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ALGEBRAIC MULTIGRID FOR STOKES EQUATIONS∗

YVAN NOTAY†

Abstract. A method is investigated for solving stationary or time-dependent discrete Stokes
equations. It uses one of the standard flavors of algebraic multigrid for coupled partial differential
equations, which, however, is not applied directly to the linear system stemming from discretization,
but to an equivalent system obtained with a simple algebraic transformation (which may be seen
as a form of preconditioning in the literal sense). A two-grid analysis is provided, showing that
the eigenvalues of the preconditioned matrix are within a region of the complex plane that is both
bounded and away from the origin, independently of the mesh or grid size, as well as of other main
problem parameters. On the other hand, whereas the approach can in principle be combined with
any type of algebraic multigrid scheme, an investigation of the properties of the coarse grid matrices
reveals that plain aggregation has to be preferred to maintain nice two-grid convergence at coarser
levels. Eventually, numerical experiments are reported showing that the resulting method is both
robust and cost effective, being significantly faster than a state-of-the-art competitor which combines
MINRES with optimal block diagonal preconditioning.
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1. Introduction. We consider the iterative solution of the stationary or time-
dependent discrete Stokes equations (see next section for details and references).
When they are applicable, monolithic or all-at-once multigrid methods are often ef-
ficient [39]. Because standard smoothing methods (such as Gauss–Seidel or damped
Jacobi) are either not well defined or not convergent, relevant approaches are char-
acterized by the use of a specific smoother [35]. This includes collective or coupled
smoothing, in which the primary unknowns, pressure and the velocities in a grid cell,
are updated simultaneously [40]. Another approach is called distributive smoothing,
in which one first transforms the discrete system in such a way that standard de-
coupled smoothing (such as Gauss–Seidel) performs well on the transformed system
[8, 47].

These approaches have been developed for geometric multigrid methods, and
rarely considered in combination with algebraic multigrid (AMG) schemes (see, how-
ever, [20, 42, 43]). The development of AMG variants is in fact more difficult than
for scalar partial differential equations (PDEs), and, so far, the most promising ap-
proaches [32, 44] do not apply AMG schemes directly to the discrete system, but to
an equivalent system obtained through a simple algebraic transformation. This lat-
ter may be seen as a form of preconditioning in the literal sense. Roughly speaking,
considering a partitioning of the system matrix that segregates the different types of
discrete unknowns (velocity components and pressure), the transformation aims at in-
creasing the weight of the diagonal blocks, so as to facilitate the use of unknown-based
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AMG schemes [12, 36], in which the prolongation operator is set up by considering
separately the different types of unknowns (see below for details). The approach
is similar to distributive smoothing in that it uses a transformed matrix. However,
with distributive smoothing, the transformation is only used to obtain an efficient
smoother, and the coarse grid correction is still based on the original matrix. Oppo-
site to this, with the methods in [32, 44], the whole multigrid scheme is applied to
the transformed system; differences and similarities with distributive smoothing are
further commented on in section 3.1 below.

This AMG approach for the Stokes problem has been initiated by Webster in
[44], where extensive numerical results are reported that highlight the potentialities
of the method by showing some nice two-grid convergence rates at the fine grid level.
However, the convergence seems to deteriorate at coarser levels, revealing a possible
limitation, referred to as “loss of stability”; see also [45].

In the present paper, we aim at filling the many gaps left. We first develop
a two-grid analysis, proving eigenvalue bounds for the simplest case of one single
damped Jacobi smoothing step. Only mild assumptions are needed, and the analysis
is compatible with virtually any sensible AMG method combined with the unknown-
based coarsening approach.

However, the analysis holds only at the fine grid level, where the algebraic trans-
formation is applied. As usual with AMG methods, coarse level matrices are ob-
tained with Galerkin projection applied to the fine grid matrix—in the present case,
the transformed matrix. We investigate the properties of these matrices to account
for the stability issues observed in [44]. We develop a heuristic reasoning that re-
lates the phenomenon to the type of coarsening, that is, to the type of AMG method
that is used. Schemes that reproduce standard h − 2h coarsening with bilinear in-
terpolation lead to coarse level matrices with increasingly weaker diagonal blocks,
explaining the observed deterioration of the convergence. On the other hand, noth-
ing particular happens when the coarsening is based on plain aggregation, as also
mentioned in [44].

These results complement our previous study in [32], where we propose and the-
oretically analyze a slightly different approach, that uses a transformation similar in
spirit but more complex (two-sided instead of one-sided; see below for details). The
stability issue mentioned in [44] is not examined, but a reported numerical experiment
suggests that the method can be cost effective with many levels, at least when using
(plain) aggregation-based AMG (along the lines of [22, 27, 29]).

Finally, we address the practical effectiveness of both variants from [44] and
[32]. To this aim, we present the results of numerical experiments that include two-
dimensional (2D) and three-dimensional (3D) problems, either stationary or
time dependent, on both structured and unstructured grids. Because of the bet-
ter properties of the associated coarse level matrices, plain aggregation is preferred,
and we more precisely use the method from [29] with just the slight modifications
needed to implement the unknown-based coarsening. It turns out that (near) grid
independent convergence is observed in all cases, and that the number of iterations
needed with both types of transformation are comparable. This, in fact, gives advan-
tage to the simpler (one-sided) approach we focus on here, because the transformed
matrices are then sparser and hence each iteration requires less computing time.

For comparison purposes, we also tested a state-of-the-art method combining
MINRES with block diagonal preconditioning [16] based, in the time-dependent cases,
on the Cahouet–Chabard technique [10]; here, AMG is also used, but in a more stan-
dard fashion, for the needed (approximate) inversion of certain matrix blocks corre-
sponding to scalar PDEs. It turns out that the monolithic AMG methods discussed
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in this work are significantly faster, the best variant outperforming block diagonal
preconditioning by a factor of about two in most cases.

The remainder of this paper is organized as follows. In section 2, we present
the class of Stokes problems considered in this work, as well as some of the test
problems used in numerical experiments. In section 3, we present the transformation
and develop the two-grid analysis. Coarse level matrices are discussed in section 4,
the selected multigrid strategy is presented in section 5, large scale experiments are
reported in section 6, and, eventually, conclusions are drawn in section 7.

2. Stokes equations and their discretization. We consider the following
problem: find the velocity vector u and the pressure field p satisfying

(2.1)
ξu− ν∆u +∇p = f in Ω ,

∇ · u = 0 in Ω ,

and appropriate boundary conditions on ∂Ω . In (2.1), Ω is a bounded domain of R2

or R3 , f represents a prescribed force, and the parameters ν > 0 (viscosity) and ξ ≥ 0
are given. The latter is often a quantity proportional to the inverse of the time step
in an implicit time integration method applied to a nonstationary Stokes problem;
ξ = 0 corresponds to the classical stationary Stokes problem.

In this work, we focus on standard finite difference and nodal finite elements
discretizations,1 which lead to a linear system of the form

(2.2)
(
A BT

B −C

) (
u
p

)
=
(
bu

bp

)
.

In this system matrix, A is the discrete representation of the operator ξ − ν∆ ; more
precisely, A is block diagonal with one diagonal block per spatial dimension, being the
discrete operator acting on one of the velocity components. It further follows that A is
symmetric and positive definite (SPD). The matrix block BT is the discrete gradient
and (−B) the discrete divergence; C is a stabilization term which is needed by some
discretization schemes to avoid spurious solutions. Such spurious solutions arise when
the discrete gradient admits more than the constant vector in its null space or near
null space, i.e., when the discrete gradient is zero or near zero for some spurious
pressure modes. The existence of such modes depends on which discretization scheme
is used for velocities and pressure. We refer to, e.g., [46] and [16] for more details
on, respectively, finite difference and finite element discretizations. Note a required
property of the stabilization operator: if B is not full rank, C has to be positive
definite on the null space of BT , which further entails that the system matrix is
nonsingular [3].

