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Abstract—This paper studies the performance of the
Scaled Largest Eigenvalue (SLE) detector used for the
detection of stationary time-series. We focus on a single-
antenna setup and a blind detection scenario (neither
the signal covariance, nor the noise variance are known).
The SLE detector has received much attention in the
context of Cognitive Radios (CR) due to its simplicity, good
performance and robustness to noise level uncertainties.
Specifically, our goal is to analyze the detector based on the
statistic Γ =

λ1∑p
i=1

λi
, where λ1 ≥ λ2 ≥ . . . ≥ λp represent

the ordered eigenvalues of the sample covariance matrix.
We derive a large-sample-size closed-form approximation
for the test statistic which allows us to derive its statistical
distribution and set up the detector to achieve the required
Probability of False-Alarm (Pfa) and Probability of Detec-
tion (Pd). We also study the robustness of the detector in
the presence of noise uncertainty and impulsive-noise and
investigate the benefits of the spatial sign filter for such
scenarios.

Index Terms—Eigenvalue Detection, Cognitive Radios,
Spatial Sign Function, Matrix Perturbation Theory

I. INTRODUCTION

Among the various blind spectrum sensing techniques

for Cognitive Radios (CR) proposed in the literature [1],

eigenvalue detection has received its share of interest

due to its simplicity, good performance in low Signal-

to-Noise Ratio (SNR) environments, and its robustness

to SNR wall phenomena. While several algorithms ex-

ploiting the structure of the sample covariance matrix
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through its eigenvalues do exist [2], [3], [4], [5], we focus

our attention on the Scaled Largest Eigenvalue (SLE)

detector whose test statistic is given by the ratio of the

largest eigenvalue to the trace (or equivalently, the sum

of its eigenvalues) of the sample covariance matrix Σ̂x.

When the received signal is a sequence of i.i.d mul-

tivariate Gaussian vectors and the signal to be detected

possesses a rank-one covariance matrix, this detector has

been derived as a sufficient statistic for the Generalized

Log-Likelihood Ratio Test (GLRT) [2]. It has also been

shown to maximize the SNR among all the statistics that

linearly combine the received samples [6]. Moreover,

its statistical distribution is not affected by the noise

variance making it a Constant False-Alarm Rate (CFAR)

detector. CFAR detectors have sparked considerable in-

terest due to their adequacy in low SNR environments,

which is a typical scenario for CR systems.

Despite its apparent simplicity, studies of the SLE

detector have been hampered by the complexity of its

statistical distribution. Deriving the distribution of a ratio

of eigenvalues is not a trivial problem. To the authors’

knowledge, analytical expressions for the Probability

Density Function (PDF) of the SLE detector have been

derived for the following scenarios:

• The sample covariance matrix follows a Wishart

distribution, and its size p tends toward infinity (the

ratio of number of samples to the size of the matrix

β = p
N being constant), or is large enough to use

the asymptotic distribution (Tracy-Widom) as an

approximation [7].

• The sample covariance matrix follows a Wishart

distribution, and its size is small enough (p ≤ 5)

to use the closed-form expression derived in [8].

However, the sample covariance matrix Σ̂x will only

follow a Wishart distribution if the received samples

are i.i.d. vectors of size p following a multivariate

normal distribution Np(0,Σx). Any deviation from this

assumption leaves us without any expression for the

statistical distribution of the detector and therefore poses

a problem to adjust its parameters. In many situations of



practical importance the aforementioned hypothesis can

be violated, for instance in the presence of impulsive

noise, temporal correlation between the received samples

or the addition of a non-linear filter to improve the

detector performance. Moreover, if the detector exploits

the temporal covariance of a stationary time-series, the

covariance matrix becomes a Toeplitz matrix and there-

fore cannot follow a Wishart distribution.

In this paper, we set out to investigate the statistical

distribution of the SLE detector working with temporal

covariance matrices under the assumption that the re-

ceived signals are wide-sense stationary. We consider a

single-antenna system in blind-detection scenario where

neither the covariance matrix of the signal nor the noise

variance are known. In such a blind-detection scenario,

tests such as the Ljung-Box test [9] or some variation

can be used to test for the presence of correlation among

samples of the time-series. However, we will show that

eigenvalue-based detectors can be more efficient for such

scenarios (even thought they are not GLRT anymore).

Our main goal is to derive a closed-form approxima-

tion for the statistical distribution of Γ = λ1∑p

i=1
λi

, the

statistic of the SLE detector. This approximation will

provide some insight regarding the influence of the vari-

ous parameters of the signal on the detector performance

and allow us to compute the detector threshold without

the use of Monte Carlo (MC) simulations. We will

address the issue of robustness in the presence of noise

model uncertainty, such as deviations from the Average

White Gaussian Noise (AWGN) assumption commonly

used and see how the SLE detector copes with such

non-ideal conditions. Subsequently, we will study the

benefits of the spatial sign function non-linearity, applied

to the received samples, to mitigate the impact of such

uncertainties and use our model to seek out the statistical

distribution of the SLE detector when combined with the

spatial sign function.

Additionally, as a by-product of our statistical model,

we will introduce a new, computationally simpler de-

tector called the Scaled Largest Circulant Eigenvalue

(SLCE) detector and compare it to the SLE detector.

The remainder of this paper is organized as follows: In

Section II we introduce the signal models and hypotheses

used to derive our main result. Section III is used to

approximate the statistical distribution of λ1, the largest

eigenvalue of the sample covariance matrix, which is

needed in Section IV, where we move on to the statistical

distribution of the SLE detector statistic Γ. Section V

introduces the spatial sign function and the modifica-

tions imparted on the theoretical results of the previous

section. Numerical results are presented in Section VI,

where we also analyze the limitations of our approxima-

tions. Furthermore, we will compare the SLE detector to

other eigenvalue detectors and the Ljung-Box detector.

We conclude with a summary of our contributions in

Section VII.

II. SYSTEM MODEL

In this section, we present our detection scenario and

introduce some notations that will be used throughout

this paper.

