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Abstract

We introduce an inference method based on quantiles matching, which is useful for situ-

ations where the density function does not have a closed form –but it is simple to simulate–

and/or moments do not exist. Functions of theoretical quantiles, which depend on the pa-

rameters of the assumed probability law, are matched with sample quantiles, which depend

on observations. Since the theoretical quantiles may not be available analytically, the opti-

mization is based on simulations. We illustrate the method with the estimation of α-stable

distributions. A thorough Monte Carlo study and an illustration to 22 financial indexes show

the usefulness of the method.
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1 Introduction

Estimation of the parameters of an econometric or economic parametric model is a first order con-

cern. In the case that we know the probability law that governs the random variables, Maximum

Likelihood (ML henceforth) is the benchmark technique. If we relax the assumption of knowl-

edge of the distribution but we still have knowledge of the moments, the Generalized Method

of Moments (GMM henceforth) is the benchmark technique. However, there are economic and

econometric models that cannot be easily estimated with ML or GMM: stochastic volatilities,

models with stochastic regimes switches, or involving expected utilities to name a few.

To circumvent these estimation difficulties, numerous estimation methods based on simulations

have been developed. Gouriéroux and Monfort (1996) and Hajivassiliou and Ruud (1994) introduce

Simulated ML (SML), similar to ML except that simulated probabilities are used instead of the

exact probabilities. McFadden (1989), Pakes and Polland (1989), and Duffie and Singleton (1989)

independently introduced the Method of Simulated Moments (MSM), which is based on matching

sample moments and theoretical moments that are generated by simulations. Gouriéroux, Monfort

and Renault (1993) propose Indirect Inference (IndInf), a method that is based on estimating

indirectly the parameters of the model of interest through an auxiliary model. The Efficient

Method of Moments (EMM) of Gallant and Tauchen (1996) is based on the same idea.

In this article we introduce the Method of Simulated Quantiles (MSQ henceforth). MSQ is

appropriate when standard estimation methods fail because of lack of closed form expression for

the probability density function or/and lack of existence of moments. Indeed, since it is based

on quantiles, it is a moment-free method. And since it is based on simulations, we do not need

closed form expressions of any function that represents the probability law of the process. In

a nutshell, MSQ is based on a vector of functions of quantiles. These functions can be either

computed from data (the sample functions) or from the distribution (the theoretical functions).

The estimated parameters are those that minimize a quadratic distance between both. Since

the theoretical functions of quantiles may do not have a closed form expression, we rely on simu-

lations. All over the article, we illustrate the method with the estimation of α-stable distributions.

Example

Let Xt be a random variable distributed like an α-stable distribution that is is characterized by four

parameters –α, β, σ and µ– and is represented as Xt ∼ Sα(σ, β, µ). The parameter α ∈ (0, 2],

often denoted as tail index, measures the thickness of the tails and governs the existence of moments:

E[Xp
t ] < ∞, ∀p < α. Asymmetry is captured by β ∈ [−1, 1]. For β = 1 the distribution is completely

right-asymmetric and for β = −1 the distribution is completely left-asymmetric. The dispersion

parameter σ ∈ R
+ expands or contracts the distribution, and the location parameter µ ∈ R controls
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the center of the distribution. As α → 2, β loses importance and it becomes unidentified. For α = 2,

the distribution becomes Gaussian and β is irrelevant. Other particular cases of the α-stable distribution

are the Cauchy (α = 1 and β = 0), and the Lévy distributions (α = 0.5 and β = ±1). The α-stable

distributions posses the property of stability: Linear combinations of i.i.d. α-stable random variables

with the same α are also α-stable distributed. A related property of the α-stable distribution is that

it is a domain of attraction –this is often known as the Generalized Central Limit Theorem– which

states the only distribution that arises as limit from sums of i.i.d. random variables (suitably scaled

and centered) is the α-stable distribution.

The pdf of the α-stable distribution does not have a closed form. Since it is a complicated integral,

even difficult to evaluate numerically, estimation by ML has been often not considered in applied

work (though the theoretical properties of the ML estimator exist, Dumouchel, 1973, and the actual

estimation has been performed by Nolan, 2001). However, the characteristic function (CF hereafter)

has a manageable closed form:

E[eiθXt ] =

{

exp{−σα|θ|α(1 − iβ(signθ) tan πα
2 ) + iµθ} if α 6= 1

exp{−σ|θ|(1 + iβ 2
π (signθ) ln |θ|) + iµθ} if α = 1.

All the methods based on the CF match the theoretical and sample counterparts, but in different ways.

Since the sample CF is a random variable with complex values, one can think about comparing (i)

moments associated to real and imaginary components respectively (Press, 1972, Fielitz and Rozelle,

1981), (ii) minimizing a distance between the sample and the theoretical CF functions (Paulson,

Holcomb and Leitch, 1975, Feuerverger and McDunnough, 1981, and Carrasco and Florens, 2002),

(iii) performing a regression analysis between the real and imaginary parts of the sample and theoretical

CF (Koutrevelis, 1980), or (iv) use the fast Fourier transform to express the likelihood as a function of

the CF (Chenyao, Mittnik and Doganoglu, 1999). A problem inherent on these methods is the choice

of the grid of frequencies at which to evaluate the CF. While Fielitz and Rozelle (1981) recommend,

on the basis of Monte Carlo results, to match only a few frequencies, others, like Feuerverger and

McDunnough (1981), recommend to use as many frequencies as possible. However, in the latter case,

Carrasco and Florens (2002) have shown that, even asymptotically, matching a continuum of moment

conditions introduces a fundamental singularity problem.

An alternative is the use of simulation-based methods. Since random numbers from α-stable

distributions can be obtained straightforwardly, simulation-based methods such as IndInf and EMM are

appealing, as it has been shown by Garcia, Renault and Veredas (2008) and Lombardi and Calzolari

(2008). They both use a skewed-t distribution as auxiliary model. This is a sensible choice, since the

skewed-t distribution also has four parameters that measure the same features as the four parameters

of the α-stable distribution.

Finally, Fama and Roll (1971) and McCulloch (1986) propose to use functions of quantiles. Four

specific functions of quantiles are constructed to capture the same features as those captured by α, β,
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σ and µ. Since the pdf does not have a closed form, so do the cumulative density function and so do

the quantiles. Estimation has to be done either by simulation or by tabulation. They opt for the later.

Fama and Roll (1971) and McCulloch (1986) estimate the parameters by calibrating the value of the

sample functions of quantiles with tabulated values of the theoretical quantiles. This is a fast way to

estimate the parameters, since it avoids optimization, but the theoretical properties remain unclear and

the extension to the case of linear combinations of α-stable random variables is not possible (since the

tail index has to be the same for all the random variables, estimation has to be done jointly). �

MSQ combines the simulation-based and the quantile-based methods. It is broader than Fama

and Roll (1971) and McCulloch (1986) that were designed for the estimation of the α-stable dis-

tribution. In fact, MSQ is very general as it does not make any assumptions on the functional

forms for the functions of quantiles. A second advantage is that the method is not based on

tabulations but on simulations. This allows a larger flexibility and accuracy. Indeed, tabulation

requires interpolation if the sample functions of quantiles are not exactly equal to the tabulated

theoretical functions of quantiles. Third, we provide an asymptotic theory that shows the con-

sistency, asymptotic normality and the asymptotic variance-covariance matrix of the estimated

parameters.

Estimation via quantiles is a natural alternative to moment-based methods and tracks back

to Aitchison and Brown (1957). In this book on the log-normal distribution, they estimate a

three-parameter log-normal distribution by matching quantiles. Quantiles can also be used to

construct functions that measure aspects of the probability distribution. Let qτ denote the τ -th

quantile of Xt for τ ∈ (0, 1). The median, q0.50, is often used as an estimator of the location. The

interquartile range, q0.75 − q0.25 is a natural measure of dispersion. Bowley (1920) proposed the

quartile skewness (known as the Bowley coefficient):

BC =
(q0.75 − q0.5) − (q0.5 − q0.25)

(q0.75 − q0.25)
,

which was extended by Hinkley (1975):

Hink =
(qτ − q0.5) − (q0.5 − q1−τ )

(qτ − q1−τ )
.

The smaller τ , the less sensitive to outliers, but the less information from the tails it uses. These

measures of asymmetry are dispersion and location invariant, i.e. γ(aXt + b) = γ(Xt), where γ

denotes one of the two above measures.

