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Abstract

We present a nonparametric �revealed preference�methodology for empiri-

cally analyzing collective consumption behavior. First, we introduce an integer

programming (IP) methodology for testing data consistency with alternative

collective consumption models: the �general� case in which any good can be

publicly consumed as well as privately consumed, possibly with externalities;

and �special�cases that impose speci�c prior structure (e.g. the case with all

goods publicly consumed, and the case with all goods privately consumed with-

out externalities). In addition, we show that this IP methodology can include

information on �assignable quantities� for particular goods. Next, we demon-

strate that the IP methodology allows for recovering the structural collective

decision model (including the sharing rule) from the observed collective con-

sumption behavior. In turn, this makes it possible to address welfare-related

questions that are speci�c to the collective consumption model.
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1. Introduction

We present a nonparametric �revealed preference�methodology for analyzing collec-

tive consumption behavior in practical applications, while possibly accounting for

externalities and public consumption. In turn, this allows for empirically assessing

welfare-related questions that are speci�c to the collective consumption model. This

introductory section presents the motivation of our study, articulates our main con-

tributions, and relates our �ndings to the existing literature.

1.1. The collective model and welfare analysis

The collective consumption model explicitly recognizes that group (e.g. household)

consumption is the outcome of multi-person decision making, with each individual

decision maker (e.g. household member) characterized by her or his own rational pref-

erences. Following Chiappori (1988, 1992), it regards �rational�group consumption

as the Pareto e¢ cient outcome of a within-group bargaining process. This collective

approach contrasts with the conventional unitary approach, which models groups as

if they were single decision makers. See Donni (2008) for a general discussion of

collective consumption models.

The fact that the collective approach starts from individual preferences (and not

group preferences) makes it particularly useful for addressing welfare-related ques-

tions that speci�cally focus on the within-group distribution of the group income.

For example, the �targeting view�of Blundell, Chiappori and Meghir (2005) takes

as a starting point that the e¤ectiveness of a speci�c bene�t or tax also depends on

the particular group (e.g. household) member to whom it has been targeted; and

these authors argue that a unitary set-up, which implicitly assumes income pooling

at the aggregate group level, fails to adequately deal with such targeting considera-

tions. In addition, the collective model allows for analyzing welfare at the individual

group member level rather than at the aggregate group level; for example, Browning,

Chiappori and Lewbel (2006) and Lewbel and Pendakhur (2008) suggest a collec-

tive approach for comparing the cost-of-living of individuals living alone with that
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of the same individuals living in a multi-member household. Finally, a concept that

is intrinsically related to the collective approach is the so-called �sharing rule�, which

divides the aggregate group means over the individual group members. Recovering

this sharing rule, and subsequently explaining its variation in terms of group (mem-

ber) characteristics, can yield useful insights into the distribution of the within-group

bargaining power across the individual group members; see, for example, Browning,

Bourguignon, Chiappori and Lechene (1994), Browning and Chiappori (1998) and

Chiappori and Ekeland (2006).

1.2. Nonparametric testing

Cherchye, De Rock and Vermeulen (2007) recently established a nonparametric �re-

vealed preference�characterization of a collective consumption model that considers

general preferences of the individual group members, which allow for externalities

and public consumption within the group.1 They introduced a testable necessary

condition and a testable su¢ cient condition for data consistency with the collective

consumption model that only require price and quantity data pertaining to the aggre-

gate group level; these conditions have a similar formal structure as the generalized

axiom of revealed preference (GARP) condition for the unitary model (Varian, 1982,

building on Afriat, 1967). Their results allow for testing consistency of observed group

behavior with collective rationality on the basis of a �nite set of observations.

We extend the results of Cherchye, De Rock and Vermeulen in three respects.

First, we include the possible use of �assignable quantity�information (which is of-

ten partly, but not fully, available in budget surveys) in the nonparametric collective

rationality tests. As a matter of fact, assignable quantity information is often used

in parametric applications of collective models (see e.g. Browning, Bourguignon,

Chiappori and Lechene, 1994). Next, we formulate the revealed preference tests for

collective rationality as 0-1 Integer Programming (IP) problems. As we will discuss,

this IP-based approach is particularly attractive for practical applications. Finally,

while Cherchye, De Rock and Vermeulen only considered a �general�collective con-

sumption model, we also consider �special�cases of this general model. As compared

to the general model, these special cases impose speci�c structure on the group behav-

1Browning and Chiappori (1998) originally suggested this collective consumption model, and
established its parametric characterization; see also Chiappori and Ekeland (2006) for additional
discussion.
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ior in terms of public versus private consumption and the nature of the externalities.

In fact, Chiappori and Ekeland (2006) use the same distinction between a general case

and special cases to structure their parametric results on empirical characterizations

of collective consumption models. Moreover, the special cases are mostly considered

in empirical applications of the collective consumption model.

Section 2 provides a nonparametric characterization of collectively rational con-

sumption behavior with assignable quantity information. This de�nes collectively

rational group behavior in terms of �feasible personalized prices, personalized quan-

tities and income shares�(representing the underlying sharing rule). The distinction

between �special�cases and the �general�case of the collective model essentially re-

lates to the prior structure that is imposed on these feasible personalized prices and

quantities, which follows from the underlying speci�cation of the group behavior. The

special cases impose speci�c a priori structure on the group behavior: (1) the case

in which all goods are publicly consumed, and (2) the case in which all goods are

privately consumed and there are no externalities. By contrast, the general case does

not impose any such prior structure.

Section 3 focuses on nonparametric tests for data consistency with the special

cases. It establishes conditions that can be tested on the basis of a �nite set of (ag-

gregate) price-quantity data and that are simultaneously necessary and su¢ cient for

consistency with collective rationality. More speci�cally, we develop (necessary and

su¢ cient) tests for data consistency with collectively rational behavior that merely

involve mixed integer linear programming (MILP). As we will discuss, our treatment

of these special cases allows for a number of useful extensions, such as: nonparametric

testing for the �hybrid�case in which some goods are publicly consumed while all other

goods are privately consumed without externalities, and testing speci�c hypotheses

regarding the collective decision process. Section 4 considers the general case, which

does not impose a priori structure and thus allows for public consumption and ex-

ternalities of any good. For this case, we develop a necessary condition for collective

rationality which can be implemented through integer programming (IP).

At this point, it seems interesting to contrast our �ndings in the following sections

with the results of Chiappori and Ekeland (2006) on parametric characterizations of

collective consumption models. A notable (and perhaps surprising) result is
that we obtain empirical characterizations for the two special cases that
di¤er from the general case, while Chiappori and Ekeland obtain the same em-
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pirical characterization in all cases (i.e. their so-called �SR(M � 1) condition�in the
case of M -member groups). A possible explanation is that these authors adopt a

so-called �di¤erentiable�approach in their collective set-up and, in addition, focus on

�local�(i.e. in a su¢ ciently small neighborhood of a given point) conditions for col-

lective rationality, whereas our conditions are global by construction. Following this

interpretation, our results seem to con�rm Chiappori and Ekeland�s �strong suspicion�

(2006, p. 4) that their local results must not hold globally.

As a �nal note, we indicate that the IP-based methodology that we introduce

here can also be useful in view of designing operational nonparametric (revealed

preference) tests in alternative contexts. For example, the design of nonparametric

characterizations of collective models that describe group consumption as a (non-

cooperative) within-group Nash equilibrium can proceed in a formally similar man-

ner; compare with Lechene and Preston (2007) for corresponding parametric charac-

terizations. Next, the nonparametric approach to analyzing collective consumption

behavior is closely related to the literature on testable nonparametric restrictions of

general equilibrium models, which deals with formally similar characterization ques-

tions. See Brown and Matzkin (1996), Brown and Shannon (2000) and, for more

recent developments, Chiappori and Polemarchakis (Eds, 2004). As such, our results

can be instrumental for this literature. Finally, our insights can also be be useful

within the context of the unitary model. For example, so far there does not exist a

satisfactory (necessary and su¢ cient) operational test for Varian�s (1983) nonpara-

metric weak separability condition. In point of fact, existing unitary separability

concepts are formally close to the collective rationality concept under study; see, for

example, Blundell and Robin (2000) for discussion. As such, similar IP-based tests

could be conceived for assessing separability in a unitary setting.

1.3. Nonparametric recovery

The empirical analysis of the welfare-related questions listed above requires recovery

of the decision structure underlying the observed (aggregate) group behavior. More

speci�cally, it requires recovering the structural collective consumption model (i.e.

individual preferences, individual consumption and the sharing rule) on the basis of

observed group behavior alone (i.e. aggregate quantities and prices). These recovery

questions are essentially the nonparametric counterparts of the so-called �identi�abil-

ity�questions in the parametric literature; see Chiappori and Ekeland (2005) for a
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general discussion on parametric identi�ability for the collective model. Our central

argument is that our IP characterizations of collective rationality naturally allow for

addressing such recovery questions.

At this point, it is worth emphasizing that nonparametric �revealed preference�

recovery typically aims at identifying the set of structural models that are consistent

with a given set of observations. To illustrate the di¤erence between parametric and

nonparametric recovery/identi�ability, let us consider the unitary model. For that

model, parametric identi�ability aims at recovering the (structural model) parame-

ters of a pre-speci�ed utility function representing unique preferences from a set of

demand (reduced form) parameters that are estimated. By contrast, from a nonpara-

metric perspective, there usually are many preferences that are consistent with the

same set of data satisfying the unitary GARP condition. Therefore, nonparametric

recovery of the unitary model focuses on identifying the set of preferences that are

consistent with a given data set; see, for example, Afriat (1967) and Varian (1982 and

2006). The main purpose of the current paper is to develop similar �set identi�cation�

results for the collective model. In fact, given that this collective model includes the

unitary model as a special case (i.e. when there is a single group member/decision

maker), we also complement the existing literature on nonparametric recovery within

the context of the unitary model. To be precise, our recovery methodology focuses on

�set identi�cation�(and, correspondingly, �bounds�recovery) in the sense of Blundell,

Browning and Crawford (2008), who focus on similar (revealed preference) recovery

questions in the context of the unitary model. These authors also discuss the relation-

ship between their analysis and the literature on �partial identi�cation�(e.g., Manski,

2003, and Chernozhukov, Hong and Tamer, 2007).

Section 3 addresses the recovery issue for the special cases de�ned above. We show

that the corresponding MILP characterizations allow for �full�nonparametric recov-

ery of the collective model. More speci�cally, they enable to identify the sets, and

corresponding upper and lower bounds, of feasible personalized prices, personalized

quantities and income shares that are consistent with collectively rational group be-

havior. Additional assignable quantity information generally entails tighter bounds;

but, as we will show, precise recovery (i.e. tight bounds) can be obtained even if

no assignable quantity information is available. Like before, we also discuss a num-

ber of interesting extensions: nonparametric recovery of the �hybrid�case with some

goods publicly consumed and other goods privately consumed without externalities,
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and forecasting collective consumption behavior in new (i.e. unobserved) situations.

Section 5 considers the recovery issue for the general model, and demonstrates the

possibility to identify (through MILP) tight bounds on the feasible income shares

without imposing speci�c a priori structure on the collective model. Still, using

our methodology, recovery of feasible personalized quantities and prices remains
impossible for the general case.

Once more, it is interesting to compare our results on nonparametric (revealed

preference) recovery of collective consumption models with the corresponding results

on parametric recovery/identi�ability in Chiappori and Ekeland (2005). In this re-

spect, an important (and perhaps surprising) di¤erence is that Chiappori and Ekeland

need the presence of a so-called �exclusive good�(i.e. a good that bene�ts the utility

of only one group member) as a condition for parametric identi�ability; information

on an exclusive good is a speci�c instance of what we call assignable quantity infor-

mation. By contrast, our examples in the following sections demonstrate that precise

nonparametric recovery of the collective consumption model (i.e. feasible personal-

ized prices, personalized quantities and income shares) is possible even in the absense

of assignable quantity information (e.g. information on an exclusive good). In ad-

dition, whereas the parametric approach typically recovers the income sharing rule

up to a constant under the assumption of exclusive goods, our examples show that

nonparametric recovery can obtain tight bounds on the income shares in all (special

and general) collective consumption models, even if no assignable quantity informa-

tion can be used. Like before, a possible explanation for these di¤erences is that

the parametric approach is di¤erentiable and focuses on local (rather than global)

identi�ability/recovery results.

1.4. Empirical issues

Given all this, the next crucial step consists of bringing the proposed methodology

to real-life consumption data, to nonparametrically address the welfare-related is-

sues listed above. From a practical point of view, the proposed IP-based testing and

recovery methodology seems particularly attractive. Speci�cally, the IP/MILP struc-

ture (with 0-1 variables as the integer variables) allows for using e¢ cient solution

algorithms that are specially tailored for such problems. See, for example, the gen-

eral discussion in Nemhauser and Wolsey (1999) on e¢ ciently solving IP and MILP

problems; e¢ cient MILP solvers have been included in many present-day optimiza-
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tion software packages. Cherchye, De Rock, Sabbe and Vermeulen (2008) provide

a detailed discussion on e¢ cient empirical implementation of the IP methodology

that is presented. They also provide an empirical application to data taken from

the Russia Longitudinal Monitoring Survey (RLMS); that application concentrates

on the (computationally most complex) IP-based collective rationality test that ap-

plies to the general case de�ned above (and discussed in Sections 4 and 5). Next,

they discuss the possibility to use the IP formulation for dealing with goodness-of-�t

issues (related to measurement or optimization error) in practical applications; i.e.

they show that the IP formulation can be adapted to include the proposals of Varian

(1985, 1990) for dealing with such issues. While they concentrate on the general case

discussed in Sections 4 and 5, their insights can be extended to the (computationally

less demanding) special cases of the collective model discussed in Section 3.