A. Received signal

As is typically done in the context of spectrum sens-

ing, we consider a baseband discrete-time signal x(n)
at the receiver and set out to discriminate between the

following hypotheses:
{

H0 : x(n) = v(n)

H1 : x(n) = s(n) + v(n)
(1)

where s(n) is the communication signal to be detected

and v(n) represents an i.i.d. process of noise and inter-

ference. All signals are assumed to be zero mean and

if needed, we may subtract the sample mean from the

received sample vectors. We shall refer to the hypothesis

H0 as the null hypothesis and the hypothesis H1 as the

alternative hypothesis. We assume that the input signals

are Wide-Sense Stationary (WSS) over the observation

window made of N samples. As a result, the unknown

temporal covariance matrix of the signal x(n), denoted

as Σx, has a Toeplitz structure and in order to proceed

with the detection of the signal s(n), we need an estimate

Σ̂x of Σx.

B. Covariance matrix estimate

Constraining a sample covariance matrix to have

a Toeplitz structure is a difficult problem, that often

involves Maximum Likelihood (ML) estimation1 and

iterative algorithms (see [11], [12] and the references

therein). Such approaches make it difficult to derive the

statistical distribution of the estimated covariance matrix

and for this reason, we will instead use more naive (but

tractable) estimation techniques2. More specifically, we

may use either of the following two approximations. We

1Please note that the usual ML sample covariance matrix estimate
for multivariate Gaussian signals [10], typically used in multiantenna
scenarios, does not apply here since we consider a time-series scenario
and do not assume that the received samples follow a Gaussian
distribution.

2As a result, please note that even if the time-series samples follow
a Gaussian distribution, neither of the following estimators for Σx are
ML.
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can first compute the vector ς̂ = [ς̂0, ς̂1, . . . , ς̂p−1] that

contains the sample estimates of the auto-correlation at

time lags {0, 1, 2, . . . , p− 1}:

ς̂i =
1

N − i+ 1

N−i+1∑

n=0

x(n)x∗(n+ i), (2)

where (.)∗ denotes the complex conjugate operator, and

build the Hermitian Toeplitz matrix Σ̂x = Toep(ς̂). This

matrix has a Toeplitz structure, but is not guaranteed to

be positive-definite. Alternatively, we can construct the

matrix

X =








x0 x1 . . . xp−1

x1 x2 . . . xp

...
... . . .

...

xN−p xN−p+2 . . . xN−1








, (3)

using overlapping sample vectors and build the sample

covariance matrix Σ̂x = 1
N−p+1X

HX , where (.)H is

the conjugate transpose operator. The matrix Σ̂x defined

this way is a true covariance matrix in the sense that

it is Hermitian and positive-definite, but is not Toeplitz.

However, when the sample size N becomes large with

respect to the size p of the matrix, the difference between

the two approximations becomes negligible. From now

on, we will assume that the ratio β = N
p is large enough

(e.g. β = 100) to consider that Σ̂x is both Toeplitz and

positive-definite.

C. SLE detector statistic

Under hypothesis H0, the received samples are as-

sumed to be i.i.d3 and the true covariance matrix Σx is

a scaled identity matrix. Intuitively, under the hypothesis

H1, the signal s(n) adds correlation to the received sig-

nal x(n) which causes the off-diagonal elements of Σx

to be non-zero. The SLE detector uses the eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λp of Σ̂x to measure these changes

by computing the statistic

Γ =
λ1

∑p
i=1 λi

. (4)

Under hypothesis H1, the largest eigenvalue λ1 in-

creases, indicating the presence of a communication

signal. λ1 is divided by the sum of all the eigenvalues

in order to make the statistic Γ independent from any

scaling effect (i.e. multiplying x(n) by a constant does

not affect Γ), which implies that the detector does not

depend on the variance of the noise and is thereby CFAR.

For finite-size matrices, the statistical distribution of

Σ̂x is paramount to evaluating the distribution of the

3Any correlation arising from the presence of a filter at the receiver
can be canceled using the procedure described in [13].

SLE statistic Γ. If Σ̂x is Toeplitz, its entries are entirely

determined by the vector ς̂ , whose statistical distribution

is linked to the input signal x(n) via equation (2). If

we suppose that the noise samples are i.i.d complex

Gaussian distributed, v(n) ∼ CN (0, σ2
n), the vector ς̂

is composed of quadratic forms of Gaussian random

variables, which can be approximated using Chi-squared

distributions as shown in [14]. However, in order to

extend the theory derived in this paper to non-Gaussian

signals, we will instead assume that the number of

samples N is large enough so that the Central-Limit

Theorem (CLT) can be used to model the statistical

distribution of ς̂ using a multivariate complex Gaussian

distribution.

III. STATISTICAL DISTRIBUTION OF λ1

As can bee seen from equation (4), the SLE detector

statistic depends on the largest eigenvalue λ1 of Σ̂x. In

order to derive the statistical distribution of Γ, we first

need to derive the distribution of λ1, which is the main

objective of this section.

Despite being heavily structured, there is no general

solution to the eigenvalue problem of random Toeplitz

matrices such as Σ̂x. Therefore, we seek an approxima-

tion for the statistical distribution of λ1, which we will

construct in two main steps: first we approximate Σ̂x by

a circulant matrix C and derive the statistical distribution

of its largest eigenvalue. Second, using the results of

step one and the matrix perturbation theory developed

in [15], [16], [17], we propose an approximation for the

statistical distribution of λ1.

A. Circulant approximation for Toeplitz matrices

Circulant matrices are a special type of Toeplitz ma-

trices for which the last element of a given row becomes

the first element of the next row via a cyclic shift:







a b c d

d a b c

c d a b

b c d a







(5)

Circulant matrices benefit from many interesting prop-

erties related to their eigenvalues and eigenvectors. For

instance, their eigenvectors correspond to the columns

of a Discrete Fourier Transform (DFT) matrix:

Di,j =

(
1√
p
e−j 2π

p
(i×j)

)

{i, j} ∈ {0, 1, . . . , p− 1},
(6)

where the indices {i, j} denote the ith and jth row and

column respectively. As a result, the eigenvalues of a
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circulant matrix C can be obtained as

Λ = DH C D , (7)

where Λ is a diagonal matrix of the eigenvalues.

It is well known that banded Toeplitz matrices can be

asymptotically (i.e. when their size increases to infinity)

approximated by circulant matrices, in the sense that

their eigenvalue spectrum behave similarly [18], [19].