As far as measures for tail thickness are concerned, Crow and Siddiqui (1967) proposed a

measure based on the ratio of two interquantile ranges:

CS =
(qτ1

− q1−τ1
)

(qτ2
− q1−τ2

)
,
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where τ1 > τ2. Their choices for τ1 and τ2 were 0.975 and 0.75 respectively. Alternatively,

a measure of tail thickness can be interpreted as a measure of the dispersion of a distribution

around µ ± σ. Based on this interpretation, Moors (1988) proposed

Mo =
(q0.875 − q0.625) + (q0.375 − q0.125)

(q0.750 − q0.250)
.

The two terms in the numerator are large if little probability mass is concentrated in the neighbor-

hood of the first and third quartile. Note that CS and Mo are standardized by the interquartile

range to guarantee invariance under linear transformations.1

The rest of the paper is organized as follows. In Section 2 we first introduce notation followed

by MSQ. Each step of the presentation of the method is illustrated with our example. We also

show the assumptions and the asymptotic distribution of the estimators. In Section 3 we report

the results of a Monte Carlo study based on our example. We consider univariate and multidi-

mensional estimation of α-stable distributions. For the univariate case, our method is compared

with McCulloch (1986). In Section 4 we show an illustration to 22 world-wide market indexes,

assumed to be distributed according to α-stable distributions. We first estimate the parameters

independently. Then we estimate them jointly assuming a common tail index, which is needed

for the construction of linear combinations, as we show in the last part of the section. Section 5

concludes. Proofs and other technicalities are relegated to the Appendix.

2 The Method of Simulated Quantiles

Let Xt be a N × 1 random vector that follows a distribution D(θ), where θ denotes the vector

of unknown parameters that are in an interior point of the compact parameter set Θ ⊂ R
p. The

elements of Xt are independent random variables. The i-th random variable Xi,t follows the

marginal distribution Di(θi), where θi ∈ Θi ⊂ R
pi . We allow for common parameters between

{θi}N
i=1.

Let x be a T × N matrix of T realizations of X with i-th column xi = (xi,1, ..., xi,t, ..., xi,T )T.

Denote by q̂i,T = (q̂i,τ1,T , ..., q̂i,τs,T )T ∈ R
s and q̂∗

i,T = (q̂i,τ1,T , ..., q̂i,τb,T )T ∈ R
b two s×1 and b×1

vectors of sample quantiles of xi. That is, q̂i,τk,T denotes the τk-th sample quantile of xi. Let

h(q̂i,T ) and g(q̂∗

i,T ) be two J × 1 vectors of continuous and once differentiable functions R
s → R

J

and R
b → R

J . Consider their Hadamard product φ̂i,T = h(q̂i,T ) � g(q̂∗

i,T ).

Likewise, denote by qθi
= (qτ1,θi

, ..., qτsθi
)T ∈ R

s and q∗

θi
= (q∗τ1,θi

, ..., q∗τb,θi
)T ∈ R

b two s × 1

and b×1 vectors of theoretical quantiles corresponding to Di(θi). That is, qτk,θi
denotes the τk-th

theoretical quantile of xi. These quantiles may not be available analytically and they may have

1For more details about quantile based kurtosis measures see Groeneveld (1984), Groeneveld (1998) and Brys

(2006).
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to be computed through simulation. Let h(qθi
) and g(q∗

θi
) be two J × 1 vectors of continuous

and once differentiable functions R
s → R

J and R
b → R

J . Consider their Hadamard product

φθi
= h(qθi

) � g(q∗

θi
).

Example (cont.)

For N = 1 McCulloch (1986) defines four functions of quantiles that represent the four param-

eters of the α-stable distribution. Let q̂T = (q̂0.95,T , q̂0.75,T , q̂0.50,T , q̂0.25,T , q̂0.05,T )T and q̂∗

T =

(q̂0.95,T , q̂0.75,T , q̂0.25,T , q̂0.05,T )T.2 The functions h(q̂T ) and g(q̂∗

T ) are both 4 × 1:

h(q̂T ) =

















q̂0.95,T − q̂0.05,T

(q̂0.95,T − q̂0.50,T ) + (q̂0.05,T − q̂0.50,T )

q̂0.75,T − q̂0.25,T

q̂0.50,T

















g(q̂∗

T ) =

















(q̂0.75,T − q̂0.25,T )−1

(q̂0.95,T − q̂0.05,T )−1

1

1

















.

And the vector of quantile functions φ̂T is

φ̂T =



















q̂0.95,T −q̂0.05,T

q̂0.75,T −q̂0.25,T

(q̂0.95,T −q̂0.50,T )+(q̂0.05,T −q̂0.50,T )
q̂0.95,T −q̂0.05,T

q̂0.75,T − q̂0.25,T

q̂0.50,T



















.

The first two elements are essentially special cases of Crow and Siddiqui (1967) and Hinkley (1975)

respectively. The last two are the interquantile range and the median.

The two upper elements in φ̂T are dispersion and location invariant, meaning that they are

insensitive to µ and σ. This is why McCulloch (1986) standardizes the sample. So if the pro-

cess truly has unit dispersion, the theoretical and sample interquantile ranges should be the same:

q0.75,θ − q0.25,θ = q̂0.75,T − q̂0.25,T . Otherwise, the theoretical interquantile range is re-scaled by σ:

(q0.75,θ − q0.25,θ)σ = q̂0.75,T − q̂0.25,T . Similarly, if the process truly has location zero and unit dis-

persion, the theoretical and sample medians should be the same: q0.50,θ = q̂0.50,T . Otherwise, the

theoretical median is re-scaled and re-located by σ and µ respectively: µ+σq0.50,θ = q̂0.50,T .3 Putting

all these elements together, the vector of theoretical quantile functions equals:

2To simplify notation, in the univariate setting we skip the i-th index.
3McCulloch (1986) notices that q0.50,θ has a double singularity as α crosses 1 when β 6= 0. This makes

interpolation meaningless between α = 0.9 and α = 1.1. To circumvent this problem, McCulloch (1986) uses

6



φθ =























q0.95,θ−q0.05,θ

q0.75,θ−q0.25,θ

(q0.95,θ−q0.50,θ)+(q0.05,θ−q0.50,θ)
q0.95,θ−q0.05,θ

(q0.75,θ − q0.25,θ)σ

µ + σq0.50,θ























.

�

Let Φ̂T = (φ̂1,T , ..., φ̂N,T )T and Φθ = (φθ1
, ...,φθN

)T be two NJ × 1 vectors containing the

sample and theoretical functions of quantiles for the N random variables. Identification requires

that NJ ≥ p. The principle of MSQ is to find the value of the parameters that match the sample

and theoretical functions of quantiles. This is done by minimizing the quadratic distance between

Φ̂T and Φθ:

θ̂T = argminθ∈Θ (Φ̂T − Φθ)TW(Φ̂T − Φθ), (1)

where W is a NJ × NJ symmetric positive definite weighting matrix defining the metric. Three

particular cases are nested in (1). The first is when no simulations are needed. If Φθ can be

computed explicitly, then (1) can be solved by the standard optimization techniques. An example

is the Tukey lambda distribution (Joiner and Rosenblatt, 1971), which is only defined in terms of

the quantiles. For the i-th random variable, the τk-th theoretical quantile is

qτk,θi
=

τθi

k − (1 − τk)θi

θi
,

for θi 6= 0. The Tukey lambda distribution has its generalized version (Ramberg and Schmeiser,

1974), also only defined of the quantiles:

qτk,θi
= θi,1 +

τ
θi,3

k − (1 − τk)θi,4

θi,2
,

where θi,1 and θi,2 are location and dispersion parameters respectively, and θi,3 and θi,4 are shape

parameters.

The second particular case is when NJ = p. Then W is irrelevant and the problem boils

down to solving a system of nonlinear equations via simulations. This is the case of the α-stable

distribution where there are four parameters and four functions of quantiles.

The third particular case combines the first and second: if Φθ can be computed explicitly

and NJ = p, the problem reduces to find the θ such that Φ̂T = Φθ. This is the case of the

σq0.50,θ = q̂0.50,T − ζ where, see Zolotarev (1957),

ζ =

�
µ + β σ tan πα

2
for α 6= 1

µ for α = 1.
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Tukey lambda distribution, where there is only one parameter that can estimated with just one

function of quantiles (which could be the τk-th quantile itself, i.e. matching q̂τk,T with qτk,θi
), or

its generalized version with four parameters and four functions of quantiles.

Example (cont.)

As mentioned above, since φθ and φ̂T are 4 × 1 vectors, optimization boils down to solve the system

φθ = φ̂T . Because the quantile functions for α and β are location and dispersion invariant, they can

be matched independently from those for σ and µ. Let θ
′

= (α, β),

φ
′

θ
′ =









q
0.95,θ

′−q
0.05,θ

′

q
0.75,θ

′−q
0.25,θ

′

(q
0.95,θ

′−q
0.50,θ

′ )+(q
0.05,θ

′−q
0.50,θ

′ )

q
0.95,θ

′−q
0.05,θ

′









,

and

φ̂
′

T =







q̂T,0.95−q̂T,0.05

q̂T,0.75−q̂T,0.25

(q̂T,0.95−q̂T,0.50)+(q̂T,0.05−q̂T,0.50)
q̂T,0.95−q̂T,0.05






.