Another issue that is relevant in view of practical applications pertains to the

�power�of the methodology that is proposed; this refers both to the probability of

nonparametrically detecting violations of collective rationality by means of the test-

ing tools, and to the possibility of providing tight bounds (on feasible income shares,

personalized prices and personalized quantities) by means of the recovery tools. See

Andreoni and Harbaugh (2006) for a recent discussion of the power of revealed pref-

erence tests and a survey of nonparametric power assessment tools that are currently

available. Interestingly, our example data sets in the following sections demonstrate

that the methodology can yield powerful (in casu recovery) results even if there is no

assignable quantity information. Of course, in practice the power of the methodology

will depend on the speci�c data set at hand. For a given data set, we see alternative

possibilities to optimize the power. First, as discussed in the following sections, we

can expect the power to increase (often substantially) when more assignable quantity

information is available. Next, the power of the nonparametric methodology can be

further increased by adapting the �sequential maximum power path�idea of Blundell,

Browning and Crawford (2003, 2008), who originally focused on the GARP condition

for the unitary model. Essentially, the approach of Blundell, Browning and Crawford

uses estimated Engel curves for given price regimes to construct �virtual�quantity

bundles that maximize the power of the nonparametric (testing and recovery) tools.

In our opinion, the IP-based methodology that is presented in the following sections

provides a useful basis for adapting this approach to the nonparametric (revealed

preference) analysis of collective consumption behavior.
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2. Rational collective consumption behavior

This section introduces the nonparametric characterization of the collective model

that considers general preferences of the group members, which impose minimal a

priori structure on the consumption externalities and public consumption within the

group. Starting from this nonparametric characterization, Section 3 addresses testing

and recovery of special cases of this general model, which include additional structure

on the nature of the members�preferences. Sections 4 and 5 subsequently return

to (testing and recovery of) the general model that is presented here. Section 6

concludes.

2.1. Individual preferences

We consider an M -member group. The group purchases the (non-zero) n-vector of

quantities q 2 Rn+ with corresponding prices p 2 Rn++. All goods can be consumed
privately, publicly, or both. For example, car use may be partly public (e.g. car

use for a family trip) and partly private (e.g. car use for work). In addition, as

for the privately consumed quantities, we allow for externalities (which includes the

possibility of �altruism�). Summarizing, this obtains

q =
MX
m=1

qm +

 
MX
m=1

Qm +Qh

!

with qm 2 Rn+ the private consumption quantities of member m without externalities

(i.e. that do not enter the utility function of at least one other member), Qm 2 Rn+
the private consumption quantities of member m with externalities (i.e. that do enter

other members�utility functions), and Qh 2 Rn+ the publicly consumed quantities.
Note that not only the quantitiesQh but also the quantitiesQm may be interpreted

as �public consumption�, given that they enter other members�utility functions. To

simplify notation, we therefore useQ =
�
Q1; :::;QM ;Qh

�
2
�
Rn+
�M+1

in the following.

No qualitative distinction can be made between the di¤erent components of Q. Yet,

there is a clear quantitative di¤erence: group members may accord another marginal

valuation to private consumption Qm than to public consumption Qh. Our use of the

simpli�ed notation Q rather than
�
Q1; :::;QM ;Qh

�
also falls in line with the argu-

ment of Chiappori and Ekeland (2006), who state that privateness (versus publicness)
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of consumption has no testable implication per se if no additional information (on

�assignable quantities�; see below) is used.

Formally, we assume that preferences of each member m can be represented by

a non-satiated utility function Um (qm;Q) that is non-decreasing in its arguments.

Given the construction of Q, this e¤ectively accounts for public consumption within

the group and (positive) externalities.

2.2. Assignable quantities

We start from T observations of group consumption quantities under di¤erent price

regimes. For each observation t we use pt and qt to denote the observed prices and

aggregate quantities. In general, for each qt we do not observe its constituent compo-

nents qmt and Qt. If we observe how much a group member consumes of a particular

good, then we say this good is �assignable�; see Bourguignon, Browning and Chiappori

(2006). In this paper, we consider assignable quantities that speci�cally relate to pri-

vate quantities without externalities (qmt ); these quantities can be assigned to a single

member�s utility function, which is no longer the case if externalities are possible. Of

course, in practice such assignable quantities necessarily involve an assumption that

externalities are e¤ectively absent. Note further that it may well be that we have such

assignable quantity information for only a subset of group members rather than for all

members. Chiappori and Ekeland (2005), considering general collective consumption

models, which also includes private consumption, argue that such assignable quantity

information (on qmt ) is necessary for obtaining �identi�ability�. More speci�cally, they

show that it is necessary for parametrically recovering the underlying structure of the

consumption model (i.e. member preferences and decision process) from the group�s

aggregate consumption behavior alone. In the following, we will argue that the use of

assignable quantity information can enhance the power of the nonparametric analy-

sis. Still, we will also demonstrate that precise nonparametric recovery is sometimes

possible even if no assignable quantity information is available.

For each observation t, we de�ne the (observed) assignable quantities qAmt 2 Rn+
for member m as lower bounds for the (unobserved) quantities qmt , i.e.

qmt � qAmt :

Our following discussion focuses on a set of observations SA = f(pt; qt; qA1t ; :::;
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qAMt ); t = 1; :::; Tg. The superscript A in SA refers to the fact that this set includes
assignable quantities. We note that, in our general case, for some goods it may well

be that only parts of the consumed quantities are assignable (e.g., car use for work

can be assignable while car use for a family trip is clearly not).

Let us consider some speci�c examples. For simplicity, we focus on two-member

households (M = 2) consisting of a wife (member 1) and a husband (member 2):

1. A �rst example implies that all goods are fully assignable, which means qt =

qA1t + qA2t and thus qmt = qAmt . For example, Bonke and Browning (2006)

discuss a data set on household consumption that could be used in this case.

Importantly, given our speci�c assumption of assignable quantities (which -

to recall- pertains to private consumption without externalities), such a full

assignability assumption excludes public consumption and consumption exter-

nalities (because Qt = (0; :::;0;0)); i.e. group members are of the so-called

�egoistic�type.

A speci�c application of this example setting includes an observation t of mem-

berm�s consumption behavior when deciding alone (rather than in group): e.g.,

for the wife as member 1, this corresponds to qA1t = qt if the full consumption

quantity can be assigned to the wife in situation t. Note that such an applica-

tion implies that we assume that individual egoistic preferences do not change

when deciding in group (e.g. when living in a multi-member household) or when

deciding alone (e.g. when living apart); for instance, one may assume constant

preferences for the wife (husband) in a couple and the same wife (husband) as

a widow(er) (compare with Michaud and Vermeulen, 2006). In fact, the testing

tools presented below e¤ectively allow for testing such a constant preference

assumption.

2. Our general set-up also includes intermediate scenarios with qAmt 6= qmt and

qAmt 6= 0. Generally, this intermediate case includes settings characterized by
assignable goods as well as non-assignable goods, which can be characterized

by externalities as well as public consumption. For instance, a model that

is often considered in the literature excludes, like before, public consumption

and consumption externalities (Qt = (0; :::;0;0)) while, di¤erent from before, it

only uses quantity information on a so-called �exclusive good�for each household

member (i.e. an assignable good that is exclusively consumed by the wife or
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the husband; see Bourguignon, Browning and Chiappori, 2006). A speci�c

application is Chiappori�s (1988) labor supply model with egoistic household

members; in that setting, each household member�s leisure is the exclusive good

while the other, Hicksian consumption good is non-assignable.

3. A �nal example implies no assignable quantity information, i.e. qAmt = 0. In

that case, there are no restrictions on qmt and Qt apart from non-negativity

and adding-up (qt =
PM

m=1 q
m
t +

�PM
m=1Q

m
t +Q

h
t

�
). This includes the setting

in which all goods, even if assignable, can be characterized by externalities.

Cherchye, De Rock and Vermeulen (2007) established nonparametric empiri-

cal restrictions for collectively rational group behavior in this scenario, which

imposes minimal a priori restrictions.

2.3. Collective rationality

To de�ne the collective rationality condition, we focus on feasible decompositions

of the aggregate quantities qt in terms of qmt , the private quantities that only enter

memberm�s utility function, andQt, the private and public quantities that enter other

members�utility functions: Speci�cally, we de�ne feasible personalized quantities bqt,
which capture such feasible decompositions of qt.

De�nition 1. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations.
For each observation t, feasible personalized quantities bqt = �q1t ; :::; qMt ;Qt

�
satisfy

qmt � qAmt , m = 1; :::;M , and Qt =
�
Q1
t ; :::;Q

M
t ;Q

h
t

�
2
�
Rn+
�M+1

such that qt =PM
m=1 q

m
t +

�PM
m=1Q

m
t +Q

h
t

�
:

Example 1 illustrates the concept.

Example 1. Consider a two-member household (M = 2) with a wife (member 1) and

a husband (member 2) that consumes three goods (n = 3). Suppose two observations

with aggregate quantities

q1 = (3; 5; 4)
0 and q2 = (4; 3; 5)

0 ;
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and assignable quantities

qA11 = (0; 0; 1)0 and qA21 = (0; 2; 0)0 ;

qA12 = (1; 0; 0)0 and qA22 = (0; 0; 2)0 :

One possible speci�cation of the feasible personalized quantities bq1 and bq2 is then
q11 = (2; 0; 1)0 ; q21 = (1; 2; 0)

0 ;Q1
1 = (0; 0; 0)

0 ;Q2
1 = (0; 0; 3)

0 ;Qh
1 = (0; 3; 0)

0 ;

q12 = (1; 2; 0)0 ; q22 = (0; 1; 2)
0 ;Q1

2 = (3; 0; 0)
0 ;Q2

2 = (0; 0; 0)
0 ;Qh

2 = (0; 0; 3)
0 :

Using the concept of feasible personalized quantities, we can de�ne the condition

for a collective rationalization of a set of observations SA, which basically requires

that the observed group consumption can be represented as a Pareto e¢ cient outcome

of some within-group bargaining process.

De�nition 2. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observa-
tions. A combination of M utility functions U1; :::; UM provides a collective ratio-

nalization of SA if for each observation t there exist feasible personalized quantitiesbqt = �q1t ; :::; qMt ;Qt

�
and �mt 2 R++; m = 1; :::;M; such that

MX
m=1

�mt U
m (qmt ;Qt) �

MX
m=1

�mt U
m
�
zm;Z1; :::;ZM ;Zh

�
for all zm;Z1; :::;ZM ;Zh 2 Rn+ with p0t[

PM
m=1 z

m+ (
PM

m=1 Z
m+ Zh)] � p0tqt:

Thus, a collective rationalization of SA requires that there exists, for each obser-

vation t with assignable quantities qAmt , feasible personalized quantities bqt that max-
imize a weighted sum of the group members�utilities Um for the given group budget

p0tqt: This optimality condition re�ects the Pareto e¢ ciency assumption regarding

observed group consumption in the collective model. Each weight �mt represents the

�bargaining power�of member m in observation t: See also Browning and Chiappori

(1998) for a detailed discussion.

Clearly, assignable quantity information restricts the feasible set of utility func-

tions Um and bargaining weights �mt in De�nition 2. And thus, intuitively, additional

13



assignable quantity information will yield more stringent nonparametric conditions

for collective rationality. In turn, these stronger conditions will entail �more powerful�

nonparametric recovery results. We will repeatedly illustrate this in the sequel.

2.4. Nonparametric condition

We next establish a nonparametric condition for a collective rationalization of a set

SA. To do so, we �rst de�ne feasible personalized prices
�bp1t ; :::; bpMt � for observed ag-

gregate prices pt, which complement the concept of feasible personalized quantities in

De�nition 1. We use bpmt = �pm;1t ; :::; pm;Mt ;Pm
t

�
; and the interpretation of the di¤er-

ent components is as follows. As for the �rst M components, the personalized prices

equal the observed prices for member m�s own private consumption quantities with-

out externalities (i.e. pm;mt = pt for the quantities qmt ), while they equal zero for the

other members�private consumption quantities without externalities (i.e. pm;lt = 0 for

the quantities qlt; l 6= m). The remaining component Pm
t =

�
Pm;1
t ; :::;Pm;M

t ;Pm;h
t

�
captures the fraction of the price for the quantities Qt that is borne by member m:

for each separate component of Qt the corresponding personalized prices can be inter-

preted as Lindahl prices and must add up to the observed prices. More speci�cally,

feasible personalized prices Pm;l
t , l = 1; :::; M , pertain to private quantities with

externalities and feasible personalized prices Pm;h
t to public quantities. Summarizing,

we get the following formal de�nition.

De�nition 3. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observa-
tions. For each observation t, feasible personalized prices

�bp1t ; :::; bpMt � with bpmt =�
pm;1t ; :::; pm;Mt ;Pm

t

�
, m = 1; :::;M , satisfy pm;mt = pt, p

m;l
t = 0 for l 6= m and Pm

t =�
Pm;1
t ; :::;Pm;M

t ;Pm;h
t

�
2
�
Rn+
�M+1

such that pt =
PM

m=1P
m;c
t for c = 1; :::;M; h:

Example 2 illustrates the concept.

Example 2. We recapture the situation of Example 1. Suppose the corresponding
observed prices

p1 = (1; 3; 2)
0 and p2 = (2; 1; 3)

0 :

14



One possible speci�cation of the feasible personalized prices (bp1t ; bp2t ) is then
p1;11 = (1; 3; 2)0 ; p1;21 = (0; 0; 0)0 ;P1;1

1 = (0; 3; 2)0 ;P1;2
1 = (0; 0; 2)0 ;P1;h

1 = (1=3; 1; 2=3)0 ;

p2;11 = (0; 0; 0)0 ; p2;21 = (1; 3; 2)0 ;P2;1
1 = (1; 0; 0)0 ;P2;2

1 = (1; 3; 0)0 ;P2;h
1 = (2=3; 2; 4=3)0 ;

p1;12 = (2; 1; 3)0 ; p1;22 = (0; 0; 0)0 ;P1;1
2 = (1; 1; 3)0 ;P1;2

2 = (0; 0; 1)0 ;P1;h
2 = (2=3; 1=3; 1)0 ;

p2;12 = (0; 0; 0)0 ; p2;22 = (2; 1; 3)0 ;P2;1
2 = (1; 0; 0)0 ;P2;2

2 = (2; 1; 2)0 ;P2;h
2 = (4=3; 2=3; 2)0 :

Based on De�nitions 1 and 3, we de�ne a set of feasible personalized prices and

quantities bSA = f�bp1t ; :::; bpMt ; bqt� ; t = 1; :::; Tg; (2.1)

note that a given set of observations SA generally enables multiple speci�cations ofbSA.
Using the notation bSA we can specify the generalized axiom of revealed preference

(GARP), which we translate towards our speci�c setting. Varian (1982) introduced

the GARP condition for individually rational behavior under observed prices and

quantities; i.e. he showed that it is a necessary and su¢ cient nonparametric condition

for maximizing a single non-satiated utility function under a given budget constraint.