Unfortunately, the matrix Σ̂x is not banded and we seek

an approximation for its individual eigenvalues, instead

of its spectrum. Nevertheless, approximating Σ̂x by a

circulant matrix C will give us a starting point to use

the matrix perturbation theory later on.

In order to construct C , we use the approximation

developed in [20]:

C = DH diag(D Σ̂x DH)D = DH diag(R)D

= DH diag(r)D, (8)

where diag(R) is a diagonal matrix built from the main

diagonal of the matrix R = D Σ̂xD
H and diag(r) is a

diagonal matrix built from the vector r, which contains

the main diagonal elements of R . Since the DFT matrix

is unitary, the matrix R possesses the same eigenvalues

as Σ̂x and diag(R) turns out to be a diagonal matrix

whose elements r = [r1, r2, . . . , rp] are the eigenvalues

of C .

We see that approximating Σ̂x by C is equivalent to

approximating the eigenvalues of R by r. Gershgorin

circles [21] can be used to bound the error of such

approximations (replacing the eigenvalues of a matrix

by its diagonal elements). Unfortunately, the bounds are

much larger than the spread of the statistical distribution

of the eigenvalues, indicating that the approximation

is too crude to directly derive the distribution of Γ.

Nevertheless, we will make use of this approximation

later on and therefore need the statistical distribution

of the largest eigenvalue of the matrix C (which is

equivalent to max(r)) 4.

B. Joint statistical distribution of the eigenvalues of a

circulant matrix

We will now derive the joint statistical distribution

of the eigenvalues of the matrix C . In order to do

that, we will start from the distribution of the estimated

covariance vector ς̂ and track down its transformation

going from ς̂ to r.

As we explained in Section II-C, we assume that the

vector ς̂ , whose elements form the matrix Σ̂x, is dis-

tributed as a multivariate complex Gaussian random vari-

4Note that since we are working with covariance matrices, which are
positive semi-definite, all the eigenvalues are real and non-negative.

able. Moreover, equation (8) indicates that the elements

of r can be obtained from the real and imaginary parts

of ς̂ using a linear transformation. More specifically, let

us define the matrix

T =








D1.T 1D
H
1. . . . D1.T pD

H
1. D1.T̃ 1D

H
1. . . .

D2.T 1D
H
2. . . . D2.T pD

H
2. D2.T̃ 1D

H
2. . . .

...
...

Dp.T 1D
H
p. . . . Dp.T pD

H
p. Dp.T̃ 1D

H
p. . . .








where Di. is the ith row of the DFT matrix D, T i

is a p × p symmetric Toeplitz matrix whose elements

are different from zero only on the upper and lower ith

diagonals, where they are equal to one, and T̃ i is a p×p

Hermitian Toeplitz matrix whose elements are different

from zero only on the upper and lower ith diagonals,

where they are equal to −j and j respectively (defined

as j =
√
−1). The first diagonal is defined as the main

diagonal. Then the vector r is equal to

r = T ×
[
ℜ(ς̂)
ℑ(ς̂)

]

, (9)

where the operators ℜ(.) and ℑ(.) extract the real and

imaginary parts of their argument.

As a result, the statistical distribution of r is given

by r ∼ N (Tµς̂ ,TΣς̂T
T ) = N (µr,Σr), where µς̂

and Σς̂ are the mean vector and covariance matrix of

[ℜ(ς̂) ℑ(ς̂)]T , respectively.

C. Statistical distribution of the largest eigenvalues of a

circulant matrix

Our interest lies with the largest eigenvalue of C or

equivalently, the maximum element of r.

If we suppose that the maximum element of r is r1,

then its statistical distribution can be derived from r

using appropriate constraints on dummy variables. We

define the vector u = [u2, u3, . . . , up] whose elements

are ui = ri − r1 and the variable v = r1:









u2

u3

...

up

v










=










−1 1 0 . . . 0
−1 0 1 . . . 0
−1 0 0 . . . 0

...
. . .

...

1 0 0 . . . 0










︸ ︷︷ ︸

B










r1
r2
r3
...

rp










(10)

The statistical distribution of r1 given that r1 >

rn , ∀n > 2 is therefore the distribution of v under the

constraints that u < 0 (where 0 is a null vector of size

(p− 1)).
Since any element of r can be the maximum, we

need to repeat this process for all the elements of r (by

successively assigning v = r2, v = r3,...) and combine
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the corresponding conditional distributions. However,

under hypothesis H0, we suppose that the noise samples

are uncorrelated, making the covariance matrix Σx a

scaled identity matrix. Upon transformation via (9), Σr

becomes a circulant matrix, which is invariant over

cyclic permutations of the elements r. Therefore, the

distribution of max(r) is simply equal to the conditional

distribution of r1. As a result, the distribution of λC1,

the largest eigenvalue of C , is given by

FλC1
(x) = pPr(v ≤ x, u2 ≤ 0, . . . , up ≤ 0) (11)

which shows that the variable λC1 possesses (un-

der H0) a Selection Normal distribution SLCT −
N1,p−1(Bµr,BΣrB

T ,0), whose density function is

given in Appendix A. Under hypothesis H1 the co-

variance matrix Σr is not circulant anymore and the

distribution of λC1 becomes a mixture of Selection

Normal distributions whose elements can be computed

using (10) after a suitable permutation of the elements

of r.

D. λ1 as a function of λC1

In our second main step, we aim at closing the gap

from approximating the sample covariance matrix Σ̂x by

the circulant matrix C. Since we are only interested in

the eigenvalues of the aforementioned matrices, we will

instead work with the matrices R and diag(R) which

have the same eigenvalues as Σ̂x and C, respectively.

We will use the matrix perturbation theory derived in

[15], [16], [17] and presented in Appendix B5, which

allows to derive the eigenvalues of the matrix R as a

function of the eigenvalues of diag(R) and the pertur-

bation matrix E = R− diag(R).

We will need the following submatrices.

• R11 is the maximum element of the main diagonal

of R.

• R12 and R21 are the row and column vectors,

respectively, corresponding to the off-diagonal el-

ements of the row and column that contain R11.