An important exception to this latter rule is when the boundary conditions are
such that the physical pressure is only determined up to a constant. In such cases
some additional condition is needed to make the problem well posed. Often, one im-
poses that the mean pressure is equal to zero. Then, the discrete system is singular
but compatible. Regarding iterative solvers, this kind of singularity is, in general,
harmless, and convergence to a particular solution is obtained without specific treat-
ment; see, e.g., [11, 17, 31] for theoretical results and [14] for a practical example
with a multigrid method. In the present work, all numerical examples are singular
Stokes problems, and the theoretical results are formulated in a way that covers both
singular and regular systems, taking advantage of the recent extension to singular
systems of the algebraic convergence theory of two-grid methods [31].

1Other schemes lie outside of the scope, like discontinuous Galerkin methods; see [1] and the
references therein for geometric multigrid methods in this context.
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Test problems. Throughout this paper, results are illustrated with experiments
based on the following two particular discretizations of (2.1), the second of which
being considered in both two- and three-dimensional versions. (In the numerical
results section (section 6), we additionally consider some examples of finite element
discretizations with unstructured mesh.)

MAC scheme (2 dimensions). In this problem, Ω is the unit square, ν = 1 , and
one imposes Dirichlet boundary conditions for all velocity components. One uses the
marker and cell (MAC) finite difference discretization on a uniform staggered grid
with mesh size h . As this scheme is naturally stable, C = 0 in this example.

Collocated grid (2 dimensions/3 dimensions). In this problem, Ω is the unit
square/ cube, ν = 1 , and one imposes Dirichlet boundary conditions for all velocity
components. One uses the standard finite difference discretization on a collocated
uniform grid with mesh size h . With this scheme, all unknowns are located at the
vertices of grid cells, which makes the discretization somewhat easier but induces the
presence of spurious pressure modes with zero discrete divergence [46]. Hence a form
of stabilization is required and, according to the discussion in [19], C is set equal to the
five/seven point discretization of (16 ν)−1h2∆ (with Neumann boundary conditions).

3. Algebraic transformations and two-grid analysis. In this section, we
first present (sections 3.1 and 3.2) the proposed algebraic transformations and give
(section 3.3) a basic description of associated AMG methods with unknown-based
coarsening. We next (section 3.4) discuss the peculiarities stemming from the possi-
ble singularity of the system matrix. Finally (section 3.5), we develop the two-grid
analysis for right-hand transformed matrices.

3.1. Right-hand transformation. As preliminary step, we first change the
sign of the last block of rows in (2.2), yielding

(3.1)
(
A BT

−B C

) (
u
p

)
=
(

bu

−bp

)
.

Next, let DA be some SPD matrix of the same size as A and whose inverse is sparse.
In this work, we focus on DA = diag(A) , but the theoretical results are formulate for
general DA . We perform the change of variables

(3.2)
(
u
p

)
=
(
I −αD−1

A BT

I

) (
û
p̂

)
,

where α is a positive parameter. This leads to the transformed system

(3.3) Â
(
û
p̂

)
=
(

bu

−bp

)
,

where

Â =

(
A B̂T

−B Ĉ

)
=
(
A BT

−B C

) (
I −αD−1

A BT

I

)
(3.4)

=
(
A (I − αAD−1

A )BT

−B C + αBD−1
A BT

)
.

The approach then solves the above system with a monolithic multigrid method using
an unknown-based-type coarsening [12, 36], in which the prolongation operator is set
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up by considering separately the different types of unknowns (in the present case,
velocity components and pressure). More details on this topic are given in section 3.3
below.

It is worth discussing the connection with distributive smoothing [8, 35, 39, 47].
This latter approach also uses right preconditioning with an upper block triangular
matrix. However, the transformation concerns only the smoothing stage: once relax-
ation has been applied to the transformed variable û , p̂ , the original variables u , p
are restored and the coarse grid correction is performed in the usual way. Another
difference lies in the upper triangular matrix used for transformation. Typically, dis-
tributive smoothing methods use αDA = I and a discrete negative Laplace operator
(−∆h) as bottom right block (instead of the identity). The main goal is indeed to
make the transformed matrix close to lower block triangular, i.e., to obtain that the
top right block B̂T is small in some sense. With the approach presented here, the
main goal is different: it is crucial to ensure that Ĉ has a suitable structure for the
used AMG strategy, as discussed in section 3.3.

3.2. Other transformations. Instead of the changes of variables (3.2), one
may multiply both sides of (3.1) to the left by(

I
αBD−1

A I

)
,

yielding a transformed system with matrix

(3.5) Ā =
(

A BT

−B(I − αAD−1
A ) C + αBD−1

A BT

)
=
(
A BT

−B̂ Ĉ

)
.

The method in [44] amounts to such left-hand transformation with α = 1 . As will
be seen in section 3.5, the right- and left-hand transformations are in fact equivalent
with respect to our theoretical analysis. We further checked that the practical per-
formances are very similar with both approaches. Hence they should not be seen as
essentially different, but, rather, as slight variations of the same method. When, as
usual, the convergence is controlled via the residual norm, we prefer the right-hand
transformation because then the original and transformed systems have the same
residual up to a change of sign for the second block of equations. Accordingly, below
we only report numerical results for right-hand transformations.

Right-hand and left-hand transformations can also be combined, leading to the
two-sided transformation proposed in [32], with matrix(

I
αBD−1

A I

)(
A BT

−B C

)(
I −αD−1

A BT

I

)
=
(

A (In − αAD−1
A )BT

−B(In − αD−1
A A) C +B(2αD−1

A − α2D−1
A AD−1

A )BT

)
.

Similarly to the matrix in (3.1), the offdiagonal blocks are the opposite of the trans-
pose of each other, which facilitates the theoretical analysis. We omit the details of
this approach here, since a complete analysis is already available in [32], whereas the
numerical results reported below give the advantage to one-sided transformations. As
will be seen, the convergence is in fact about the same with both transformations.
However, iterations are cheaper with the one-sided transformations because the trans-
formed matrices have then significantly fewer nonzero entries than with the two-sided
approach.
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3.3. AMG methods with unknown-based coarsening. We first briefly de-
scribe multigrid methods for a general linear system

(3.6) Ax = b

(without special structure). These methods are based on the recursive use of a two-
grid method, which combines smoothing iterations with a coarse grid correction.
Smoothing iterations are simple stationary iterations with a standard preconditioner.
The coarse grid correction is based on solving a coarse representation of the problem
with a reduced number of unknowns.

With the AMG methods, this correction is entirely determined by the prolonga-
tion matrix P , of dimension n× nc , where nc is the number of coarse unknowns. It
extends to the fine grid a vector defined on the coarse space. The reverse operation is
performed with the transpose of P . If x̃ is the current approximation of the solution,
the corresponding coarse grid correction is

P A−1
c PT (b−A x̃) ,

where

(3.7) Ac = PTAP

is the coarse grid matrix. Letting x̂ be the exact solution of (3.6), the error associated
with x̃ is x̂ − x̃ , and adding the coarse grid correction to x̃ amounts to multiplying
this error by the iteration matrix

Tc = I − P A−1
c PTA .

The global iteration matrix associated with a stationary two-grid method is ob-
tained by multiplying Tc by the iteration matrix(ces) associated with smoothing. In
this work, we mainly use the symmetrized Gauss–Seidel smoothing, which combines
presmoothing with forward Gauss–Seidel and postsmoothing with backward Gauss–
Seidel. The two-grid iteration matrix is then

TTG =
(
I − U−1A

)(
I − P A−1

c PTA
)(
I − L−1A

)
,

where L = tril(A) and U = triu(A) . Our theoretical results are, however, limited to
a simpler variant with a single postsmoothing iteration based on the Jacobi method,
for which

TTG =
(
I − ωD−1A

)(
I − P A−1

c PTA
)
,

where D = diag(A) , and where ω is a relaxation parameter.
In practice, the AMG methods are more effective when used as a preconditioner

for a Krylov subspace method such as CG (in the symmetric case), GMRES, or GCR.
The two-grid preconditioner BTG is related to the iteration matrix via

I − BTGA = TTG .