We focus on the same condition in terms of feasible personalized prices and quantities;

we will establish that collective rationality as de�ned in De�nition 2 requires GARP

consistency for each individual member m.2

De�nition 4. Let bSA = f
�bp1t ; :::; bpMt ; bqt� ; t = 1; :::; Tg be a set of feasible person-

alized prices and quantities. If (bpms )0 bqs � (bpms )0 bqt then bqs Rm0 bqt (�bqs is directly
revealed preferred to bqt by member m�); and if bqs Rm0 bqu; bqu Rm0 bqv; :::; bqz Rm0 bqt for
some (possibly empty) sequence (u; v; :::; z) then bqs Rm bqt (�bqs is revealed preferred
to bqt by member m�). The set f(bpmt ; bqt) ; t = 1; :::; Tg satis�es GARP if (bpmt )0 bqt �
(bpmt )0 bqs whenever bqs Rm bqt.
Remark that, if the group consists of only a single member (M = 1), thenbSA = f(pt;qt) ; t = 1; :::; Tg and De�nition 4 coincides with the usual GARP condi-

tion for individually rational behavior. In fact, that GARP condition for individually

2Slightly abusing notation, but for ease of exposition, we use (bpms )0 bqt = PM
l=1

�
pm;ls

�0
qlt+PM

l=1

�
Pm;ls

�0
Qlt+

�
Pm;hs

�0
Qht .

15



rational behavior can also be interpreted as the nonparametric condition for the uni-

tary household consumption model, which -to recall- treats the household as if it were

a single decision maker. This fact that the unitary model can be conceived as a spe-

cial case of the general collective model (i.e. for M = 1) also appears from the next

proposition, which provides a nonparametric characterization of collectively rational

behavior. (The appendix contains the proofs of our main results.)

Proposition 1. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observa-
tions. The following conditions are equivalent:

(i) there exists a combination of M concave and continuous utility functions U1; :::;

UM that provide a collective rationalization of SA;

(ii) there exists a set of feasible personalized prices and quantities bSA such that for
each member m = 1; :::; M the set f(bpmt ; bqt) ; t = 1; :::; Tg satis�es GARP;
(iii) there exists a set of feasible personalized prices and quantities bSA, numbers
Umj > 0 and �

m
j > 0 such that for all s; t 2 f1; :::; Tg : Ums �Umt � �mt (bpmt )0 (bqs � bqt)

for each member m = 1; :::; M .

Condition (ii) states that collective rationality requires individual rationality (i.e.

GARP consistency) of each member m in terms of personalized prices and quantities;

condition (iii) gives the equivalent �Afriat inequalities�(see Varian, 1982, for exten-

sive discussion in the context of the unitary model). In general, however, the true

personalized prices and quantities are unobserved. Therefore, it is only imposed that

there must exist at least one set of feasible personalized prices and quantities bSA that
satis�es the condition. In what follows, we will mainly focus on condition (ii).

Example 3 illustrates the result. This example shows consistency with the con-

dition in Proposition 1 for a data set with two observations. In Section 4 (Example

8), we will give an example with two observations that rejects collective rationality

in terms of the condition in Proposition 1 for M = 2; this shows that two obser-

vations are su¢ cient for rejecting collective rationality in terms of the condition in

Proposition 1. The possibility to reject collective rationality with two observations es-

sentially depends on the available assignable quantity information. Indeed, Cherchye,

De Rock and Vermeulen (2007) show that, if no assignable quantity information is

used (qAmt = 0 for each observation t and each member m), then rejecting collective

rationality requires at least three observations (for M = 2).
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Example 3. We recapture the situation of Examples 1 and 2, with corresponding
observed prices and aggregate quantities. We can verify that this data set satis�es

the condition in Proposition 1. For example, consider the set of feasible personalized

prices and quantities bSA with bq1 and bq2 speci�ed in Example 1 and (bp1t ; bp2t ) speci�ed
in Example 2. For these feasible quantities and prices we have that (bp11)0bq1(= 13) >
(bp11)0bq2(= 9) and (bp12)0bq2(= 10) < (bp12)0bq1(= 11); so from De�nition 4 it is easily

veri�ed that the �rst member satis�es GARP. Analogously, we �nd that also the

second member satis�es GARP: (bp21)0bq1(= 13) < (bp21)0bq2(= 14) and (bp22)0bq2(= 16) >
(bp22)0bq1(= 12). Since both members satisfy GARP for the given bSA, we conclude that
the condition in Proposition 1 holds, and thus that there exist utility functions that

provide a collective rationalization of this data set.

2.5. The sharing rule

Importantly in view of our further discussion, the result in Proposition 1 also allows

for the following decentralized interpretation of collective rationality: collective ratio-

nality at the group level (for given SA) requires individual rationality at the member

level (for some bSA). Given this, collectively rational consumption behavior can also
be represented as the outcome of a two-step allocation procedure: in the �rst step,

the so-called sharing rule distributes the aggregate group income across the group

members; in the second step, each member optimizes her/his utility subject to the

resulting income share and accounting for the member�s personalized prices. We re-

mark that this decentralized representation of collectively rational behavior, which

follows from the Pareto e¢ ciency assumption regarding the group bargaining process,

is formally similar to the well-known decentralization result regarding collective ra-

tionality when consumption externalities and public consumption are excluded; see

Chiappori (1988, 1992). An important di¤erence of the approach followed in this

paper is that each member m�s preferences may depend not only on her or his own

private consumption, but also on the other members�private consumption as well

as public consumption (implying that personalized prices can di¤er from observed

market prices).

In the �rst step, the sharing rule de�nes the income shares that are allocated to

the di¤erent group members. Correspondingly, for a set of feasible personalized prices

and quantities bSA that obtains consistency with the collective rationality condition
in Proposition 1, we can de�ne feasible income shares bymt for each member m, which
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by construction must sum up to the total group budget (
PM

m=1 bymt = yt).
De�nition 5. Let bSA = f�bp1t ; :::; bpMt ; bqt� ; t = 1; :::; Tg be a set of feasible personal-
ized prices and quantities such that each set f(bpmt ; bqt) ; t = 1; :::; Tg, m = 1; :::; M;

satis�es GARP. For yt = p0tqt the group income at observation t, this set bSA de�nes
a feasible income share for each member m at prices pt as bymt = (bpmt )0 bqt:
Example 4 illustrates the de�nition.

Example 4. We again consider the data set given in Examples 1 and 2. For the set
of feasible personalized prices and quantities bSA with bq1 and bq2 speci�ed in Example
1 and (bp1t ; bp2t ) speci�ed in Example 2, we obtain by11 = (bp11)0bq1 = 13, by21 = (bp21)0bq1 = 13
and by12 = (bp12)0bq2 = 10, by22 = (bp22)0bq2 = 16. Observe that by11+ by21 = y1 = 26 and by12+by22 = y2 = 26:
The second step of the allocation procedure then requires that the quantities bqt

maximize each member m�s utility under the budget bymt (which, in our set-up, is

endogenously de�ned as (bpmt )0 bqt for �bp1t ; :::; bpMt ; bqt� in bSA). This corresponds to a
separate GARP condition for each set f(bpmt ; bqt) ; t = 1; :::; Tg.
The sharing rule is a core concept in this two-step representation. It can be in-

terpreted as an indicator for the bargaining power of the individual group members:

a higher relative income share of member m (bymt =yt) is then regarded as an indica-
tion of increased bargaining power for that member; see Browning, Chiappori and

Lewbel (2006). The sharing rule concept is particularly useful in a welfare context,

because it is independent of cardinal representations of preferences (in contrast to

the bargaining weights �mt in De�nition 2). Generally, bymt indicates the part of the

aggregate group expenditures yt for which member m is responsible; intuitively, a

higher value of bymt indicates that the aggregate group consumption (captured by bqt)
better complies with the preferences of member m (captured by the Lindahl pricesbpmt ). Given this useful interpretation, a main question in what follows concerns the
nonparametric recovery of feasible income shares. We will de�ne bounds for the feasi-

ble income shares that are independent of the speci�cation of the (data rationalizing)

set bSA. Intuitively, additional assignable quantity information will generally entail
more powerful recovery results. But we will also show that stringent bounds can be

obtained even if no assignable quantity information is available.
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3. Special cases: testing and recovery

So far, we have considered a collective consumption model that accounts for gen-

eral utility functions Um and thus allows for public consumption and externalities

of any good. For this case, the necessary and su¢ cient condition for a collective

rationalization in Proposition 1 is di¢ cult to use in practice. More speci�cally, the

member-speci�c revealed preference relations Rm0 and R
m in De�nition 4 are not di-

rectly useful since they are nonlinear in the feasible personalized prices
�bp1t ; :::; bpMt �

and quantities bqt. Given this, we �rst consider special cases of the general collective
consumption model presented in Section 2; they put additional a priori structure on

member-speci�c utility functions Um, which essentially pertains to the nature of the

goods in terms of externalities and private/public consumption. In terms of the con-

dition in Proposition 1, for each good they �x either the feasible personalized prices

or the feasible personalized quantities.

We will provide testable necessary and su¢ cient conditions for collective ratio-

nality for these special cases. Starting from these conditions, we will demonstrate

that we can recover the sharing rule, personalized prices and personalized quantities

that underlie the observed collective choice behavior. In addition, we can recover,

or �forecast�, behavior in new situations. As we will discuss, such testing, recovery

and forecasting is possible through mixed integer linear programming (MILP), with

binary (or 0-1) variables as the endogenously de�ned integer variables.3

To be precise, nonparametric recovery essentially de�nes upper and lower bounds

on the feasible income shares, personalized prices and personalized quantities that

hold for all sets bSA providing a collective rationalization of the data; if a speci�c fea-
sible income share, personalized price or personalized quantity respects these bounds,

then there exists a corresponding set bSA that collectively rationalizes the observed
set SA. We illustrate the practical usefulness of the proposed methodology by simple

numerical examples. These examples show that precise recovery results (i.e. tight

bounds) can be obtained even if there are few observations and no assignable quan-

tity information is available. In practice, of course, we may generally expect more

precise recovery when more observations or assignable quantity information can be

used.

3Related integer programming characterizations have been suggested in the context of Arrovian
social welfare functions. See, for example, Sethuraman, Piaw and Vohra (2003).
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3.1. Public consumption

In this section, we assume that all private consumption quantities qm (without ex-

ternalities) and Qm (with externalities) are zero, which implies q = Qh. In terms

of the general condition for collective rationality in De�nition 2, this means that

we consider member-speci�c utility functions Um (qm;Q) = V m
�
Qh
�
= V m (q). It

is worth emphasizing that this setting is more general than may seem at �rst sight.

Stricto sensu, the mere implication is that the (observed) aggregate quantities (fully)
enter all utility functions; in principle, this allows for private consumption (with ex-

ternalities) of a particular good e by member m as long as that good e is exclusively

consumed by that member m. Formally, when using (z)e as the e-th entry of a vector

z, (Qm)e = (q)e (and thus
�
Qh
�
e
= 0) is empirically equivalent to

�
Qh
�
e
= (q)e

(and thus (Qm)e = 0). This directly relates to our earlier remark that a quantita-

tive but no qualitative distinction can be made between the di¤erent components

of Q. Further, if externalities are not excluded and all goods are fully assignable

(i.e. q =
XM

m=1
Qm and we observe all quantities Qm), then an analogous argument

obtains that the following method can also be used.

Because we assume that qt= Qh
t for each observation t, we must focus on sets of

feasible personalized prices and quantities bSA with Qh
t= qt. As a result, the only

relevant component of the feasible personalized prices bpmt is the vector Pm;h
t , which

pertains to the publicly consumed quantities. Given this, the nonparametric necessary

and su¢ cient condition for collective rationality follows directly from Proposition 1.

Corollary 1. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations.
For Um (qm;Q) = V m

�
Qh
�
; m = 1; :::; M; there exists a combination of M concave

and continuous utility functions U1; :::; UM that provide a collective rationalization

of SA if and only if there exist feasible personalized prices
�bp1t ; :::; bpMt � such that for

each member m the set f
�
Pm;h
t ;qt

�
; t = 1; :::; Tg satis�es GARP:

Interestingly, this condition can be reformulated as requiring that the feasible

set of a speci�c MILP problem is non-empty. To see this, we de�ne the binary

variables xmst 2 f0; 1g, with xmst = 1 interpreted as �bqs Rm bqt�for a given set of feasible
personalized prices and quantities bSA. We then have the following result.
Proposition 2. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observa-
tions. There exist feasible personalized prices

�bp1t ; :::; bpMt � such that for each member
20



m = 1; :::; M the set f
�
Pm;h
t ;qt

�
; t = 1; :::; Tg satis�es GARP if and only if there

exist non-negative Pm;h
t , bymt and xmst 2 f0; 1g that satisfy

(PP-i) pt=
XM

m=1
Pm;h
t ,

(PP-ii) bymt = �Pm;h
t

�0
qt,

(PP-iii) byms � �Pm;h
s

�0
qt < ysx

m
st ,

(PP-iv) xmsu + x
m
ut � 1 + xmst ; and

(PP-v) bymt � �Pm;h
t

�0
qs � yt (1� xmst).

The interpretation of the di¤erent �personalized price� (PP) constraints is the

following. Rule (PP-i) follows from De�nition 3 of feasible personalized prices and

rule (PP-ii) from De�nition 5 of feasible income shares. Rule (PP-iii) implies that, ifbyms � �Pm;h
s

�0
qt, then we must have xmst = 1 (which corresponds to bqs Rm bqt).4 Rule

(PP-iv) imposes transitivity, i.e. xmsu = 1 (bqs Rm bqu) and xmut = 1 (bqu Rm bqt) imply
xmst = 1 (bqs Rm bqt). Finally, rule (PP-v) requires that, if xmst = 1 (bqsRmbqt), then bymt ��
Pm;h
t

�0
qs. As such, Proposition 2 de�nes an operational necessary and su¢ cient

test for collective rationality (under the assumption Um (qm;Q) = V m
�
Qh
�
): if the

MILP constraints (PP-i)-(PP-v) characterize an empty feasible region for the given

data set, then a collective rationalization (with only public consumption) of the data

is impossible; conversely, if the MILP constraints characterize a non-empty feasible

region, then a collective rationalization of the data is certainly possible.