• R22 is the submatrix made of the elements of R,

excluding R11, R12 and R21.

Using equation (33) we can express λ1 as a function

of λC1,

λ1 = λC1 +R12P , (12)

where the vector P is defined in equation (34). Unfortu-

nately, (12) does not directly lead to a useful analytical

5The theory presented in Appendix B is derived for a general case.
Some simplifications occur in this section due to our particular choice
of matrices.

expression for λ1 due to the term R12P
6. The difficulty

inherent to the statistical distribution of R12P combined

with its small variance7 (compared to λC1) motivates the

approximation R12P ∼ E[R12P ], whereby we replace

the random variable by its expectation E[.]. As a result,

we consider that the distribution of λ1 is identical to

that of λC1 apart from the offset ∆ ≡ E[R12P ] =
E[λ1]−E[λC1]. We will demonstrate through numerical

results that this approximation is valid for the upper tail

of the distribution. Please note that we only approximate

the distribution Fλ1
(x) by FλC1

(x − ∆). We cannot

approximate the eigenvalues directly (λ1 6= λC1 +∆).

E. Distribution offset (∆)

In order to compute the offset ∆, we will start

from equation (36). Combining both parts, we get the

quadratic equation

λ1(λ1 − λC1)−R12R22P − ‖R12‖22 = 0 (13)

The term R12R22P poses a problem since it depends

on the unknown vector P . We will therefore apply two

successive approximations to eliminate it: first, when the

parameter N is large enough, the submatrix R22 tends

toward the identity matrix and the variable R12R22P

can be approximated by R12P . Second, we replace the

random variable R12P by its expectation ∆. Applying

this to (13) we obtain

λ1(λ1 − λC1)−∆− ‖R12‖22 + ξ = 0 , (14)

where ξ is an error term proportional to the standard

deviation of R12P . The solution of this equation is given

by

λ1 =
1

2
λC1 +

1

2

√

λ2
C1 + 4(∆+ ‖R12‖22 + ξ) (15)

We then apply the expectation operator E[.], which leads

to the expression:

2E[λ1] = E[λC1]+
√

E[λ2
C1] + 4∆+ 4E[‖R12‖22]+ξ2,

(16)

where the term ξ2 accounts for ξ and the approximation

error due to bringing the expectation operator inside the

square root. Using the equality E[λ1] = E[λC1] + ∆,

we obtain a quadratic equation for ∆, whose solution

6Analyzing P using equation (35) shows that its statistical distribu-
tion involves a multidimensional integral over a fairly complex path,
making it intractable.

7If one looks at the explicit terms of the kth iteration of equation
(35) and neglects the remainder terms that still depend on P , we can
see that the variance of R12P has the same order of magnitude as
‖R12‖2 which, provided that the ratio β is large enough, is much
smaller than λC1.
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(neglecting the error term) is given by

∆ ≃ 1

2

(

(1− µλC1
) +

√

(1− µλC1
)2 + σ2

λC1
+ 4E[‖R12‖22]

)

(17)

where µλC1
and σ2

λC1
are respectively the mean and

variance of λC1. We will use equation (17) as an

approximation for ∆. This approximation only depends

on parameters that belong to the matrix C or the entries

of R and therefore can be obtained analytically8. We will

discuss in Section VI the errors resulting from the use

of our approximation (17) (i.e. neglecting ξ2) in deriving

the statistical distribution of the SLE detector.

F. Summary

Let us write down the key results of this section:

• We built a circulant matrix (C) to approximate a

Toeplitz matrix (Σ̂x).

• We derived the statistical distribution of the largest

eigenvalue λC1 of C.

• Using the matrix perturbation theory, we obtained

equation (12) relating the largest eigenvalue λ1 of

Σ̂x to λC1.

• We simplified equation (12) to remove the unknown

variables, thereby postulating that the distribution of

λ1 can be approximated by the distribution of λC1,

up to an offset ∆.

• We derived an approximation for the offset ∆,

which can be computed analytically.

By combining these results, we have modeled the

statistical distribution of λ1 as Fλ1
(x−∆) = SLCT −

N1,p−1(Bµr,BΣrB
T ,0), indicating that the largest

eigenvalue of Σ̂x follows a Selection Normal distribu-

tion.

IV. STATISTICAL DISTRIBUTION OF Γ

We now move on to the next and main result of this

paper, the statistical distribution of Γ. Using the result

of the previous section, the statistical distribution FΓ(x)

8For instance, the vector R12 is obtained using a selection mech-
anism identical to (10): the position of the maximum element of
diag(R) dictates which off-diagonal elements are used to form
R12. Thereby, R12 follows a Selection Normal distribution whose
parameters can be easily calculated. The Euclidean norm ‖R12‖2 is a
quadratic form of a selection normal distribution and its variance can
be calculated using the moment generating function of R12 (28), or
by direct integration using the density function (27).

can be approximated as

FΓ(x) = Pr(
λ1

∑p
i=1 λi

≤ x)

≃ Pr(λC1 +∆ ≤ x

p
∑

i=1

λCi)

= Pr(λC1(1 − x) + ∆− x

p
∑

i=2

λCi ≤ 0)

= Pr(max(r)(1 − x) + ∆− x

p
∑

i=2

ri ≤ 0).

(18)

Please note that
∑p

i=1 λi =
∑p

i=1 λCi due to the trace

invariance property of our approximation (8). In the same

fashion as equation (10), we define the random variables

v and u = [u2, . . . , up]
T through










u2

u3

...

up

v










=










−1 1 0 . . . 0
−1 0 1 . . . 0
−1 0 0 . . . 0

...
. . .

...

1− x −x −x . . . −x










︸ ︷︷ ︸

BΓ










r1
r2
r3
...

rp










+










0
0
0
...

∆










︸ ︷︷ ︸

∆

(19)

This allows us to rewrite equation (18) as

FΓ(x) ≃ p Pr(v ≤ 0, u2 ≤ 0, . . . , up ≤ 0)

= p Φp(0,BΓµr +∆,BΓΣrB
T
Γ ), (20)

where Φp is the standard Gaussian cumulative distri-

bution function. This shows that the distribution FΓ(x)
can be computed using a multivariate normal distribu-

tion. This result will allow us to set the SLE detector

parameters to obtain a desired Probability of False-

Alarm (Pfa) and to analyze its probability of detection

without using MC simulations, for various noise and

signal distributions.