Thus, for the variant with a single Jacobi postsmoothing step, one finds

BTG = ωD−1 +
(
I − ωD−1A

)
P A−1

c PTA .

As indicated above, the two-grid method is rarely used as such, but rather con-
stitutes a building block for developing a multigrid scheme. In fact, the application
of the two-grid method requires solving systems

(3.8) Ac xc = rc
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with the coarse grid matrix, as indicated by the presence of A−1
c in the definitions of

TTG and BTG . Within a multigrid algorithm, instead of the exact solution, one uses
the approximation obtained by performing 1 or 2 iterations with the same two-grid
method, but applied this time at the coarse level. This thus brings us to a coarser
level, and the process is then repeated until the coarse system is sufficiently small so
that an exact solution can be obtained at low cost.

The chosen iterative scheme to solve the coarse systems defines the multigrid
cycle: the V-cycle is obtained with one stationary iteration, the W-cycle with two
stationary iterations, and the K-cycle [33] with two iterations accelerated by a Krylov
subspace method.

With AMG schemes, the prolongation P is not fixed by the geometry, but obtained
by applying appropriate algorithms to the system matrix. The corresponding solvers
can then be used in black box mode. Note that these algorithms must also be used
recursively: once P has been obtained for the fine grid on the basis of A , the coarse
grid matrix Ac is computed via (3.7), and then one has to apply again the algorithm
to Ac to obtain the prolongation at this coarse level, and so on.

These algorithms have been mainly developed for matrices corresponding to the
discretization of scalar PDEs. For systems of PDEs, the unknown-based coarsening
approach deals separately with the different types of unknowns, defining a prolonga-
tion for each type based on the corresponding diagonal block in the system matrix.
Thus, for the transformed matrix Â , we will let

(3.9) P =
(
PA

PĈ

)
,

and define PA based on the A block and PĈ based on the Ĉ block. Note that the
approach remains of black-box-type, but it is necessary to provide the solver with a
properly ordered matrix and indicate the size of the different blocks.

As A is block diagonal with each diagonal block corresponding to a discrete nega-
tive Laplacian, the standard coarsening algorithms will work well. This is less clear for
Ĉ = C + αBD−1

A BT , since the structure of this term depends on the discretization
scheme. However, the dominant term will often be αBD−1

A BT since C , when it is
nonzero, is just a stabilization term, so in principle small. Furthermore, since (−B)
is a discrete representation of the divergence, and BT a discrete representation of the
gradient, their product is close to a negative Laplacian (−∆h) . Therefore, usually, Ĉ
will also have a favorable structure for the application of AMG methods. This is the
first expected benefit of the transformation: without it, the unknown-based coarsen-
ing must compute PC on the basis of C . It is therefore not usable when C = 0 and
hazardous otherwise, as C does not necessarily have a favorable structure.

To make the above discussion more concrete, consider, for example, the MAC
scheme. Then Ĉ = BD−1

A BT corresponds, up to a scaling factor, to the standard fi-
nite difference formula for the discrete negative Laplacian (see below for more details).
With finite element discretizations, it is harder to directly connect Ĉ with a discrete
Laplacian. However, for (stabilized) Q1/P0 and (stable) Q2/Q1 mixed finite elements2

on regular 2D grids, we checked that Ĉ has nonnegative row-sum and nonpositive off-
diagonal entries at least away from domain boundaries—such properties often suffice
to ensure the proper functioning of AMG methods. On the other hand, more positive
offdiagonal entries appear with (stabilized) P1/P1 and (stable) Crouzeix–Raviart ele-
ments [13] (as described in [16], where they are denoted P2∗/P−1). However, negative

2We follow the taxonomy in [16].
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offdiagonal entries still dominate whereas in section 6 we show with two examples
that the proposed approach may work well with these discretizations.

3.4. Singular matrices. Here we discuss the peculiarities of multigrid methods
for singular systems. For the sake of simplicity, we restrict ourselves to the type
of singularity commonly arising with Stokes problems, that is, we assume that the
linear system (2.2) has a unique singular mode (0T eTp )T , with ep such that C ep = 0
and BT ep = 0 . Regarding the transformed matrix (3.4), this implies Ĉ ep = 0 and
eTp Ĉ = 0T , and, hence,

N
(
Â
)

= N
(
Â
T )

= span
((

0
ep

))
.

In practice, ep is the constant vector, and Ĉ has, therefore, zero row- and column-
sum. Taking advantage that the constant vector is in the range of the prolongation
with virtually any AMG scheme when the system matrix has zero row-sum, we then
restrict ourselves to the cases where ep ∈ R(PĈ) . Regarding a general linear system
(3.6), the corresponding assumption is

N
(
A
)

= N
(
AT
)
⊂ R(P) .

Clearly, the coarse grid matrix Ac = PTAP is then singular as well. However,
according to the analysis in, e.g., [31], such a singularity is harmless because coarse
systems (3.8) to be solved to implement the two-grid method are always compatible;
moreover, which particular solution is picked up does not actually influence the con-
vergence (even with Krylov subspace acceleration). It also follows that the recursive
use of the method within a multigrid cycle does not raise any particular difficulty.

In the theoretical results below, we need to avoid referencing the inverse of Ac
in the definition of the two-grid preconditioner. This is achieved using instead a
pseudoinverse A

g
c , which may be defined as any matrix such a that

AcA
g
c Ac = Ac .

Observe that such a matrix is equal to A−1
c when Ac is nonsingular, whereas, other-

wise, A
g
c rc is a particular solution to any compatible system Acxc = rc [2].

As regards the iterative methods for compatible singular systems, it is known that
they are well posed if and only if the (preconditioned) system matrix is such that its
zero eigenvalue has the same algebraic and geometric multiplicities [11, 17, 31]; then,
only nonzero eigenmodes play a role in the convergence process. This motivates the
formulation of the theorems in the next section, where we first issue a statement about
the multiplicity of the zero eigenvalue, and next state bounds for nonzero eigenvalues.

3.5. Two-grid analysis. We start with the definition of the approximation
property constant K(G ,P ,D) associated with a triplet of matrices G , P , and D ,
where G is the (symmetric) matrix to which the two-grid scheme is applied, P the
prolongation matrix of the two-grid scheme, and D an SPD matrix related to the
smoother (in practice, often D = diag(G)). The usage of this approximation property
constant traces back to [6]. Here the definition is extended to positive semidefinite
matrices, assuming then N (G) ⊂ R(P ) , in agreement with the theory in [31] and the
above considerations.
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Definition 3.1. Let G and D be n × n matrices such that G is symmetric and
nonnegative definite and D is SPD. Let P be an n × nc matrix of rank nc < n such
that N (G) ⊂ R(P ) . The associated approximation property constant is

(3.10) K(G ,P ,D) = sup
v 6∈N (G)

vT D
(
I − P

(
PTDP

)−1
PTD

)
v

vT Gv
.

The transformed matrix (3.4) is nonsymmetric. For a general (nonsymmetric)
matrix A with nonnegative definite symmetric part AS = 1

2 (A + AT ) , the two-grid
convergence theory developed in [28] highlights the role of K

(
AS ,P ,D

)
. Note that

AS is nonnegative definite if and only if A is nonnegative definite in Rn , that is, if
and only if vTAv ≥ 0 for all v ∈ Rn . The earlier results needed by our subsequent
analysis are gathered in the following theorem. We give a short proof because the
extension to singular matrices is only partly covered by the developments in [31].

