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In the context of relativistic quantum mechanics, where the Schrödinger equation is
replaced by the spinless Salpeter equation, we show how to construct a large class
of upper limits on the critical value,gc

s,d, of the coupling constant,g, of the central
potential,Vsrd=−gvsrd. This critical value is the value ofg for which a first,-wave
bound state appears. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1850997g

I. INTRODUCTION

A covariant description of bound states of two particles is achieved with the Bethe–Salpeter
equation.1 This equation reduces to the spinless Salpeter equation2 when the following approxi-
mations are performed:

sid elimination of any dependences on timelike variablesswhich leads to the Salpeter
equation3d,

sii d any references to the spin degrees of freedom of particles are neglected as well as negative
energy solutions.

The spinless Salpeter equation takes the forms"=c=1d

fÎp2 + m2 + Vsr dgCsr d = MCsr d, s1d

wherem is the mass of the particle andM is the mass of the eigenstatesM =m+E, E is the binding
energyd. We restrict our attention to interactions which are introduced in the free equation through
the substitutionM→M −Vsr d, whereVsr d is the time component of a relativistic four-vector. The
interaction could also, in principle, be introduced through the substitutionp→p−Asr d, where
Asr d is the spatial component of a relativistic four-vector. However we do not consider this kind
of potential since the derivation of the spinless Salpeter equation from the Bethe–Salpeter equation
leads toAsr d=0. Equations1d is generally used when kinetic relativistic effects cannot be ne-
glected and when the particles under consideration are bosons or when the spin of the particles is
neglected or is only taken into account via spin-dependent interactions. Despite its apparent
complexity, this equation is often preferred to the Klein–Gordon equation. Equations1d appears,
for example, in mesons and baryons spectroscopy in the context of potential modelsssee, for
example, Refs. 4–8d. fFor a review of several aspects of the “semirelativistic” description of
bound states with the spinless Salpeter equation see W. Lucha and F. F. Schöberl, Int. J. Mod.
Phys. A 14, 2309s1999d, and references therein.g

Due to the pseudodifferential nature of the kinetic energy operator, few exact results are
known about this equation. Most of these results have been obtained for a Coulomb potentialsfor
example, upper and lower bounds on energy levelsd.9–13 Recently, upper and lower limits on
energy levels have also been obtained for some other particular interactions.14–17
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Conversely to the Schrödinger equation, for which a fairly large number of results giving both
upper and lower limits on the number of bound states can be found in the literaturessee, for
example, Refs. 18–27d, only two results are known for the spinless Salpeter equation.28,29The first
result, obtained in Ref. 28, is an upper bound on the total number of bound states yielding a lower
limit on the critical value,gc

s0d, of the coupling constantsstrengthd, g, for which a firstS-wave
s,=0d bound state appearss, being obviously the angular momentumd in the potentialVsrd
=−gvsrd. The second results, obtained in Ref. 29, is an upper limit on the number of,-wave
bound states which yields a lower limit on the critical value,gc

s,d for which a first,-wave bound
state appears.

In this paper, we obtain accurate upper limits on the critical strengthgc
s,d applicable to attrac-

tive spurely negatived central potentials which are less singular than −r−1 at the origin. This
limitation has a deep reason. Indeed, it is known that for the spinless Salpeter equation, a potential
which behaves like −r−1 at the origin is characterized by a maximal value of the coupling constant
above which the spectrum is no longer bounded from below. This particularity has been studied in
detail for the Coulomb potentialssee, for example, Ref. 9d. The −r−1 singularity is a critical
singularity for the spinless Salpeter equation just as the −r−2 singularity is a critical singularity for
the Schrödinger equation. So in this paper we discard this class of potentials which should be
treated separately. Moreover we suppose that the central potentialVsrd is piecewise continuous for
r P g0,`f. The upper limits ongc

s,d we obtain in Sec. II are compared with the exact critical value
obtained numerically for some test potentials. These comparisons indicate that the new upper
limits are very restrictive. Some conclusions are presented in Sec. III.