McCulloch (1986) finds the values, through tabulation, of α and β that match φ
′

θ
′ with φ̂

′

T . The

quantile functions for α are bounded from below by 2.439 (this is the value that corresponds to α = 2).

However, due to the randomness inherent in finite samples, the estimated quantile functions may take

values below 2.439. To avoid this finite sample artifact, McCulloch (1986) imposes the constraint that

the quantile function for α equals 2.439 if the estimated one is below. Alternative solutions in our

simulation-based framework are discussed below.

Once α̂T and β̂T are obtained, estimates for σ and µ are straightforwardly obtained. For σ:

σ̂T =
q̂T,0.75 − q̂T,0.25

q
0.75,θ̂

′

T

− q
0.25,θ̂

′

T

, (2)

where q
0.75,θ̂

′

T

and q
0.25θ̂

′

T

are the theoretical 0.75-th and 0.25-th quantiles of a standardized α-stable

distribution evaluated at α̂T and β̂T . Likewise, for µ:

µ̂T =

{

q̂T,0.50 + σ̂T

(

β̂T tan πα̂T

2 − q
0.50,θ̂

′

T

)

for α 6= 1

q̂T,0.50 − σ̂T q
0.50,θ̂

′

T

for α = 1.
(3)

where q
0.50,θ̂

′

T

is the theoretical 0.50-th quantile of a standardized α-stable distribution evaluated at

α̂T and β̂T . �

The optimization (1) works as follows. First, the sample quantile functions Φ̂T are estimated

from the observations. Second, given some initial values of the parameters, we simulate from

the probability law that generates the process. The simulated sample is used to compute Φθ (as

the sample quantiles of the simulated sample). Third, an iterative process starts to find the θ
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that minimize (1). The simulation and calculation of Φθ are repeated at each iteration of the

algorithm. The iterative process continues until the convergence criterion is achieved. Figure 1

shows a diagrammatic representation of the estimation process.

Figure 1: MSQ iterative process

Several remarks are in order. First, optimization (1) depends on the weighting matrix W

that in turn depends on the estimated parameters. This is a similar problem to GMM and In-

dInf. So we proceed similarly: we optimize (1) with W = I, a NJ × NJ identity matrix. The

estimated parameters, θ̃T , albeit inefficient, are consistent. Then we replace θ by θ̃T in W, and

we optimize again (1). The optimal choice of W is shown below. Second, in many situations

there are constraints between parameters to be estimated (e.g. equality or proportionality be-

tween a subset). A first thought to account for the constraints is to optimize (1) subject to the

constraints. This leads to a complicated constrained optimization problem that may involve La-

grange multipliers and Kuhn-Tucker conditions. In our simulation-based framework there is no

need of such a constrained optimization. The constraints between the parameters can be easily

imposed in the simulation step. Third, notwithstanding the previous appealing feature, there are

also constraints in the parameter spaces that the optimization has to handle. For instance, for

the α-stable distribution α ∈ (0, 2], β ∈ [−1, 1] and σ ∈ R
+. An appropriate re-parametrization –

a bijective function mapping the real line into a desired interval– may avoid this extra complexity.4

4If a parameter θ is constrained to belong to a specific interval (a, b) then 0 < θ−a
b−a

< 1, which can be modelled
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Example (cont.)

We now consider the case where there are 2 i.i.d. random variables Xi,t ∼ Sα(σi, βi, µi), i = 1, 2.

Let yi,t be the standardized values of xi,t, so that Yi,t ∼ Sα(1, βi, 0), i = 1, 2. Let θ
′

1 = (α, β1)
T,

θ
′

2 = (α, β2)
T and θ

′

= (α, β1, β2)
T.

Since the functions of quantiles for α and β are location and dispersion invariant, the vector of

sample quantile functions is

Φ̂
′

T =





















q̂1,0.95,T −q̂1,0.05,T

q̂1,0.75,T −q̂1,0.25,T

q̂2,0.95,T −q̂2,0.05,T

q̂2,0.75,T −q̂2,0.25,T

(q̂1,0.95,T −q̂1,0.50,T )+(q̂1,0.05,T −q̂1,0.50,T )
q̂1,0.95,T −q̂1,0.05,T

(q̂2,0.95,T −q̂2,0.50,T )+(q̂2,0.05,T −q̂2,0.50,T )
q̂2,0.95,T −q̂2,0.05,T





















.

And the vector of theoretical quantile functions is

Φ
′

θ
′ =































q
0.95,θ

′

1
,
−q

0.05,θ
′

1

q
0.75,θ

′

1

−q
0.25,θ

′

1

q
0.95,θ

′

2

−q
0.05,θ

′

2

q
0.75,θ

′

2

−q
0.25,θ

′

2

(q
0.95,θ

′

1

−q
0.50,θ

′

1

)+(q
0.05,θ

′

1

−q
0.50,θ

′

1

)

q
0.95,θ

′

1

−q
0.05,θ

′

1

(0.95,q
θ
′

2

−q
0.50,θ

′

2

)+(q
0.05,θ

′

2

−q
0.50,θ

′

2

)

q
0.95,θ

′

2

−q
0.05,θ

′

2































.

This is a system of 4 equations and 3 parameters. The location and dispersion parameters µ1, µ2,

σ1 and σ2 are estimated similarly to (2) and (3). Several remarks: First, the constraint that the tail

indexes for X1 and X2 to be the same is imposed in the simulation step and there is no need to use

constrained optimization techniques. However, since the tail index and the asymmetry parameters have

bounded spaces, we may apply the logistic transformation explained earlier. Second, simulation of the

α-stable processes is easily done with the method of Chambers, Mallows and Stuck (1976). Third, in

finite samples the problem that the quantile function that represents the tail index may take values

below 2.439 is carried over for any dimension. A way to solve this finite sample artifact is constraining

the function to be larger than its lower bound, as explained earlier. An alternative is to simulate H

times and take the average simulated data. If the quantile function is still below the lower bound, then

the constraint is imposed. A second alternative is to simulate H times, compute H times the quantile

functions and compute their average. In any case, this problem is likely to be encountered only when

with a logistic function:
θ − a

b − a
=

exp(ξ)

1 + exp(ξ)
,

where ξ is the transformed parameter ranging from −∞ to ∞. Estimation of ξ is unconstrained and θ̂T can be

backed from ξ̂T .
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α gets close to 2. It is barely found for values of α below, say, 1.8. Last, in the case of N random

variables there are 3N + 1 parameters to estimate and 4N equations. The system Φ
′

T −Φ
′

θ
′ consists

however of 2N equations and N + 1 unknown parameters. For instance, if N = 100, the optimization

consists on matching 200 equations with respect to 101 parameters. This may seem as a large system.

However, an educated guess of the initial values may alleviate it. For instance, univariate estimates can

be used as initial values.5 The 2N dispersion and location parameters are easily estimated regardless

of the dimension. �

2.1 Asymptotic Properties

As MSQ is based on quantiles, we recall an old lemma (the proof can be found in Cramér, 1946,

p. 369) that shows the asymptotic properties of the sample quantiles.6

Lemma 1 Let X1, ...,XT be T i.i.d. draws from a cumultative distribution function F with a con-

tinuous density function f . Let 0 < τ1 < ... < τs < 1. Suppose that F has a density function

f in the neighborhoods of qτ1
, ..., qτs

and that f is positive and continuous at qτ1
, ..., qτs

. Then

q̂T = (q̂τ1,T , ..., q̂τs,T )T has the following asymptotic distribution

√
T (q̂T − q) →d N (0,η),

where q = (qτ1
, ..., qτs

)T and where the ijth element of η is ηi,j =
τi∧τj−τiτj

f(F−1(τi))f(F−1(τj))
.

The expression τi∧τj stands for the minimum of τi and τj . The calculation of the sparsity function

f(F−1(τi)) is shown in the Appendix.

We also need assumptions and further notation. At the beginning of Section 2 we introduced

assumptions on the distribution of Xt (which we denote by A1), compactness of Θ (which we

denote by A2) and on the continuity and differentiability of h(qxi
), g(q∗

xi
), h(qθi

), and g(q∗

θi
)

(which we denote by A3). To attain consistency we also need the standard identifiability and

uniqueness conditions:

(A4) There exists a unique θ0 such that the sample functions of quantiles equal the theoretical

ones. That is θ = θ0 ⇒ Φ̂T = Φθ0
.

