculated the electromagnetic splitting on hadronic systems. This observable
is a very sensitive test of the formalism because it results from a very subtle and fine balance
between several physical ingredients. In order to concentrate on the physical aspects of
the problem, we were very cautious in the numerical treatment, both for the two-body and
three-body problems. Thus we are very confident with our numerical results, and interesting
conclusions can be emphasized.

As compared to previous works we considered the total electromagnetic Hamiltonian
(excepted Darwin, spin–orbit and tensor forces that we believe to play a very minor role).
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In particular we took into account the so-called contact term that is usually neglected.
Moreover, we treated the quarks as constituent particles with an electromagnetic size that
modifies the form of the electromagnetic interaction. Lastly, we based our calculations on wave
functions resulting from two different strong potentials: the phenomenological AL1 potential
to be used with a nonrelativistic kinematics energy operator and the more fundamental BSS
potential, including instanton effects, to be used with a relativistic kinetic energy operator.
The size of the quarks were determined in order to reproduce the pion and kaon charge form
factors. Only one free parameter, the mass difference between down and up quarks, is left at
our disposal; it was fitted on the − − 0 splitting. We want to emphasize that in this paper,
with only one parameter, we try to reproduce the totality of the experimental data, including
mesons and baryons. To our opinion, this is a condition to pretend to some consistency in
the formalism. This condition is rarely met in previous calculations, since authors very often
restricted themselves either to mesons (or even to less restrictive domains) or to baryons.

We first showed that dressing the strong and electromagnetic interaction is a necessity
to obtain in a consistent way both the hadron spectra, the meson form factors and the
electromagnetic splitting.

By comparison of AL1 and BSS results, we stressed that the strong potential, via the
wave function, is an important ingredient in the description of electromagnetic splittings. In
our particular case, AL1 gives a better description of baryons and BSS a better description of
mesons.

But we proved also that the electromagnetic Hamiltonian is equally important for
explaining the splittings. Adding or removing a term (contact or hyperfine) has a nonnegligible
influence. In particular taking into account the contact term spoils much of the results, and
curiously it is the approximation based on coulomb + hyperfine (the usual ingredient for many
people) which is globally the best.

In our formalism the splittings are described in a reasonable way, specially owing to the
fact that we have only one free parameter to try to reproduce 26 experimental data; the order
among multiplet masses is generally correct and the values have the right order of magnitude.
But the agreement is far from being perfect; some suggested puzzles have been solved but
some others are still open questions. New improvements must be done in future studies.
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