II. UPPER LIMIT ON THE CRITICAL STRENGTH

The idea used to derive the upper limit ongc
s,d is to transform the standard eigenvalue problem

obtained with the time independent spinless Salpeter equations1d, and where the eigenvalues are
the eigenenergies, into an eigenvalue problem where the eigenvalues are the critical coupling
constants. These critical values of the strength of the potential correspond to the occurrence of an
eigenstate with a vanishing binding energy. We thus consider the zero binding energy spinless
Salpeter equation that we need to write as an integral equation. This has been done in Ref. 29 but
since we need some modifications in the development, we recall the main line here.

We must calculate the Green function of the kinetic energy operator. Similar calculations have
also already been performed previously.30,31 In contrast to results found in Ref. 31, we need here
to calculate the Green functionof the following operator:

Tsp2d = Îp2 + m2 − m. s2d

This is done by performing the integral

Gsm,Dd =
1

s2pd3 E dp
exps− ip · Dd
Îp2 + m2 − m

, s3d

whereD=r −r 8 andD= uDu. We find that

Gsm,Dd =
m

4pD
F1 +

2

p
FsmDdG ;

m

4pD
HsmDd, s4ad

with

Fsyd =E
y

` dz

z
K1szd +

p

2
= K1syd +

p

2
−E

y

`

dz K0szd, s4bd

and whereKnsyd is a modified Bessel functionssee, for example, Ref. 32, p. 374d. The zero
binding energy spinless Salpeter equation takes thus the form of the following integral equation:
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Csr d = −E dr 8 Gsm,DdVsr 8dCsr 8d, s5d

with Gsm,Dd given by s4d. We now restrict our attention to central potentialsVsr d=Vsrd, with r
= ur u.

Integration over angular variables reduces the integral equations5d to the following one-
dimensional integral equation

u,srd = −E
0

`

dr8 G,sm,r,r8dVsr8du,sr8d, s6ad

with

G,sm,r,r8d =
mrr8

2
E

0

p

du8 sinu8
HsmDd

D
P,scosu8d, s6bd

whereu,srd is the radial wave function,Csr d=su,srd / rdY,msr̂ d and whereHsxd is defined bys4ad.
An important technical difficulty, to obtain a symmetrical kernel, appears if the potential

possesses some change of signfsee relations7d belowg. This is overcome when one searches for
necessary conditions, or upper bound on the number of bound states, by replacing the potential by
its negative partVsrd→V−srd=−maxs0,−Vsrdd. Indeed, the potentialV−srd is more attractive than
Vsrd and thus a necessary condition for existence of bound states inV−srd is certainly a valid
necessary condition forVsrd. This procedure can no longer be used to obtain sufficient conditions.
For this reason we consider potentials that are nowhere positive,Vsrd=−gvsrd, with vsrdù0.

The integral equations6d can be written with a symmetrical kernel provided we introduce a
new wave function

f,srd = uVsrdu1/2u,srd. s7d

This change of function leads to the following integral equation:

f,srd = gE
0

`

dr8K,sm,r,r8df,sr8d, s8ad

with

K,sm,r,r8d = vsrd1/2G,sm,r,r8dvsr8d1/2. s8bd

The relations8d is thus an eigenvalue problem and, for each value of,, the smallest characteristic
number is just the critical valuegc

s,d. The other characteristic numbers correspond to the critical
values of the strength of the potential for which a second, a third,…, ,-wave bound state appears.
The kernels8bd acting on the Hilbert spaceL2sRd is an Hilbert–Schmidt operator for potentials
which decrease faster thanr−1 at infinity. Thus this kernel satisfies the inequality

E
0

` E
0

`

dx dy K,sx,ydK,sx,yd , `. s9d

Consequently the eigenvalue problems8d always possesses at least one characteristic numbersRef.
33, pp. 102–106d sin general, this problem has an infinity of characteristic numbersd.

Now we use the theoremssee, for example, Ref. 33, pp. 118–119d which states that, for a
symmetric Hilbert–Schmidt kernel, we have the variational principle
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max
w
UE

0

`

dx dy K,sx,ydwsxdwsydU =
1

ug1u
, s10d

for wsrd satisfying

E
0

`

dr wsrd2 = 1. s11d

The maximal value is reached forwsxd=w1sxd, wherew1sxd is the eigenfunction associated to the
smallest eigenvalueg1. Consequently, for an arbitrary normalized function,fsxd, we obtain the
following upper limit ong1:

ug1u ø UE
0

`

dx dy K,sx,ydfsxdfsydU−1

. s12d

For the clarity of the discussion we now consider in two separate sections the ultrarelativistic
regimesm=0d and the relativistic regimesm.0d.