(A5) θ̂T is the unique minimizer of (Φ̂T − Φθ)TW(Φ̂T − Φθ).

Denote by Ĝi,T a J × J diagonal matrix with diagonal elements g(q̂∗

i,T ). We gather all these

vectors into g(q̂∗

T ) = (g(q̂∗

1,T ), . . . ,g(q̂∗

N,T ))T with the corresponding block diagonal NJ × NJ

5A reasonable initial value for α is the average of all the univariate estimates.
6For a more detailed proof of the consistency see Serfling (1980, chapter 2) and for the asymptotic normality

see Koenker (2005, p.71).
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matrix ĜT = diag(diag(g(q̂∗

1,T )), . . . , diag(g(q̂∗

N,T ))). Similarly, let Gθ be a NJ × NJ diagonal

matrix composed of N diagonal blocks, each of size J : Gθ = diag(diag(g(q∗

θ1
)), . . . , diag(g(q∗

θN
))).

(A6) ĜT converges to the non-stochastic matrix Gθ.

Denote by Ω̃i,T T−1 the J×J sample variance-covariance matrix of h(q̂i,T ). We gather all these

vectors into h(q̂T ) = (h(q̂1,T ), . . . ,h(q̂N,T ))T with the corresponding block diagonal NJ × NJ

matrix Ω̂T = diag(Ω̂1,T , . . . , Ω̂N,T ).

(A7) limT→∞ Ω̂T = Ωθ.

Note that Ωθ = Ω(τ1, ..., τs;D(θ)). This is the equivalent of the sparsity function f(F−1(τ))

in Lemma 1. We need the following assumptions for the computation of the variance-covariance

of θ̂T :

(A8) The NJ × NJ matrix (GθΩθGθ) is is non-singular.

Let

Dθ =

(

∂ΦT
θ

∂θ
W

∂Φθ

∂θT

)−1
∂Φθ

∂θ
.

be a p × NJ matrix that links the asymptotic properties of Φ
θ̂

with those of θ̂T . The last

assumption is

(A9) The p × p matrix
(

∂Φ
T

θ

∂θ
W ∂Φθ

∂θT

)

is non-singular.

Equipped with these assumptions, we announce a preliminary Lemma.

Lemma 2 Given Lemma 1 and under (A1), (A3) and (A7),

√
T (h(q̂T ) − h(qθ)) →d N (0,Ωθ),

where h(qθ) = (h(qθ1
), . . . ,h(qθN

))T and Ωθ = ∂h(qθ)T

∂qθ
η

∂h(qθ)

∂qT

θ

. Furthermore, under as-

sumption (A6)
√

T (Φ̂T − Φθ) →d N (0,GθΩθGθ).

The last step is to map the properties Φ̂T on those of θ̂T :

Theorem Given Lemma 2 and under (A2), (A4), (A5), (A8), (A9),

√
T (θ̂T − θ0) →d N (0,DθWGθΩθGθW

TDT
θ ).

The multilayer sandwich form of the variance-covariance matrix has an intuitive explanation:

Ωθ is the variance-covariance matrix of h(q̂T ). The first layer Gθ ·Gθ accounts for the product of

h(q̂T ) with g(q̂∗

T ). The second layer W ·WT is the effect of the weighting matrix. The last layer,

Dθ ·DT
θ captures the effect of the mapping of the properties of Φ̂T on those of θ̂T . Everything is

known except W, which has to be chosen optimally, in the sense that it maximizes the information

contained in the functions of quantiles.
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Corollary The optimal weighting matrix W∗

θ = (GθΩθGθ)−1 so that

√
T (θ̂T − θ0) →d N

(

0,
∂ΦT

θ

∂θ
(GθΩθGθ)−1 ∂Φθ

∂θT

)

.

As usual, and as it has been outlined above, the computation of the optimal weighting matrix

W∗

θ requires a preliminary estimator θ̃T . Note that the calculation of the asymptotic variance-

covariance matrix of θ̂T needs estimators of Gθ and Ωθ. The matrix Gθ depends on the theoretical

quantile functions, which are obtained by simulations. The matrix Ωθ is a function of the grid of

τ ’s and the sparsity function. Last, the vector of derivatives ∂Φθ

∂θ
can be computed numerically.

3 Monte-Carlo Simulations

We carry out a Monte Carlo experiment to determine the finite sample performance of the MSQ

estimators. We generate 200 samples of 10000 observations for 3 different scenarios. In the first

we consider a univariate α-stable distribution, so we can compare with McCulloch (1986). In the

second and third we consider 5 and 10 univariate α-stable distributions with the same tail index

–and hence their parameters have to be estimated jointly. We will refer to the first as univariate

and the two last ones as 5- and 10-dimensional.7

For the univariate case, we show results for 12 cases, divided in 4 values of α, namely 1.5, 1.7,

1.9 and 1.95, and 3 values of β: −0.5, 0 and 0.5. Location and dispersion are always set to 0

and 1. For the 5-dimensional we consider the same values for α but only one combination of the

asymmetry parameters β1 = −0.5, β2 = −0.25, β3 = 0, β4 = 0.25, and β5 = 0.5. Last, for the 10-

dimensional case, we also consider the same values for α and one combination for the asymmetry

parameters β1 = −0.9, β2 = −0.7, β3 = −0.5, β4 = −0.3, β5 = −0.1, β6 = 0.1, β7 = 0.3, β8 = 0.5,

β9 = 0.7 and β10 = 0.9. Results are in Tables 1, 2 and 3. For Table 1 we also show the results

from McCulloch (1986). We report the median of the 200 estimates and their RMSE.

Results in the Tables show that MSQ accurately estimates the parameters. Estimates are

essentially unbiased and the RMSE are quite small, even for the 10–dimensional case. In the

univariate case, the comparison with McCulloch (1986) reveals that although the estimates of the

tail index with McCulloch (1986) seem to have smaller RMSE (but in both cases, it remains fairly

low), the estimates for β behave worst for McCulloch (1986). Their RMSE increases significantly

as α increases, which is not the case of MSQ.

Although not reported here, but available under request, we did the same simulation study

under different specifications. We estimated with draws of 1000 and 5000 observations, with values

of α below 1, values for β very close to 1 and −1, and different values of σ and µ. Results are on

7Consciously we are abusing of the terminology by denoting the last two cases as multidimensional, but it is

convenient to make the difference with independent univariate estimations.
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Table 1: Univariate Monte Carlo study

α β σ µ

median RMSE median RMSE median RMSE median RMSE

MSQ

α=1.5 β=-0.5 1.4954 0.0601 -0.5247 0.0336 0.9992 0.0153 -0.0129 0.1128

α=1.5 β=0 1.5023 0.0625 0.0030 0.0053 0.9448 0.0673 -0.0094 0.0513

α=1.5 β=0.5 1.4869 0.0617 0.5056 0.0230 1.0042 0.0183 0.0438 0.1222

α=1.7 β=-0.5 1.7095 0.0700 -0.4932 0.0224 1.0037 0.0147 -0.0175 0.0656

α=1.7 β=0 1.7171 0.0742 -0.0348 0.0348 1.0028 0.0136 -0.0128 0.0198

α=1.7 β=0.5 1.6908 0.0624 0.4827 0.0291 0.9863 0.0207 0.0024 0.0520

α=1.9 β=-0.5 1.9143 0.0686 -0.4958 0.0203 1.0092 0.0173 -0.0131 0.0458

α=1.9 β=0 1.9084 0.0762 -0.0250 0.0245 1.0044 0.0141 -0.0012 0.0171

α=1.9 β=0.5 1.9097 0.0583 0.5280 0.0361 1.0054 0.0144 -0.0209 0.0412

α=1.95 β=-0.5 1.9531 0.0557 -0.5088 0.0190 1.0088 0.0146 -0.0132 0.0394

α=1.95 β=0 1.9431 0.0671 0.0097 0.0106 1.0111 0.0139 -0.0302 0.0361

α=1.95 β=0.5 1.9612 0.0624 0.5140 0.0245 0.9989 0.0098 0.0017 0.0407

McCulloch

α=1.5 β=-0.5 1.5023 0.0224 -0.5071 0.0387 0.9974 0.0141 -0.0017 0.0361

α=1.5 β=0 1.4996 0.0202 -0.0010 0.0346 0.9991 0.0138 -0.0040 0.0100

α=1.5 β=0.5 1.4996 0.0228 0.5109 0.0374 0.9982 0.0146 0.0058 0.0375

α=1.7 β=-0.5 1.6995 0.0283 -0.5135 0.0806 0.9987 0.0142 -0.0051 0.0237

α=1.7 β=0 1.6989 0.0306 -0.0067 0.0539 1.0003 0.0137 -0.0009 0.0224

α=1.7 β=0.5 1.6951 0.0265 0.5131 0.0748 0.9981 0.0134 0.0055 0.0245

α=1.9 β=-0.5 1.8954 0.0387 -0.4741 0.0332 0.9980 0.0147 0.0066 0.0218

α=1.9 β=0 1.9015 0.0375 -0.0133 0.0292 1.0012 0.0137 -0.0018 0.0184

α=1.9 β=0.5 1.8950 0.0374 0.4856 0.0307 0.9991 0.0133 -0.0002 0.0222

α=1.95 β=-0.5 1.9581 0.0354 -0.2864 0.3084 1.0008 0.0132 0.0106 0.0224

α=1.95 β=0 1.9501 0.0371 0.0035 0.1822 0.9995 0.0134 -0.0011 0.0147

α=1.95 β=0.5 1.9551 0.0346 0.2705 0.3164 1.0006 0.0097 -0.0095 0.0195

Monte Carlo estimation results for univariate α-stable distributions. Top panel shows the

results for the MSQ and bottom panel for McCulloch (1986). The first two columns show

the 12 different parameter configurations. In all cases σ = 1 and µ = 0. The subsequent

couples of columns show the median and root mean square error (RMSE) of 200 draws of