A. SLCE detector

Interestingly, the theory developed so far can be used

to obtain the distribution of a statistic similar to the SLE.

In particular, we consider the statistic ΓC = λC1∑p

i=1
λCi

derived using the eigenvalues of C . We call the detector

based on ΓC the Scaled-Largest Circulant Eigenvalue

(SLCE) detector. This detector is of interest since its

statistic does not depend on the cumbersome approxima-

tion of the offset ∆. It is easy to see that its distribution

is simply approximated by

FΓC
(x) ≃ p Φp(0,BΓµr,BΓΣrB

T
Γ ). (21)

Moreover, when the number of samples N is large
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enough, the covariance matrix BΓΣrB
T
Γ remains ap-

proximately constant over the domain of x, which shows

that the two distributions FΓ(x) and FΓC
(x) are iden-

tical, up to a shift in mean ∆Γ ≃ ∆
p . Provided that

the shift ∆Γ remains constant between hypotheses H0

and H1, the SLE and SLCE detectors have the same

performance, but with the added benefit for the SLCE

of a simpler distribution model.

V. SPATIAL SIGN FILTERING

To highlight the versatility of the presented methodol-

ogy we consider its applicability to robust CR detectors.

A detector is called robust if a slight modification of

the noise distribution induces only a slight modification

of the detector statistical distribution, thereby allowing

us to maintain its threshold. For instance, CFAR de-

tectors are robust to a change in the noise variance.

As we previously mentioned, the SLE detector has

been almost exclusively studied under the assumption

that the noise follows a Gaussian distribution and is

temporally uncorrelated [22], [8], [2]. As we will see,

the SLE detector statistic is dramatically affected by

any deviation from these assumptions. For instance, in

the presence of impulsive noise, the sample covariance

matrix does not follow a Wishart distribution anymore

and the distribution of Γ is unknown, making it difficult

to use the detector. Impulsive noise distributions occur

frequently both in indoor and outdoor environments (see

[23] and the references therein).

It has been shown on multiple occasions [23], [24],

[25] that filtering the input signal using a non-linear

sigmoid function, which constrains the signal between a

lower and upper bound, improves the robustness of the

detector with regards to impulsive noise by attenuating

the influence of high amplitude samples. One such

function is the spatial sign function

S(x) =
x

|x| , (22)

which extracts the phase of the received signal. We

therefore wish to obtain the statistical distribution of the

SLE detector when the received samples are first filtered

by the spatial sign function.

Provided that the CLT remains valid, the vector ς̂

(2) is still distributed as a multivariate normal random

variable. The spatial sign function only affects its mean

µς̂ and covariance matrix Σς̂ . Consequently, all the

results regarding the statistical distribution of λ1 and

λC1 remain valid. However, the main diagonal of the

covariance matrix Σ̂x becomes a constant (equal to 1)

and the statistic Γ becomes identical to λ1, up to the

rescaling factor 1
p . In addition, the covariance matrix

Σ̂x becomes singular, which subsequently affects the

covariance matrix BΣrB
T of the SLCT-N distribution

(cf. equation (10)). However, as explained in [26], the

consequences of this singularity are only of computa-

tional nature and the distribution Fλ1
(x) still follows a

SLCT-N distribution. As a result, our model can be used

to approximate the distribution of the SLE detector when

the received signal is first modified by the spatial sign

function, which we will use to analyze the performance

of the modified detector in the presence of impulsive

noise.

VI. NUMERICAL RESULTS

In this section we present numerical results pertaining

to the analytical results obtained so far. First, we will

illustrate to what extent our approximations and models

are valid by comparing the analytical results with Monte

Carlo (MC) simulations. Second, we will compare the

performances of the SLE and SLCE detectors for various

parameters, noise distributions and signal distributions.

To clearly identify the underlying methods for the

different results, the statistics based on our model in-

corporate a hat notation (̂.) (λ̂C1, λ̂1, etc), while the

equivalent MC estimations do not. Furthermore, when

presenting the validity of our model, we will also show

results incorporating a MC estimation of the offset ∆.

The statistics based on that estimation feature a ∼ sign

on top. For instance, we call Fλ̃1
(x) the approximate

distribution for λ1 based on the analytical distribution of

λC1 and MC estimation of ∆. To simplify notation in the

figures, we may write Γ, Γ̂ and Γ̃ to designate the various

distributions estimated using MC simulations, the theory

previously developed, or a combination of both.

In order to test the robustness of the detectors with

respect to deviations from the noise model assumptions,

we will also show results incorporating non-Gaussian

heavy-tailed noise, such Contaminated Gaussian (CG)

noise, whose PDF is given by:

fCG(x) = p1 N (x, 0, σ2)+(1−p1) N (x, 0, rσ2). (23)

This is a two-component Gaussian mixture distribution.

The background noise component has a high probability

of occurrence (typically p1 = 95%) while the second

component, controlling the impulsive part of the noise, is

characterized by a low probability of occurrence (1−p1)

but possesses a variance that is r times higher than that

of the background noise. Typical parameters used in this

paper will be (p1 = 0.95, r = 100).

A. λC1 and λ1 PDF approximations

Figure 1 shows the PDF of λC1 and its approx-

imation λ̂C1 based on the SLCT-N distribution. The

7
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Fig. 1. PDF of λC1 , obtained via Monte Carlo simulations, and

its SLCT-N approximation λ̂C1. The input signal is AWGN noise,
N = 5000.

SLCT-N model is based on the assumption that the

sample autocorrelation vector ς̂ follows a multivariate

normal distribution. This is an approximation based on

the CLT and, as p increases, the overall error in the

statistical model for ς̂ increases, which in turn degrades

the goodness-of-fit of the SLCT-N model. Increasing the

number of samples available or using a Gaussian mixture

model for the distribution of ς̂ improves the goodness-

of-fit. Nevertheless, we are mostly concerned with the

upper tail behavior of our approximation, for which the

error remains manageable as we will see by comparing

deviations from the target Pfa for the SLE and SLCE

detectors. We decided to use that metric as a way to

illustrate the suitability of our model rather than, say, the

Kullback-Leibler divergence, since it is more relevant for

the parametrization of the detectors.