A. Ultrarelativistic regime m =0

In this section, we derive ansamong othersd upper limit on the critical value,gc
s,d, of the

coupling constant,g, of the potential,Vsrd=−gvsrd, for which a first,-wave bound state appears
in the ultrarelativistic regimesm=0d. In this limit, the kernel takes a simple form since
mK1smyd=1/y whenm goes to zero. This implies that

lim
m→0

mHsmDd =
2

pD
. s13d

The functionG,s0,r ,r8d takes then the form

G,s0,r,r8d =
rr 8

p
E

0

p

du8
sinu8

D2 P,scosu8d. s14d

A simple change of variable leads tosRef. 32, p. 335d

G,s0,r,r8d =
1

2p
E

−1

1

dy
P,syd

sr2 + r82d/s2rr 8d − y
=

1

p
Q,S r2 + r82

2rr 8
D , s15d

where the functionQ,sxd is a Legendre function of the second kind. The functionG,s0,r ,r8d can
thus be evaluated explicitly for each value of the angular momentum,. We have, for example,

G0s0,r,r8d =
1

p
lnU r + r8

r − r8
U s16d

and

G1s0,r,r8d =
1

p
F r2 + r82

2rr 8
lnU r + r8

r − r8
U − 1G . s17d

Since the functionG,s0,r ,r8d is given by the relations15d, it follows that the kernelK,s0,r ,r8d,
sees8bd, is known for each value of,. Now, we just need to choose a suitable normalized function
fsrd to apply the variational principle reported above.

For simplicity we restrict the rest of the following discussion to,=0 but extensions to
nonvanishing values of the angular momentum is obvious, one just needs to compute the corre-
sponding expression of the functionG,s0,r ,r8d.
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The functionfsrd should be as close as possible to the zero binding energy wave function but
also should be general and simple enough to obtain a neat formula. We simply choose

fsrd = Afrp−1vsrdpg1/2, p . 0, s18d

whereA is the normalization factor. The relationss8bd, s12d, s16d, ands18d lead to the following
upper limit ongc

s0d:

gc
s0d ø

apE
0

`

dx F1s2p − 1;xd

2E
0

`

dx F1sp;xdE
0

x

dy F1sp;ydlnSx + y

x − y
D ; gup,1

m=0, s19d

whereF1sq;xd=xsq−1d/2vsxdsq+1d/2 and where we have introduced the parametera which takes the
value 1, respectively, 2 for one, respectively, twosidenticald particle problems. The most stringent
upper limit is obviously obtained by minimizing the right-hand side ofs19d with respect to all
positive values ofp.

A simpler, but less stringent, version of this upper limit can be obtained with the help of the
following minorization:

lnSx + y

x − y
D ù

2y

x
, s20d

gc
s0d ø

apE
0

`

dx F1s2p − 1;xd

4E
0

`

dx x−1F1sp;xdE
0

x

dy yF1sp;yd
; gup,2

m=0. s21d

The accuracy of these upper limits can be tested with some typical potentials. The comparison
between the exact resultssobtained by solving numerically the spinless Salpeter equationd and the
upper limits s19d and s21d is reported in Table I. We have also added two lower limits ongc

s0d

obtained with the upper limits on the number of bound states derived in Refs. 28 and 29. Note that
for these tests, we choose a two identical particles problem,a=2.

The results reported in Table I indicate clearly that the accuracy of the upper limits19d is quite
remarkable. The upper limits21d is obviously less stringent but could prove to be useful to obtain
explicit formulas. The typical value ofp which optimize these upper limits varies between 2 and
3. We do not consider other choices forfsrd fsees18dg here since the relations19d is already very
accurate.

As an additional indication that the upper limits obtained with the method proposed in this
work are quite accurate, we report in Table II a comparison between the exact value of the critical
strengthgc

s1d s,=1d and the corresponding upper limit obtained with the relationss12d, s17d, and
s18d and notedgup

m=0,,=1 in this table.