10000 observations each.

the same lines to the ones shown here. In all cases we choose as initial values those coming from

univariate estimations using McCulloch (1986). For α in the multidimensional cases, we take as

initial value the average of the univariate estimates. To check the relevance of the initial values, we

tried with some very far from the true parameter. Convergence took longer but the estimates were

as closed to the true value as those shown in the Tables. Last, we also tried with different quantile

functions. For instance, for the quantile function that represents the tail index, we tried with just

the median. Estimation turned out to fail, meaning the choice of the quantile functions are indeed

important. A deeper analysis on the choice of the quantile functions is worth investigating.
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Table 2: 5 dimensional Monte Carlo study

α βi σi µi

median RMSE median RMSE median RMSE median RMSE

α=1.5 β1=-0.5 1.5007 0.0277 -0.5118 0.0068 0.9998 0.0143 0.0115 0.0462

β2=-0.25 1.5007 0.0277 -0.2544 0.0138 1.0186 0.0126 -0.0147 0.0279

β3=0 1.5007 0.0277 0.0354 0.0355 1.0058 0.0222 0.0236 0.0325

β4=0.25 1.5007 0.0277 0.2624 0.0157 1.0032 0.0135 0.0048 0.0306

β5=0.5 1.5007 0.0277 0.5088 0.0141 1.0042 0.0144 -0.0044 0.0415

α=1.7 β1=-0.5 1.7067 0.0319 -0.5256 0.0290 1.0063 0.0131 -0.0108 0.0309

β2=-0.25 1.7067 0.0319 -0.2531 0.0065 0.9904 0.0148 -0.0026 0.0198

β3=0 1.7067 0.0319 -0.0334 0.0336 0.9841 0.0195 -0.0139 0.0223

β4=0.25 1.7067 0.0319 0.2937 0.0449 1.0060 0.0132 0.0511 0.0553

β5=0.5 1.7067 0.0319 0.4908 0.0113 0.9923 0.0137 -0.0278 0.0395

α=1.9 β1=-0.5 1.9161 0.0371 -0.5012 0.0104 1.0021 0.0129 -0.0090 0.0275

β2=-0.25 1.9161 0.0371 -0.2484 0.0047 1.0123 0.0176 -0.0417 0.0465

β3=0 1.9161 0.0371 -0.0223 0.0224 1.0135 0.0184 0.0198 0.0252

β4=0.25 1.9161 0.0371 0.2697 0.0210 1.0015 0.0116 -0.0294 0.0358

β5=0.5 1.9161 0.0371 0.5206 0.0235 1.0050 0.0130 -0.0017 0.0237

α=1.95 β1=-0.5 1.9556 0.0273 -0.5076 0.0132 1.0158 0.0203 0.0234 0.0310

β2=-0.25 1.9556 0.0273 -0.2667 0.0178 0.9984 0.0123 -0.0113 0.0213

β3=0 1.9556 0.0273 -0.0378 0.0379 0.9997 0.0124 -0.0090 0.0196

β4=0.25 1.9556 0.0273 0.2671 0.0187 1.0149 0.0180 0.0020 0.0182

β5=0.5 1.9556 0.0273 0.5173 0.0207 1.0021 0.0137 0.0047 0.0221

Monte Carlo estimation results for 5 univariate α-stable distributions that share the same tail

index. The first two columns show the 4 different parameter configurations. σi = 1 and µi = 0

for i = 1, . . . , 5. The subsequent couples of columns show the median and root mean square

error (RMSE) of 200 draws of 10000 observations each.

4 An Illustration

We illustrate the method with an illustration to 9 years of daily returns of 22 major world-

wide market indexes that represent three geographical areas: America (S&P500, NASDAQ, TSX,

Merval, Bovespa and IPC), Europe and Middle East (AEX, ATX, FTSE, DAX, CAC40, SMI, MIB

and TA100), and East Asia and Oceania (HgSg, Nikkei, StrTim, SSEC, BSE, KLSE, KOSPI and

AllOrd). Table 4 provides further details on the indexes. The sample consists of 2536 observations

and it was downloaded at the website of Yahoo-finance. The initial date is January 4, 2000 and

the ending date is September 22, 2009.

Top panel of Figure 2 shows four indexes of four different continents: S&P500, FTSE, Nikkei

and All Ordinaries. They all have the stylized facts of financial returns. Visual inspection reveals

they are zero-mean processes with strong volatility clustering. It is specially clear at the end of

the sample, the 2007-2008 financial crisis. Top panel of Figure 3 shows the autocorrelogram of

the squared returns. The relatively low values and the slow decrease of the autocorrelations are

distinguished features of the dynamic pattern in volatility. Returns also show spikes and sudden