Figure 2 shows the PDF of λ1 and models λ̃1 and

λ̂1. The PDF of λ̃1 (FλC1
(x) shifted by ∆) shows a

remarkable match with the PDF of λ1, as does the

resulting Cumulative Distribution Function (CDF) for Γ̃
shown in Figure 3. Despite being a mostly empirical

observation, it indicates that a model accurately describ-

ing the PDF of λC1 and the offset ∆ can be used to

model the distribution of λ1. The SLCT-N distribution

approximation for λ̂C1 and our approximation ∆̂ attempt

to fulfill this role. As can be seen on Figure 2, the

approximation is valid for the upper quartile of the

distribution, which in turn provides a good fit for the

distribution function of Γ̂ as shown in Figure 3.

The capabilities and limitations of our model are

highlighted in Figure 4, where we show the deviations
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Fig. 2. PDF of λ1, λ̃1 and λ̂1. the approximations λ̂C1 and ∆̂ are
derived using the SLCT-N distribution and equ (17), respectively. The
input signal is AWGN noise, N = 5000, and p = 10. ∆ = 0.0154,

∆̂ = 0.0164
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Fig. 3. CDF of the SLE and SLCE detectors statistics. The input signal

is AWGN noise, N = 5000, and p = 10. ∆ = 0.0154, ∆̂ = 0.0164

from the target Pfa caused by our model. For instance,

if the desired Pfa is 0.01, simulations show that the real

Pfa will have an offset of about 15%, bringing its value

to 0.0115. The relative error goes down when the target

Pfa increases and the error appears to be reasonable for

typical Pfa values such as 0.1. In the particular case of

Figure 4, the distribution Γ̃ is slightly worse than Γ̂ in

the range of interest (0.01 ≤ Pfa ≤ 0.5), but this is not

generally true, as can be seen in Table I, which shows the

Pfa relative error for various values of the parameters

N and p. These errors are caused by deviation from the
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Γ): ξ̃ = 100
|FΓ(x)−F

Γ̃
(x)|

1−F
Γ̃
(x)

. The input signal is AWGN noise, N =

5000, and p = 10.

multivariate Gaussian distribution of the vector ς̂ . The

pdf of ς̂ relies on the CLT and therefore the model is

not accurate for small values of N . Moreover, for a fixed

N (and thereby constant deviation from the Gaussian

model for every element ς̂i) , increasing the parameter

p increases the dimension of ς̂ and the overall error

caused by the CLT approximation. The error caused

by our model also appears in Figure 5, which shows

the probability of detection of the SLE detector in the

presence of impulsive noise. As the SNR decreases the

probability of detection becomes equivalent to the Pfa

and we can readily see that the real Pfa slightly differs

from the target Pfa.

B. SLCE Detector and spatial sign filtering

The SLCE detector statistic does not rely on an

estimation of the offset ∆, thereby removing a source of

error in the model, which should reduce any deviation

from the desired Pfa. For instance, Figure 6 shows that

the Pfa for the SLCE detector is equal to: 0.108 instead

of 0.13 for the SLE detector (as shown on Figure 5).

Additionally, as we previously mentioned in Section IV,

the distribution Γ and ΓC are almost identical, apart from

the offset ∆Γ and the performance of both detectors

should therefore be similar. This is illustrated in Figure 7,

which shows that the SLCE detector has almost identical

performance compared to the SLE detector, making it an

interesting alternative to the SLE detector.
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Fig. 5. Probability of detection for the SLE detector based on the

statistics Γ, Γ̃ and Γ̂. Target Pfa = 10%, N = 5000, and p = 10.
The input signal is a 64 Quadrature Amplitude Modulated (QAM)
signal filtered by a root-raised cosine filter and embedded in CG noise
(0.95, 100). The oversampling factor is set to 2.

The spatial sign non-linearity makes the SLE and

SLCE detectors impervious to changes in amplitude of

the received signal, thereby increasing their robustness

to non-Gaussian noise signals. As shown in Figure 7,

both detectors greatly benefit from the presence of the

spatial sign filtering in the presence of impulsive noise,

with an increase of about 6 dB in SNR9 for an identical

probability of detection. Moreover, an added benefit of

the spatial sign filter comes from the hardware simpli-

fication that occurs by working with a signal of fixed

amplitude. Since our analytical model only requires the

CLT approximation to be valid for the vector ς̂ , we can

use our model to derive the SLE statistic distribution

even when the input signal is modified by the spatial

sign function (cf. Figure 6). This contrasts with the usual

Wishart-based analysis, which cannot be used when the

input signal deviates from the AWGN assumption.

C. Spatial Covariance matrices

While the theory developed in Sections III and IV

originates from temporal covariance matrices of wide-

sense stationary signals, the SLE detectors is often

used in multi-antenna systems that work with spatial

covariance matrices, exploiting the correlation between

antennas. Therefore, given the importance of this fairly

practical scenario, we present a set of results regarding

9The SNR for CG noise is defined using the overall variance of the
noise, including the impulsive part.

9



TABLE I
Pfa RELATIVE ERROR (%) FOR THE STATISTICS Γ̃, Γ̂ AND ΓC FOR VARIOUS VALUES OF THE PARAMETERS N AND p. THE TARGET Pfa IS

0.1. AWGN.

N = 500 N = 1000 N = 5000

p = 5 p = 10 p = 5 p = 10 p = 15 p = 5 p = 10 p = 15 p = 20

Γ̃ 18.3 31 7.1 21.8 45.7 0.1 6.9 13.8 22.8

Γ̂ 19.2 62.5 20.5 29.6 56.0 18.8 0.4 21.0 38.3

Γ̂C 17.4 38.8 10.4 29.1 48.9 3.9 9.3 19.2 27.2
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Fig. 6. Probability of detection for the SLCE detector, parametrized
using MC simulations and the SLCT-N approximation. Target Pfa =
10%, N = 5000, and p = 10, 64QAM signal embedded in CG noise
(0.95, 100).

the distribution of the SLE and SLCE detectors exploit-

ing spatial covariance matrices10.

