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In the context of relativistic quantum mechanics, where the Schrédinger equation is
replaced by the spinless Salpeter equation, we show how to construct a large class
of upper limits on the critical valueg(f), of the coupling constang, of the central
potential, V(r)=-gu(r). This critical value is the value af for which a first¢-wave

bound state appears. @05 American Institute of Physics.
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I. INTRODUCTION

A covariant description of bound states of two particles is achieved with the Bethe—Salpeter
equation® This equation reduces to the spinless Salpeter eqdatiben the following approxi-
mations are performed:

(i) elimination of any dependences on timelike variableghich leads to the Salpeter
equatiori),

(i)  any references to the spin degrees of freedom of particles are neglected as well as negative
energy solutions.

The spinless Salpeter equation takes the faimc=1)

[Vp?+m? + V(r) W (r) = MW(r), (1)

wherem is the mass of the particle ahd is the mass of the eigenstdtd =m+E, E is the binding
energy. We restrict our attention to interactions which are introduced in the free equation through
the substitutiorM — M -V(r), whereV(r) is the time component of a relativistic four-vector. The
interaction could also, in principle, be introduced through the substitygienp—A(r), where

A(r) is the spatial component of a relativistic four-vector. However we do not consider this kind
of potential since the derivation of the spinless Salpeter equation from the Bethe—Salpeter equation
leads toA(r)=0. Equation(1) is generally used when kinetic relativistic effects cannot be ne-
glected and when the particles under consideration are bosons or when the spin of the particles is
neglected or is only taken into account via spin-dependent interactions. Despite its apparent
complexity, this equation is often preferred to the Klein—Gordon equation. Equdti@ppears,

for example, in mesons and baryons spectroscopy in the context of potential nieeke|sor
example, Refs. 498[For a review of several aspects of the “semirelativistic” description of
bound states with the spinless Salpeter equation see W. Lucha and F. F. Schéberl, Int. J. Mod.
Phys. A 14, 2309(1999, and references therejn.

Due to the pseudodifferential nature of the kinetic energy operator, few exact results are
known about this equation. Most of these results have been obtained for a Coulomb p@@ntial
example, upper and lower bounds on energy lovels Recently, upper and lower limits on
energy levels have also been obtained for some other particular interaéfibhs.

dElectronic mail: fabian.brau@umh.ac.be

0022-2488/2005/46(3)/032305/9/$22.50 46, 032305-1 © 2005 American Institute of Physics

Downloaded 21 Feb 2005 to 164.15.124.88. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp


http://dx.doi.org/10.1063/1.1850997

032305-2 Fabian Brau J. Math. Phys. 46, 032305 (2005)

Conversely to the Schrodinger equation, for which a fairly large number of results giving both
upper and lower limits on the number of bound states can be found in the litefateefor
example, Refs. 18—270only two results are known for the spinless Salpeter equafibhrhe first
result, obtained in Ref. 28, is an upper bound on the total number of bound states yielding a lower
limit on the critical value,gf:o), of the coupling constanfstrength, g, for which a firstSwave
(£=0) bound state appeard being obviously the angular momenturim the potentialV(r)
=-gv(r). The second results, obtained in Ref. 29, is an upper limit on the numbéwafve
bound states which yields a lower limit on the critical valg%f? for which a first¢-wave bound
state appears.

In this paper, we obtain accurate upper limits on the critical stregﬁ)[rapplicable to attrac-
tive (purely negativg central potentials which are less singular thanm®-at the origin. This
limitation has a deep reason. Indeed, it is known that for the spinless Salpeter equation, a potential
which behaves like i1 at the origin is characterized by a maximal value of the coupling constant
above which the spectrum is no longer bounded from below. This particularity has been studied in
detail for the Coulomb potentialsee, for example, Ref.)9The —+~* singularity is a critical
singularity for the spinless Salpeter equation just as thé singularity is a critical singularity for
the Schrédinger equation. So in this paper we discard this class of potentials which should be
treated separately. Moreover we suppose that the central potéias piecewise continuous for
r € ]0,o0[. The upper limits orgff) we obtain in Sec. Il are compared with the exact critical value
obtained numerically for some test potentials. These comparisons indicate that the new upper
limits are very restrictive. Some conclusions are presented in Sec. lll.

