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ABSTRACT

Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals that is partic-
ularly well suited for analog implementations. Our team has demonstrated several photonic reservoir computers
with performance comparable to digital algorithms on a series of benchmark tasks such as channel equalisation
and speech recognition. Recently, we showed that our opto-electronic reservoir computer could be trained online
with a simple gradient descent algorithm programmed on an FPGA chip. This setup makes it in principle possi-
ble to feed the output signal back into the reservoir, and thus highly enrich the dynamics of the system. This will
allow to tackle complex prediction tasks in hardware, such as pattern generation and chaotic and financial series
prediction, which have so far only been studied in digital implementations. Here we report simulation results of
our opto-electronic setup with an FPGA chip and output feedback applied to pattern generation and Mackey-
Glass chaotic series prediction. The simulations take into account the major aspects of our experimental setup.
We find that pattern generation can be easily implemented on the current setup with very good results. The
Mackey-Glass series prediction task is more complex and requires a large reservoir and more elaborate training
algorithm. With these adjustments promising result are obtained, and we now know what improvements are
needed to match previously reported numerical results. These simulation results will serve as basis of comparison
for experiments we will carry out in the coming months.

Keywords: Reservoir computing, FPGA, opto-electronic systems, pattern generation, chaotic series prediction

1. INTRODUCTION

Reservoir Computing (RC) is a set of methods for designing and training artificial recurrent neural networks.1,2

A typical reservoir is a randomly connected fixed network, with random coupling coefficients between the input
signal and the nodes. This reduces the training process to simply solving a system of linear equations.3,4 The
RC algorithm has been successfully applied to phoneme recognition,5 for instance, and won an international
competition on prediction of future evolution of financial time series.6

The simplicity of Reservoir Computing makes it very well suited for analog implementations: various elec-
tronic,7,8 opto-electronic9–11 and all-optical12–16 implementations have been reported since 2012. These re-
alisations have been successfully applied to channel equalisation and speech recognition tasks, among others,
with performances comparable to other digital algorithms. We have recently reported the first online-trained
opto-electronic reservoir computer.17 The key feature of this implementation is the FPGA chip, programmed
to generate the input sequence, train the reservoir computer using the simple gradient descent algorithm, and
compute the reservoir output signal in real time.

This setup also offers the possibility to feed the output signal back into the reservoir by programming the
FPGA chip to sum up the input and output signals. In this work, we investigate numerically the performance of
the system17 with output feedback. Feeding the output signal back into the reservoir allows to tackle prediction
tasks, which are impossible to solve without such feedback. We test our reservoir computer on two examples of
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Figure 1. Schematic representation of a reservoir computer with output feedback. Brown lines represent a general recurrent
neural network with random interconnections, solid lines highlight a network with ring topology, used here. The time
multiplexed input signal u(n) is injected into a reservoir with N nodes (in this scheme N = 6), denoted xi(n). The output
signal y(n), given by a linear combination of the readout weights wi with the reservoir states xi(n), is fed back into the
network.

prediction tasks: pattern generation18 and chaotic series prediction.19 The first can be directly applied to motion
generation and robot control, or indirectly to data storage.20 For the second task, we chose the Mackey-Glass
chaotic system, which has already been investigated numerically.1 The goal of these numerical experiments was
twofold: evaluate the performance of the existing experiment on these two tasks, and find out what enhancements
could be made to improve the results. We show that pattern generation requires little modifications and good
results can be achieved with the current system. The Mackey-Glass prediction task, on the other hand, requires
more complex training algorithms and much larger reservoirs to be solved efficiently. We investigate three
training methods, different reservoir sizes, and obtain performances comparable to previous numerical studies.1

The results presented here will be used as a starting point for future experimental implementations.