15



Table 3: 10 dimensional Monte Carlo study

α βi σi µi

median RMSE median RMSE median RMSE median RMSE

α=1.5 β1=-0.9 1.5029 0.0224 -0.8983 0.0107 0.9940 0.0155 0.0087 0.0539

β2=-0.7 1.5029 0.0224 -0.6888 0.0130 1.0003 0.0137 0.0259 0.0516

β3=-0.5 1.5029 0.0224 -0.5218 0.0237 1.0084 0.0167 -0.0253 0.0433

β4=-0.3 1.5029 0.0224 -0.2816 0.0184 1.0101 0.0169 0.0314 0.0389

β5=-0.1 1.5029 0.0224 -0.1169 0.0171 0.9916 0.0146 0.0131 0.0231

β6=0.1 1.5029 0.0224 0.1093 0.0095 0.9929 0.0148 0.0291 0.0357

β7=0.3 1.5029 0.0224 0.3002 0.0037 1.0314 0.0355 -0.0038 0.0263

β8=0.5 1.5029 0.0224 0.5190 0.0215 1.0036 0.0131 0.0202 0.0402

β9=0.7 1.5029 0.0224 0.6851 0.0164 1.0072 0.0165 -0.0082 0.0442

β10=0.9 1.5029 0.0224 0.8889 0.0139 1.0086 0.0176 0.0055 0.0498

α=1.7 β1=-0.9 1.6988 0.0228 -0.9159 0.0213 0.9887 0.0177 -0.0212 0.0371

β2=-0.7 1.6988 0.0228 -0.7171 0.0208 1.0023 0.0123 -0.0388 0.0480

β3=-0.5 1.6988 0.0228 -0.4967 0.0064 0.9960 0.0128 0.0512 0.0557

β4=-0.3 1.6988 0.0228 -0.3110 0.0124 0.9960 0.0122 -0.0020 0.0208

β5=-0.1 1.6988 0.0228 -0.1066 0.0071 0.9968 0.0128 0.0000 0.0179

β6=0.1 1.6988 0.0228 0.1044 0.0048 0.9934 0.0127 0.0088 0.0207

β7=0.3 1.6988 0.0228 0.2860 0.0137 0.9926 0.0136 0.0401 0.0458

β8=0.5 1.6988 0.0228 0.4982 0.0056 0.9926 0.0143 0.0228 0.0339

β9=0.7 1.6988 0.0228 0.7208 0.0244 1.0098 0.0156 0.0161 0.0336

β10=0.9 1.6988 0.0228 0.9203 0.0263 1.0090 0.0168 0.0498 0.0583

α=1.9 β1=-0.9 1.9074 0.0242 -0.8905 0.0132 0.9950 0.0128 -0.0149 0.0290

β2=-0.7 1.9074 0.0242 -0.7166 0.0223 1.0058 0.0124 -0.0201 0.0311

β3=-0.5 1.9074 0.0242 -0.5111 0.0131 1.0049 0.0136 0.0440 0.0487

β4=-0.3 1.9074 0.0242 -0.3063 0.0083 0.9985 0.0120 0.0019 0.0183

β5=-0.1 1.9074 0.0242 -0.1074 0.0078 0.9969 0.0126 0.0072 0.0196

β6=0.1 1.9074 0.0242 0.1109 0.0112 0.9961 0.0112 0.0115 0.0202

β7=0.3 1.9074 0.0242 0.3137 0.0148 0.9876 0.0160 0.0448 0.0502

β8=0.5 1.9074 0.0242 0.5113 0.0145 0.9889 0.0160 0.0166 0.0269

β9=0.7 1.9074 0.0242 0.7103 0.0143 1.0147 0.0197 -0.0020 0.0241

β10=0.9 1.9074 0.0242 0.8890 0.0122 1.0012 0.0127 0.0336 0.0428

α=1.95 β1=-0.9 1.9486 0.0168 -0.8814 0.0193 0.9893 0.0166 0.0114 0.0262

β2=-0.7 1.9486 0.0168 -0.7225 0.0259 0.9794 0.0234 0.0121 0.0231

β3=-0.5 1.9486 0.0168 -0.5213 0.0231 0.9948 0.0129 -0.0076 0.0223

β4=-0.3 1.9486 0.0168 -0.3149 0.0165 0.9954 0.0130 0.0218 0.0278

β5=-0.1 1.9486 0.0168 -0.1025 0.0030 1.0128 0.0165 0.0253 0.0310

β6=0.1 1.9486 0.0168 0.1152 0.0156 1.0044 0.0119 0.0046 0.0174

β7=0.3 1.9486 0.0168 0.3280 0.0292 1.0136 0.0182 -0.0102 0.0202

β8=0.5 1.9486 0.0168 0.4800 0.0197 0.9926 0.0140 -0.0185 0.0279

β9=0.7 1.9486 0.0168 0.7194 0.0220 1.0109 0.0173 0.0136 0.0254

β10=0.9 1.9486 0.0168 0.8899 0.0162 0.9958 0.0131 -0.0223 0.0317

Monte Carlo estimation results for 10 univariate α-stable distributions that share the same tail

index. The first two columns show the 4 different parameter configurations. In all cases σi = 1

and µi = 0 for i = 1, . . . , 10. The subsequent couples of columns show the median and root

mean square error (RMSE) of 200 draws of 10000 observations each for the different estimated

parameters.

16



Table 4: Market Indexes
Name Market Continent

AEX Amsterdam Stock Exchange Europe

AllOrd Australian Stock Market Oceania

ATX Wiener Börse Europe

Bovespa Sao Paulo Stock Exchange South America

BSE Bombay Stock Exchange Asia

CAC40 Bourse de Paris Europe

DAX Deutsche Börse Europe

FTSE London Stock Exchange Europe

HgSg Hong Kong stock market Asia

IPC Mexican Stock Exchange South America

KLSE Bursa Malaysia Asia

KOSPI Korea Stock Exchange Asia

Merval Buenos Aires Stock Exchange South America

MIB Borsa Italiana Europe

NASDAQ NASDAQ Stock Market North America

Nikkei Tokyo Stock Exchange Asia

SSEC Shanghai Stock Exchange Asia

SMI SIX Swiss Exchange Europe

S&P500 NYSE North America

StrTim Singapore Exchange Asia

TA100 Tel Aviv Stock Exchange Europe

TSX Toronto Stock Exchange North America

HgSg, StrTim, and AllOrd stand for Hang Seng, Straits Times

and All Ordinaries respectively.

extreme variations within periods of both high and low volatility. This is a clear indication of

thick tails and, possibly, skewness. Indeed, Table 5 shows descriptive statistics for all the indexes.

The second column reveals possible negative skewness and the third column evidences a great deal

of kurtosis.

Last column of Table 5 shows the estimated tail indexes for each return series. They range

from 1.3268 to 1.6511. These values are too low to represent the unconditional tail behavior of the

observations and they are due to the volatility clustering. Several articles have investigated the

relationship between α-stable processes and processes with volatility clustering. De Vries (1991)

has shown that under certain conditions on the parameters of a GARCH-like process, the α-stable

and GARCH processes are observationally equivalent from the viewpoint of the unconditional

distribution. Ghose and Kroner (1995) establish that many of the properties of α-stable models

are shared by GARCH models. In particular, both models share the facts that the unconditional

distribution has fat tails and that the tail index is invariant under addition. However, they

identify distinctive properties, namely the clustering in volatility, that is not present in α-stable

distributions, and the distributions of the extreme values, captured by the tail indexes.

To safeguard against conditional volatility (and possible mean reversion), we adjust the returns

17



Table 5: Descriptive Statistics: Returns

s.d. skewness kurtosis α̂T

AEX 0.0163 -0.0420 8.9851 1.4196

AllOrd 0.0101 -0.7292 11.277 1.4986

ATX 0.0146 -0.3767 12.731 1.4699

Bovespa 0.0198 -0.0695 6.7367 1.6511

BSE 0.0176 -0.2021 9.1432 1.4564

CAC40 0.0157 0.0342 8.1883 1.5249

DAX 0.0166 0.0756 7.3018 1.5474

FTSE 0.0132 -0.1035 9.4666 1.4790

HgSg 0.0167 -0.0301 11.196 1.3872

IPC 0.0152 0.0927 7.1575 1.5438

KLSE 0.0099 -0.8620 13.315 1.4774

KOSPI 0.0184 -0.5223 7.8422 1.4789

Merval 0.0220 -0.0476 8.1843 1.4355

MIB 0.0128 -0.1738 10.241 1.4147

NASDAQ 0.0191 0.1223 7.3096 1.4513

Nikkei 0.0160 -0.3126 9.8454 1.5638

SSEC 0.0167 -0.0808 7.5209 1.4053

SMI 0.0130 0.0743 9.2335 1.5288

S&P500 0.0138 -0.0970 11.081 1.4457

StrTim 0.0133 -0.4119 8.7269 1.5244

TA100 0.0142 -0.3606 8.4907 1.3268

TSX 0.0129 -0.7181 12.135 1.4810

Descriptive statistics of the 22 index returns. This

table shows the standard deviation -denoted by s.d.-,

skewness, kurtosis, and the tail index, denoted by α̂T ,

estimated independently for each return index.

with a VAR(2)-CCC model (with GARCH(1,1) models in the conditional volatilities) such that the

remaining heteroskedasticity is not due to dynamic conditional volatility. Bottom panel of Figure

2 shows the standardized adjusted returns. The volatility clustering has disappeared. This is also

verified in the bottom panel of Figure 3. The autocorrelations of the squared adjusted returns do

not show any significant autocorrelation. However, they do not appear to be Gaussian. Table 6

shows the skewness and kurtosis. Once volatility clustering is removed, kurtosis diminishes but still

far from Gaussianity, and a high degree of negative skewness is unveiled. The last two columns

display the Cramer-von Mises and the Anderson-Darling empirical distribution tests statistics.

Since adjusted returns are standardized, the null hypothesis is a N (0, 1) distribution. Out of the

44 tests, only in seven we are not able to reject the null at 5% (and the largest of the p-values of

those seven tests is 13.2%). Hence, we conclude that, after controlling for volatility clustering and

mean reversion, market indexes are not Gaussian.