II. UPPER LIMIT ON THE CRITICAL STRENGTH

The idea used to derive the upper limit gﬁ) is to transform the standard eigenvalue problem
obtained with the time independent spinless Salpeter equétjpand where the eigenvalues are
the eigenenergies, into an eigenvalue problem where the eigenvalues are the critical coupling
constants. These critical values of the strength of the potential correspond to the occurrence of an
eigenstate with a vanishing binding energy. We thus consider the zero binding energy spinless
Salpeter equation that we need to write as an integral equation. This has been done in Ref. 29 but
since we need some modifications in the development, we recall the main line here.

We must calculate the Green function of the kinetic energy operator. Similar calculations have
also already been performed previou@ﬁlln contrast to results found in Ref. 31, we need here
to calculate the Green functionof the following operator:

T(p?) = Vp?+n¥-m. (2

This is done by performing the integral

1 exp(—ip-A)
G ’A = d T, 3
(m ) (277_)3 f \’ypz + m2 -m ( )
whereA=r-r’ andA=|A|. We find that
m 2 m
G(m,A)—m[1+7—TF(mA)] = mH(mA), (439
with
“dz T T *
Fly)= | —Ki@+Z=Kiy)+- - | dzKy2), (4b)
y Z 2 2 y

and whereK ,(y) is a modified Bessel functiofsee, for example, Ref. 32, p. 374The zero
binding energy spinless Salpeter equation takes thus the form of the following integral equation:
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\If(r):—fdr’ G(M,A)V(r")¥(r’), (5)

with G(m,A) given by (4). We now restrict our attention to central potentiss)=\V(r), with r
=r.

Integration over angular variables reduces the integral equéfipto the following one-
dimensional integral equation

ue(r)=- r dr’ Ge(m,r,r" )V(r")u,(r’), (6a)

0

with

(T H(mA
Ge(m,r,r’):%f dé’ sing’ (A )Pe(cose’), (6b)
0

whereu,(r) is the radial wave function¥’(r)=(u,(r)/r)Y.(f) and whereH(x) is defined by(4a).

An important technical difficulty, to obtain a symmetrical kernel, appears if the potential
possesses some change of digee relation(7) below]. This is overcome when one searches for
necessary conditions, or upper bound on the number of bound states, by replacing the potential by
its negative parV(r)—V~(r)=—max0,-V(r)). Indeed, the potentidl(r) is more attractive than
V(r) and thus a necessary condition for existence of bound stat¥s(im is certainly a valid
necessary condition for(r). This procedure can no longer be used to obtain sufficient conditions.
For this reason we consider potentials that are nowhere positivis —gv(r), with v(r) =0.

The integral equatiori6) can be written with a symmetrical kernel provided we introduce a
new wave function

Be(r) = V()| H2ug(r). (7)

This change of function leads to the following integral equation:

(1) =gf dr'Ke(m,r,r")(r'), (8a)

0
with

Ke(m,r,r") =o(n)Y2G,(m,r,r")uv(r’)*2. (8b)

The relation(8) is thus an eigenvalue problem and, for each valug, difie smallest characteristic
number is just the critical valug(f). The other characteristic numbers correspond to the critical
values of the strength of the potential for which a second, a third-wave bound state appears.
The kernel(8b) acting on the Hilbert space?(R) is an Hilbert—Schmidt operator for potentials

which decrease faster than' at infinity. Thus this kernel satisfies the inequality

J f dx dy K((X,Y)Ke(X:Y) <. (9)
0o Jo0

Consequently the eigenvalue problé®halways possesses at least one characteristic nuiRleér
33, pp. 102-106(in general, this problem has an infinity of characteristic numbers

Now we use the theorertsee, for example, Ref. 33, pp. 118-11¢hich states that, for a
symmetric Hilbert—Schmidt kernel, we have the variational principle
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max
¢

f dxdy Ke(,y) o(X)0(y)

-1 (10
0 |

o

for ¢(r) satisfying

f dr o(r)?=1. (12)
0

The maximal value is reached fefx)=¢;(x), wherep,(x) is the eigenfunction associated to the
smallest eigenvalug;. Consequently, for an arbitrary normalized functidfx), we obtain the
following upper limit ong;:

-1

9. =< (12

f dx dy Ko (x, ) FOf(y)
0

For the clarity of the discussion we now consider in two separate sections the ultrarelativistic
regime(m=0) and the relativistic regimém=>0).