2. BASIC PRINCIPLES

2.1 Reservoir Computing

A general reservoir computer is a recurrent neural network with random fixed internal and input connections.3

In our implementation, depicted in figure 1, we use a sine function f = sin(x) as nonlinearity,9,10 and a ring
topology7,21 to simplify the interconnection matrix of the network, so that only the first neighbour nodes are
connected. Under these conditions the evolution equations of the network are given by

x0(n+ 1) = sin (αxN (n− 1) + βM0u(n)) , (1a)

xi(n+ 1) = sin (αxi−1(n) + βMiu(n)) , (1b)

where xi(n), i = 0, . . . , N − 1 are the internal variables, evolving in discrete time n ∈ Z, α and β parameters are
used to adjust the feedback and the input signals, respectively, u(n) is a time multiplexed input signal, and Mi

is the input mask, drawn from a uniform distribution over the interval [−1,+1].9,12,21 The reservoir computer
produces an output signal y(n) given by a linear combination of the states of its internal variables

y(n) =

N∑
i=0

wixi(n), (2)

where xN = 1 is a constant neuron used to adjust the bias of the output signal, wi are the readout weights,
trained either offline (see section 2.2.1), or online (as described in sections 2.2.2 and 2.2.3) in order to minimise
the mean square error between the output signal y(n) and the target signal d(n). When the output signal is fed
back into the reservoir (see section 2.3), the dynamics of the systems is described by the following equations

x0(n+ 1) = sin (αxN (n− 1) + βM0y(n)) , (3a)

xi(n+ 1) = sin (αxi−1(n) + βMiy(n)) . (3b)



2.2 Training Methods

A reservoir computer can be trained using various methods. In this work, we used two online training algo-
rithms, simple gradient descent and recursive least squares, as well as the common offline method for the sake
of comparison.

2.2.1 Offline training

The optimal readout weights wi can be computed offline, that is, after running the experiment and recovering
all the reservoir states xi(n). To minimise the mean square error (MSE), given by

MSE =
1

T

T∑
n=1

(d(n)− y(n))
2
, (4)

one needs to insert equation (2) into (4) and differentiate with respect to wi. This gives a system of N linear
equations admitting the following solution

wi =

N−1∑
j=0

R−1
ij Pj , (5)

where R−1
ij is the inverse of the correlation matrix

Rij =
1

T

T∑
n=1

xi(n)xj(n), (6)

and Pj is the cross-correlation vector

Pj =
1

T

T∑
n=1

xj(n)d(n). (7)

This method has been used in most experimental implementation so far.7,9, 10,12,13,15,16

2.2.2 Simple gradient descent

The gradient, or steepest, descent method is an algorithm for finding a local minimum of a function using its
gradient.22 The rule for updating the readout weights wi is given by23

wi(n+ 1) = wi(n) + λ (d(n)− y(n))xi(n), (8)

where λ is a constant learning rate.17

2.2.3 Recursive least squares

The Recursive Least Squares (RLS) algorithm24 can be used for iterative computation of the inverse of the
correlation matrix R−1

ij and the readout weights wi. It can be summarised as follows

k(n) =
ν−1Γ(n− 1)x(n)

1 + ν−1xTΓ(n− 1)x(n)
, (9a)

w(n) = w(n− 1) + k(n) (d(n)− y(n)) , (9b)

Γ(n) = ν−1Γ(n− 1)− ν−1k(n)xT (n)Γ(n− 1), (9c)

where k(n) is called the gain vector and Γ(n) is the estimate of the inverse of the correlation matrix. The
forgetting factor ν is set to 1.

This method ensures faster convergence of the readout weights but is much more computationally intensive
than the simple gradient descent algorithm. It is also much harder to implement on the FPGA chip, as it requires
one to program vector multiplication and scalar division using bit logic.



A
m

p
li

tu
d

e
(a

.u
.)

Time (a.u.)

(a)

A
m

p
li

tu
d

e
(a

.u
.)

Time (a.u.)

(b)

Figure 2. Illustrations of the two tasks considered here. (a) Training process of the reservoir computer for the pattern
generation task. The output signal (brown line) randomly oscillates at the beginning, and matches the desired pattern
(green curve) by the end. (b) Reservoir output (brown curve) and target (green line) signals during the test phase of the
Mackey-Glass prediction task. While the output signal matches the chaotic series in the beginning, it slowly drifts away
during the experiment.

2.3 Tasks

We tested our system on two examples of prediction tasks : pattern generation and chaotic series prediction.
For the second task, we chose to work with a chaotic system described by Mackey-Glass equations.25

2.3.1 Pattern generation

A pattern is a short sequence of randomly chosen real numbers (here within the interval [−0.5, 0.5]) that is
repeated periodically to form an infinite time series. As will be shown in section 4.1, the length of the sequence
may be set from 1 up to the number of neurons N . During the training phase, the reservoir computer receives
the pattern signal as input and is trained to predict the next value of the pattern from the current one. The
length of the training input sequence is measured in terms of the pattern length, that is, how many times the
whole pattern is presented to the reservoir computer. The duration of the training process depends on the length
of the pattern. While short patterns are successfully learnt after 100 repetitions, long patterns need to be shown
up to 50k times. During training, no output signal is fed back into the reservoir.