This illustration may be criticized on the grounds that the tail index is the same for all

return series. We estimate univariate α-stable distributions. Left part of Table 7 shows the
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Table 6: Descriptive Statistics: Filtered returns

Skewness Kurtosis Cr-von Mis And-Drlng

AEX -0.3162 6.5239 0.8293 (0.0062) 4.7114 (0.0040)

AllOrd -0.1374 3.8951 0.3225 (0.1169) 1.9807 (0.0941)

ATX -0.1254 4.6071 0.6052 (0.0217) 3.8482 (0.0103)

Bovespa -0.0651 4.1318 0.9714 (0.0029) 5.4471 (0.0018)

BSE -0.1887 5.6807 1.0967 (0.0015) 7.1688 (0.0003)

CAC40 -0.0779 8.4249 1.2966 (0.0005) 8.2988 (0.0000)

DAX 0.0888 4.7314 1.0886 (0.0015) 6.6839 (0.0005)

FTSE -0.1100 4.2751 0.6052 (0.0217) 4.0859 (0.0079)

HgSg 0.0061 3.5935 0.3043 (0.1314) 1.8773 (0.1074)

IPC 0.0213 4.9774 1.1449 (0.0011) 6.8585 (0.0004)

KLSE -0.7711 9.6183 2.7532 (0.0000) 14.645 (0.0000)

KOSPI -0.1954 3.9019 0.4467 (0.0545) 3.0087 (0.0271)

Merval 0.0131 5.3476 2.3002 (0.0000) 13.907 (0.0000)

MIB -0.5260 7.4854 1.2268 (0.0000) 8.1812 (0.0000)

NASDAQ -0.5143 6.4510 1.4427 (0.0002) 7.9401 (0.0003)

Nikkei 0.0004 4.1094 0.3034 (0.1321) 1.9187 (0.1018)

SSEC -0.0377 5.9127 2.9071 (0.0000) 16.154 (0.0000)

SMI -0.1385 4.1140 0.8095 (0.0069) 4.6632 (0.0042)

S&P500 -0.0249 4.1113 0.6167 (0.0204) 3.6129 (0.0135)

StrTim -0.3062 6.1301 1.5045 (0.0002) 8.3576 (0.0000)

TA100 -0.3204 5.7394 2.9165 (0.0030) 16.292 (0.0003)

TSX -0.5540 4.7482 1.4292 (0.0003) 10.675 (0.0000)

Descriptive statistics of the 22 filtered returns. This table shows

the skewness, kurtosis, the Cramer-von Mises (Cr-von Mis) and the

Anderson-Darling (And-Drlng) empirical distribution tests statis-

tics. The null hypothesis is that the filtered returns follow a Gaus-

sian distribution with zero mean and unit variance. Numbers in

parenthesis are the p-values.

estimation results. The tail indexes are higher, ranging from 1.54 to 1.93, than those in Table

5, confirming the fact that the tail indexes were capturing the volatility clustering, a genuine

conditional effect. Figure 4 shows them along with their 5% confidence bands (dashed lines) and

the average (horizontal straight dotted line). The constraint of a single tail index does not seem

unreasonable. On the other hand, the estimation results dovetail with the descriptive statistics of

Table 6. Most of the estimated βi are negative and, even, sometimes they show a large degree of

skewness. These however, are only reliable when α is not too close to 2. The location parameters

are basically statistically not different from zero, and the dispersion parameters are smaller than

0.70, which is the value that it would correspond in the Gaussian case with variance equal to one.8

Right part of Table 7 shows the multidimensional estimates. The estimated tail index is 1.7483,

very similar to the average tail index from the univariate estimations, and implying thicker tails

than in the Gaussian case. The other estimated parameters are very similar to those of the

8Since S2(σ, 0, µ) = N (µ, 2σ2), the standardization implies that σ should be close to 1/
√

2.
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univariate estimations, which makes sense, and significantly different from zero, except the location

parameters that are very small and most of the times not significant.

From the previous sections it has been highlighted that the advantage of imposing a common

tail index is that the distribution remains stable across aggregation. In what follows we construct

a world index as a portfolio of the market indexes. The adjusted returns r̃i,t i = 1, . . . , 22 are

distributed as Sα̂T
(σ̂i,T , β̂i,T , µ̂i,T ). Let r̃t =

∑22
i=1 ωir̃i,t with known weights such that

∑22
i=1 ωi =

1. In the Appendix we show that r̃t ∼ Sα̂T
(σ̂T , β̂T , µ̂T ) where:

µ̂T =

{

∑22
i=1 wiµ̂i,T if α 6= 1

∑22
i=1 wiµ̂i,T − 2

π β̂i,T σ̂i,T wi ln |wi| if α = 1,

σ̂T =

(

22
∑

i=1

|wi|α̂T σ̂α̂T

i,T

)1/α̂T

and

β̂T =

∑22
i=1 β̂i,T |wi|α̂T σ̂α̂T

i,T sign(wi)
∑22

i=1 |wi|α̂T σ̂α̂T

i,T

.

As weights we choose the percentage of market capitalization of the market representing each

index relative to the sum of all market capitalizations (shown in the last column of Table 7).9 The

largest weight, by far, corresponds to S&P500, followed by Nikkei, NASDAQ and FTSE. The last

row of Table 7 shows the parameters of the α-stable distribution for r̃t. As expected, r̃t shows

negative skewness. However, and interestingly enough, the dispersion parameter σ is much smaller

than the market ones. Aggregation reduces substantially the variations. This is expected since

the dispersion of a linear combination of random variables is smaller than the linear combination

of the dispersions.10

We can apply the same method for aggregating the return series. By the properties of the α-

stable distribution ři,t = µi,t+hi,tr̃i,t ∼ Sα(hi,t, βi, µi,t). Let rt =
∑22

i=1 ωiři,t. The returns ři,t are

not related between each other since r̃i,t and r̃i,t are not related ∀i 6= j. Then rt ∼ Sα(ht, βt, µt)

where:

µt =

{

∑22
i=1 wiµi,t if α 6= 1

∑22
i=1(wiµi,t − 2

π βihi,twi ln |wi|) if α = 1,

ht =

(

22
∑

i=1

|wi|αhα
i,t

)1/α

and

βt =

∑22
i=1 βi|wi|αhα

i,tsign(wi)
∑22

i=1 |wi|αhα
i,t

.

The asymmetry of the world index is time-varying. Let volt = ht
α
√

252100 denote the annualized

volatility in percentage. And let vol
g
t =

√

h
g
t 252100 be the annualized volatility, in percentage,

9The source is the 2008 World Federation of Exchange report.
10This is a well known affect in empirical finance: the volatility of a market index is lower than the volatility of

their constituents.
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under Gaussianity and estimating the conditional variances h
g
t with a GARCH(1,1). Figure 5

shows the estimated volatilities (left plots), the time-varying asymmetry (top right plot) and the

proportion of vol
g
t with respect to volt (bottom right plot). The annualized volatility volt does

reflect the time-varying uncertainty across time. This is particularly visible in the 2007-2008

credit crunch in financial markets. Second, the asymmetry is always negative and shows a very

heterogenous pattern, ranging from -0.20 to -0.45. Last, and most interesting, vol
g
t is always above

volt. That is, the degree of dispersion under Gaussianity is always overestimated. As shown in

the bottom right plot, it may be up to 3.5 times larger than volt, as it happened persistently

during the credit crunch. This is a consequence of assuming thin tails. By contrast, a more

reasonable approach is to estimate the tail index, which may eventually reach 2 if the process is

truly Gaussian. Estimation with MSQ unveils that this is not the case and it calls for the use of

heavy-tailed distributions in the analysis of financial returns.

5 Conclusion

We have presented the Method of Simulated Quantiles, a new estimation method based on quan-

tiles. It is useful for situations where the density function does not have a closed form, but it

is simple to simulate, or/and moments do not exist. The basic principle is the construction of

functions of theoretical quantiles, which depend on the parameters of the assumed probability law,

that are matched with sample quantiles, which depend on data. The theoretical quantiles may

not have a closed form expression, and hence we rely on simulation. Theoretically the method is

appealing for its simplicity and its finite sample and asymptotic properties.

All along the article, the method is illustrated with the estimation of α-stable distributions.

For the univariate case, MSQ can be seen as an extension of McCulloch (1986) quantile method.

However, MSQ also handles multidimensional cases as, for instance, the joint estimation of N

univariate α-stable distributions with the constraint of common tail index. This is a situation

that may arise when we want to construct portfolios. The portfolio is α-stable distributed only if

all its constituents share the same tail index. A thorough univariate, 5- and 10-dimensional Monte

Carlo study shows the goodness of the method. In all cases, it provides unbiased estimates with

small RMSE. The article is completed with an application to times series of returns of 22 world

wide market indexes. Once we take into account for volatility clustering, estimates unveil fat tails

and negative asymmetry.
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Appendix

The Appendix is divided in three sub-appendices. The first shows the proofs of Lemma 2 and of

the Theorem. The second shows how to estimate the sparsity function. The third shows how to

compute the distribution of a linear combination of α-stable random variables.

Proofs

Proof of Lemma 2 Since h(q̂T ) is a continuous and differentiable transformation of q̂T , the

Delta method applies. And since ĜT , by assumption (A6), converges to the non-singular

diagonal matrix Gθ, in the limit Φ̂T is just a scale transformation of h(q̂T ).

Proof of the Theorem Recall the minimization problem

θ̂T = argminθ (Φ̂T − Φθ)T W(Φ̂T − Φθ).

The first order condition is
∂Φ

θ̂

∂θ
W (Φ̂T − Φ

θ̂
) = 0.

A first order Taylor expansion around θ0 in Φ
θ̂

Φ
θ̂

= Φθ0
+

∂Φθ0

∂θ
(θ̂T − θ0).