Theorem 3.2. Let A and D be n×n matrices such that A is nonnegative definite
in Rnand D is SPD. Let P be an n × nc matrix of rank nc < n such that N (A) =
N (AT ) ⊂ R(P) . Setting Ac = PTAP , let A

g
c be any matrix such that AcA

g
c Ac =

Ac , and let
BTG = ωD−1 +

(
I − ωD−1A

)
P A g

c PT ,

where ω is a positive number.
Then the algebraic multiplicity of the eigenvalue 0 of BTGA is equal to dim(N (A)) ,

and there holds

min
λ∈σ(BTGA)\{0,1}

<e(λ) ≥ ω
(
K
(
AS ,P ,D

) )−1
,(3.11)

max
λ∈σ(BTGA)\{0,1}

∣∣∣λ− ω β

2

∣∣∣ ≤ ω β

2
,(3.12)

where AS = 1
2 (A+AT ), and

(3.13) β = sup
v∈Cn\N (A)

vT AT D−1Av
vT AS v

= sup
v∈Cn\N (A)

vT AD−1AT v
vT AS v

.

In addition, if A is symmetric, then the eigenvalues of BTGA are real, the in-
equality (3.11) is sharp, and β = λmax(D−1A) .

Proof. The assumptions used are more restrictive than those of Theorem 3.3 in
[31], whose application proves the statement about the algebraic multiplicity of the
eigenvalue 0, and, further, that the other eigenvalues are either equal to 1 or are the
inverses of the nonzero eigenvalues of the generalized eigenvalue problem

(3.14) ω−1D
(
I − P

(
PT DP

)−1PT D
)

v = µ Av , v ∈ V ,

where V is any subspace complementary to N (A) .
Next, any v satisfying (3.14) for µ 6= 0 also satisfies PTAv = 0 (and hence

vTATP = 0T ), as seen by multiplying both sides to the left by PT . Then, multiplying
both sides to the left by vTATD−1 yields, with µ = λ−1 ,

ω−1 vTAT v = λ−1 vTATD−1Av .



AMG FOR STOKES EQUATIONS S97

Thus, since v ∈ V implies v 6∈ N (A) ,

<e(λ−1) =
ω−1 <e(vTAT v)
vTATD−1Av

=
ω−1 vTAS v
vTATD−1Av

≥ (ω β)−1 ,

where we take β as given by the first equality (3.13). The above inequality is in fact
equivalent to (3.12) because

<e
(
(λR + i λI)−1) =

λR
λ2
R + λ2

I

≥ 1
ω β

⇐⇒
(
λR −

ω β

2

)2

+λ2
I ≤

(ω β)2

4
.

Moreover, (3.14) admits the same eigenvalues if A is exchanged for its transpose AT
(since the matrix in the left-hand side is symmetric). Hence, we may permute the
role of A and AT , proving the second equality (3.13).

On the other hand, exploiting (3.14), the proof of (3.11) given in Corollary 2.2 of
[28] for regular matrices applies verbatim to the singular case as well.

Finally, for symmetric A , the statement about β straightforwardly follows from
A = AT = AS . Further, since both right- and left-hand sides matrices in (3.14)
are then symmetric and nonnegative definite, the largest eigenvalue µ is equal to
ω−1K

(
A ,P ,D

)
. This proves the sharpness of (3.11) in this case.

The sharpness result in the SPD case gives a further interpretation of the ap-
proximation property constant: if ω is selected in such a way that the eigenvalue 1
is between the lower bound (3.11) and the upper bound (3.12), then the condition
number of the two-grid method with a single Jacobi postsmoothing step is bounded by
λmax(D−1A) ·K

(
A ,P ,D

)
. Moreover, equality is reached with ω =

(
λmax(D−1A)

)−1

(so that the upper bound from (3.12) is equal to 1); then,

(3.15) K
(
A ,P ,D

)
=

κTG

λmax(D−1A)
,

where κTG =
maxλ∈σ(BTGA)λ

minλ∈σ(BTGA)\{0}λ
is the two-grid condition number.

We are now ready to prove our eigenvalue bounds for transformed matrices Â
preconditioned by a two grid scheme with one Jacobi post-smoothing step and an
unknown-based type prolongation.

Theorem 3.3. Let Â be an n × n matrix satisfying either (3.4) or (3.5), where
A and DA are SPD, where C is symmetric nonnegative definite, and where α is a
positive number. Let

D =
(
DA

DĈ

)
,

where DĈ is SPD, and let

P =
(
PA

PĈ

)
be an n× nc matrix of rank nc < n .

Assume that either Â is nonsingular or N
(
Â
)

= span
{(

0T eTp
)T} , where ep ∈

R(PĈ) is such that C ep = 0 and BT ep = 0 . Setting Âc = PT Â P , let Âc
g

be any
matrix such that Âc Âc

g
Âc = Âc , and let

BTG = ωD−1 +
(
I − ωD−1Â

)
P Âc

g
PT ,

where ω is a positive number.
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If α < 4
(
λmax(D−1

A A)
)−1

, then Â is nonnegative definite in Rn. Furthermore,
BTG Â is regular if Â is regular, and otherwise, the algebraic multiplicity of the eigen-
value 0 is equal to 1.

In addition,

min
λ∈σ(BTGÂ)\{0,1}

<e(λ) ≥
ω

(
1−
√
α λmax(D−1

A A)
2

)
max

(
K
(
A ,PA , DA

)
, K
(
Ĉ , PC , DĈ

) ) ,(3.16)

max
λ∈σ(BTGÂ)\{0,1}

∣∣∣λ− ω β

2

∣∣∣ ≤ ω β

2
,(3.17)

where

(3.18) β =
γ + 1 +

√
(γ − 1)2 + αγ λmax(D−1

A A)

2 α
(

1− α λmax(D−1
A A)

4

)
with

(3.19) γ = α λmax
(
D−1
Ĉ

(C +BA−1BT )
)
.

Proof. We first consider a matrix Â satisfying (3.4), and the results will be ex-
tended to matrices satisfying (3.5) thereafter. We start with the proof that the sym-
metric part

ÂS =
1
2

(
Â+ Â

T
)

=

 A −α
2
AD−1

A BT

−α
2
BD−1

A A C + αBD−1
A BT


of Â is such that

(3.20) ÂS −

1−

√
α λmax(D−1

A A)

2

 ÂD is nonnegative definite ,

where

ÂD =
(
A

C + αBD−1
A BT

)
.

This will prove that Â is nonnegative definite in Rn . Then all assumptions of The-
orem 3.2 are satisfied, which will immediately prove the statement about the multi-
plicity of the eigenvalue 0, whereas (3.16) and (3.17) will be deduced from (3.11) and
(3.12).

We thus start with (3.20). Letting λM = λmax(D−1
A A) , consider

ÂS−

1−
√
α λmax(D−1

A A)

2

 ÂD =
√
α

2

( √
λM A −

√
αAD−1

A BT

−
√
αBD−1

A A
√
λM

(
C + αBD−1

A BT
)) .
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The top left block is SPD, whereas the Schur complement
√
α

2

(
λ

1/2
M

(
C + αBD−1

A BT
)
− λ−1/2

M αBD−1
A AD−1

A BT
)

=
√
αλM
2

(
C + αBD−1

A

(
DA − λ−1

M A
)
D−1
A BT

)
is nonnegative definite, proving (3.20).

Further, considering Definition 3.1, (3.20) also implies that

K
(
ÂS ,P ,D

)
≤

1−

√
α λmax(D−1

A A)

2

−1

K
(
ÂD ,P ,D

)
.

Then, (3.16) follows from (3.11), since, in view of the block diagonal structure of both
ÂD and D

(
I − P(PTDP)PTD

)
, one has

K
(
ÂD ,P ,D

)
= max

(
K
(
A ,PA , DA

)
, K
(
Ĉ , PC , DĈ

) )
.