After the training phase, the reservoir input is switched from the training sequence to the reservoir output
signal, and the system is left running autonomously. The aim is to obtain a stable pattern generator, that
reproduces precisely the training sequence and doesn’t deviate to another periodic behaviour. To measure the
stability of the generator, we compute the MSE between the reservoir output signal and the target pattern signal
at the end of both training and test phases. If the error doesn’t grow during the test phase, the system is
considered to exhibit stable behaviour.

Figure 2(a) depicts the training process for this task. The desired pattern is shown in green, the brown line
corresponds to the reservoir output. The systems exhibits random oscillations at the beginning of the training
(left-hand side of the plot) and quickly learns the pattern, so that the two lines match on the right-hand side of
the figure.

2.3.2 Mackey-Glass chaotic series prediction

The Mackey-Glass delay differential equation

dx

dt
= β

x(t− τ)

1 + xn(t− τ)
− γx (10)

with τ , γ, β, n > 0 was introduced to illustrate the appearance of complex dynamics in physiological control
systems.25 To obtain chaotic dynamics, we set the parameters as follows:1 β = 0.2, γ = 0.1, τ = 17 and n = 10.

Training and test phases are the same as for pattern generation. During training, the reservoir receives the
time series and is trained to perform a one-step ahead prediction. During the test phase, the reservoir receives
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Figure 3. (a) Schematic representation of the simulated setup, based on the experimental system.17 Optical and electronic
components of the opto-electronic reservoir are shown in red and green, respectively. It contains an incoherent light source
(SLED), a Mach-Zehnder intensity modulator (MZ), a 90/10 beam splitter, an optical attenuator (Att), an approximately
1.6 km fibre spool, two photodiodes (Pr and Pf), a resistive combiner (Comb) and an amplifier (Amp). The FPGA
board implements both the input and output layers, generating the input symbols and training the readout weights. The
reservoir output signal y(n) is added to the input signal u(n), then multiplied by the input mask Mi and sent to the
opto-electronic reservoir. The computer controls the devices and records the results. (b) Xilinx ML605 board with Virtex
6 FPGA chip and 4DSP FMC150 daughter card (FMC150 and FMC151 cards look practically the same).

its own output and the system runs autonomously. The MSE is used to evaluate the training phase. We also
compute the number of correct prediction steps made by the reservoir, that is, the number of error values below
a certain MSE threshold, to measure the quality of emulation of the Mackey-Glass system.

Figure 2(b) shows the behaviour of the reservoir computer on the Mackey-Glass prediction task during the
test phase, right after the end of the training. The output signal (brown curve) matches the Mackey-Glass series
(green curve) at the beginning, but slowly deviates from the target with time.

3. EXPERIMENT AND SIMULATIONS

3.1 Experimental Setup

Figure 3(a) depicts the experimental setup,17 which is the basis for numerical simulations presented here. It
consists of two main components: the opto-electronic reservoir and the FPGA board.

3.1.1 Opto-electronic reservoir

The opto-electronic reservoir is based on previously published works.9,10,17 The reservoir states are encoded
into the intensity of incoherent light signal, produced by a superluminiscent diode (Thorlabs SLD1550P-A40).
The Mach-Zehnder (MZ) intensity modulator (Photline MXAN-LN-10) implements the nonlinear function, its
operating point is adjusted by applying a bias voltage, produced by a Hameg HMP4040 power supply. A
fraction (10%) of the signal is extracted from the loop and sent to the readout photodiode (TTI TIA-525I) and
the resulting voltage signal is sent to the FPGA. An optical attenuator (JDS HA9) is used to set the feedback
gain α of the system (see equations (1) and (3)). The fibre spool consists of approximately 1.6 km single mode
fibre, giving a round trip time of 7.94 µs. The resistive combiner sums the electrical feedback signal, produced
by the feedback photodiode (TTI TIA-525I), with the input signal from the FPGA to drive the MZ modulator,
with an additional amplification stage of +27 dB (ZHL-32A+ coaxial amplifier) to span the entire Vπ interval of
the modulator.

