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In the context of relativistic quantum mechanics, we obtain a nonlinear first order dif-
ferential equation for the energy as a function of the coupling constant of a central
potential. This differential equation is only exact for power law and logarithmic poten-
tials in the massless limit. For other potentials, we discuss under which conditions the
differential equation yields rigorous upper and lower limits on the value of energy levels.
These results are applied to the Cornell potential used in meson spectroscopy. We also
show that the method applies to noncentral potentials.
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1. Introduction

Completely exactly solvable problems in nonrelativistic quantum mechanics of

one (or two) particle are exceptional cases. This number of exceptional cases

decreases drastically in the context of the relativistic quantum mechanics where

the Schrödinger equation is replaced by the spinless Salpeter equation. In this case,

only the problem of a particle with a vanishing mass bound by an harmonic oscil-

lator potential can be solved exactly. Since very few potentials for which an exact

treatment can be achieved exist, some methods and theorems have been found to

cast some light, qualitatively or quantitatively, on the properties of the system with-

out having to solve explicitly the corresponding wave equation. These methods and

theorems are particularly interesting when they yield analytical formula from which

conclusions about the properties of the system can be more easily inferred. Semi-

classical methods, like WKB, yields in some cases accurate quantitative information

about various observables (see for instance Ref. 1). Unfortunately, it is difficult to

control the error introduced by these approximations. Indeed, the approximate

energy levels can be, in some favorable cases, very close to the exact energy levels

but it is not known if they yield upper or lower limits. Various bounds on some

observables, the number of bound states2,3 or the binding energy,4–7 can also be
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used to get information on the system (see also Refs. 8–12 for results concerning

the Coulomb potential).

In this article, we obtain quantitative information about the evolution of the

energy levels with a variation of the coupling constant of the potential for a system

of two spinless particles. To obtain this evolution, we should know the value of the

energy level for one value of the coupling constant. This additional input can be

removed (with some loss of accuracy) since for any value of the coupling constant

smaller than its critical value (for which the state has a vanishing energy) the

position of the energy level is known: E = 0. Two lower limit on this critical value

of the coupling constant for the ground state can be found in the literature.2,3

The results of this work apply to relativistic quantum systems and are obtained

essentially with the help of the Virial and of the Hellmann–Feynman theorems.

2. Upper and Lower Limits on the Eigenvalues

We consider systems for which the dynamics is governed by the Hamiltonian (~ =

c = 1)

H = α
√

p2 + m2 + V (r) , (1)

where r = |r| and α = 1 or 2 for one or two (identical) particle problems respec-

tively. In the case of a two-body problem, the center of mass frame is chosen. If we

write V (r) = gr−1v(r/R) (the formulation we present below holds for noncentral

potentials, see Sec. 4), the expression for the energy is given by

M = α
〈

√

p2 + m2
〉

+ gR−1〈v(r/R)〉 , (2)

where M = E + αm is the mass of the eigenstate and E is the binding energy.

The Hellmann–Feynman theorem, for a self-adjoint Hamiltonian, gives a relation

between the derivative of the energy with respect to a given parameter, say λ, and

the expectation value of the derivative of the Hamiltonian with respect to this

parameter:

dM

dλ
=

〈

dH

dλ

〉

. (3)

The Hellmann–Feynman theorem yields the following relations:

dM

dg
= R−1〈v(x)〉 , (4)

where x = r/R.

The Virial theorem gives a relation between the expectation value of the kinetic

energy and the directional derivative of the potential as follow:13

〈

√

p2 + m2 〉 =
1

α
〈r · ∇V (r)〉 +

〈

m2

√

p2 + m2

〉

. (5)
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This relativistic Virial theorem used for the system described by the Hamiltonian

(1) yields the formula

〈

√

p2 + m2 〉 =
gR−1

α

〈

x
dv(x)

dx

〉

+

〈

m2

√

p2 + m2

〉

. (6)

We consider the relation (2) together with (4) and (6) to obtain

M = g

〈

x
dv(x)

dx

〉

+ α

〈

m̃2

√

p2 + m̃2

〉

+ g
dM
dg

, (7)

where M = MR and m̃ = mR. In the following, we restrict our attention to the

ultrarelativistic regime (m = 0). We consider that the energy depend only on g;

the other parameters, if any, are supposed to be are fixed. Suppose now that it is

possible to write the following relation:

x
dv(x)

dx
= F (v(x)) . (8)

The condition that F (y) must satisfy in order to have rigorous upper and lower

limits on the eigenvalues follows then from the Jensen inequality (see for example