Given this characterization of collective rationality, we can recover upper and

lower bounds on feasible income shares and feasible personalized prices that provide

a collective rationalization of the set S. To de�ne the upper (or, conversely, lower)

bound for the feasible income share of member m, we solve the MILP problem that

optimizes the objective max bymt (or min bymt ) subject to (PP-i)-(PP-v). Similarly, to
de�ne the upper (or lower) bound on the feasible personalized price of an individ-

ual good e (1 � e � n), we solve the MILP problem that optimizes the objective

max
�
Pm;h
t

�
e
(or min

�
Pm;h
t

�
e
) subject to (PP-i)-(PP-v).

4The strict inequality byms � �Pm;hs

�0
qt < ysx

m
st is di¢ cult to use in MILP. Therefore, in practice

we can replace it with byms ��Pm;hs

�0
qt+� � ysxmst for � (> 0) arbitrarily small. A similar quali�cation

applies to the constraint (PQ-iv) in Proposition 3.
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Example 5 illustrates the MILP test. It demonstrates that the proposed method

can obtain very tight bounds even when the number of observations is small (in casu

T = 3); these tight bounds can be recovered because there is a large variation in

the observed prices and aggregate quantities. In the general case, for a given price-

quantity variation, we can -of course- expect the bounds to become tighter when more

information can be used (e.g. because T gets larger). Such additional information

can also include speci�c hypotheses about the decision structure underlying observed

group behavior (in casu the sharing rule or feasible personalized prices). In fact, as

also shown in Example 5, our approach allows for testing such assumptions.

Example 5. Consider a two-member household (M = 2) that consumes three goods

(n = 3). Suppose three observations with aggregate quantities and prices (for 0 <

� < 1)5

q1 = (1; 0; 0)0 ;p1 = (1 + �; 1; �=2)
0 ;

q2 = (0; 1; 0)0 ;p2 = (1; 1 + �; �=2)
0 ;

q3 = (0; 0; 1)0 ;p3 = (0:5 + �=2; 0:5 + �=2; 1)
0 :

As a preliminary step, we note that these prices and quantities imply

y1 = 1 + �; p01q2 = 1; p
0
1q3 = �=2;

y2 = 1 + �; p02q1 = 1; p
0
2q3 = �=2;

y3 = 1; p03q1 = 0:5 + �=2; p
0
3q2 = 0:5 + �=2:

Step 1. We �rst consider the restrictions on the binary variables x1st and x
2
st (s; t

2 f1; 2; 3g, s 6= t) for the current data. As a �rst result, we must have x1st = 1 or

x2st = 1 for any s and t. Speci�cally, rule (PP-iii) implies

by1s � �P1;h
s

�0
qt < ysx

1
st and by2s � �P2;h

s

�0
qt < ysx

2
st:

Combining these two constraints, and using that ps=P1;h
s + P2;h

s (PP-i) and ys =

5To emphasize, we use zero quantities for mathematical elegance. Of course, this use of zero
quantities does not a¤ect the core of our arguments in this and following examples.
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by1s + by2s (PP-iii), yields
ys � p0sqt < ys

�
x1st + x

2
st

�
;

and thus, because ys > p0sqt, we necessarily have x
1
st = 1 or x

2
st = 1 for any s and t.

As a second result, we obtain that xmst = 1 implies x
l
ts = 1 (m; l 2 f1; 2g; m 6= l)

for any s and t. Speci�cally, for xmst = 1 rule (PP-v) entails

bymt � �Pm;h
t

�0
qs � 0 (= yt (1� xmst)):

Using pt=P
1;h
t +P2;h

t , yt = by1t + by2t and yt > p0tqs, this obtains
bylt > �Pl;h

t

�0
qs, and thus xlts = 1 because of rule (PP-iii).

As a third result, we cannot have x1st = 1 and x
2
st = 1 for any s and t. If x

1
st = 1

and x2st = 1, then rule (PP-v) requires

by1t � �P1;h
t

�0
qs � 0 and by2t � �P2;h

t

�0
qs � 0:

In turn, using pt=P
1;h
t +P2;h

t , yt = by1t + by2t , this yields
yt � p0tqs � 0;

which is excluded because yt > p0tqs.

As a fourth result, we cannot have (i) xm21 = 1 and xl31 = 1 or (ii) xm12 = 1 and

xl32 = 1 (m 6= l): For example, consider xm21 = 1 and xl31 = 1. (The argument for

xm12 = 1 and x
l
32 = 1 is directly analogous.) In that case, rule (PP-v) requires

y1 �
�
Pm;h
1

�0
q2 �

�
Pl;h
1

�0
q3 � 0 (= y1

�
2� xm21 � xl31

�
);

which is excluded because y1 > p01 (q2 + q3) and, by construction, p
0
1 (q2 + q3) ��

Pm;h
1

�0
q2 +

�
Pl;h
1

�0
q3.

Given these four results, we necessarily obtain xm13 = xm12 = xm32 = 1 and xl23 =

xl21 = x
l
31 = 1. It is easily veri�ed that this speci�cation satis�es the necessary and

su¢ cient condition in Proposition 2, i.e. the corresponding feasible region de�ned by
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rules (PP-i)-(PP-v) is non-empty.

Step 2. Next, we consider recovery of the sharing rule. Using rules (PP-ii) and

(PP-v) (together with p03q1 �
�
Pm;h
3

�0
q1 and p03q2 �

�
Pl;h
3

�0
q2, which hold by

construction), we obtain

xm13 = 1) bym3 � p03q1 = 0:5 + �=2) byl3 = y3 � bym3 � 0:5� �=2;
xl23 = 1) byl3 � p03q2 = 0:5 + �=2) bym3 = y3 � byl3 � 0:5� �=2;

or, when � becomes arbitrarily small we obtain very tight bounds (around 0.5) for the

feasible income shares by13 and by23:
Similarly, we get

xm32 = 1) bym2 � p02q3 = �=2) byl2 = y2 � bym2 � 1� �=2;
xl31 = 1) byl1 � p01q3 = �=2) bym1 = y1 � byl1 � 1� �=2;

which again obtains tight bounds for bymt and bylt (t = 1; 2) when � gets small. For

example, � arbitrarily close to zero yields bym1 � 1, byl1 � 0 and bym2 � 0, byl2 � 1.
Two remarks are in order. First, this result has a clear interpretation in terms

of the �bargaining power�of the individual members, for which the sharing rule can

be interpreted as an indicator. Speci�cally, consider � arbitrarily small. In that case,

member m can be conceived as the (quasi) �dictator�in situation 1 (i.e. member m is

solely responsible for the full household budget or bym1 � y1) while the other member
l is the �dictator�in situation 2 (byl2 � y2); in situation 3, �nally, the aggregate income
is split equally over the two members (by13 � by23 � 0:5y3).
Second, the proposed method allows for imposing a whole series of additional re-

strictions on the sharing rule (or, alternatively, for testing speci�c hypotheses about

the sharing rule). Such restrictions preserve the MILP structure as long as they are

expressed in linear form. For instance, suppose that in our current example we impose

(or assume) that the feasible income share of the wife (member 1) is higher than that

of the husband (member 2) in situation 1, i.e. by11 � by21. This immediately obtains
1� �=2 � by11 � 1, 0 � by21 � �=2 and 0 � by12 � �=2, 1� �=2 � by22 � 1; and, thus, for �
arbitrarily small the mere restriction by11 � by21 implies that the wife is the �dictator�in
situation 1 (by11 � y1) and the husband is the �dictator�in situation 2 (by22 � y2). Alter-
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natively, one can put upper and lower bounds (or test corresponding assumptions) on

the relative income share of some member m in situation t, i.e. ym
t
� bymt =yt � ymt for

ym
t
, ymt 2 [0; 1]; the linear nature of these constraints is consistent with the MILP for-

mulation given above. For instance, our result implies that any lower bound ym
t
> �=2

for somem and all t will be rejected for this speci�c data structure. Finally, additional

sharing rule restrictions can impose a speci�c relationship between feasible income

shares of the same memberm in di¤erent situations (e.g. time periods). For instance,

suppose that we assume in the current example that the feasible income share of the

wife must be higher in situation 1 than in situation 2, i.e. by11 � by12; this directly
obtains 1� �=2 � by11 � 1, 0 � by12 � �=2 and 0 � by21 � �=2, 1� �=2 � by22 � 1.
Step 3. Let us then consider recovery of the feasible personalized prices. As a

starting point, we use our conclusion for the feasible income shares, which can be

summarized as

1� �=2 � bym1 � 1 and 0 � byl1 � �=2;
0 � bym2 � �=2 and 1� �=2 � byl2 � 1;

0:5� �=2 � by13 � 0:5 + �=2 and 0:5� �=2 � by23 � 0:5 + �=2:
For the given data structure, this implies (using (PP-ii))

1� �=2 �
�
Pm;h
1

�
1
� 1 and 0 �

�
Pl;h
1

�
1
� �=2;

0 �
�
Pm;h
2

�
2
� �=2 and 1� �=2 �

�
Pl;h
2

�
2
� 1;

0:5� �=2 �
�
P1;h
3

�
3
� 0:5 + �=2 and 0:5� �=2 �

�
P2;h
3

�
3
� 0:5 + �=2:

We thus get very tight bounds for
�
Pm;h
t

�
t
and

�
Pl;h
t

�
t
when � gets arbitrarily

small. To illustrate the impact of additional structure, suppose that
�
P1;h
1

�
1
>�

P2;h
1

�
1
, i.e. the wife contributes more to the �rst good in situation 1. For � arbitrarily

small, this mere restriction implies that the wife �pays�(quasi) everything of the �rst

good in situation 1 (
�
P1;h
1

�
1
� (p1)1), while the husband pays everything of the

second good in situation 2 (
�
P2;h
2

�
2
� (p2)2); �nally, in situation 3 the expenditure

for the third good is equally split (
�
P1;h
3

�
3
�
�
P2;h
3

�
3
� 0:5 (p3)3).
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3.2. Private consumption without externalities

In this section, we consider the speci�c case that excludes externalities and pub-

lic consumption (Qt = (0; :::;0;0)); i.e. all goods are private and group members

are of the �egoistic� type. In terms of the general condition for collective rational-

ity in De�nition 2, this means that we consider member-speci�c utility functions

Um (qm;Q) = V m (qm). At this point, it is worth noting that this case actually also

encompasses a wider class of member-speci�c utilities that model �altruism�in a spe-

ci�c way: it also includes so-called �caring preferences�, which correspond to utility

functions Um (qm;Q) = Wm
�
V 1 (q1) ; :::; V M

�
qM
��
that depend not only on mem-

ber m�s own �egoistic�utility but also on the other member l�s utility de�ned in terms

of ql. Chiappori (1992) argues that every Pareto e¢ cient outcome in terms of caring

preferences (Wm) is also Pareto e¢ cient in terms of egoistic preferences (V m). In

other words, under Pareto e¢ ciency the empirical implications of caring preferences

are indistinguishable from those of egoistic preferences.

As a preliminary note, we recall that under the stated conditions, which imply

Qt = (0; :::;0;0) for the feasible personalized quantities, any set bSA of feasible per-
sonalized prices and quantities must meet

qt=
MX
m=1

qmt with q
m
t � qAmt . (3.1)

This implies the trivial bounds

(0 �) qAmt � qmt �
�
qt �

XM

l=1;l 6=m
qAlt

�
(� qt) : (3.2)

We will show that collective rationality imposes additional restrictions on the

personalized private quantities that can imply tighter bounds than those in (3.2). We

will also demonstrate that very tight bounds can be obtained even if no assignable

quantity information is available.

Like before, we �rst formulate the necessary and su¢ cient condition for collective

rationality that is relevant in the present case. This condition follows directly from

Proposition 1.

Corollary 2. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations.
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For Um (qm;Q) = V m (qm) ; m = 1; :::; M; there exists a combination of M concave

and continuous utility functions U1; :::; UM that provide a collective rationalization

of SA if and only if there exist feasible personalized quantities bqt with qt=PM
m=1 q

m
t

such that for each member m the set f(pt; qmt ) ; t = 1; :::; Tg satis�es GARP:

Once more, we can reformulate this condition as requiring that the feasible set of

a speci�c MILP problem is non-empty. This is contained in the following result.

Proposition 3. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observa-
tions. There exist feasible personalized quantities bqt with qt=PM

m=1 q
m
t such that for

each member m = 1; :::; M the set f(pt; qmt ) ; t = 1; :::; Tg satis�es GARP if and only
if there exist non-negative qmt , bymt and xmst 2 f0; 1g that satisfy
(PQ-i) qt=

PM
m=1 q

m
t ,

(PQ-ii) qAmt � qmt ;

(PQ-iii) bymt = p0tqmt ;
(PQ-iv) byms � p0sqmt < ysxmst ;
(PQ-v) xmsu + x

m
ut � 1 + xmst ; and

(PQ-vi) bymt � p0tqms � yt (1� xmst) :
The di¤erent �personalized quantity�(PQ) constraints have a similar interpretation

as the personalized price (PP) constraints in Proposition 2. Rules (PQ-i) and (PQ-ii)

repeat the constraints in (3.1). Rule (PQ-iii) follows from De�nition 5 of feasible

income shares. Rule (PQ-iv) implies that, if bymt � p0sqmt , then we must have xmst = 1
(which corresponds to bqs Rm bqt): Rule (PQ-v) imposes transitivity. Finally, rule (PP-
vi) requires that, if xmst = 1 (bqsRmbqt), then bymt � �Pm;h

t

�0
qs. As such, Proposition

3 de�nes a necessary and su¢ cient condition for collective rationality (under the

assumption Um (qm;Q) = V m (qm)) that can be tested through MILP. Given this

characterization, we can de�ne upper and lower bounds on feasible income shares

and feasible personalized quantities by solving MILP optimization problems. For

example, an upper (or, conversely, lower) bound on the feasible personalized quantity

of an individual good e (1 � e � n) is obtained by optimizing the objective max (qmt )e
(or min (qmt )e) subject to (PQ-i)-(PQ-vi).