A personal computer is used to control the hardware and setup the parameters between experiments. It
executes a Matlab script, designed to run the experiment multiple times over a set of predefined values of
parameters of interest and select the combination that yields the best results.



3.1.2 FPGA board

The reservoir computer is trained by a Xilinx ML605 evaluation board (see figure 3(b)), powered by a Virtex
6 XC6VLX240T FPGA chip. The board is paired with a 4DSP FMC151 daughter card, containing one two-
channel ADC (Analog-to-Digital converter) and one two-channel DAC (Digital-to-Analog converter). The ADC’s
maximum sampling frequency is 250 MHz with 14-bit resolution, while the DAC can sample at up to 800 MHz
with 16-bit precision.

The FPGA is programmed to execute the simple gradient descent algorithm (see section 2.2.2). It receives
the neurons xi(n), sampled by the ADC, and computes the reservoir output signal y(n). The target signal d(n)
is then used to compute the error and adjusts the readout weights wi following equation (8). The chip can also
be programmed to perform the RLS algorithm, described in section 2.2.3.

The arithmetic operations mentioned above are performed on real numbers. However, a FPGA is a logic
device, designed to operate bits. The performance of the design thus highly depends on the bit-representation
of real numbers, i.e. the precision. The main limitation comes from the DSP48E slices, used to perform
multiplications. These blocks are designed to multiply a 25-bit integer by a 18-bit integer. To meet these
requirements, our design uses a fixed-point representation with different bit array lengths for different variables.
Parameters and signals that stay within the ]−1, 1[ interval are represented by 18-bit vectors, with 1 bit for the
sign and 17 for the decimal part. These are the learning algorithm parameters, the input mask elements Mi and
the reservoir states xi(n), extended from the 14-bit ADC output. Other variables, such as reservoir output y(n)
and readout weights wi span a wider [−16, 16] interval and are represented as 25-bit vectors, with 1 sign bit, 4
bits for the integer part and 20 bits for the decimal part.

In order to train the reservoir computer offline (using method described in section 2.2.1), the FPGA can be
programmed to record the reservoir states xi(n) and send them to the personal computer through an Ethernet
connection. The readout weights wi can then be uploaded on the chip for real-time computation of the reservoir
output signal y(n) during the test phase. Such setup makes less use of the FPGA chip, but offers more control
and precision over the training process, which will make it a good starting point for future experimental studies.

3.2 Numerical Simulations

All numerical experiments were performed in Matlab. Most simulations were computed on a standard personal
computer, some computationally-intensive scripts with long training sets or large reservoirs were executed on
a dedicated computer with a 12-core CPU and 64 Gb RAM. The simulations account for major aspects of
our experimental setup and allow to scan the most influential parameters, such as input gain β, feedback gain
α, learning rate λ, reservoir size N , training length or precision. In the next sections we overview several
considerations specific for each task.

3.2.1 Pattern generation

For this task, we sough for optimal values of the input and feedback gain parameters β and α, we checked the
minimal FPGA precision required for sufficiently low training MSE, and also investigated the maximum pattern
length L that could be generated with a 50-neuron reservoir.

The reservoir computer was trained to perform a two-step ahead prediction of the pattern, to account for the
computational delay of the reservoir output signal. Indeed, sampling the reservoir states xi(n) and computing
the reservoir output signal y(n) is not instantaneous. That is, when input value M1 × u(n) is sent to the first
neuron x1(n) in the opto-electronic reservoir, the FPGA has just finished sampling the previous reservoir state
x50(n− 1), and has yet to compute the output value y(n− 1). For this reason, the reservoir output feedback is
delayed by one roundtrip time T .

3.2.2 Mackey-Glass series prediction

The Mackey-Glass equation (10) was integrated using the RK4 method,26 with step h = 0.1. The resulting time
series was shifted by −1 and passed through a tanh function in order to fall within the [0.5, 0.3] interval.1 For
faster simulations, an input sequence of 3× 106 values was computed and saved in a file.



For this task, we also investigated the optimal values of gain parameters α and β, as well as the size of the
reservoir N , the choice of the training algorithm and its precision. For prediction length estimation, we set the
threshold error at MSEth = 10−3.