Refs. 14 and 15). Suppose that the F (y) is a convex function in the following

interval:

d2F (y)

dy2
≥ 0 for ym ≤ y ≤ yM , (9)

with ym and yM defined by the relation

ym ≤ v(x) ≤ yM for 0 ≤ x < ∞ . (10)

The quantities ym and yM are not restricted to be finite. The Jensen inequality

implies for a convex function F (y) in the interval ym ≤ y ≤ yM the following

relation:

〈F (v(x))〉 ≥ F (〈v(x)〉) = F

(

dM
dg

)

. (11)

Conversely, if F (y) is a concave function in the same interval, then the Jensen

inequality implies the following relation:

〈F (v(x))〉 ≤ F (〈v(x)〉) = F

(

dM
dg

)

. (12)

Let us first consider that F (y) is a convex function for min[v(x)] ≤ y ≤
max[v(x)]. We then obtain from (7) a closed nonlinear first order differential equa-

tion which reads

M ≥ gF

(

dM
dg

)

+ g
dM
dg

≡ gG−1

(

dM
dg

)

. (13)

Suppose now that the derivative of G(y) has a given sign. If dG(y)/dy ≥ 0, we

can write from (13),

G

(M
g

)

≥ dM
dg

. (14)
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We then define the quantity M̃ by the differential equation

G

(M̃
g

)

=
dM̃
dg

, (15a)

with the boundary condition

M̃(g = g0) = M(g = g0) . (15b)

Then we obtain the following upper and lower limits on the energy:

M̃ ≥ M for g ≥ g0 and M̃ ≤ M for g ≤ g0 . (16)

Indeed, at g = g0, from (15b) we have the equality M̃(g = g0) = M(g = g0) and

the comparison between (14) and (15a) indicates that we have

dM
dg

(g = g0) ≤
dM̃
dg

(g = g0) . (17)

Consequently, the relations (16) certainly hold for g contained in some neighborhood

around g0. Now, it is obvious that we have only one crossing point between M and

M̃ (at g = g0) because at another crossing point, says at g = g1, we would have

M̃(g = g1) = M(g = g1) and dM
dg

(g = g1) ≥ dM̃
dg

(g = g1); the comparison between

(14) and (15a) indicates that this is impossible. Since we have only one crossing

point, the relation (16) holds for all values of g. The relation (16) can also be

considered as a consequence of the Chaplygin theorem (see for example Refs. 16

and 17).

Conversely, if dG(y)/dy ≤ 0, we can write from (13),

G

(M
g

)

≤ dM
dg

. (18)

We again define the quantity M̃ by the differential equation (15) to obtain the

following upper and lower limits on the energy:

M̃ ≤ M for g ≥ g0 and M̃ ≥ M for g ≤ g0 . (19)

The differential equation (15) can be solved explicitly:

M̃ = gΨ

[

g

g0

Ψ−1

(M0

g0

)]

(20a)

with

Ψ−1(y) = exp

(
∫

dy

G(y) − y

)

. (20b)

A similar derivation is possible when F (y) is a concave function. We are then in

position to formulate the following theorem which summarize the results obtained

above.

Theorem. Let a one- or two-body relativistic quantum system be governed by the

Hamiltonian (1) with m = 0 and V (r) = gR−1v(r/R). Let M be any eigenvalue
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of this Hamiltonian. Let F (y) be defined by the relation F (v(x)) = x dv(x)/dx. Let

G(y) be defined by the relation G−1(y) = F (y) + y. Let the quantity M̃ defined by

the following nonlinear first order differential equation:

G

(M̃
g

)

=
dM̃
dg

with M̃(g = g0) = M(g = g0) . (21)

Let d2F (y)/dy2 and dG(y)/dy have a given sign for min[v(x)] ≤ y ≤ max[v(x)]. If

d2F (y)/dy2 dG(y)/dy ≥ 0 then

M ≤ M̃
R

for g ≥ g0 ,

M ≥ M̃
R

for g ≤ g0 .

If d2F (y)/dy2 dG(y)/dy ≤ 0 then

M ≥ M̃
R

for g ≥ g0 ,

M ≤ M̃
R

for g ≤ g0 .

To conclude this section, we discuss the case where the differential equation (13)

is exact. This occurs when the inequalities (11) and (12) are saturated, that is to

say when F (y) = 1 or py. The corresponding potentials are obtained by solving the

differential equation (8) and are simply v(x) = ln(x) or xp. It is indeed well known

that for these potential we have exact scaling relations.