Example 6 illustrates the result. It demonstrates that the proposed method can

obtain very tight bounds when the number of observations is small. In addition, it
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shows that such tight bounds can be obtained for the feasible personalized quanti-

ties even if no assignable quantity information is available. Analogously to before,

additional information can include speci�c hypotheses regarding the group decision

process (e.g. the sharing rule and the assignable quantities). Again, our approach

e¤ectively allows for testing such assumptions.

Example 6. We recapture the situation of Example 5, with corresponding observed
prices and aggregate quantities. This example does not include assignable quantity

information, so that (PQ-ii) does not add information.

As for the feasible income shares, an analogous reasoning as in Steps 1 and 2 of

Example 5 yields the conclusion (for m 6= l)

1� �=2 � bym1 � 1 and 0 � byl1 � �=2;
0 � bym2 � �=2 and 1� �=2 � byl2 � 1;

0:5� �=2 � by13 � 0:5 + �=2 and 0:5� �=2 � by23 � 0:5 + �=2:
Focusing on the feasible personalized quantities, this implies (using (PQ-iii))

1� �=2 � (1 + �) (qm1 )1 � 1 and 0 � (1 + �)
�
ql1
�
1
� �=2;

0 � (1 + �) (qm2 )2 � �=2 and 1� �=2 � (1 + �)
�
ql2
�
2
� 1;

0:5� �=2 �
�
q13
�
3
� 0:5 + �=2 and 0:5� �=2 �

�
q23
�
3
� 0:5 + �=2:

We thus obtain

(1� �=2) =(1 + �) � (qm1 )1 � 1=(1 + �) and 0 �
�
ql1
�
1
� �= (2(1 + �)) ;

0 � (qm2 )2 � �= (2(1 + �)) and (1� �=2) =(1 + �) �
�
ql2
�
2
� 1=(1 + �);

0:5� �=2 �
�
q13
�
3
� 0:5 + �=2 and 0:5� �=2 �

�
q23
�
3
� 0:5 + �=2:

This yields very tight bounds for (qmt )t and
�
qlt
�
t
when � gets arbitrarily small.

To illustrate the impact of additional structure, suppose that (q11)1 > (q
2
1)1, i.e. the

wife consumes more of the �rst good in situation 1. For � arbitrarily small, this sole

restriction immediately obtains that the wife consumes (quasi) everything of the �rst

good in situation 1 ((q11)1 � (q1)1), while the husband consumes everything of the
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second good in situation 2 ((q22)2 � (q2)2); �nally, in situation 3 the third good is

equally split ((q13)3 � (q23)3 � 0:5 (q3)3).

3.3. Extensions

To conclude, we indicate that the previous methodology allows for a number of in-

teresting extensions. As illustrated in our examples, it enables us to test speci�c

hypotheses regarding the collective decision process (e.g. on the sharing rule, in Ex-

ample 5). In what follows, and without being exhaustive, we point out three additional

applications. Because we believe the formal analogy with the previous discussion is

fairly easy, we restrict to sketching the main arguments.

1. The previous discussion on testing and recovery restricted to (i) the case with-

out private consumption (with recovery of feasible personalized prices) and (ii)

the case without externalities and public consumption (with recovery of feasible

personalized quantities). In practice, intermediate cases may also be considered.

In this respect, it is worth emphasizing that arguments directly analogous to

those given above apply to the case in which we can a priori identify each good

as either exclusively publicly consumed or exclusively privately consumed (with-

out externalities). (Importantly, if we want to obtain similar MILP formulations

as before, no good can be partly privately consumed (without externalities) and

partly publicly consumed.)

Formally, such an intermediate case impliesQm = 0 for allm and
�XM

m=1
qm
�
�

Qh = 0 (with � the Hadamard or �element-by-element�product). Thus, we

must consider sets bSA of feasible personalized prices and quantities withQm
t = 0

and
�XM

m=1
qmt

�
� Qh

t = 0. Given this, an analogous argumentation as be-

fore establishes a necessary and su¢ cient condition for collective rationality

that is essentially a �hybrid�version of the conditions in Propositions 2 and 3.

This characterization obtains an operational MILP test for collective rationality,

which in turn enables the recovery of bounds on feasible income shares, feasi-

ble personalized prices (for the goods that are publicly consumed) and feasible

personalized quantities (for the goods that are privately consumed). Finally,

data structures similar to the one in Example 5 can demonstrate the potential

of the method (i) to obtain very tight bounds even if no assignable quantity

information is available and the number of observations is small, and (ii) to test
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alternative hypotheses (regarding the sharing rule, feasible personalized prices

and feasible personalized quantities).

2. Another interesting application concerns the recovery, or �forecasting�, of indi-

vidual members�consumption (and thus also aggregate group consumption) in

a new (i.e. unobserved) situation de�ned in terms of new prices pN and group

income yN . For example, this allows us to compare individual consumption and

the bargaining power of some member m (captured by bymt =yt for each situation
t) in alternative (observed and new) situations. To introduce this application,

we recapture the case that excludes externalities and public consumption, which

corresponds to Um (qm;Q) = V m (qm); this allows us to develop similar MILP

formulations as before.

Essentially, we have to construct the set of feasible personalized quantities qmN
that meet yN = p0NqN for aggregate group demand qN =

XM

m=1
qmN , such that

each set f(pt; qmt ) ; t = 1; :::; Tg [ f(pN ; qmN)g satis�es GARP ; every feasible
speci�cation of the qmN de�nes feasible income shares bymN = p0Nq

m
N . The MILP

characterization of the set of feasible personalized quantities qmN 2 Rn+ and feasi-
ble income shares bymN 2 R+ is then a direct extension of the one in Proposition 3.
We remark that this MILP formulation easily includes alternative prior assump-

tions regarding the consumption quantities in the new situation. For example,

we can restrict the proportions of the group quantities that will be consumed by

the individual group members (e.g. in a two-member household, such a restric-

tion can impose that a particular good is exclusively consumed by the husband);

this boils down to imposing additional constraints of the form �m�qN � qmN �
�m � qN for �m; �m 2 Rn+: Generally, such additional restrictions preserve the
MILP structure as long as they are expressed in linear form.

3. A �nal extension involves recovering the behavior of some member m in a new

situation de�ned in terms of new prices pN and a given utility level (i.e. the same

utility level for memberm as the initially observed bundle qI , I 2 f1; :::; Tg). In
such an application, the recovered bounds on the feasible income shares can sub-

sequently be used for constructing member-speci�c cost-of-living indices (corre-

sponding to the prices pN and the same utility level as qI for m); compare with

Varian (1982), Blow and Crawford (2001) and Blundell, Browning and Crawford

(2003), who conduct nonparametric cost-of-living analyses in a unitary setting.
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For example, this may be useful for comparing the cost-of-living of individuals

living alone with that of the same individuals living in a multi-member house-

hold; compare with Browning, Chiappori and Lewbel (2006), who address such

a question by using parametric methods.

Again, we consider the situation without externalities or public consumption. In

this case, we need to characterize the feasible personalized quantities qmN (which

de�ne feasible income shares bymN = p0NqmN for member m) that simultaneously

meet the following conditions: (i) the set f(pt; qmt ) ; t = 1; :::; Tg [ f(pN ; qmN)g
must satisfy GARP ; (ii) for member m the quantities qmN must be �equally

good�as those corresponding to the initial bundle qI . Once more, the MILP

formulation of condition (i) follows immediately from Proposition 3. As for

condition (ii), we must include the additional restrictions xmsI � xmsN and xmIt �
xmNt: the �rst constraint implies x

m
sN = 1 if xmsI = 1 (which complies with �bqs

RmbqN if bqs RmbqI�), and the second constraint requires xmNt = 1 if xmIt = 1

(�bqN Rmbqt if bqI Rmbqt�). Using this characterization, we can de�ne bounds on
the feasible income shares (bymN ) and the feasible personalized quantities ((qmN)e
for some good e) by solving MILP problems. Like before, we can also include

alternative prior assumptions regarding the consumption quantities in qmN ; such

additional restrictions preserve the MILP structure as long as they are expressed

in linear form.

4. The general case: testing

We next turn to the general collective consumption model de�ned in De�nition 2,

which accounts for public consumption and externalities of any good. For this case,

we do not observe the �true�speci�cation of either the feasible personalized prices�bp1t ; :::; bpMt � or the feasible personalized quantities bqt. This is in sharp contrast with
the special cases in Section 3; for the condition in Proposition 1, it excludes developing

an equivalent MILP formulation similar to the ones in Propositions 2 and 3. The

observed set SA usually allows for multiple speci�cations of both
�bp1t ; :::; bpMt � andbqt, and each such speci�cation implies di¤erent restrictions in terms of the relations

Rm0 and R
m.

Therefore, in the following we focus on testable restrictions on Rm0 and R
m that are

directly expressed in terms of observed prices and quantities, and that do not refer to a
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speci�c bSA. This obtains a testable necessary condition for data consistency with the
general collective model which solely uses the prices and quantities that are e¤ectively

observed; this condition extends the necessary condition of Cherchye, De Rock and

Vermeulen (2007) by accounting for assignable quantity information. Consistent with

our (MILP-based) approach in Section 3, we show that this necessary condition can

be reformulated in integer programming (IP) terms, which is again attractive for

practical applications. In addition, as we will discuss in Section 5, it provides a useful

basis for sharing rule recovery in the case of the general collective consumption model.

4.1. A preliminary result

Before introducing our testable necessary condition, we present a lemma that provides

the starting point of our approach. It implies that we can start from the set SA for

specifying restrictions on Rm0 . Moreover, the equivalence results imply that we cannot

do better when using only the set of observations SA (rather than a speci�c bSA).
Lemma 1. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observations.
For any s and t, we have the following two equivalence results (for m 2 f1; :::;Mg):
(i)
h
for all sets bSA, there exists m : bqsRm0 bqti , [p0sqs � p0sqt] ;

(ii) for m:
hbqsRm0 bqt for all sets bSAi , h

p0sq
Am
s � p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�i
:

Rule (i) does not use assignable quantity information and pertains to the Pareto

e¢ cient nature of group behavior in the collective model; forM = 2, it equals Lemma

1 of Cherchye, De Rock and Vermeulen (2007). Speci�cally, if the group has chosen qs
when qt was equally available (p0sqs � p0sqt), then we always have that, independently
of the speci�cation of the set bSA, at least one group memberm must prefer the former
(personalized) quantities to the latter (i.e. bqs Rm0 bqt); the identity of member m
depends on the speci�cation of bSA that is used.
Rule (ii) does use assignable quantity information, and shows that this e¤ectively

allows us to �assign� preference relations to an individual group member m; such

�assignable�relations for member m hold for any speci�cation of bSA. It uses that, by
construction, (bpms )0 bqs � p0sqAms and p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
� (bpms )0 bqt, so that

p0sq
Am
s � p0s

�
qt �

XM

l=1;l 6=m
qAlt

�
implies (bpms )0 bqs � (bpms )0 bqt for any bSA;
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and it follows from this last inequality that bqs Rm0 bqt for any bSA. In words, the �min-
imal�(assignable) expenditures of member m in observation s exceed the �maximal�

expenditures of that member for bundle t (under the prices ps), which implies that

member m �reveals�her/his preference for bundle s over bundle t. In the limiting case

that all goods are fully assignable (qt =
XM

m=1
qAmt , which implies qmt = q

Am
t ) the

right hand side of rule (ii) reduces to p0sq
Am
s � p0sqAmt and, thus, all member-speci�c

preference relations are assignable.

Rule (ii) implies that assignable quantity information implies additional empirical

restrictions as compared to the limiting case with qAmt = 0 for each m and t (i.e. no

assignable quantity information, so that only rule (i) can be used). To illustrate, we

consider Example 7, which shows that assignable quantity information allows for re-

covering preference relations Rm0 even if rule (i) is not applicable. This suggests that,

in general, the use of assignable quantity information can obtain a testable condition

for collective rationality that is stronger than the one that is solely based on rule (i),

which was originally presented by Cherchye, De Rock and Vermeulen (2007). Con-

sequently, such assignable information can entail a more powerful empirical analysis.

The more stringent testable condition will be discussed next.

Example 7. Consider a two-member household (M = 2) with a wife (member 1) and

a husband (member 2) that consumes three goods (n = 3). Suppose two observations

with aggregate quantities and prices

q1 = (4; 2; 2)0 ;p1 = (4; 5; 1)
0 ;

q2 = (2; 4; 2)0 ;p2 = (1; 4; 5)
0 ;

and assignable quantities

qA11 = (3; 0; 0)0 and qA21 = (0; 1; 2)0 ;

qA12 = (0; 1; 1)0 and qA22 = (1; 3; 0)0 :

We then obtain p01q
A1
1 (= 12) > p01

�
q2 � qA22

�
(= 11) and thus, on the basis of rule

(ii) in Lemma 1, we can conclude bq1 R10 bq2 for every set bSA; i.e., for every feasible
speci�cation of the personalized prices and quantities �bq1 is directly revealed prefer-
ence to bq2�by the wife. On the other hand, we have p01q1(= 28) < p01q2(= 30), and
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so we cannot use rule (i) (to conclude bq1 Rm0 bq2, m = 1 or 2, for any set bSA).
4.2. Testable necessary condition

The basic idea of our testable condition is to formulate restrictions on �feasible�spec-

i�cations of the relations Rm0 and R
m, which are expressed in terms of the observed

information summarized in the set SA. Such feasible speci�cations are then referred

to as hypothetical relations. Speci�cally, we specify qs Hm
0 qt if we hypothesize bqs

Rm0 bqt; Hm denotes the transitive closure of the relation Hm
0 :We say that a collective

rationalization of the data in the sense of De�nition 2 is impossible if there does not

exist a feasible speci�cation of these hypothetical relations that satis�es the restric-

tions de�ned in the following Proposition 4. This de�nes a necessary condition for

collectively rational behavior as characterized in Proposition 1. In addition, as we will

discuss, it implies an operational test for data consistency with the general collective

consumption model.6

Proposition 4. Suppose that there exists a combination of M concave and continu-

ous utility functions U1; :::; UM that provide a collective rationalization of the set of

observations SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg. Then there exist hypothetical
relations Hm

0 and Hm, m = 1; :::;M , such that:

(i) if p0sqs � p0sqt, then qs Hm
0 qt for some m;

(ii) if p0sq
Am
s � p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
, then qs Hm

0 qt;

(iii) if qs Hm
0 qu; qu H

m
0 qv; :::; qz H

m
0 qt for some (possibly empty) sequence (u; v;

:::; z), then qs Hm qt;

(iv) for M* < M and M  f1; :::;Mg : if p0sqs � p0s
�PM*

k=1 qtk

�
and for all m 2M

we have qtk(m) H
m qs for some k (m) � M*, then qs H l

0 qtk for some l =2 M and k

�M*;
(v) for M* � M and M  f1; :::;Mg : if p0sqs � p0s

�PM*
k=1 qtk

�
and for all m 2M

we have qtk(m) H
m qs for some k (m) �M*�1, then qs H l

0 qtM*
for some l =2M;

(vi) for M* � M : if for all m we have qsk(m) H
m qt for some k (m) � M*, then

p0tqt �
PM*

k=1 p
0
tqsk ;

6We note that rules (iv) and (v) re�ne rules (iii) and (iv) originally de�ned by Cherchye, De Rock
and Vermeulen (2007, Proposition S3); the new rules (iv) and (v) strengthen the original rules (iii)
and (iv) in that they imply them as a special case.
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(vii) if qs Hm qt, then p0tq
Am
t � p0t

�
qs �

PM
l=1;l 6=m q

Al
s

�
.