Spatial covariance matrices do not have a Toeplitz

structure. Nevertheless, under the null hypothesis, both

the spatial and temporal sample covariance matrices take

on the form of perturbed identity matrices (provided

that the noise power is identical at all antennas), and

it is reasonable to expect that the theory derived for

temporal covariance matrices could be reused for spatial

covariance matrices (only for the purpose of tuning the

detector for the null hypothesis).

Figure 8 shows the CDF of the SLE and SLCE statis-

tics for several noise distributions. For AWGN noise,

the empirical (MC) distribution is closely approximated

10Please note that, despite their empirical nature, we will denote by
”theoretical results“ the ones obtained using the theory developed for
the temporal covariance matrices, as opposed to the ”empirical results“
obtained through MC simulations.
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Fig. 7. Probability of detection for the SLE and SLCE detectors, in
the presence of impulsive noise, with and without spatial sign filtering
(Prefix ”SS” in the legend) N = 5000, and p = 10, CG noise
(0.95, 100).

by the theoretical result of equation (20). Next, we add

random noise variance fluctuations at the antennas: the

noise variance at each antenna follows a uniform distri-

bution centered around unity with a maximum deviation

of 1 dB from unity. When the noise variance is not

identical across all antennas, we can readily see that the

SLE distribution is drastically different from the AWGN

scenario, indicating that the detector is not robust with

respect to uncalibrated noise and that the theory based

on Wishart distribution cannot be used to parametrize

the detector in such conditions. Unfortunately, our model

also fails to approximate the empirical distribution. How-

ever, when the received signal is first modified by the

spatial sign function, the distribution of the SLE becomes

similar to the AWGN scenario and the theoretical CDF

10
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matches the empirical one11. The SLCE statistic remains

unchanged for all scenarios, indicating an inherent ro-

bustness to the noise distribution/calibration. Indeed, the

lack of noise variance calibration only results in a scaling

effect for the entries of the vector r, which disappears in

the SLCE statistic. The theoretical approximation offers

a good fit, making it possible to use the SLCE detector

with spatial covariance matrices, even when subjected to

noise variance uncertainties.

D. Probability of Detection

The analysis leading to expression (20) has been

been focused on the statistical distribution of Γ under

hypothesis H0, in order to set a detector threshold

matching a target Pfa. It is however entirely possible to

use the methodology to derive the distribution under the

alternative hypothesis H1, provided that the presence of a

communication signal only modifies the parameters (i.e.

µς̂ and Σς̂ ) of the estimated covariance vector ς̂ (2) (the

joint multivariate Gaussian assumption has to remain

valid). For instance, Figure 9 illustrates the CDF of the

SLE and SLCE detectors for an Orthogonal Frequency-

Division Multiplexing (OFDM) signal12 embedded in

11The offset ∆ is derived using MC simulations as its approxima-
tion (17) is only valid for Toeplitz matrices. We did not derive an
approximation suitable for spatial covariance matrices.

12We could have used other signals such as the QAM signals used
earlier.
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Fig. 9. Theoretical and empirical CDF of the SLE and SLCE detectors
computed under hypothesis H1. The received signal consist of AWGN
noise and an OFDM signal (SNR= −5 dB), filtered using the spatial
sign function. p = 10, N = 5000

AWGN noise. We can see that the CDF approximation

remains valid for both the SLCE and SLE statistics.

E. Comparison with the Ljung-Box detector and

sphericity test

In testing for the presence of autocorrelation of a

Gaussian time-series, whenever the noise variance or

signal covariance matrix is known, it is possible to

derive a GLRT statistic [27]. When neither the signal

covariance matrix nor the noise variance are known,

computing a GLRT statistic is impractical due to the

amount of unknown parameters and in any case requires

a Gaussian distribution for the received signal. For such

detection scenarios, the Ljung-Box detector [9], [28] is

often used even though it is not optimal. In its simplest

form, the Ljung-Box detector sums the square of the

serial correlation coefficients normalized by the variance

of the signal:

ΓLB = N(N + 2)

p
∑

i=1

1

N − i
(
ς̂i

ς̂0
)2 (24)

While the SLE detector is a GLRT for the detection

of a rank-one multivariate Gaussian signal, it also maxi-

mizes the SNR among all statistics that linearly combine

the received signal samples [6], motivating its use in

single-antenna detectors. Therefore, it is interesting to

compare it to the Ljung-Box detector.

Another eigenvalue detector that is worth comparing

to the SLE is the sphericity, also known as the Spherical

Test Method (STM detector). The sphericity test is a
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GLRT for the detection of multivariate Gaussian signals

with positive-definite covariance matrices (hence full-

rank) in the presence of i.i.d Gaussian noise [2], [5].

Its statistic is given by

Γsph =

1
p tr(Σ̂x)

det(Σ̂x)1/p
, (25)

where tr(A) and det(A) are the trace and determinant of

the matrix A, respectively. In a blind-detection scenario,

where the structure of Σx is unknown, one may expect

for the sphericity test to outperform the SLE detector.

However, the covariance matrix Σ̂x tends toward a rank-

one matrix as the oversampling rate of the received signal

increases and warrants a comparison between the two de-

tectors for small to moderate values of the oversampling

factor. The oversampling factor has been set to 2 for all

previous results to guarantee some amount of correlation,

irrespective of the signal or channel parameters.

Figures 10 and 11 show the Receiver Operating Char-

acteristic (ROC) curves for the SLE, Sphericity and

Ljung-Box detectors for different signals and size of

the covariance matrix. For the typical lag values used

in the paper (p ∈ {5, 20}) and a small oversampling

factor (2, 3), the SLE and sphericity detector have similar

performances. When the oversampling factor increases

(Figure 11), the SLE detector outperforms the Sphericity

detector. However, when the oversampling increases, the

overall SNR decreases due to the added out-of-band

noise collected, resulting in a degradation of perfor-

mance for the three detectors. As a result, an oversam-

pling factor as small as possible is always desirable and

when no oversampling is needed (e.g. an OFDM signal

with guard bands), the Sphericity test outperforms the

SLE detector.