A. Ultrarelativistic regime  m=0

In this section, we derive atemong othersupper limit on the critical valueg(f), of the
coupling constanty, of the potential V(r)=—gu(r), for which a first€-wave bound state appears
in the ultrarelativistic regime(m=0). In this limit, the kernel takes a simple form since
mK;(my)=1/y whenm goes to zero. This implies that

lim mH(mA) = % (13

m—0 oy

The functionG,(0,r,r’) takes then the form

sin g’
A2 P/(cos#’). (14)

e’ (™
Ge(O,r,r’):—J de’
™ Jo
A simple change of variable leads (Ref. 32, p. 335

Pe(y) _1 (r2+r’2)
2+ 32y -y w7\ 2’ )

1 1
Gy(O,r,r') = ZJ dy (15
-1

where the functiorQ,(x) is a Legendre function of the second kind. The funct@u0,r,r’) can
thus be evaluated explicitly for each value of the angular momertuvde have, for example,

1 r+r’
GoOr,r')==In|—— (16)
T r=r
and
1 r2+r2 |r+r’
Gl(O,r,r’):—{ ; - —1] (17)
| 2rr r-r

Since the functiorG,(0,r,r’) is given by the relatior§15), it follows that the kerneK,(0,r,r’),
see(8h), is known for each value af. Now, we just need to choose a suitable normalized function
f(r) to apply the variational principle reported above.

For simplicity we restrict the rest of the following discussion #e0 but extensions to
nonvanishing values of the angular momentum is obvious, one just needs to compute the corre-
sponding expression of the functi@y(0,r,r’).
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TABLE |. Comparison, for some typical potentials, between the exact critical va@@?ésthe upper Iimitsg[}‘;‘{ (19), gggg
(21) and the lower limits obtained in Refs. 28 and 29.

v(x) Reference 29 Reference 28 g? s a9
exp(—x) 4.443 4.370 5.574 5.584 7.411
[coshx)]? 4.126 3.886 5.008 5.018 6.769
exp(—x?) 4.513 4.169 5.426 5.442 7.399
X exp(—X) 3.696 3.349 4.360 4.364 5.964

The functionf(r) should be as close as possible to the zero binding energy wave function but
also should be general and simple enough to obtain a neat formula. We simply choose

fr) =Ar"w(r)’1*? p>o0, (18)

whereA is the normalization factor. The relatio(8b), (12), (16), and(18) lead to the following
upper limit ong":

aﬂ'f dx F1(2p-1;x)
0 < 0
gc =

= 5 oy g (19)
ZJ dx Fl(p;X)f dy Fl(p;y)ln(—>
0 0 Xy
whereF;(q; x) =x@ /2y (x)(@*D’2 and where we have introduced the parametevhich takes the
value 1, respectively, 2 for one, respectively, tidentica) particle problems. The most stringent
upper limit is obviously obtained by minimizing the right-hand side(td) with respect to all
positive values op.

A simpler, but less stringent, version of this upper limit can be obtained with the help of the
following minorization:

2
In(ﬂ> _— (20)
x-y/  x

aﬂ'f dx F1(2p-1;%)
O — =S, (21)

c X
4J dx x‘lFl(p;X)f dy yFi(p:y)
0 0

The accuracy of these upper limits can be tested with some typical potentials. The comparison
between the exact resultsbtained by solving numerically the spinless Salpeter equagiod the
upper limits(19) and (21) is reported in Table I. We have also added two lower Iimitsg@%
obtained with the upper limits on the number of bound states derived in Refs. 28 and 29. Note that
for these tests, we choose a two identical particles probten?.