Hence, a collective rationalization of the set SA requires that there exists at least

one speci�cation of the relations Hm
0 and Hm consistent with rules (i)-(vii) in this

proposition. Of course, in general there may be multiple feasible speci�cations of Hm
0

and Hm that obtain consistency with rules (i)-(vii).

Let us then interpret the di¤erent rules in Proposition 4. First, rules (i) and

(ii) follow immediately from Lemma 1, when replacing the relations Rm0 by their

hypothetical counterparts Hm
0 : Next, rule (iii) de�nes the transitive closures H

m of

the relations Hm
0 :

The interpretation of the remaining rules (iv) to (vii) pertains to the very nature

of the collective model, which -to recall- explicitly recognizes the multi-person nature

of the group decision process. Rules (iv) and (v) compare qs to (combinations of)

M� di¤erent bundles qtk . First, rule (iv) expresses that, if all members m 2 M

prefer some qtk(m) over qs for the (sum) bundle
PM*

k=1 qtk not more expensive than

qs, then the choice of qs can be rationalized only if another member l =2 M prefers

qs over some qtk . Next, rule (v) expresses that, if (aggregate) qs is more expensive

than the (sum) bundle
PM*

k=1 qtk , while each member m 2 M prefers qtk(m) (with

k (m) �M*�1) over qs, then the only possibility for rationalizing the choice of qs is
that another member l =2M prefers qs over the remaining bundle qtM*

.

Rules (i) to (v) de�ne restrictions on the relations Hm
0 andH

m. For a speci�cation

of these relations, rules (vi) and (vii) de�ne the corresponding upper cost bound

conditions. Rule (vi) complements rules (iv) and (v). It states that, if each member

m prefers qsk(m) (k (m) �M*) over qt, then the choice of qt can be rationalized only
if it is not more expensive than the (sum) bundle

PM*
k=1 qsk . In this expression, we

can have M* < M because it is possible that sk(m) = sk(l) for l 6= m (i.e. �members

m and l both prefer the same bundle qsk(m) (= qsk(l)) over qt�).

Finally, rule (vii) reveals that the assignable quantity information makes it possible

to formulate separate upper cost bound conditions for the individual group members,

whereas the upper cost bound de�ned by rule (vi) corresponds to all members simul-

taneously. More speci�cally, rule (vii) expresses that, if member m prefers qs over qt,

then the latter choice can be rationalized only if p0tq
Am
t � p0t

�
qs �

PM
l=1;l 6=m q

Al
s

�
.

An important observation is that the condition in Proposition 4 is empirically

rejectable, i.e. we can �nd data that do not satisfy the condition. Cherchye, De

Rock and Vermeulen (2007) provide such an example for the case when there is no

35



assignable quantity information (qAmt = 0 for each m and t). They show that, in such

a situation, M +1 observations and M +1 goods are both necessary and su¢ cient to

reject the general collective consumption model for M -member group behavior.

Example 8 provides an illustration that uses assignable quantity information; it

obtains rejection of collective rationality with two observations (T = 2) for a two-

member household (M = 2). In fact, when assignable quantity information is avail-

able, then in general it su¢ ces to have two goods and two observations to reject

collective rationality of M -member group behavior. Speci�cally, it is easy to verify

that in the limiting case that all goods are fully assignable (i.e. qt =
XM

m=1
qAmt and

thus qmt = qAmt ), the condition in Proposition 4 boils down to GARP consistency

of the sets f
�
pt;q

Am
t

�
; t = 1; :::; Tg corresponding to each member m; and this is

rejected if p0tq
Am
t > p0tq

Am
s and p0sq

Am
s > p0sq

Am
t (for some m and t; s), which requires

only two goods and two observations. This again illustrates that, in general, more

assignable quantity information will entail more powerful results.

Example 8. We recapture the situation of a household with two members and three
goods in Example 7. This speci�c data structure implies q1 H1

0 q2 because of rule

(ii). But then rule (vii) is not met because p02q
A1
2 (= 9) > p

0
2

�
q1 � qA21

�
(= 8). Thus,

we conclude a violation of the condition in Proposition 4.

4.3. Integer programming formulation

In this section, we show that the necessary condition in Proposition 4 can be re-

formulated in IP terms, which is attractive from an operational point of view. As

a preliminary step, we de�ne the binary variables aM� [s; t1; :::; tM*], bm[s; t] 2 f0; 1g
(for m;M* 2 f1; :::;Mg, s; t 2 f1; :::; Tg) and ft1; :::; tM*g � f1; :::; Tg:

aM*[s; t1; :::; tM*] = 1 if p0sqs �
PM�

k=1 p
0
sqtk and aM*[s; t1; :::; tM*] = 0 otherwise;

bm[s; t] = 1 if p0sq
Am
s � p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
and bm[s; t] = 0 otherwise.

These variables capture the available information that is used in rules (i)-(vii) of

Proposition 4. We next formulate these rules as IP constraints. To do so, we again

de�ne the binary variables xmst 2 f0; 1g. As we focus on the necessary condition, which
is expressed in hypothetical preference relations, xmst = 1 must now be interpreted as

�qs Hm qt�.

Given this, rules (i) and (ii) are equivalent to, respectively,
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(IP-i)
PM

m=1 x
m
st � a1[s; t] and (IP-ii) xmst � bm[s; t]:

The constraint (IP-i) implies that, if a1[s; t] = 1, then xmst = 1 for some m. Similarly,

the constraint (IP-ii) implies that, if bm[s; t] = 1, then xmst = 1:

Rule (iii) corresponds to

(IP-iii) xmsu + x
m
ut � 1 + xmst :

Thus, if xmsu = x
m
ut = 1 then x

m
st = 1, which imposes transitivity.

To provide the IP formulation of rule (iv), for each combination (t1; :::; tM*) and

any subsetM  f1; :::;Mg, we consider k (m) �M* for all m 2M. Given this, rule
(iv) complies with

(IP-iv) for each (t1; :::; tM*), M  f1; :::;Mg and correspondingly de�ned k (m) �
M* for all m 2M :

aM*[s; t1; :::; tM*] +
P

m2M x
m
tk(m)s

� jMj+
P

l =2M
PM*

k=1 x
l
stk
:

This imposes that, if aM*[s; t1; :::; tM*] = 1 and for all m 2 M we have xmtk(m)s = 1,

then we must have xlstk = 1 for some l =2M and k �M*.
Similarly, for rule (v) we consider k (m) � M*�1 for all m 2 M: Rule (v) then

corresponds to

(IP-v) for each (t1; :::; tM*), M  f1; :::;Mg and correspondingly de�ned k (m) �
M*�1 for all m 2M :

aM*[s; t1; :::; tM*] +
P

m2M x
m
tk(m)s

� jMj+
P

l =2M x
l
stM*

:

The interpretation is that, if aM*[s; t1; :::; tM*] = 1 and for all m 2 M we have

xmtk(m)s = 1, then for the remaining tM* we must have xlstM*
= 1 for some l =2M.

Next, to de�ne the IP formulation of rule (vi), for each M* we consider every

combination (sk(1); :::; sk(M)) with k (m) �M* for all m 2M; note that we can have
k (m) = k (l) (m 6= l) so that M* �M . Given this, rule (vi) is equivalent to

(IP-vi) for each (sk(1); :::; sk(M)) with k (m) �M* for all m :PM
m=1 x

m
sk(m)t

�M � aM*[t; s1; :::; sM*] if p0tqt <
PM�

k=1 p
0
tqtk :

This gives the upper cost bound condition that applies to all members simultane-

ously.7 For every possible combination
�
sk(1); :::; sk(M)

�
, it speci�es that, if for each

7For completeness, we note that the inequality constraint in (IP-vi) can equivalently be formulated
as
PM

m=1 x
m
sk(m)t

� M� aM* [t; s1; :::; sM* ] for aM* [t; s1; :::; sM* ] = 1 if p0tqt >
PM�

k=1 p
0
tqtk and

asM* [t; s1; :::; sM* ] = 0 otherwise. An analogous quali�cation applies to (IP-vii).
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m we have xmsk(m)t = 1, then it must be that aM*[t; s1; :::; sM*] = 0 (using that

k (m) �M* for all m).
Finally, rule (vii) complies with

(IP-vii) xmst � 1� bm[t; s] if p0tqAmt > p0t

�
qs �

PM
l=1;l 6=m q

Al
s

�
:

This imposes that, if xmst = 1, then it must hold that b
m[t; s] = 0. It speci�es an upper

cost bound condition for each individual member m.

As such, testing consistency with collective rationality requires checking whether

the constraints (IP-i)-(IP-vii) characterize a non-empty feasible region (for xmst 2
f0; 1g). Every feasible speci�cation of the binary variables xmst corresponds to a spec-
i�cation of the relations Hm consistent with rules (i)-(vii) in Proposition 4.

To conclude, we provide the simple numerical Example 9 as an illustration.

Example 9. We recapture the situation of a household with two members and
three goods in Examples 7 and 8. For this speci�c data structure the inequality

p01q
A1
1 (= 12) > p01

�
q2 � qA22

�
(= 11) implies b1[1; 2] = 1, and thus x112 = 1 because

of (IP-ii). Given this, (IP-vii) requires b1[2; 1] = 0, which contradicts p02q
A1
2 (= 9) >

p02
�
q1 � qA21

�
(= 8): As such, we obtain an empty feasible region and conclude that

the condition in Proposition 4 is violated.

4.4. Remarks

As mentioned before, the necessary condition developed in this section extends the

necessary condition of Cherchye, De Rock and Vermeulen (2007) by including the pos-

sible use of assignable quantity information. This directly obtains that the necessary

condition is in general not su¢ cient. The result follows from Example 2 of Cherchye,

De Rock and Vermeulen (2007): for M = 2, it presents data (without assignable

quantity information) that satisfy the condition but cannot be collectively rational-

ized in the sense of Proposition 1. For general T , the condition is su¢ cient if all goods

are fully assignable (qt =
XM

m=1
qAmt , which implies qmt = q

Am
t ). In addition, it is

su¢ cient if M = 1, when it reduces to the usual GARP condition for individually

rational behavior (see Varian, 1982). (In fact, the same quali�cation holds for the

conditions in Propositions 2 and 3.) In these cases, the feasible personalized prices

and quantities are all observed.

We see at least the following arguments to motivate our focus on the necessary

condition in Proposition 4. First, the condition is always su¢ cient for T not �too
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large�, which depends on the number of members M and the assignable quantity

information. For example, Cherchye, De Rock and Vermeulen (2007) argue that, for

M = 2, it is su¢ cient if T � 4 and if no assignable quantity information is available
(qAmt = 0 for each t and m); but, ceteris paribus, the condition is no longer su¢ cient

for T = 5. Similar results can be derived for M > 2 and qAmt 6= 0 for some t and m.
Next, Cherchye, De Rock and Vermeulen (2007, Proposition S4) present a testable

su¢ cient condition for the general collective model, which can easily be adapted to

the current set-up with assignable quantity information. (Alternative su¢ cient con-

ditions for the general model are those in Propositions 2 and 3, which are necessary

and su¢ cient for special cases of the general model.) Interestingly, these authors

also provide a �convergence�argument for the case without assignable quantity in-

formation, which states that the empirical implications of their su¢ cient condition

generally come closer to those of the necessary condition in Proposition 4 when the

sample size gets larger; i.e. both conditions become equally powerful for larger T .

Again, this convergence argument is easily adapted to account for assignable quantity

information.

Another argument relates to the subtle di¤erence between �collectively ratio-

nal household behavior� and �data consistency with collectively rational household

behavior�: While inconsistency with a necessary condition necessarily implies collec-

tively irrational behavior, consistency with a su¢ cient condition in general does not

imply collectively rational behavior; it only implies data consistency with collectively

rational consumption behavior. In other words, any su¢ cient condition only allows

for �non-rejection�(but not for �acceptance�) of the collective rationality hypothesis.

Finally, our focus on the necessary condition falls in line with the very nature of

the nonparametric approach that we follow, which typically focuses on the minimal

(or �necessity�) empirical restrictions that can be obtained from the available data.