The issue with the delayed output signal y(n), discussed in the previous section, was solved in a different way
here. In fact, performing a two-step ahead prediction on the Mackey-Glass chaotic series results in a very poor
performance. However, given the randomness of the input mask Mi, it is possible to set first value to M0 = 0
without noticeable loss of performance. This trick allows to delay the injection of the output signal back into the
reservoir by one neuron duration. For a 250-neuron reservoir in a 8 µs delay loop (this is the maximum reservoir
size achievable with this delay loop and our ADC) this offers a delay of 32 ns. This is sufficient for the FPGA
to compute the output signal y(n), which takes approximately 15 ns.

4. RESULTS

This section presents the numerical results we obtained with our system.

4.1 Pattern Generation

The results presented in this section were obtained using the simple gradient descent algorithm (see section 2.2.2)
to train the reservoir computer. This is the simplest training algorithm considered here, it provides good results,
as shown below, and it has already been implemented on the FPGA board.17,27 For these reasons, we didn’t try
the other two training algorithms on this task.

We started by looking for optimal values for feedback and input gain parameters α and β (see equations (3))
ensuring appropriate dynamics of the network for this task. We scanned both parameter in the most relevant
intervals and recorded MSEs of the training and test sequences. Simulations were performed with 10 random
patterns of length L = 20, the reservoir computer was trained and tested over 20k samples. For statistical
purposes, all measures were repeated with 10 random input masks. The results are shown in figure 4(a). Each
curve shows the performance as function of one parameter, while the other parameter is set to its optimal value.
Blue curves correspond to the feedback gain, green curves depict the input gain. Solid and dotted lines show the
error of the training and test phases, respectively. As explained in section 2.3, the training error corresponds to
the MSE of the one-step ahead prediction, whereas the test error is the MSE of the reservoir computer output
signal, generated autonomously, compared to the target signal. Note that feedback gain α shows a very strong
influence on the reservoir computer performance and has to be set precisely at α = 1. This provides the longest
memory of the system, which is required to store the pattern.28 On the other hand, the performance depends
much less on the input gain, that is, any value in the interval β ∈ [1.1, 1.4] provides sufficiently low MSEs.

We then investigated the dependence of the generator performance on the precision of the FPGA. We simu-
lated a network with 50 neurons generating random patterns of length L = 30 and found that the ADC resolution
has virtually no influence on the training and test MSEs. That is, setting the neuron precision to as low as 2 bits
doesn’t decrease performance, as long as the readout weights are computed with high precision. These results
show that our ADCs and DACs are well suited for the job.

The precision of the readout weights wi, however, plays an important role in the reservoir computer perfor-
mance. We ran several simulations with 10 random patterns of length L = 30 and different precisions to find
out the minimal resolution required for stable generation. The results are shown in figure 4(b). Solid and dotted
curves show average training and test MSEs, respectively. Note that training error decreases smoothly with
higher precision, while the test error curve shows more sharp behaviour. This is due to the fact that among 10
random patterns tested here, some are simple to generate even with lower precision, while others require more
resolution for stable generation. That is, if the pattern is trained with enough precision, test MSE is of the same
order of magnitude than the training MSE. However, if training MSE is not low enough, the error will grow up
to 10−1 during the test phase. Following these results, we conclude that the minimal required resolution for all
patterns to be generated correctly is 26 bits.

Finally, we sought for the longest pattern that could be generated with our 50-neuron reservoir computer.
We discovered that patterns up to 51 elements long can be successfully generated at cost of very long training
sequence of 2.5 × 106 samples. This confirms the intuitive idea that a reservoir with 50 nodes (and one bias
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Figure 4. Results for the pattern generation task. (a) Optimal values of the feedback gain α (blue curves) and the input
gain β (green curves) for the pattern generation task. Solid and dotted lines correspond to the mean square error of the
training and test phases, respectively. (b) Reservoir performance for different bit-precisions of the readout weights wi.
Solid and dotted curve denote training and test errors, respectively.

neuron, as in equation (2)) has, in theory, a linear memory of length 51, which limits the length of the pattern
that can be learnt by the network. If the reservoir computer is trained to generate a pattern of length L = 52,
even with a longer training sequence the MSE doesn’t decrease below 10−2.