VII. CONCLUSION

In this paper, we have been concerned with the analy-

sis of the SLE detector statistic Γ. The objective was to

develop an analytical model for its statistical distribution

when the received signal is wide-sense stationary. We

considered small matrix sizes (5 ≤ p ≤ 20) and large

sample sizes (500 ≤ N ≤ 5000). The model we

developed relies on a CLT assumption and therefore

requires enough samples to be used. However, the CLT

assumption also makes it applicable to a wide range of

noise and signal distributions, unlike previous models

found in the literature. Furthermore, it allowed us to

consider non-linear transformations of the signals, (e.g.

spatial sign filtering) to improve the detector robustness

to impulsive noise. We also presented a new detector,

the SLCE detector, based on the largest eigenvalue of
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Fig. 10. Receiver Operating Characteristic (ROC) curves for the
SLE,Sphericity and Ljung-Box detectors. 64 Quadrature Amplitude
Modulated (QAM) signal in AWGN. SNR = −10 dB, p = 10,
N = 5000, oversampling factor = 3
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Fig. 11. ROC curves for the SLE, Sphericity and Ljung-Box detectors.
OFDM signal in AWGN. SNR = −15 dB, p = 20, N = 5000,
oversampling factor = 2

a circulant matrix approximating the sample covariance

matrix. Our motivation regarding the SLCE detector

resides in its competitiveness with the SLE detector

as well as the simplified closed-form solution for its

statistical distribution.

APPENDIX

A. Selection Normal Distribution

We introduce here the selection normal distribution

(also called SUN distribution), as presented in [26], [29].
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Given two multivariate normal random variables U

and V , i.e.
(
U

V

)

∼ Nq+p

(

ξ =

[
ξU
ξV

]

,Ω =

[
ΩU ∆T

∆ ΩV

])

,

(26)

the selection normal distribution SLCT −Np,q(C, ξ,Ω)
corresponds to the distribution of the random variable

V when the variable U is constrained to a domain C:

Pr(V ≤ x|U ∈ C). Its density function is given by

fV (x) = φp(x, ξV ,ΩV )

× Φq(C,∆
TΩ−1

V (x− ξV ) + ξU ,ΩU −∆TΩ−1
V ∆)

Φq(C, ξU ,ΩU )
,

(27)

where φp and Φp represent the p-variate Gaussian den-

sity and distribution functions, respectively.

The moment generating function is given by

MV (x) = e{x
T ξ

V
+ 1

2
xT

ΩV x}Φq(C,∆
Tx+ ξU ,ΩU )

Φq(C, ξU ,ΩU )
.

(28)

B. Matrix perturbation theory

It is well known that eigenvalues of a matrix are a

continuous function of the entries of that matrix. Given a

p×p matrix A with known eigenvalues and eigenvectors,

the matrix perturbation theory presented in [15], [16],

[17] allows us to derive the eigenvalues of a matrix Ã =
A + E, where E is called the perturbation matrix. In

the following, A and E are Hermitian. The notations

are consistent with the ones used in [15].

We call L1 the diagonal matrix formed by k ≤ p

eigenvalues of A and L2 the diagonal matrix formed

by the remaining eigenvalues of A. X1 and X2 are

matrices made of the eigenvectors corresponding to the

eigenvalues of L1 and L2, respectively. We can then

write
(
X1 X2

)H
A

(
X1 X2

)
=

(
L1 0

0 L2

)

. (29)

Given a perturbation E, we have

(
X1 X2

)H
E

(
X1 X2

)
=

(
E11 E12

E21 E22

)

. (30)

We define the following parameters:

γ̃ = ‖E21‖F
δ̃ = sepF (L1,L2)− ‖E11‖F − ‖E22‖F
= min |L(L1)− L(L2)| − ‖E11‖F − ‖E22‖F ,

(31)

where ‖.‖F is the Frobenius norm and L(A) is the

set of the eigenvalues of A. The separation function

sepF (., .) is defined in [15] (p. 231) and is equivalent to

min |L(.)− L(.)| only for Hermitian matrices.

As was demonstrated in [15], if γ̃

δ̃
< 1

2 then there is

a unique matrix P , solution of the nonlinear equation

P (L1+E11)− (L2+E22)P = E21−PE12P , (32)

such that

L̃1 = L1 +E11 +E12P . (33)

The eigenvalues of L̃1 are the eigenvalues of the per-

turbed matrix Ã corresponding to the eigenvalues L1, in

the sense that L(L̃1) → L(L1) if E → 0. In this paper,

our interest lies with L̃1 and equation (33) provides the

link we need between the known eigenvalues L1 and

the unknown eigenvalues L̃1. We are only interested in

the largest eigenvalue of Ã and as a result, k = 1, L1

and E11 are scalars and the matrix P is a vector13 of

size (p − 1). This leads to the following simplification

of equation (32):

P = B[E21 −E11P +E22P − PE12P ] , (34)

where B = (L1Ip−1 −L2)
−1.

Provided that γ̃

δ̃
< 1

2 , equation (34) can be solved

iteratively:
{

P 0 = 0

P k+1 = B[E21 −E11P k +E22P k − P kE12P k].
(35)

Additionally, if A = diag(Ã), P can be linked

directly to X̃1 (the eigenvector of L̃1). We denote the

position of the maximum element of diag(A) with the

subscript M and x̃M is the M th element of the vector

X̃1 =
[
x̃1 . . . x̃p

]
. Then, using basic properties of

eigenvalues, we can readily obtain the following system

of equations (we suppose without loss of generality that

M = 1):

ÃX̃1 = L̃1X̃1

Ã(
1

x̃M
)X̃1 = L̃1(

1

x̃M
)X̃1

(
L1 E12

E21 L2 +E22

)








1
P1

...

Pp−1







= L̃1

[
1
P

]

{
L1 +E12P = L̃1

E21 + (L2 +E22)P = L̃1P
(36)

This link between X̃1 and P proves very useful in com-

puter simulations to assess the convergence of equation

(35).

13We will nonetheless keep the matrix notation to avoid an unnec-
essary change of notation.

13



Applying the theory to the matrices defined in equa-

tion (8), we see that diag(R) is our original matrix A

and the perturbation matrix is defined as E = R −
diag(R). Since our unperturbed matrix is diagonal, its

eigenvectors are unit vectors ei = [0 . . . 1 . . . 0].
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