TABLE I. Comparison, for some typical potentials, between the exact critical values,gc
s0d, the upper limitsgup,1

m=0 s19d, gup,2
m=0

s21d and the lower limits obtained in Refs. 28 and 29.

vsxd Reference 29 Reference 28 gc
s0d gup,1

m=0 gup,2
m=0

exps−xd 4.443 4.370 5.574 5.584 7.411

fcoshsxdg−2 4.126 3.886 5.008 5.018 6.769

exps−x2d 4.513 4.169 5.426 5.442 7.399

x exps−xd 3.696 3.349 4.360 4.364 5.964
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B. Relativistic regime m >0

To obtain an upper limit ongc
s,d for a nonvanishing massm, we need to calculate the expres-

sion of the functionG,sm,r ,r8d. To this end we note that

K1syd ø Fsyd ø K1syd +
p

2
. s22d

From the relations12d, it is obvious that a minorization of the kernelK,sm,r ,r8d is enough to
obtain the upper limit. However, the minorizations22d of the functionFsyd is too crude to obtain
good results. Instead we use

Fsyd ù K1syd +
p

2
−

p

2
exps− yd. s23d

This minorizations23d is proved in the Appendix. From the definition ofG,sm,r ,r8d s6bd and the
inequality s23d we obtain

G,sm,r,r8d ù
1

p
G,sm,r,r8d + S,sm,r,r8d −

1

2
T,sm,r,r8d, s24d

where

G,sm,r,r8d = mE
ur−r8u

r+r8
dy K1smydP,S r2 + r82 − y2

2rr 8
D , s25d

S,sm,r,r8d = mE
ur−r8u

r+r8
dy P,S r2 + r82 − y2

2rr 8
D =

2m

2, + 1
r,

,+1r.
−,, s26d

with r,=minfr ,r8g and r.=maxfr ,r8g and Ref. 34,

T,sm,r,r8d = mrr8E
−1

1

dy
exps− mÎr2 + r82 − 2rr 8yd

Îr2 + r82 − 2rr 8y
P,syd

=Î 2

p
m2rr 8E

−1

1

dy
K1/2s− mÎr2 + r82 − 2rr 8yd
fm2sr2 + r82 − 2rr 8ydg1/4 P,syd

=2mÎrr 8K,+1”2smr.dI,+1”2smr,d, s27d

where Insxd is a modified Bessel functionssee, for example, Ref. 32, p. 374d. The kernel
S,sm,r ,r8d is actually the Green function of the nonrelativistic kinetic energy operator and takes
a simple form while the kernelG,sm,r ,r8d can be calculated analytically for each value of,.30,31

We find, for example,

TABLE II. Comparison, for some typical potentials, between the exact criti-
cal values,gc

s1d and the upper limitgup
m=0,l=1 obtained with the relationss12d,

s17d, ands18d.

vsxd gc
s1d gup

m=0,l=1

exps−xd 10.975 10.992
fcoshsxdg−2 8.1174 8.1268
exps−x2d 10.200 10.231
x exps−xd 9.5442 9.5636
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G0sm,r,r8d = K0smur − r8ud − K0smsr + r8dd, s28d

G1sm,r,r8d = K0smur − r8ud + K0smsr + r8dd +
1

mrr8
fsr + r8dK1smsr + r8dd − ur − r8uK1smur − r8udg.

s29d

Now, we just need to choose a suitable normalized functionfsrd to apply the variational
principle reported abovefsees12dg. We take the following expression forfsrd:

fsrd = Afr2p−1vsrdpg1/2, p . 0. s30d

For simplicity we again restrict the rest of the following discussion to,=0 but extensions to
nonvanishing values of the angular momentum is obvious, one just needs to compute the corre-
sponding expression of the functionG,sm,r ,r8d.