4.2 Mackey-Glass Series Prediction

We started by investigating the choice of training algorithm and reservoir size. We measured the best perfor-
mances that can be achieved with the three learning methods described in section 2.2 and different reservoir
sizes, going from 50 neurons (the size of the network we were using up to now17) up to 1000 neurons (based on
previous works on this task1). We compared both the MSE at the end of the training sequence (figure 5(a))
and the prediction length (figure 5(b)). Red, blue and green lines correspond to gradient descent, recursive least
squares and offline learning algorithms, respectively. For statistical purposes, each measure was performed 10
times with different input masks. Training lengths were set to 5×105 samples for the gradient descent algorithm,
2000 for RLS and 5000 for offline learning. We didn’t try to increase the training length as the goal here was
not to obtain the best performance with each algorithm, but simply to find out what which methods have the
potential to solve this task. The results show that both RLS and offline algorithms can be considered, while
the simple gradient descent is not efficient enough. The reservoir size also plays an important role. While it is
possible to predict about 50 steps ahead with a 50-neuron reservoir, much larger networks are required for longer
term Mackey-Glass system emulation.

We sought for the optimal values of the input and feedback gains. We performed four simulations using the
two best training algorithms, RLS and offline learning, and two reservoir sizes of 50 and 1000 neurons. During
each simulation, we scanned α and β within relevant intervals. The resulting training errors (solid lines) and
prediction lengths (dotted lines) are shown in figures 6(a)-6(d). Green curves correspond to the input gain β
and blue ones to the feedback gain α. We note that both algorithms show similar results, which vary slightly
for different reservoir sizes. The optimal input gain doesn’t depend on the reservoir size and any value within
β ∈ [2, 2.5] interval yields low training error. The feedback parameter α needs to be tuned more precisely and
depends on the reservoir size: smaller reservoirs work better with α = 0.8, while large reservoirs require α = 1.

Finally, we investigated the impact of computational precision on the results. We didn’t consider the offline
training method as it would be performed on a personal computer with sufficient floating point precision. The
RLS algorithm, however, will be programmed on the FPGA chip and depends on the fixed point precision of the
arithmetical operations. We ran several simulations with different precisions, different input masks (for statistical
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Figure 5. Training errors (a) and prediction lengths (b) for different training algorithms and reservoir sizes for Mackey-
Glass task.
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Figure 6. Optimal values of the feedback gain α (blue curves) and the input gain β (green curves) for the Mackey-Glass
prediction task. Solid and dotted lines correspond to mean training error and prediction length, respectively.
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Figure 7. RLS performance for different bit-precisions of the reservoir states xi(n) (a) and the readout weights wi (b).
Solid and dotted curve denote training errors and prediction lengths, respectively.

purposes) and N = 100 to find out the minimal allowed resolution. Like for pattern generation, we tested the
precision of the reservoir states, sampled by the ADC (figure 7(a)), and of the readout weights, computed by
the FPGA (figure 7(b)). We found that the ADC 14-bit resolution won’t affect the experimental performance,
as the prediction length gets stable at 14-bit precision. The computations on the FPGA board, however, need
to be performed with sufficiently high precision, at least 27 bits, in order to achieve maximum prediction length.

5. CONCLUSION

Reservoir computing makes it possible to efficiently implement recurrent neural networks in hardware. Numerous
optical and opto-electronic reservoir computers have been demonstrated, which is very interesting for high speed
computation, data and signal processing. In the present work, we reported the first steps towards using such
systems for pattern generation and chaotic series prediction. We based our work on the opto-electronic reservoir
system we developed previously and showed what improvements need to be realised to this system to successfully
solve these tasks.

Tackling prediction tasks in hardware has many potential applications. Precise pattern generation is required
for efficient robot control. Adding the online learning makes the robot potentially capable of learning to move
and adapting its motion to variable conditions. A reservoir computer can also be used as a function generator
with tunable frequency,29 or even store several different patterns and make use of the input signal to select the
pattern to generate.20,30 The Mackey-Glass task shows that a photonic device is capable of predicting chaotic
series. This could be used to emulate different chaotic systems such as Lorentz or Rössler attractors. It could
also be trained to make prediction from data and applied to financial forecasting, for instance. This work thus
advances experimental reservoir computing towards numerous new applications.
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