The results reported in Table | indicate clearly that the accuracy of the uppe(1@pis quite
remarkable. The upper limi{1) is obviously less stringent but could prove to be useful to obtain
explicit formulas. The typical value gf which optimize these upper limits varies between 2 and
3. We do not consider other choices figr) [see(18)] here since the relatiofl9) is already very
accurate.

As an additional indication that the upper limits obtained with the method proposed in this
work are quite accurate, we report in Table 1l a comparison between the exact value of the critical
strengthg(cl) (£=1) and the corresponding upper limit obtained with the relatid®, (17), and

(18) and notecg[]";O"):l in this table.
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TABLE Il. Comparison, for some typical potentials, between the exact criti-
cal valuesg(cl) and the upper Iimig[j“pco’h1 obtained with the relationgl2),
(17), and(18).

U(X) ggl) ggipzo,|=1
exp(—-x) 10.975 10.992
[coshx)]? 8.1174 8.1268
exp(—x?) 10.200 10.231
X exp(—x) 9.5442 9.5636

B. Relativistic regime m>0

To obtain an upper limit ogff) for a nonvanishing mags, we need to calculate the expres-
sion of the functionG,(m,r,r’). To this end we note that

o
Ki(y) < F(y) < Ky(y) + > (22
From the relation(12), it is obvious that a minorization of the kernk}(m,r,r’) is enough to

obtain the upper limit. However, the minorizati¢?2) of the functionF(y) is too crude to obtain
good results. Instead we use

FY) = Kaly) + 7 = 2 expl=y). (239

This minorization(23) is proved in the Appendix. From the definition 8f(m,r,r’) (6b) and the
inequality (23) we obtain

1 1
Gy(mr,r')y = —G,(m,r,r') +S,(m,r,r') - E?}(m,r,r’), (24)
o
where
4! r2+r’2—y2
ge(m,r,r’)=mf dy Ky(my)Pe| —————/, (25)
r=r’| 2rr
rer! r2+r'2_y2> 2Mm ¢
S(m,r,r’)y=m dy P = , 26
€( ) Jr—r’l Yy (’( orr! 20+ 1 < '> ( )
with r_=min[r,r'] andr-=maxr,r’'] and Ref. 34,
1 [2 . 12 _ oprty,
, , exp(—myre+r'<=2rr'y)
%(mvrar ):mrr f dy [ 2 12 ] P€(y)
1 \Nre+r'e=2rr'y
2 12 ’
2 fl K= myr2+r'2=2rr'y)
=+/—mrr’ | d P
\/; i y [MP(r2+r'2=2rr'y) M4 )
=2mrr 'K peyo(mro) gy p(mr.), (27)

where I ,(x) is a modified Bessel functiorisee, for example, Ref. 32, p. 374The kernel
S¢(m,r,r’) is actually the Green function of the nonrelativistic kinetic energy operator and takes
a simple form while the kerng},(m,r,r’) can be calculated analytically for each valuetof

We find, for example,
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TABLE lll. Comparison, for some typical potentials, between the exact critical vag@fésand the upper Iimig[}‘p>0 (32).

exp(—x) [cosh{x)]? exp(—x?)

v(x)
8 gf;O) gLT;O gf:o) gun'|p>0 gi:O) glr]wp>0
0.1 4.694 5.390 4.461 4.994 4.927 5.363
0.5 2.387 2.547 2.766 3.006 3.309 3.589
1 1.361 1.407 1.742 1.843 2.198 2.352
2 0.7133 0.7206 0.9598 0.9862 1.257 1.307
3 0.4804 0.4817 0.6549 0.6642 0.8669 0.8880
4 0.3607 0.3615 0.4956 0.4994 0.6589 0.6694
5 0.2890 0.2893 0.3981 0.3999 0.5305 0.5364

Go(m,r,r’) = Ko(mir =r']) = Ko(m(r +1")), (29)

Gamyr,r') = Ko(mlr =r’[) + Ko(m(r +17)) + #[(r +r)Ka(m(r +1) = [r = r'[Ky(mlr —r'].