We now prove (3.17) by showing that, letting

ζ =
γ + 1 +

√
(γ − 1)2 + αγ λmax(D−1

A A)

2 α
(

1− α λmax(D−1
A A)

4

) ,

the matrix

(3.21) ζ
(
Â+ ÂT

)
− 2 ÂTD−1Â is nonnegative definite

for any γ > γ . With (3.12) this indeed yields the required result by taking the
limit γ → γ (and thus ζ → β). This trick is needed because the proof requires that
I − γ−1 α C̃ is SPD, where C̃ = D

−1/2
Ĉ

C D
−1/2
Ĉ

.
Let

Ã =

(
Ã B̃T

−B̃ C̃

)
= D−1/2

(
A BT

−B C

)
D−1/2

with, thus, Ã = D
−1/2
A AD

−1/2
A and B̃ = D

−1/2
Ĉ

BD
−1/2
A . Letting

U =
(
I −αD−1

A BT

I

)
and Ũ = D1/2U D−1/2 =

(
I −α B̃T

I

)
,

one has Â = D1/2Ã Ũ D1/2 and, therefore,

Ũ−TD−1/2
(
ζ (Â+ Â

T
)− 2 Â

T
D−1Â

)
D−1/2Ũ−1

= ζ
(
Ũ−T Ã+ ÃT Ũ−1

)
− 2 ÃT Ã

= ζ

(
I

α B̃ I

)(
Ã B̃T

−B̃ C̃

)
+ ζ

(
Ã −B̃T
B̃ C̃

)(
I α B̃T

I

)

− 2

(
Ã −B̃T
B̃ C̃

) (
Ã B̃T

−B̃ C̃

)

= ζ

(
2 Ã α Ã B̃T

α B̃ Ã 2 C̃ + 2α B̃ B̃T

)
− 2

(
Ã2 + B̃T B̃ Ã B̃T − B̃T C̃
B̃ Ã− C̃ B̃ C̃2 + B̃ B̃T

)
.(3.22)
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Clearly, (3.21) holds if and only if the right-hand side of (3.22) is nonnegative definite.
Further,

λmax
(
D−1
Ĉ

(C +BA−1BT )
)

= λmax
(
C̃ + B̃ Ã−1B̃T

)
< α−1 γ

implies that all eigenvalues of
(
I−γ−1 α C̃

)−1
B̃ Ã−1B̃T are in the interval [0, α−1 γ) .

Hence, the eigenvalues of Ã−1B̃T
(
I − γ−1 α C̃

)−1
B̃ are also in the interval [0, α−1 γ)

[18, Theorem 1.3.22], that is, since
(
I − γ−1 α C̃

)−1 = I + γ−1 α C̃(I − γ−1 α C̃)−1 ,
the matrix(

α−1 γ Ã− γ−1 α B̃T C̃
(
I − γ−1 α C̃

)−1
B̃
)
− B̃T B̃ is nonnegative definite.

Therefore, the right-hand side of (3.22) is a fortiori nonnegative definite if it remains
nonnegative definite when exchanging for the first term in the above expression the
term B̃T B̃ that appears in the top left block of the second matrix. With this substi-
tution and some rearranging of the terms, the right-hand side of (3.22) becomes

2

ζ Ã− Ã
2 − α−1 γ Ã

(
α ζ

2
− 1
)
Ã B̃T(

α ζ

2
− 1
)
B̃ Ã (α ζ − 1) B̃ B̃T


+ 2

(
γ−1 α B̃T C̃(I − γ−1 α C̃)−1B̃ B̃T C̃

C̃ B̃ ζ C̃ − C̃2

)
,(3.23)

and we are thus left with the proof that this matrix is nonnegative definite.
We now show that both terms are actually nonnegative definite. For the second

one we obtain(
γ−1 α B̃T C̃(I − γ−1 α C̃)−1B̃ B̃T C̃

C̃ B̃ ζ C̃ − C̃2

)

=

(
B̃T C̃1/2

C̃1/2

)(
γ−1 α (I − γ−1 α C̃)−1 I

I ζ I − C̃

)(
C̃1/2B̃

C̃1/2

)
,

which is nonnegative definite if and only if the Schur complement of the middle term
of the right-hand side is nonnegative definite, that is, if and only if

ζ I − C̃ − α−1 γ (I − γ−1 α C̃) = (ζ − α−1 γ) I is nonnegative definite.

This is true because ζ α is increasing with α for 0 ≤ α < 4
(
λmax(D−1

A A)
)−1

, and equal

to max(γ, 1) when α = 0, i.e., ζ > α−1 max(γ, 1) for any 0 < α < 4
(
λmax(D−1

A A)
)−1

.
We eventually consider the first term in (3.23):ζ Ã− Ã

2 − α−1 γ Ã

(
α ζ

2
− 1
)
Ã B̃T(

α ζ

2
− 1
)
B̃ Ã (α ζ − 1) B̃ B̃T



=

(
Ã1/2

B̃

)(ζ − α−1 γ) I − Ã
(
α ζ

2
− 1
)
Ã1/2(

α ζ

2
− 1
)
Ã1/2 (α ζ − 1) I


(
Ã1/2

B̃T

)
.
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We have just seen that α ζ > max(γ, 1) ≥ 1 . Hence the above matrix is nonnegative
definite if and only the Schur complement corresponding to the elimination of the
bottom right block in the middle term of the right hand is nonnegative definite, that
is, if and only if

(ζ − α−1 γ) I −

1 +

(
α ζ

2
− 1
)2

α ζ − 1

 Ã = (ζ − α−1 γ) I − (α ζ − 1)−1
(
α ζ

2

)2

Ã

is nonnegative definite. This holds if, setting λM = λmax(D−1
A A) = λmax(Ã) ,

(α ζ − 1)(ζ − α−1 γ)−
(
α ζ

2

)2

λM = α

(
1− αλM

4

)
ζ2 − (γ + 1)ζ + α−1γ ≥ 0 .

Regarding matrices satisfying (3.4), the proof is then concluded by checking that this
expression is in fact equal to 0 for the given value of ζ .

Consider now a matrix Ā satisfying (3.5). Letting

Â− =

(
A −B̂T
B Ĉ

)
=
(
A −(I − αAD−1

A )BT

B C + αBD−1
A BT

)
,

one sees that Ā = Â−
T

, whereas Â− is a matrix satisfying (3.4) with B changed for
−B . However, a global change of sign of the entries in B does not affect either the
assumptions or the results proved above (observe that none of the parameters in (3.16)
or (3.17) is affected). Hence these results apply as well to this matrix Â− . Moreover,
their proof is based upon Theorem 3.2, which yields exactly the same conclusions
whenever applied to a matrix A or its transpose AT . It then follows that the results
proved above carry over matrices Ā satisfying (3.5).

It is worth illustrating these bounds with an example. We consider the MAC
finite difference discretization of a problem (2.1) with constant coefficients ν > 0 and
ξ ≥ 0 , using a uniform staggered grid (as in the MAC scheme (2D) test problem).

The matrix A has two diagonal blocks and, away from boundaries, each of them
corresponds to the classical five point stencil for the operator ξ − ν∆ :

ν

h2


−1

−1 4
(

1 +
h2 ξ

4 ν

)
−1

−1

 .

Further, away from the boundaries, Ĉ = BD−1
A BT corresponds to the stencil

1
4 ν + ξ h2

 −1
−1 4 −1

−1

 ,

which is the standard five point approximation for − h2

4 ν+ξ h2 ∆ . On the other hand, it
is shown in [32, p. 73] that, for an infinite grid, there holds λmax(BA−1BT ) ≤ 8

8 ν+ξ h2 .
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With these results, we can estimate the constants involved in the theorem, up to
boundary effects that are not expected to have a dramatic influence [7, 37]. From the
first stencil we deduce

λmax(D−1
A A) ≤ 2 ,

whereas, combining the above bound on λmax(BA−1BT ) with C = 0 and diag(Ĉ) =(
ν + ξ h2

4

)
I , we obtain

λmax
(
D−1
Ĉ

(C +BA−1BT )
)
≤ 8 ν + 2 ξ h2

8 ν + ξ h2 ≤ 2 .