In Section 5, we will argue that the necessary condition provides a powerful basis for

recovering bounds on feasible income shares that underlie the observed (collectively

rational) group behavior. Speci�cally, we derive bounds that must be respected by any

set bSA that provides a collective rationalization of the data in the sense of Proposition
1; this is a direct consequence of the fact that our recovery method starts from a

necessary condition (and not a su¢ cient condition) for collective rationality.
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5. The general case: recovery

In this section, we will show that the necessary condition in Proposition 4 allows for

sharing rule recovery in the case of the general collective consumption model, and

that such recovery is possible through MILP. As a preliminary remark, we indicate

that our use of a necessary condition for collective rationality as a starting point

entails a subtle di¤erence with the recovery results in Section 3, which were based

on necessary and su¢ cient conditions for (special cases of) collective rationality. In

particular, a speci�c feasible income share for member m that respects the upper and

lower bounds that we will characterize must no longer necessarily correspond to a

set bSA that collectively rationalizes the data. Such necessary correspondence is only
the case when the necessary condition is also su¢ cient; see also our discussion at the

end of Section 4. Still, we believe that the bounds that we will present do provide

useful information, even when the necessary condition is not su¢ cient: in our opinion,

the fact that they necessarily bound each feasible income share for member m that

is de�ned by a data rationalizing set bSA is the more important property in view of
practical applications.

5.1. An independence result

Before addressing recovery of the sharing rule, we argue that the necessary condi-

tion in Proposition 4 provides a useful basis for recovery. To do so, we show that,

if assignable quantity information can be used, this necessary condition for M = M 0

with M 0 > 1 is independent of the GARP condition for the unitary model, which -to

recall- coincides with the collective rationality condition for M = 1 (i.e. individual

rationality): data consistency with the necessary condition for M 0 members is nei-

ther necessary nor su¢ cient for data consistency with the unitary GARP condition.

Because Varian (1982) used this unitary GARP condition for addressing recovery

questions in the unitary setting, we believe this convincingly motivates our use of the

necessary condition as a basis for (in casu sharing rule) recovery in the case of the

general collective consumption model.

Example 10 illustrates the independence result by presenting (i) data that do

not satisfy the individual rationality condition for M = 1 while they do pass the

necessary condition for M = 2 and (ii) data that satisfy the individual rationality

condition forM = 1 but not the necessary condition forM = 2; similar examples can

40



be conceived for any M 0 > 1. As such, considering additional members should not

necessarily imply a weaker test; the necessary condition for multi-member collective

rationality should not have weaker empirical implications than the GARP condition

for individual rationality if there is assignable quantity information. (In this respect,

it is also worth recalling that the GARP condition for individual rationality coincides

with the necessary condition in Proposition 4 for M = 1.)

At this point, we note that Chiappori (1988; Examples 1-2 on p. 76-77) obtains

a similar independence conclusion for his collective labor supply model in the case of

egoistic agents. The approach followed in this paper (including Example 10) clari�es

that the independence essentially relates to the assignable quantity information that

is available (in Chiappori�s Examples 1-2, this information pertains to observed leisure

of the individual household members in combination with the assumption of egoistic

preferences). In other words, if no assignable quantity information is available, then

we do have that data consistency with the necessary condition for M 0 members is

always necessary for data consistency with the GARP condition for 1 member; but

this is no longer the case if we can assign private consumption quantities (without

externalities) to individual household members.

Example 10. As a �rst illustration, we recapture the data (observed prices and
aggregate quantities) in Examples 1 and 2. On the one hand, Example 3 concludes

that these data satisfy the necessary and su¢ cient condition in Proposition 1 (and

thus also the necessary condition in Proposition 4) when using the corresponding

assignable quantities for M = 2; in words, a data rationalization in terms of �two-

member rationality�is possible. On the other hand, it is easily veri�ed that these data

do not satisfy the unitary GARP condition (i.e. there is a single decision maker and,

thus, bSA = f(pt;qt) ; t = 1; 2g). Speci�cally, we have that p01q1(= 26) > p01q2(= 23)
while p02q1(= 23) < p02q2(= 26), which obtains the result. This shows that, in

general, consistency with the necessary condition for M 0 (M 0 > 1) members does not

necessarily imply consistency with the unitary GARP condition.

As a second illustration, we recapture the data (observed prices and aggregate

quantities) in Example 7. On the one hand, Examples 8 and 9 conclude that these

data do not satisfy the necessary condition in Proposition 4 when using the corre-

sponding assignable quantities for M = 2; in words, a data rationalization in terms

of �two-member rationality� is impossible. On the other hand, it is easily veri�ed

that these data do satisfy the unitary GARP condition. Speci�cally, we have that
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p01q1(= 28) < p01q2(= 30) and p02q2(= 28) > p02q1(= 22), which gives the result.

More generally, this shows that, with assignable quantity information, consistency

with the unitary GARP condition does not necessarily imply consistency with the

necessary condition for M =M 0 with M 0 > 1.

Given this independence and the fact that Varian (1982) used the unitary GARP

condition for unitary recovery, we conclude that the necessary condition in Proposition

4 provides a powerful basis for nonparametrically addressing sharing rule recovery. An

important result in our following discussion is that this condition can obtain precise

recovery even if no assignable quantity information is available. Still, at this point we

want to stress that we do -of course- expect assignable quantity information to yield

important value-added in practical applications. Speci�cally, the foregoing discussion

makes clear that additional assignable quantity information generally yields a more

stringent necessary condition, which in turn obtains more precise recovery results. For

brevity, we will not explicitly illustrate recovery with assignable quantity information

in what follows, but we believe the analogy with the example that will be given

(without assignable quantity information) is fairly straightforward.

5.2. Sharing rule recovery

Essentially, we de�ne bounds on the feasible income shares bymt de�ned in De�nition 5
in terms of the feasibility restrictions implied by the necessary condition in Proposition

4. As a preliminary step, we recall the de�nitional fact

XM

m=1
bymt = yt; (5.1)

which holds for any speci�cation of the set of feasible personalized prices and quan-

tities bSA = f�bp1t ; :::; bpMt ; bqt� ; t = 1; :::; Tg. Combination of (5.1) with qlt � qAlt for all

l de�nes trivial upper and lower bounds on bymt as
(0 �) p0tqAmt � bymt � p0t �qt �XM

l=1;l 6=m
qAlt

�
(� yt) ; (5.2)

and, of course, these initial bounds will generally be tighter when more assignable

quantity information is available. In the following, we will show that collective ra-

tionality (summarized in terms of the necessary condition in Proposition 4) implies
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additional restrictions on the income shares bymt that, in general, can imply tighter

bounds than those de�ned in (5.2).

To sketch the basic idea, we �rst consider a speci�c set bSA and specify the restric-
tions on feasible income shares bymt that are implied by the corresponding relations

Rm (without explicitly considering the corresponding speci�cation of prices bpmt and
quantities bqmt in bSA). For the given set bSA, De�nition 4 requires bymt = (bpmt )0 bqt �
(bpmt )0 bqs whenever bqs Rm bqt. Using (bpmt )0 bqs � p0t

�
qs �

XM

l=1;l 6=m
qAls

�
, we obtain

that bymt � p0t �qs �XM

l=1;l 6=m
qAls

�
whenever bqsRmbqt.

As such, if p0t
�
qs �

XM

l=1;l 6=m
qAls

�
< p0t

�
qt �

XM

l=1;l 6=m
qAlt

�
, this obtains an upper

bound on the income share bymt of member m that is lower than the trivial upper

bound p0t
�
qt �

XM

l=1;l 6=m
qAlt

�
in (5.2). Next, similarly constructed upper bounds

for bylt (l 6= m) de�ne a lower bound for bymt that can be higher than the trivial lower
bound p0tq

Am
t in (5.2).

In practice, we do not observe a speci�c bSA and corresponding relations Rm; but
the approach developed in Section 4 allows for de�ning restrictions on feasible spec-

i�cations of the Rm, which we de�ned in terms of the hypothetical relations Hm

(Proposition 4). Similar to before, we avoid using a speci�c bSA. That is, we replace
the relations Rm by their hypothetical counterparts Hm in the above argument and,

consequently, consider speci�cations of the hypothetical relations Hm that are consis-

tent with the rules (i)-(vii) in Proposition 4. Starting from our earlier IP formulation

of the necessary condition, we reformulate the hypothetical relations Hm in terms of

the binary variables xmst 2 f0; 1g (with, to recall, xmst = 1 interpreted as �qs Hm qt�).

This obtains the following result.

Proposition 5. Let SA = f(pt;qt;qA1t ; :::;qAMt ); t = 1; :::; Tg be a set of observa-
tions. For any set bSA that satis�es condition (ii) in Proposition 1, the corresponding
feasible income shares bymt , m = 1; :::;M , meet

(SR-i)
PM

m=1 bymt = yt,
(SR-ii) p0tq

Am
t � bymt , and

(SR-iii) bymt � p0t �qs �XM

l=1;l 6=m
qAls

�
� yt (1� xmst) ;

for xmst 2 f0; 1g consistent with (IP-i)-(IP-vii).
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In this result, the fact that we consider xmst 2 f0; 1g consistent with (IP-i)-(IP-vii)
implies that we focus on feasible income shares de�ned by hypothetical relations Hm

that meet rules (i)-(vii) in Proposition 4. Given this, the interpretation of the �sharing

rule�(SR) constraints is as follows. First, the constraint (SR-i) imposes (5.1) while the

constraint (SR-ii) implies the trivial bounds de�ned in (5.2); they are -of course- linear

in nature. Finally, the constraint (SR-iii) imposes bymt � p0t

�
qs �

XM

l=1;l 6=m
qAls

�
if

xmst = 1 (which corresponds to qsH
mqt). Similar to before, given this characterization

of the set of feasible income shares, one can de�ne upper (or lower) bounds on the

income share for each member m by solving the MILP problem that optimizes the

objective max bymt (or min bymt ) subject to (IP-i)-(IP-vii) and (SR-i)-(SR-iii).
Example 11 illustrates the result by recapturing the data structure of Examples

5 and 6, which considered special cases of the collective model. Interestingly, even

though we impose minimal a priori structure (in terms of preferences and assignable

quantity information), we get exactly the same sharing rule bounds as in these special

cases. This also shows that the proposed method can yield very tight bounds even if

no assignable quantity information can be used and the sample is small. Of course,

we can generally expect the bounds to become tighter when more information can be

used (including additional assignable quantity information and/or more observations).

Like before, such additional information can also involve additional restrictions (or

testable assumptions) on the sharing rule; compare with our discussion of Example

5.

Example 11. We recapture the situation of Example 5, with corresponding observed
prices and aggregate quantities. Since there is no assignable quantity information

(qAmt = 0 for m = 1; 2 and t = 1; 2; 3), the trivial bounds in (SR-ii) merely imply

0 � bymt � yt for each m and t and, thus, (SR-ii) is redundant in view of (SR-i). As a

preliminary step, recall that these prices and quantities imply

y1 = 1 + �; p01q2 = 1; p
0
1q3 = �=2;

y2 = 1 + �; p02q1 = 1; p
0
2q3 = �=2;

y3 = 1; p03q1 = 0:5 + �=2; p
0
3q2 = 0:5 + �=2:

On the one hand, because p0sqs > p0sqt and p
0
tqt > p0tqs for all s; t = 1; 2; 3

we must have qsHmqt and qtH lqs (t 6= s and m 6= l); this follows from rules (i) and
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(iv) in Proposition 4: On the other hand, rule (vi) in Proposition 4 implies that we

cannot have q2Hmq1 and q3H lq1 (m 6= l) because p01q1 > p01 (q2 + q3); and, similarly,
because p02q2 > p

0
2 (q1 + q3) we cannot have q1H

mq2 and q3H lq2: Summarizing, we

must always have q1Hmq3, q1Hmq2, q3Hmq2 and q2H lq3, q2H lq1, q3H lq1. Or,

using the IP formulation, we necessarily obtain xm13 = x
m
12 = x

m
32 = 1 and x

l
23 = x

l
21 =

xl31 = 1. It is easily veri�ed (e.g. using the IP formulation) that this speci�cation

satis�es the necessary condition in Proposition 4 (and we recall that this condition is

also su¢ cient for T = 3 if there is no assignable quantity information).

Using (SR-i) and (SR-iii), this speci�cation of the hypothetical relations implies

xm13 = 1) bym3 � p03q1 = 0:5 + �=2) byl3 = y3 � bym3 � 0:5� �=2;
xl23 = 1) byl3 � p03q2 = 0:5 + �=2) bym3 = y3 � byl3 � 0:5� �=2:

Similarly, we get

xm32 = 1) bym2 � p02q3 = �=2) byl2 = y2 � bym2 � 1� �=2;
xl31 = 1) byl1 � p01q3 = �=2) bym1 = y1 � byl1 � 1� �=2:

This obtains tight bounds for bymt and bylt (t = 1; 2; 3) when � gets small. For

example, � arbitrarily close to zero yields bym1 � 1, byl1 � 0 and bym2 � 0, byl2 � 1, whileby13 � by23 � 0:5.
As a concluding remark, we indicate that the proposed method is not readily

adapted for recovering the feasible personalized prices and quantities for the general

collective consumption model under consideration. In fact, such non-recoverability

applies for some good as soon as we cannot identify it a priori either as exclusively

privately consumed without externalities, or as exclusively publicly consumed. (The

other cases have been covered in Section 3.) To illustrate, we consider such a good

e that is privately consumed and characterized by externalities; we exclude public

consumption and private consumption without externalities to keep the argument

simple. For this good, neither the feasible personalized quantities ((Qm
t )e for each

member m) nor the feasible personalized prices ((Pl;m
t )e for each pair of members

m and l) are �xed a priori. By using the sharing rule bounds, which -to recall-

can still be recovered in this case, the method subsequently allows for bounding the
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product (Pl;m
t )e (Q

m
t )e of the feasible personalized prices and quantities. But it does

not allow for separately bounding the constituent factors (Pl;m
t )e and (Qm

t )e. Example

12 illustrates the argument.

Example 12. We recapture the situation of Example 11, with corresponding ob-
served prices and aggregate quantities. Suppose that the good 3 is privately consumed

and characterized by externalities, i.e. (q1t )3 = (q
2
t )3 =

�
Qh
t

�
3
= 0 for t = 1; 2; 3. The

conclusion of Example 11 then implies

0:5� �=2 �
�
P1;1
3

�
3

�
Q1
3

�
3
+
�
P1;2
3

�
3

�
Q2
3

�
3
� 0:5 + �=2 and

0:5� �=2 �
�
P2;1
3

�
3

�
Q1
3

�
3
+
�
P2;2
3

�
3

�
Q2
3

�
3
� 0:5 + �=2;

and, clearly, these non-linear constraints do not impose separate bounds for
�
P1;m
3

�
3
,�

P2;m
3

�
3
and (Qm

3 )3. [Evidently, directly similar arguments can be constructed for the

goods 1 and 2.]