(29)

Now, we just need to choose a suitable normalized functioh to apply the variational
principle reported abovEsee(12)]. We take the following expression fd(r):

f(r)=Alr®Y(r)P¥2, p>o0. (30)

For simplicity we again restrict the rest of the following discussiolf #® but extensions to
nonvanishing values of the angular momentum is obvious, one just needs to compute the corre-
sponding expression of the functi@y(m,r,r’).

The relationg8b), (12), (18), and(28) lead to the following upper limit 0@20):

af dx\&FZ(Zp -1;x)
0 < 0 m>0

c = Y X Egup ! (318)
2[ dx Fz(p;x)f dy Fx(p,y)T(x,y)
0

0

with

TOy) = ~{KBlx =) = Kol Bx +y))] + 26y + expl- B+ ) - exit= Bx= )],

(31b

whereF,(q,x)=x9"Y%(x)@*1"2 and whereB=mR R being the scale of length which appears in
the potentialv(r)=v(RX)]. Again, we have introduced (813 the parametetr which takes the
value 1, respectively, 2 for one, respectively, tlidentica) particle problems.

The accuracy of this upper limit can be tested with some typical potentials. The comparison
between the exact results and the upper lidib is reported in Table Ill. Note that for these tests,
we also choose a two identical particles problers,2.

The results reported in Table Il indicate clearly that the accuracy of the upper(8a)iis
quite good. But for a small value ¢ the upper limit is however less restrictive. Thus for a small
value of B it is preferable to use an intermediate form fér). We then propose in general to use
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f(r)=Alr2P (r)P1¥2, p>o0, (32

with 1<a=<?2. This last expression fdi(r) improves significantly the restriction on the possible
values ofgc) Indeed, for3=0.1,a=1.18 and for the exponential potential, the upper limit is then
equal to 4.812 instead of 5.390. But this additional flexibility is only significant for a small value
of B, indeed for3=0.5 the best upper limit is found to be equal to 2.5&1r the exponential
potential anda=1.69 instead of 2.547.

However, even with the choicg2) for f(r), the upper limit(31) still yields less restrictive
results for smaljg than those obtained for larger values®br those obtained with the upper limit
(19). This is easy to understand, since this is in the sector of sghaliat the error introduced by
the inequality(23) is the most important. Indeed, in the limit gfgoing to zero, the upper limit
(31) coincides with the upper limitl9) and for 8 going to infinity, only the nonrelativistic kernel
S¢(m,r,r’") contributes.

Ill. CONCLUSIONS

In this paper we have shown how to construct upper limits on the critical vgiﬁepf the
coupling constantg, of a central potentialy(r)=—gv(r). The method used to derive the upper
limits is quite general and othdpossibly more complicatgdamilies of upper limits yielding
(possibly stronger restrictions og(ce) could also be obtained. Indeed, the method is based on a
variational principle for which a trial zero energy wave function is needed. There is no limitation
on the accuracy of such a trial function, which imply that there is, in principle, no limitation on the
accuracy of the upper limit ogff) derived with this procedure. However, this remark is only true
for the ultrarelativistic regimen=0, where the kernel of the integral equation has been calculated
exactly. Form> 0, a minorization of the kernel has been used yielding some errors in the restric-
tions on the possible values of the critical valg{é) which cannot be compensated by a better
choice of the trial zero energy wave function. In this paper we have proposed in Sec. Il a
compromise between accuracy and simplicity of the final formula. The accuracy of the upper
limits on gff) was then tested with some typical potentials.
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APPENDIX: MAJORIZATION OF THE PRIMITIVE OF Kj(x)

We choose the following integral representation for the modified Bessel furi€gion (Ref.

32, p. 376:
Ko(x) = f ’ dt exp(— x cosht). (A1)
0
We have
* [T exp— ycosht) _m ~
J;, dx Ko(x) = fo dt———— cosht y)f —— > exp-y). (A2)
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