Finally, the approximation property constants K
(
A ,PA , DA

)
and K

(
Ĉ , PC , DĈ

)
depend on the method used to determine PA and PĈ , and cannot be estimated rigor-
ously with most AMG methods. However, the sharpness result in Theorem 3.2 offers
us an important clue: with (3.15), one sees that if the selected AMG method works
well for the subproblems associated with A and Ĉ , then the approximation prop-
erty constants will be independent of the grid size and around 1 or only moderately
larger. Moreover, because both the diagonal blocks of A and Ĉ correspond to five
point stencils, any sensible AMG method will actually work well.

Thus, choosing appropriately the parameters ω and α , the inequalities (3.16) and
(3.17) prove that all (nonzero) eigenvalues of the preconditioned matrix are within a
region of the complex plane that is both bounded and away from the origin; moreover,
it is independent of main problem parameters ν and ξ , and also of the mesh or grid
size.

As regards α , one sees that the bounds are meaningful if it is significantly both
larger than zero and smaller than 4

(
λmax(D−1

A A)
)−1 ≈ 2 . In practice, we observed

that the results are near optimal with α = 1 , which also corresponds to the method
in [44]. In addition, the transformed matrix is then slightly sparser, because using
α = 1 sets to zero the diagonal entries in the term (I − αAD−1

A ) appearing in the
top right block of Â (see (3.4) or (3.5)). Accordingly, we uniformly use α = 1 in all
numerical experiments reported below.

Having said that, the clustering of the eigenvalues proved by Theorem 3.3 seems
somehow less effective than those proved in [32] for the two-sided transformation.
One may then wonder whether the one-sided approach is indeed less efficient, or if
this results from a shortcoming in the analysis.

This motivates the following experiment, where we also investigate the conver-
gence obtained with better smoothing schemes. In Table 1, we report the number of
GMRES iterations needed to reduce the residual norm by 10−6 when using both types
of transformation combined with two-grid preconditioners. Three different smoothing
schemes are considered: one single Jacobi postsmoothing step (“Jac Post”), Jacobi
smoothing with both one pre- and one post-smoothing step (“Jac Pre+Post”), and
symmetrized Gauss–Seidel smoothing as described in section 3.3 (“SGS”). In all cases,
the prolongations PA and PĈ are based on geometric boxwise plain aggregation, a
choice that is motivated in the next sections.

With a single Jacobi smoothing step, the two-sided transformation leads to faster
convergence for the MAC scheme, whereas the performances are comparable for the
collocated grid. Note that in this case the convergence with GMRES acceleration
is logically practically independent of ω : indeed, with one single smoothing step,
changing this parameter only rescales the eigenvalues that are not equal to 1 (see the
discussion of (3.14) in the proof of Theorem 3.2). This is not true any more with
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Table 1
Number of GMRES iterations to reduce the residual error by 10−6 when using two-grid precon-

ditioning with different smoothing schemes.

Right-hand transformation Two-sided transformation
Jac Post Jac Pre+Post SGS Jac Post Jac Pre+Post SGS

ω 0.5 0.8 0.5 0.65 0.8 0.5 0.8 0.5 0.65 0.8
h−1:

MAC scheme (2D), ξ = 0
128 24 24 15 200 200 12 19 19 15 15 14 11
256 24 24 15 200 200 12 19 19 15 14 14 11

MAC scheme (2D), ξ = 100
128 24 24 14 200 200 12 19 19 15 14 14 11
256 24 24 15 200 200 12 19 18 15 14 14 11

Collocated grid (2D), ξ = 0
128 18 18 13 12 11 9 19 19 14 13 12 10
256 18 18 13 12 11 9 19 19 14 13 12 10

Collocated grid (2D), ξ = 100
128 18 18 13 12 11 9 19 18 14 12 12 9
256 18 18 13 12 11 9 19 19 14 13 12 10

more smoothing steps: then, ω should be small enough to ensure that no error mode
is actually amplified by (stationary) smoothing iterations. Clearly, this leads to a
stricter requirement for the right-hand transformation. However, when this latter is
met, and also with symmetrized Gauss–Seidel smoothing, the convergence is overall
the same with both transformation types; i.e., the two-sided transformation seems to
lose the advantage it had for the MAC scheme when using a single smoothing step.

4. Two-grid method at coarser levels. Here we discuss the application of
the two-grid method at coarser levels; that is, to solve systems with the coarse grid
matrix obtained after one or several coarsening steps.

After one step, the coarse grid matrix is Âc = PT Â P , i.e., its structure depends
upon the components PA and PĈ of P . When the prolongation is set up with an
AMG algorithm, it is never fully structured even if the matrix stems from a constant
coefficient PDE discretized on a uniform grid. Accordingly, a rigorous analysis of
coarse grid matrices is generally untractable. However, in the present context, sig-
nificant insight can be gained by considering the model geometric prolongations that
AMG methods aim at imitating.

Thus, for constant coefficient isotropic problems, classical AMG methods along
the lines of [9, 38] tend to reproduce the standard h − 2h coarsening and the asso-
ciated geometric bilinear interpolation.3 Using this latter on our test problems, we
observed that, throughout coarsening steps, the nature of the different matrix blocks
is preserved: away from the boundaries, one obtains regular stencils corresponding to
Laplace operators for the diagonal blocks, and to first order derivatives for the offdi-
agonal blocks. However, the scaling of the blocks is not as in the original transformed
matrix Â : the weight of the entries in the offdiagonal blocks relative to the entries
in the diagonal blocks (e.g., the main diagonal) is increased by a factor of about two
with each coarsening step. This stems from the type of discrete operators involved.

3For a 5 point stencil in 2 dimensions, standard Ruge–Stüben AMG will produce a red-black
coarsening of the fine mesh, and h−2h coarsening only at subsequent levels; however, for such small
stencils, one often prefers aggressive coarsening, which imitates the h − 2h coarsening right away;
see, e.g., the discussion in [38, Section A.7.1].
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The diagonal blocks correspond to scaled discrete Laplace operators. With finite dif-
ferences, the entries are O(h−2) , hence they are reduced by a factor of 4 with h− 2h
coarsening. On the other hand, offdiagonal blocks correspond to discrete first order
differential operators, with O(h−1) entries that are reduced by a factor of 2 only. The
picture is the same with finite element discretizations, where the entries are O(hd−2)
for second order differential operators and O(hd−1) for first order ones, where d is the
spatial dimension of the problem.

This relative increase of the weight of the offdiagonal blocks has a dramatic impact
on the potentialities of the AMG method at coarser levels. To see this, observe that
applying AMG to Â would be just trivial if the offdiagonal blocks vanished. Hence,
in some sense, what is proved in Theorem 3.3 is that the diagonal blocks are strong
enough to dominate the effect of the offdiagonal ones. Clearly, the bounds would
deteriorate if these latter were increased without a corresponding increase of the term
BDAB

T in the bottom right block. In fact, for fixed ω , damped Jacobi smoothing
iterations will be divergent once the amplification of the offdiagonal blocks passes
some threshold. Of course, one may decrease ω at coarser levels, but this would imply
eigenvalues closer to the origin and hence increasingly slower convergence as one goes
deeper in the hierarchy.

This phenomenon was observed in [44] in combination with classical AMG coars-
ening. There, more sophisticated smoothing schemes are used like ILU(0) with or
without Krylov acceleration. While this avoids the divergence of stationary two-grid
iterations, the reported results indicate that the convergence becomes unacceptably
slow beyond some coarsening threshold. Moreover, similarly disappointing results are
also obtained in combination with smoothed aggregation AMG.

However, comments in [44] are more positive regarding plain aggregation (referred
to as zero order interpolation). To investigate this other coarsening type, we applied
geometric boxwise aggregation to our test problems, and we indeed observed that
the above phenomenon does not happen anymore. The relative weights of the blocks
remain as in the original matrix, which we explain by the well-known overweighting
of coarse grid matrices associated with plain aggregation for second order differential
operators see, e.g., the discussion in [21], and the proposition in [5] to overrelax coarse
grid correction terms by a factor close to two, to compensate for this phenomenon.