The relationss8bd, s12d, s18d, ands28d lead to the following upper limit ongc
s0d:

gc
s0d ø

aE
0

`

dxÎxF2s2p − 1;xd

2E
0

`

dx F2sp;xdE
0

x

dy F2sp,ydTsx,yd
; gup

m.0, s31ad

with

Tsx,yd =
1

p
fK0sbsx − ydd − K0sbsx + yddg + 2by +

1

2
fexps− bsx + ydd − exps− bsx − yddg,

s31bd

whereF2sq,xd=xq−1/2vsxdsq+1d/2 and whereb=mR, R being the scale of length which appears in
the potentialfvsrd=vsRxdg. Again, we have introduced ins31ad the parametera which takes the
value 1, respectively, 2 for one, respectively, twosidenticald particle problems.

The accuracy of this upper limit can be tested with some typical potentials. The comparison
between the exact results and the upper limits31d is reported in Table III. Note that for these tests,
we also choose a two identical particles problem,a=2.

The results reported in Table III indicate clearly that the accuracy of the upper limits31d is
quite good. But for a small value ofb the upper limit is however less restrictive. Thus for a small
value ofb it is preferable to use an intermediate form forfsrd. We then propose in general to use

TABLE III. Comparison, for some typical potentials, between the exact critical values,gc
s0d and the upper limitgup

m.0 s31d.

vsxd
b

exps−xd fcoshsxdg−2 exps−x2d

gc
s0d gup

m.0 gc
s0d gup

m.0 gc
s0d gup

m.0

0.1 4.694 5.390 4.461 4.994 4.927 5.363

0.5 2.387 2.547 2.766 3.006 3.309 3.589

1 1.361 1.407 1.742 1.843 2.198 2.352

2 0.7133 0.7206 0.9598 0.9862 1.257 1.307

3 0.4804 0.4817 0.6549 0.6642 0.8669 0.8880

4 0.3607 0.3615 0.4956 0.4994 0.6589 0.6694

5 0.2890 0.2893 0.3981 0.3999 0.5305 0.5364
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fsrd = Afrap−1vsrdpg1/2, p . 0, s32d

with 1øaø2. This last expression forfsrd improves significantly the restriction on the possible
values ofgc

s0d. Indeed, forb=0.1,a=1.18 and for the exponential potential, the upper limit is then
equal to 4.812 instead of 5.390. But this additional flexibility is only significant for a small value
of b, indeed forb=0.5 the best upper limit is found to be equal to 2.521sfor the exponential
potential anda=1.69d instead of 2.547.

However, even with the choices32d for fsrd, the upper limits31d still yields less restrictive
results for smallb than those obtained for larger values ofb or those obtained with the upper limit
s19d. This is easy to understand, since this is in the sector of smallb, that the error introduced by
the inequalitys23d is the most important. Indeed, in the limit ofb going to zero, the upper limit
s31d coincides with the upper limits19d and forb going to infinity, only the nonrelativistic kernel
S,sm,r ,r8d contributes.

III. CONCLUSIONS

In this paper we have shown how to construct upper limits on the critical value,gc
s,d, of the

coupling constant,g, of a central potential,Vsrd=−gvsrd. The method used to derive the upper
limits is quite general and otherspossibly more complicatedd families of upper limits yielding
spossiblyd stronger restrictions ongc

s,d could also be obtained. Indeed, the method is based on a
variational principle for which a trial zero energy wave function is needed. There is no limitation
on the accuracy of such a trial function, which imply that there is, in principle, no limitation on the
accuracy of the upper limit ongc

s,d derived with this procedure. However, this remark is only true
for the ultrarelativistic regime,m=0, where the kernel of the integral equation has been calculated
exactly. Form.0, a minorization of the kernel has been used yielding some errors in the restric-
tions on the possible values of the critical valuegc

s,d which cannot be compensated by a better
choice of the trial zero energy wave function. In this paper we have proposed in Sec. II a
compromise between accuracy and simplicity of the final formula. The accuracy of the upper
limits on gc

s,d was then tested with some typical potentials.
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APPENDIX: MAJORIZATION OF THE PRIMITIVE OF K0„x…

We choose the following integral representation for the modified Bessel functionK0sxd sRef.
32, p. 376d:

K0sxd =E
0

`

dt exps− x coshtd. sA1d

We have

E
y

`

dx K0sxd =E
0

`

dt
exps− y coshtd

cosht
ø exps− ydE

0

`

dt
1

cosht
=

p

2
exps− yd. sA2d
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