Introduced in the first order condition and after reordering the elements and multiplying by
√

T one gets

√
T (θ̂T − θ0) ≈

[

∂Φ
θ̂

∂θ

T

W
∂Φθ0

∂θT

]−1
∂Φ

θ̂

∂θ
W

√
T (Φ̂T − Φθ0

).

Since, by Lemma 2, Φ̂T is a consistent estimator, θ̂T is also consistent. Further, from the

same Lemma the asymptotic normality of
√

T (θ̂T − θ0) is obtained.

The sparsity function

The essential feature of the covariance matrix is to estimate the inverse of the sparsity function

s(τ) = 1
f(F−1(τ)) where τ ∈ [0, 1] and f(F−1(τ)) is the sparsity function (as well called the quantile

density; Parzen, 1979). Siddiqui (1960) suggests to use the following approximation:

ŝT =
T

2dT

[

x([Tτ ]+dT +1) − x([Tτ ]−dT +1)

]

,

where x(i) denotes the ith order statistic from the one sample {x1, ..., xT } model, [x] is the greatest

integer contained in x and dT is a bandwith parameter. We use the one suggested by Bofinger

(1975):

dT = T 1/5

(

4, 5φ4(Φ−1(τ))

(2(Φ−1(τ))2 + 1)2

)1/5

,

where φ is the normal probability density function and Φ−1 is the normal quantile function.
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Linear combinations of α-stable distributions

This proof follows the same lines as those of the Properties 1.2.1 and 1.2.3 of Samorodnitsky and

Taqqu (2004). The proof is done for α 6= 1. It goes the same way for α = 1.

Let X1 ∼ Sα(σ1, β1, µ1) and X2 ∼ Sα(σ2, β2, µ2) be independent. Then aX1 + bX2 has the

following characteristic function

lnE[eiθ(aX1+bX2)] = −σα
1 |aθ|α(1−iβ1(sign(aθ))tan

πα

2
)+iµ1aθ−σα

2 |bθ|α(1−iβ2(sign(bθ))tan
πα

2
)+iµ2bθ

= −(σα
1 |a|α+σα

2 |b|α)|θ|α+isign(θ)tan
πα

2
|θ|α(β1(sign(a))σα

1 |a|α+β2(sign(b))σα
2 |b|α)+iθ(µ1a+µ2b)

Comparing this expression with the characteristic function of an α-stable process we find the

expressions of σ, β and µ. This result can be easily generalized to N random variables with N

weights wi.
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Figure 2: Returns (top panel) and adjusted returns (bottom panel).
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Figure 3: Autocorrelograms of squared returns (top panel) and squared adjusted returns (bottom

panel).
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Table 7: Estimated parameters

α̂ β̂ σ̂ µ̂ α̂ β̂ σ̂ µ̂ Weights

AEX 1.8413 -0.3161 0.6395 0.0005 1.7483 -0.3173 0.6363 -0.0171 3.7131

(0.0405) (0.0048) (0.0044) (0.0210) (0.0176) (0.0068) (0.0150) (0.0212)

AllOrd 1.7898 0.1333 0.6517 -0.0108 1.7483 0.1338 0.6538 -0.0069 2.2493

(0.0879) (0.0169) (0.0119) (0.0279) (0.0176) (0.0142) (0.0126) (0.0194)

ATX 1.7793 -0.1005 0.6374 -0.0315 1.7483 -0.1001 0.6322 -0.0310 0.2509

(0.0447) (0.0180) (0.0104) (0.0110) (0.0176) (0.0107) (0.0138) (0.0215)

Bovespa 1.6722 -0.0431 0.6130 -0.0029 1.7483 -0.0433 0.6138 0.0005 1.9472

(0.0455) (0.0157) (0.0190) (0.0175) (0.0176) (0.0143) (0.0142) (0.0210)

BSE 1.7419 -0.3266 0.6038 -0.0459 1.7483 -0.3278 0.6042 -0.0423 2.1287

(0.0417) (0.0164) (0.0298) (0.0158) (0.0176) (0.0079) (0.0168) (0.0226)

CAC40 1.7867 0.0243 0.6073 0.0137 1.7483 0.0246 0.6066 0.0141 3.7131

(0.0255) (0.0079) (0.0198) (0.0120) (0.0176) (0.0083) (0.0152) (0.0255)

DAX 1.7289 -0.0075 0.6152 -0.0127 1.7483 -0.0075 0.6153 -0.0108 3.6528

(0.0379) (0.0061) (0.0083) (0.0229) (0.0176) (0.0065) (0.0130) (0.0212)

FTSE 1.7510 -0.1611 0.6261 -0.0083 1.7483 -0.1615 0.6240 -0.0130 6.1445

(0.0787) (0.0063) (0.0090) (0.0103) (0.0176) (0.0088) (0.0157) (0.0269)

HgSg 1.8119 0.0944 0.6481 -0.0034 1.7483 0.0948 0.6478 0.0015 4.3704

(0.0634) (0.0196) (0.0044) (0.0337) (0.0176) (0.0096) (0.0145) (0.0200)

IPC 1.7179 -0.1576 0.6053 -0.0305 1.7483 -0.1582 0.6059 -0.0285 0.7698

(0.0779) (0.0099) (0.0155) (0.0193) (0.0176) (0.0113) (0.0138) (0.0209)

Klse 1.6902 0.1771 0.5259 0.0086 1.7483 0.1778 0.5280 0.0001 0.6219

(0.0385) (0.0105) (0.0079) (0.0072) (0.0176) (0.0168) (0.0140) (0.0194)

Kospi 1.7428 -0.0572 0.6425 -0.0136 1.7483 -0.0573 0.6429 -0.0158 1.5485

(0.0281) (0.0145) (0.0229) (0.0170) (0.0176) (0.0083) (0.0150) (0.0210)

Merval 1.5965 0.1045 0.5632 -0.0029 1.7483 0.1049 0.5646 -0.0170 0.1311

(0.0497) (0.0166) (0.0062) (0.0177) (0.0176) (0.0054) (0.0120) (0.0202)

MIB 1.7394 -0.2369 0.6084 -0.0340 1.7483 -0.2384 0.6094 -0.0308 1.7172

(0.0582) (0.0050) (0.0173) (0.0180) (0.0176) (0.0119) (0.0153) (0.0208)

NASDAQ 1.6642 -0.0928 0.5898 -0.0052 1.7483 -0.0932 0.5912 0.0044 7.8818

(0.0278) (0.0041) (0.0151) (0.0214) (0.0176) (0.0121) (0.0154) (0.0226)

Nikkei 1.9032 -0.0737 0.6730 -0.0181 1.7483 -0.0740 0.6688 -0.0308 10.248

(0.0537) (0.0150) (0.0154) (0.0310) (0.0176) (0.0083) (0.0155) (0.0212)

SSEC 1.5367 -0.1198 0.5445 -0.0492 1.7483 -0.1202 0.5457 -0.0242 4.6881

(0.0650) (0.0092) (0.0162) (0.0117) (0.0176) (0.0129) (0.0138) (0.0214)

SMI 1.8411 -0.3072 0.6540 -0.0471 1.7483 -0.3084 0.6501 -0.0669 2.8197

(0.0313) (0.0160) (0.0148) (0.0126) (0.0176) (0.0068) (0.0148) (0.0231)

S&P500 1.9305 -0.2329 0.6785 -0.0440 1.7483 -0.2340 0.6728 -0.0745 30.289

(0.0679) (0.0143) (0.0224) (0.0249) (0.0176) (0.0092) (0.0147) (0.0209)

StrTim 1.7208 0.0530 0.6132 -0.0467 1.7483 0.0531 0.6130 -0.0492 0.8715

(0.0475) (0.0107) (0.0117) (0.0296) (0.0176) (0.0117) (0.0136) (0.0215)

TA100 1.5585 -0.0380 0.5499 -0.0376 1.7483 -0.0381 0.5540 -0.0302 0.4433

(0.0612) (0.0105) (0.0191) (0.0198) (0.0176) (0.0086) (0.0156) (0.0224)

TSX 1.7507 -0.3867 0.6214 -0.0849 1.7483 -0.3885 0.6222 -0.0860 3.3991

(0.0436) (0.0298) (0.0192) (0.0281) (0.0176) (0.0035) (0.0147) (0.0247)

World 1.7483 -0.2366 0.2667 -0.0351

(0.0176) (0.0036) (0.0014) (0.0033)

This table shows for each of the 22 financial indexes, the four estimated parameters of an α-stable distribution

in the univariate and multidimensional cases. In parenthesis the asymptotic standard errors. The last column

shows the weights (in percentage) of each market index on the world index.
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Figure 4: Estimated α’s�
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Dashed thin lines are the 95% confidence bands and the straight dotted line is the average α.

Figure 5: World index conditional volatility and asymmetry
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