Whereas this overweighting is sometimes seen as a weak point of aggregation-
based AMG methods, here it comes as good news. Thanks to it, the structure of
the matrix remains roughly similar at the successive coarse levels and, hence, one
may expect that the recursive use of the two-grid method does not raise particular
difficulty in this context.

These considerations are illustrated in Figure 1, where, considering the collo-
cated grid (2D) problem with ξ = 0 , we depict the convex hull of the iteration
matrices associated with damped Jacobi smoothing at several levels. Clearly, with
(geometric) bilinear interpolation, there is a severe divergence from the second coarse
level, whereas nothing particular happens with (geometric, boxwise) plain aggregation
coarsening.

5. Multigrid strategy. For scalar PDEs, there are many valuable methods
based either on classical AMG methods along the lines of [9, 38], or on smoothed ag-
gregation AMG [41]. However, the developments in the preceding section show that
their use is somehow uneasy as unknown-based coarsening strategy for the trans-
formed matrices considered in this work. To compensate for the loss of stability, one
may, for instance, also apply the transformation at selected coarse levels [45], but this
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Right-hand transformation Two-sided transformation
Bilinear interpol. Plain aggregation Bilinear interpol. Plain aggregation
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Fig. 1. Convex hull of the eigenvalues of iteration matrices associated with damped Jacobi
smoothing (ω = 0.5) for the collocated grid (2D) problem with ξ = 0 ; · · ·· · · : fine grid level; - - -: first
coarse level; -------: next coarse level; the yellow (shaded) region is a portion of the unit disk centered
at the origin.

increases the complexity of the scheme, making the coarse grid matrices significantly
less sparse.

It seems then sensible to prefer the alternative offered by plain-aggregation-based
AMG. Moreover, recent results about this approach show that it is already competitive
for scalar, second order, elliptic PDEs, at least when carefully used [23, 27], that is,
when applying an aggregation algorithm that takes into account the matrix entries
so as to build only high quality aggregates [22, 29]. It is also important to use the
K-cycle [33] to ensure that the optimal two-grid convergence [21, 22, 29] carries over
the full multigrid scheme, i.e., to ensure that the convergence is independent of the
number of levels.

On the other hand, the good results obtained above (see Table 1) with sym-
metrized Gauss–Seidel suggest selecting this smoothing scheme.

This leads us to the following multigrid strategy: two-grid scheme obtained from
the combination of symmetrized Gauss–Seidel smoothing with unknown-based coars-
ening by plain aggregation, using more specifically the algorithm in [26]; multigrid
scheme as in [27], obtained with the standard K-cycle for nonsymmetric matrices, in
which all coarse systems are solved with two GCR iterations [15] using the two-grid
preconditioner at the considered level (except at the coarsest level where a sparse
direct solver is used).

In fact, this method requires only slight modifications of the method in [26],
needed to implement the unknown-based coarsening. Furthermore, the corresponding
code is available as the “block” version of the AGMG software [24], which we therefore
used for the numerical experiments reported in the next section.

6. Numerical results. The main test problems and the used multigrid method
have already been described at the end of section 2 and in section 5 (respectively).
Let us further remember that the method is not applied directly to the original lin-
ear system (2.2), but to an equivalent, transformed, system. When we refer to the
right-hand transformation, we mean the system (3.3) where system matrix Â is as in
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Table 2
Ratio between the numbers of nonzero entries in the transformed and original matrices (ratTr),

algorithmic complexity (CA), and global complexity (CG).

Right-hand transformation Two-sided transformation
Size 1 Size 2 Size 1 Size 2

ξ ratTr CA CG ratTr CA CG ratTr CA CG ratTr CA CG

MAC scheme (2D)
0 1.9 1.3 2.5 1.9 1.3 2.6 3.1 1.3 3.9 3.1 1.3 3.9

10 1.9 1.3 2.5 1.9 1.3 2.6 3.1 1.3 3.9 3.1 1.3 3.9
100 1.9 1.3 2.5 1.9 1.3 2.6 3.1 1.3 3.9 3.1 1.3 3.9

1000 1.9 1.3 2.5 1.9 1.3 2.6 3.1 1.3 3.9 3.1 1.3 3.9

Collocated grid (2D)
0 1.5 1.4 2.1 1.5 1.4 2.1 2.7 1.3 3.7 2.7 1.3 3.7

10 1.5 1.4 2.1 1.5 1.4 2.1 2.7 1.3 3.7 2.7 1.3 3.7
100 1.5 1.4 2.1 1.5 1.4 2.1 2.7 1.3 3.7 2.7 1.3 3.7

1000 1.5 1.4 2.1 1.5 1.4 2.1 2.7 1.3 3.7 2.7 1.3 3.7

Collocated grid (3D)
0 1.7 1.8 3.1 1.7 1.8 3.1 3.3 1.9 6.3 3.4 2.0 6.6

10 1.7 1.7 2.9 1.7 1.7 2.9 3.3 1.9 6.3 3.4 2.0 6.6
100 1.7 1.8 3.0 1.7 1.7 2.9 3.3 1.9 6.2 3.4 2.0 6.6

1000 1.7 1.6 2.8 1.7 1.7 2.9 3.3 1.8 6.1 3.4 2.0 6.6

(3.4) with α = 1; the two-sided transformation refers to the more complex transfor-
mation sketched in section 3.2 and fully described in [32].

In all cases, the multigrid method is used as a preconditioner for the GCR method
restarted each 10 or each 30 iterations [15]. The right-hand side is a vector with
random velocity components and zero pressure components, the initial approximation
is the zero vector, and iterations are stopped when the relative residual norm is below
10−6 . All results are reported for two different grid sizes: in the 2D examples, Size 1
and Size 2 refer to, respectively, h−1 = 256 and h−1 = 1024 , whereas, in the 3D
example, they refer to h−1 = 48 and h−1 = 96 . Hence the number of unknowns
ranges approximately from 2 × 105 to 3 × 106 in 2 dimensions, and from 4 × 105 to
3.5× 106 in 3 dimensions (i.e., there is about one order of magnitude between Size 1
and Size 2).

In Table 2, we report on complexities, that is, on the memory usage involved in the
solution method. Two factors have to be taken into account. First, the transformed
matrices have more nonzero entries than the original system matrix; in the table, the
ratio between the numbers of nonzero entries in the transformed and original matrices
is reported in the columns labeled “ratTr.” Next, the multigrid preconditioner involves
some overhead, which is characterized by the algorithm complexity CA , defined as the
sum of all nonzero entries in the matrices at all levels divided by the number of nonzero
entries in the fine grid matrix (here, the transformed matrix). Finally, in the present
context, we further define the global complexity CG as the sum of all nonzero entries
in the matrices at all levels divided by the number of nonzero entries in the original
fine grid matrix; in other words: CG = CA · ratTr . Despite these cumulative effects,
the complexities are acceptable in all cases, except perhaps in the 3D example with
the two-sided transformation. The one-sided approach has, in fact, a clear advantage
here, the transformed matrices having between 1.5 and 2 times fewer nonzero entries
than with the two-sided transformation.

The iteration counts are reported in Table 3. Here, for comparison purpose, we
include a standard method (“Block Diag. Prec.”), which solves the original system



AMG FOR STOKES EQUATIONS S107

Table 3
Number of iterations to reduce the residual norm by a factor of 10−6 .

Right-hand transf. Two-sided transf. Block Diag. Prec.
GCR(10) GCR(30) GCR(10) GCR(30) 1 inner it. 2 inner it.