3. Applications

In this section, we apply the method explained in Sec. 2 to meson spectroscopy. The

simplest potential which is used to describe the main properties of spin-averaged

vector mesons is the Cornell potential (see for example Refs. 18–20)

V (r) = −κ

r
+ ar . (22)

The dimensionless parameter κ is related to strong coupling constant and its value is

around 0.5. The parameter a is the string tension and its value is around 0.2 GeV2.

This potential can be written in, we think, a nice form

V (r) = V sinh[ln(r/R)] . (23)

The advantage of the expression (23) is that it features parameters with more

familiar units (energy and length). The link between the two set of parameters is

simply

V = 2
√

κa ∼= 0.6 GeV and R =

√

κ

a
∼= 0.3 fm . (24)
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This leads to

g = V R = 2κ. (25)

It is easy to verify from the definition (8) that the function F (y) takes the form

F (y) =
√

1 + y2 . (26)

The function G(y) is found to be

G(y) = sinh[ln(y)] . (27)

Since F (y) is convex and the first derivative of G(y) is positive, we can now use the

theorem to obtain the following limits on the mass of the system:

M ≤ 1

R

√

gC0 − g2 for g ≥ g0 ,

M ≥ 1

R

√

gC0 − g2 for g ≤ g0 ,

(28)

where

C0 =
1

g0

[

M2

0 + g2

0

]

, (29)

where M0 = M(g = g0).

From the limits (28) we see that there exists a maximal value for g. This is a

well-known result: there exists a critical value, κc = 2α/π, for the strength of the

coulomb potential when a relativistic kinematic operator is used8 (this also appears

for the Klein–Gordon and the Dirac equations). From this property we can obtain

a nice lower bound on the mass of the system.

We note that, if we consider only the Coulomb potential (a = 0) and a massless

particle (m = 0), the mass of the system is zero. Indeed, the lower bound on the

mass of the eigenstate found by Herbst8 and a variational upper bound on this

mass21 tend to zero in the limit of a vanishing mass of the particles. Consequently,

if a (positive) confining potential is added to the interaction, the ground state have

a positive mass when κ is below its critical value.

To obtain a lower limit on the mass of the ground state for a Cornell potential,

we choose g0 below the critical value but otherwise arbitrary. The upper bound (28)

indicates that there exist a maximal value, C0 > g0, for g and from the relation

(25) between g and κ, this yields a maximal value for κ. This maximal value is

then, for any choice of g0, an upper bound on the critical value. Indeed, it cannot

be a lower bound because in this case for 2κ ≡ g = C0, the mass of the system

would certainly be positive which contradicts the upper limit (28). We then obtain

the upper bound on the critical value 2κc ≤ C0, and since this upper bound is true

for any g0, we obtain, using (29), a lower limit on the mass of the system

M ≥ 2

√

a

(

2α

π
− κ

)

, (30)
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where we have used the value of κc. Such a simple and explicit analytical lower

bound on the ground state energy of the spinless Salpeter equation are rare in the

literature, especially for a potential which is not a pure power law.

4. Noncentral Potentials

We conclude this article by showing briefly that the method explained above applies

to noncentral potentials. It is easy to show that the relation (7) with m = 0 is

replaced, for noncentral potentials, by the equation

M = g〈x · ∇v(x)〉 + g
dM
dg

. (31)

We now define the function F (y) as a generalization of the definition (8):

x · ∇v(x) = F (v(x)) . (32)

With this definition, the theorem applies exactly in the same way. The difficulty

in general is to solve the partial differential equation (32). This equation can be

solved, for example, for F (y) = 1 and F (y) = αy. For these choices of F (y), we

obtain an equality between M and M̃ and thus an exact scaling property.
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13. W. Lucha and F. F. Schöberl, Phys. Rev. Lett. 64, 2733 (1990).



December 2, 2005 16:50 WSPC/139-IJMPA 02288

7284 F. Brau

14. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic
Press, New York, 1980).

15. E. H. Lieb and M. Loss, Analysis (American Mathematical Society, 2001).
16. S. G. Mikhlin and K. L. Smolitskiy, Approximate Methods for Solution of Differential

and Integral Equations (Elsevier Publishing Company, New York, 1967).
17. D. Zwillinger, Handbook of Differential Equations (Academic Press, New York, 1998).
18. E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane and T.-M. Yan, Phys.

Rev. Lett. 34, 369 (1975).
19. E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T.-M. Yan, Phys. Rev. D 17,

3090 (1978).
20. W. Lucha, F. F. Schöberl and D. Gromes, Phys. Rep. 200, 127 (1991).
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