Interestingly, this limitation of our method complies with a similar conclusion in

the parametric literature (see Chiappori and Ekeland, 2005, for a detailed discussion).

In that literature, existing results fail to obtain �identi�ability�(of the decision struc-

ture underlying the observed collective consumption behavior) in exactly the same

cases in which our method fails to recover (separate bounds on) feasible personalized

prices and quantities.

6. Summary and conclusions

We have presented nonparametric �revealed preference� type testability and recov-

erability results for collective consumption models that incorporate the possibility

of assignable quantity information. First, we have derived testable necessary and

su¢ cient conditions for data consistency with special cases of the collective model

(e.g. the case with all goods publicly consumed, and the case with all goods pri-

vately consumed without externalities); these conditions can be checked by means of

integer programming (IP) solution algorithms. In addition, we have demonstrated

that these IP characterizations of collective rationality can be used to subsequently

recover bounds on feasible personalized prices (for publicly consumed quantities),
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feasible personalized quantities (for privately consumed quantities without external-

ities), and the feasible income shares (i.e. the sharing rule). Such recovery of the

feasible personalized prices, personalized quantities and income shares in turn allows

for empirically addressing welfare-related issues that are speci�c to the collective con-

sumption model. Next, we have established a testable necessary condition for the

most general model in our setting (i.e. the case in which any good can be publicly

consumed as well as privately consumed, possibly with externalities); again, this con-

dition can be checked by means of IP solution algorithms. Even though this general

model imposes minimal structure a priori, we have shown that the IP characteriza-

tion allows for deriving bounds on the feasible income shares. In general, assignable

quantity information entails more powerful recovery results. Still, we have also shown

that precise nonparametric recovery (i.e. tight bounds) can be obtained even if no

assignable quantity information is available.

Appendix: proofs

Proof of Proposition 1

Varian (1982) has proven equivalence between conditions (ii) and (iii), so we can

restrict to proving equivalence between conditions (i) and (iii). This proof extends

the proof of Proposition 1 of Cherchye, De Rock and Vermeulen (2007), who consider

two-member households and do not account for the possibility of assignable quantity

information.

1. Necessity. Under condition (i), we have that each bqt = �q1t ; :::; qMt ;Qt

�
solves the

problem

max
(q1;:::;qM ;Q)

MX
m=1

�mt U
m (qm;Q) s.t. p0t[

XM

m=1
qm + (

XM

m=1
Qm +Qh)] � p0tqt:

Given concavity, the functions Um are subdi¤erentiable, which carries over to their

weighted sum
MP
m=1

�mt U
m:8 An optimal solution to the above maximization problem

8To be precise, �Um (m = 1; :::;M) is convex and therefore subdi¤erentiable. This, of course,
does not a¤ect our argument.
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must therefore satisfy (for �t the Lagrange multiplier associated with the budget

constraint)

�mt U
m
qmt
� �tpt and

MX
m=1

�mt U
m
Qc
t
� �tpt;

for Umqmt a subgradient of the function Um de�ned for the vector qm and evaluated

at qmt , and U
m
Qc
t
a subgradient de�ned for Qc and evaluated at Qc

t (c = 1; :::;M; h) :

Letting Pm;c
t =

Um
Qct

�t
and �mt =

�t
�mt
thus gives for each m

Umqmt � �
m
t pt and U

m
Qc
t
� �mt P

m;c
t : (6.1)

Next, concavity of the functions Um implies for each m

Um (bqs)� Um (bqt) � Umqmt (qms � qmt ) + X
c=1;:::;M;h

UmQc
t
(Qc

s �Qc
t) : (6.2)

Substituting (6.1) in (6.2) and setting Umk = U
m (bqk) (k = s; t) obtains condition

(iii) of the proposition.

2. Su¢ ciency. Under condition (iii), for any bq= �q1; :::; qM ;Q� such that p0t[PM
m=1 q

m+

(
PM

m=1Q
m +Qh)] � p0tqt and qm � qAmt we can de�ne for all m

Um (bq) = min
t2f1;:::;Tg

�
Umt + �

m
t (bpmt )0 (bq� bqt)� : (6.3)

Varian (1982) proves that Um (bqt) = Umt . Next, given �mj 2 <++, we have that
MX
m=1

�mt U
m (bq) � MX

m=1

�mt
�
Umt + �

m
t (bpmt )0 (bq� bqt)� :

Without losing generality, we concentrate on �mt = (1=�
m
t ), which obtains

MX
m=1

�mt U
m (bq) � MX

m=1

�mt U
m
t + (pt)

0 (q� qt) ;

for q = [
PM

m=1 q
m + (

PM
m=1Q

m +Qh)]:
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Since p0tq � p0tqt, we thus have

MX
m=1

�mt U
m (bq) � MX

m=1

�mt U
m
t =

MX
m=1

�mt U
m
t (bqt) ;

which proves that bqt maximizes MP
m=1

�mt U
m (qm;Q) subject to p0t[

PM
m=1 q

m+(
PM

m=1Q
m+

Qh)] � p0tqt and q
m � qAmt . We conclude that the functions Um in (6.3) provide a

collective rationalization of the set SA. These functions have the properties listed in

condition (i) of the proposition (compare with Varian, 1982).

Proof of Proposition 2

1. Necessity. Suppose there exist feasible personalized prices
�bp1t ; :::; bpMt � such

that for each member m = 1; :::; M the set f
�
Pm;h
t ;qt

�
; t = 1; :::; Tg satis�es

GARP. Then the corresponding speci�cation of Pm;h
t , bymt and xmst 2 f0; 1g satis�es

rules (PP-i)-(PP-v). First, rules (PP-i) and (PP-ii) are satis�ed because the feasible

personalized prices and income shares are consistent with De�nitions 3 and 5. Next,

to see consistency with rules (PP-iii)-(PP-v), consider any sequence (u; v; :::; z) such

that
�
Pm;h
s

�0
qs �

�
Pm;h
s

�0
qu,

�
Pm;h
u

�0
qu �

�
Pm;h
u

�0
qv, ...,

�
Pm;h
z

�0
qz �

�
Pm;h
z

�0
qt.

(Trivially, another sequence does not impose restrictions on xmst .) Rule (PP-iii) then

implies xmsu = xmuv = ::: = xmzt = 1, and rule (PP-iv) consequently obtains xmst = 1.

Rule (PP-v) is then automatically satis�ed because the set f
�
Pm;h
t ;qt

�
; t = 1; :::; Tg

satis�esGARP, and thus
�
Pm;h
t

�0
qt �

�
Pm;h
t

�0
qs whenever

�
Pm;h
s

�0
qs �

�
Pm;h
s

�0
qu,�

Pm;h
u

�0
qu �

�
Pm;h
u

�0
qv, ...,

�
Pm;h
z

�0
qz �

�
Pm;h
z

�0
qt (which corresponds to bqs Rmbqt).

2. Su¢ ciency. If there exist Pm;h
t , bymt and xmst 2 f0; 1g that satisfy rules (PP-i)-

(PP-v), then there exist feasible personalized prices
�bp1t ; :::; bpMt � such that for each

member m = 1; :::; M the set f
�
Pm;h
t ;qt

�
; t = 1; :::; Tg satis�es GARP. We prove ad

absurdum. Suppose that for any speci�cation of
�bp1t ; :::; bpMt � we have a sequence (u;

v; :::; z) such that bqs Rm0 bqu; bqu Rm0 bqv; :::; bqz Rm0 bqt and �Pm;h
t

�0
qt >

�
Pm;h
t

�0
qs:

By construction, bqs Rm0 bqu; bqu Rm0 bqv; :::; bqz Rm0 bqt implies �Pm;h
s

�0
qs �

�
Pm;h
s

�0
qu,�

Pm;h
u

�0
qu �

�
Pm;h
u

�0
qv, ...,

�
Pm;h
z

�0
qz �

�
Pm;h
z

�0
qt. In terms of the rules (PP-i)-

(PP-v), this means that there always exists a sequence (u; v; :::; z) such that, on the
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one hand, xmsu = x
m
uv = ::: = x

m
zt = 1 (because of (PP-iii)) and thus x

m
zt = 1 (because

of (PP-iv)) while, on the other hand,
�
Pm;h
t

�0
qt >

�
Pm;h
t

�0
qs and thus rule (PP-v)

is violated. In other words, there does not exist Pm;h
t , bymt and xmst 2 f0; 1g that

simultaneously satisfy rules (PP-i)-(PP-v).

Proof of Proposition 3

The proof is directly analogous to that of Proposition 2.

Proof of Lemma 1

Rule (i):

1. Necessity. If for all sets bSA there exists m such that bqsRm0 bqt, then p0sqs � p0sqt.
We prove ad absurdum. Suppose for all sets bSA there exists m such that bqsRm0 bqt,
and p0sqs < p

0
sqt: This is impossible because p

0
sqs < p

0
sqt implies there exists at least

one set bSA such that not bqsRm0 bqt for all m. More speci�cally with an bSA such that
(bpms ) bqs = (p0sqs) =M and (bpms )0 bqt = (p0sqt) =M .
2. Su¢ ciency. Recall that each bqt = �

q1t ; :::; q
M
t ;Qt

�
satis�es qt =

PM
m=1 q

m
t +�PM

m=1Q
m
t +Q

h
t

�
, and each bpmt = �pm;1t ; :::; pm;Mt ;Pm

t

�
satis�es pm;mt = pt, p

m;l
t = 0

for l 6= m and Pm
t =

�
Pm;1
t ; :::;Pm;M

t ;Pm;h
t

�
such that pt =

PM
m=1P

m;c
t for all c:

Given this, p0sqs � p0sqt implies for any bSA there exists m such that (bpms )0 bqs �
(bpms )0 bqt and thus bqsRm0 bqt.
Rule (ii):

1. Necessity. bqsRm0 bqt for all sets bSA implies p0sqAms � p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
. We

prove ad absurdum. Suppose bqsRm0 bqt for all sets bSA and p0sqAms < p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
:

This is impossible because p0sq
Am
s < p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
implies there exists at

least one set bSA with not bqsRm0 bqt: More speci�cally with an bSA such that (bpms )0 bqs =
p0sq

Am
s and (bpms )0 bqt = p0s �qt �PM

l=1;l 6=m q
Al
t

�
:

2. Su¢ ciency. By construction, p0sq
Am
s � p0s

�
qt �

PM
l=1;l 6=m q

Al
t

�
implies (bpms )0 bqs �

(bpms )0 bqt for any bSA, and thus bqsRmo bqt for any bSA.
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Proof of Proposition 4

Given that a collective rationalization of the set SA is possible, we consider a set bSA
that is consistent with condition (ii) in Proposition 1. Using De�nition 4, this set bSA
de�nes relations Rm0 and R

m (m = 1; 2): We will show that these relations (de�ned

in terms of feasible personalized quantities bqt) must satisfy the analogues of rules
(i)-(vii) in Proposition 4. These requirements carry over to the hypothetical relations

Hm
0 and Hm (de�ned in terms of observed quantities qt) speci�ed in Proposition 4:

a collective rationalization of the set SA is possible only if there exists at least one

speci�cation of these hypothetical relations that is consistent with these requirements.

Rules (i) and (ii): These rules follow directly from Lemma 1.

Rule (iii): This rule imposes transitivity.

Rule (iv): For all m 2 M we have bqtk(m) Rm bqs for k (m) � M*, which re-

quires (bpms )0 bqs � (bpms )0 bqtk(m) because of condition (ii) in Proposition 1. As a re-
sult we have

P
m2M (bpms )0 bqs � P

m2M (bpms )0 bqtk(m) . Next, recall the de�nitional

fact
PM

m=1 (bpms )0 bqs = p0sqs. Given this, p
0
sqs � p0s

�PM*
k=1 qtk

�
necessarily impliesP

l =2M
�bpls�0 bqs � �

p0s

�PM*
k=1 qtk

�
�
P

m2M (bpms )0 bqtk(m)�. Thus, because p0sqtk =P
m2M (bpms )0 bqtk +Pl =2M

�bpls�0 bqtk for all k � M*, there must exist l =2 M and k

�M* such that
�bpls�0 bqs � �bpls�0 bqtk , or bqs Rl0 bqtk .

Rule (v): For all m 2 M we have bqtk(m) Rm bqs for k (m) � M*�1, which requires
(bpms )0 bqs � (bpms )0 bqtk(m) . As a result we have Pm2M (bpms )0 bqs � P

m2M (bpms )0 bqtk(m) :
Next, by construction

PM
m=1 (bpms )0 bqs = p0sqs andPm2M (bpms )0 bqtk(m) � p0s �PM*�1

k=1 qtk

�
:

Given this, p0sqs � p0s

�PM*
k=1 qtk

�
necessarily implies

P
l =2M

�bpls�0 bqs � p0sqtM*. In

turn, this implies that there must exist l =2M such that
�bpls�0 bqs � �bpls�0 bqtM*

, or bqs
Rl0 bqtM*

.

Rule (vi): For all m we have bqsk(m) Rm bqt for some k (m) � M*, which requires

(bpmt )0 bqt � (bpmt )0 bqsk(m) . As result we have
PM

m=1 (bpmt )0 bqt � PM
m=1 (bpmt )0 bqsk(m) .

Next, by construction we have
PM

m=1 (bpmt )0 bqt = p0sqs and
PM

m=1 (bpmt )0 bqsk(m) �
p0t

�PM*
k=1 qsk

�
: As a result, we obtain the requirement p0tqt �

PM*
k=1 p

0
tqsk .

Rule (vii): We have bqs Rm bqt, which requires (bpmt )0 bqt � (bpmt )0 bqs. By construction,
we have (bpmt )0 bqt � p0tq

Am
t and p0t

�
qs �

PM
l=1;l 6=m q

Al
s

�
� (bpmt )0 bqs: Hence, we must

have p0tq
Am
t � p0t

�
qs �

PM
l=1;l 6=m q

Al
s

�
.
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Proof of Proposition 5

The proof is directly analogous to that of Proposition 2 (necessity part).
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