Size 1 2 1 2 1 2 1 2 1 2 1 2
ξ:

MAC scheme (2D)
0 17 17 16 17 16 17 16 17 57 64 41 44

10 17 17 16 17 16 17 16 17 55 62 37 41
100 15 17 15 16 15 16 15 16 49 57 33 37

1000 13 16 13 15 13 15 13 15 41 49 26 33

Collocated grid (2D)
0 20 27 20 26 15 17 15 16 61 66 46 50

10 20 27 19 26 15 16 15 16 58 66 44 48
100 18 24 17 23 15 16 14 15 53 61 38 42

1000 14 19 14 19 13 15 13 14 43 51 33 37

Collocated grid (3D)
0 15 17 15 17 15 15 14 15 68 71 48 51

10 15 17 15 17 15 15 14 15 63 69 46 49
100 14 16 14 16 13 14 13 14 53 59 38 43

1000 15 14 15 13 12 12 12 11 44 46 32 34

(2.2) by MINRES with state-of-the-art block diagonal preconditioner(
Ã

S̃

)
,

where Ã is an approximation of A , and S̃ is an approximation of the Schur complement
C +BA−1BT [16]. The needed inverse of Ã is obtained by applying the same AMG
method as for the transformed matrices; we consider either one single application of
the multigrid preconditioner (“1 inner it.”), or two FCG iterations [25] using this
preconditioner to solve a system with matrix A (“2 inner it.”). The latter option
allows us to investigate whether it can be cost effective to use a more costly but more
accurate approximation to A , as is the case when the the inverse of Ã obtained by
applying a more standard AMG method, that provides a better approximation than
the plain aggregation method considered here, but at a significantly higher cost (see
the discussion in [30]).

Regarding the Schur complement approximation, in the stationary case (ξ = 0),
it is standard to use S̃ = ν−1I with finite difference discretizations. Time-dependent
cases require more care, but the Cahouet–Chabard method [10] is both effective and
optimal with respect to the mesh size and other problem parameters [34]. It uses
S̃−1 = ν I+ ξ(−∆̃h)−1 , where ∆̃h is an approximation to a discrete Laplace operator
with Neumann boundary conditions for the pressure variables; again, for (−∆̃h)−1 ,
we consider either one application of the AMG preconditioner or two inner iterations,
in each case applied to solve a system with an exact discrete Laplace operator −∆h .
Note that the latter has to be supplied to the solver, hence this preconditioner is not
fully algebraic.

One sees that the block diagonal preconditioner requires significantly more iter-
ations than monolithic AMG preconditioners, even when using enhanced approxima-
tions Ã and S̃ with two inner iterations. This explains the timing results reported in
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Table 4
Total solution time in microseconds per unknown.

Right-hand transf. Two-sided transf. Block Diag. Prec.
GCR(10) GCR(30) GCR(10) GCR(30) 1 inner it. 2 inner it.

Size 1 2 1 2 1 2 1 2 1 2 1 2
ξ:

MAC scheme (2D)
0 2.8 2.7 2.5 2.8 3.7 4.1 3.7 4.3 6.2 5.5 6.8 7.0

10 2.5 2.7 2.5 2.8 3.6 4.2 3.7 4.4 6.5 6.9 8.8 9.1
100 2.3 2.7 2.4 2.7 3.5 4.1 3.6 4.1 5.7 6.4 7.9 8.3

1000 2.1 2.6 2.1 2.6 3.3 3.9 3.3 4.4 4.8 5.5 6.3 7.4

Collocated grid (2D)
0 2.9 3.9 3.0 4.2 4.1 4.9 4.2 4.9 5.5 5.8 7.9 7.9

10 2.9 3.9 2.8 4.2 4.2 4.8 4.2 4.9 6.6 7.2 10.6 10.5
100 2.7 3.6 2.6 3.8 4.2 4.8 4.1 4.7 6.1 6.8 9.3 9.3

1000 2.3 3.1 2.4 3.3 3.9 4.7 4.0 4.6 5.1 5.8 7.9 8.3

Collocated grid (3D)
0 9.4 5.1 8.5 4.8 8.3 9.5 8.1 9.7 6.6 7.2 8.8 9.7

10 7.4 4.4 7.4 4.6 8.1 9.6 8.0 9.7 7.4 8.4 11.0 11.9
100 5.2 4.3 5.2 4.4 7.7 9.4 7.7 9.3 6.2 7.2 9.0 10.5

1000 6.5 4.0 6.5 3.9 7.1 8.7 7.1 8.5 4.7 5.7 6.9 8.2

Table 4,4 where one sees that the methods presented in this paper are significantly
faster despite a higher cost per iteration. Thus, for the largest tested size, AMG
applied to the right-hand transformed matrix is between 1.4 and 2.5 times faster than
MINRES with block diagonal preconditioning (using the most cost effective variant
which is finally the one with a single AMG application for the diagonal blocks).

Finally, we also tested two mixed finite element discretizations of stationary Stokes
problems on unstructured grids. The first one is P2∗/P−1 based on Crouzeix–Raviart
elements [13], as described in [16]; the domain is the unit square, and a zoom on the
central part of the mesh is displayed on Figure 2 (left). The second discretization is
P1/P1 stabilized according to the method in [4]; the domain is the unit cube, and
Figure 2 (right) offers a view on a cut of the mesh displaying one eighth of it.

For these matrices, there more are nonzero entries per row in B, making the two-
sided transformation memory consuming and even less competitive. On the other
hand, the block diagonal preconditioning method requires the pressure mass matrix,
which was not provided. Hence, only right-hand transformation is tested here. Results
are reported in Table 5, where we also reproduce the results obtained with finite
difference discretizations (largest sizes). One sees that the method reaches similar
efficiency for the mixed finite elements, except that the ratio between the numbers
of nonzero entries in the transformed and original matrices (ratTr) is here somehow
larger. As a consequence, the time needed to solve the system per nonzero entry
in the original matrix is slightly less than twice the time needed for finite difference
discretizations (while the time per unknown is significantly increased, on account of
the much larger number of nonzero entries per row).

4Timings are reported for a standard Linux workstation equipped with Intel i5-4570 @ 3.20 GHz
processor and 32 Gb DDR RAM memory; solvers were called from the Matlab environment, but all
computationally intensive routines are written in Fortran and have been compiled with the GNU
compiler (gfortran).
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Maillage

Maillage +Octant sup

Fig. 2. Zoom on the central part of the 2D unstructured mesh (left), and view of a cut of the
unstructured 3D mesh, displaying one eighth of it.

Table 5
Results with the right-hand transformation for the stationary problems on structured and un-

structured meshes; “tm” refers to the total solution time and is reported in microsecond, either per
unknown ( tm

n
) or per nonzero entry in the original matrix ( tm

nnz ).

GCR(10) GCR(30)
n

106
n

nnz ratTr CA CG it tm
n

tm
nnz it tm

n
tm
nnz

MAC(2D) 3.1 6.0 1.9 2.3 2.5 17 2.7 0.44 17 2.8 0.47
Coll.(2D) 3.1 7.7 1.5 2.4 2.1 27 3.9 0.51 26 4.2 0.55
Coll.(3D) 3.5 9.9 1.7 1.8 3.1 17 5.1 0.51 17 4.8 0.49

P2∗/P−1(2D) 1.3 17.3 3.4 1.5 4.9 22 14.3 0.83 22 14.5 0.84
P1/P1(3D) 0.8 36.3 2.5 1.8 4.6 23 32.3 0.89 22 32.1 0.88

7. Conclusions. We have shown that monolithic AMG methods can be success-
fully applied to solve discrete Stokes equations, using the standard unknown-based
coarsening approach in which the prolongation operator is set up by considering sep-
arately the different types of unknowns. Two conditions, however, are to be satisfied.
First, the AMG method should not be applied to the linear system stemming from
the discretization, but to an equivalent system obtained through a simple algebraic
transformation. Second, when more than two levels are needed, plain aggregation-
based AMG has to be preferred, because the induced coarse level matrices are better
suited to the recursive application of the method. When both these requirements
are met, monolithic AMG appears both robust and cost effective with respect to
state-of-the-art block preconditioning.

Regarding future research, one may observe that the algebraic transformations
considered in this work can be also applied to linearized Navier–Stokes problems.
Hence it is worth investigating if the approach can be successful in this context as
well.
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