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Heuristics for deciding

collectively rational consumption behavior

Fabrice Talla Nobibon∗, Laurens Cherchye†, Bram De Rock‡,
Jeroen Sabbe§, Frits C.R. Spieksma¶

Abstract. We consider the computational problem of testing whether observed house-
hold consumption behavior satisfies the Collective Axiom of Revealed Preferences (CARP).
We propose a graph such that the existence of a node-partitioning giving rise to two in-
duced subgraphs that are acyclic implies that the data satisfy CARP. Furthermore, we
propose and implement heuristics that are quite fast, that can be used to check reason-
ably large datasets for CARP and that can be of particular interest when used prior
to computationally demanding approaches. Finally, from the computational results we
conclude that these heuristics can be effective in testing CARP.

Keywords: Collective model of household consumption; Collective Axiom of Revealed
Preference; Pareto efficiency; Directed graph; Graph coloring; Graph partitioning; Acyclic
subgraph; Heuristics.

1. Introduction

The economics literature has paid notable attention to modeling household consumption be-
havior. In this respect, Chiappori’s (1988, 1992) collective model of household consumption
has become increasingly popular in recent years. The model explicitly recognizes that a
household consists of multiple individuals (household members/decision makers) with their
own rational preferences. It only assumes that household decisions are Pareto efficient, i.e.
the intra-household allocation process yields consumption outcomes such that no household
member can be made better off without making another member worse off. The use of Pareto
efficiency as the sole assumption is in sharp contrast with usual cooperative models of house-
hold consumption behavior, which typically combine multiple bargaining assumptions (see
Lundberg and Pollak (2007) for a recent survey).
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In the following, we concentrate on a general collective consumption model, which ac-
counts for consumption externalities and public consumption within the household (see
Browning and Chiappori (1998); Donni (2008) provides a neat overview of alternative col-
lective consumption models). This model provides a useful starting point for testing Pareto
efficiency of household collective consumption decisions: a rejection of the corresponding em-
pirical restrictions can be interpreted as a rejection of the efficiency assumption. Moreover,
given that all cooperative models use Pareto efficiency as a basic assumption, this can also
be seen as a basic test for the whole class of such cooperative models. More generally, Pareto
efficiency can be considered as a natural benchmark for analyzing the collective rationality
of collective decisions, in cooperative as well as non-cooperative settings.

Cherchye, De Rock and Vermeulen (2007, 2008) introduced the Collective Axiom of Re-
vealed Preferences (CARP) as a testable (nonparametric) condition for the general collective
consumption model. More specifically, CARP is a necessary and sufficient condition for ob-
served household consumption behavior to be consistent with the collective consumption
model. Because it uses minimal prior structure, checking CARP consistency implies a ‘pure’
test of Pareto efficiency. Such a test can provide a most convincing case for the goodness of,
in general, the Pareto efficiency assumption and, in particular, the collective consumption
model.

Recently, Cherchye et al. (2008) formulated the computational problem of verifying
CARP as an Integer Programming (IP) problem. They show practical usefulness of this
IP test for empirically evaluating the collective model: using the CPLEX IP solver, they
perform their test on real-life data sets that are of reasonably large size when compared to
existing nonparametric studies. Still it is well-known that solving IP problems with exact
implicit enumeration methods is computationally demanding. In another study, Deb (2008a)
proposes a heuristic for testing the collective model, yet he starts from a different condition
which is sufficient but not necessary for CARP : data satisfying this condition satisfy CARP,
but not necessarily vice versa. He shows that testing this condition is NP-complete.

In this paper we explore a graph-theoretical approach to deal with the computational
problem of verifying whether observed household consumption behavior satisfies CARP.
Facilitated by this graph-theoretical model, we propose heuristics to be able to quickly test
for CARP. A consequence of attempting to test CARP quickly, is that the outcome of a
heuristic may be inconclusive, i.e., it is possible that after running the heuristic it is still not
clear whether the data satisfy CARP. However, by performing computational experiments,
we show that a vast majority of real-life instances is susceptible to our approach. This
leads us to conclude that heuristics can be relevant for testing CARP, particularly for large
datasets; see Cherchye et al. (2008) and Deb (2008a) for recent discussions of the relevance
of testing CARP for large instances. Moreover, not only can our heuristics serve as an
alternative for exact and computationally demanding approaches like Integer Programming,
our heuristics can also be used as a precursor before starting an exact algorithm; we refer to
Section 5 for more details.

At a more general level, we demonstrate the usefulness of operations research techniques
to implement nonparametric (revealed preference) conditions for economic decision behavior;
our insights on testing CARP consistency can also be instrumental for designing operational
tests in alternative settings. For instance, the nonparametric approach for analyzing col-
lective consumption behavior is closely related to the literature on testable nonparametric
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conditions of general equilibrium models, which deals with formally similar issues. See,
for example, Brown and Matzkin (1996), Brown and Shannon (2000) and, for more recent
developments, Carvajal, Ray and Snyder (2004).

The rest of the paper unfolds as follows. Section 2 defines collective rationality and the
corresponding CARP condition. Section 3 introduces the graph formulation and establishes
the computational complexity of the resulting problem. Section 4 presents the heuristics.
Section 5 discusses the computational results. Section 6 concludes.

2. Collective rationality

Household consumption behavior that is consistent with the collective consumption model
is said to be collectively rational. As indicated above, a collective rationalization of the
data is possible if and only if the data are consistent with the Collective Axiom of Revealed
Preference (CARP). This section provides formal definitions of the different concepts.

2.1 Collective rationalization

We consider a two-member household that purchases the (non-zero) N -vector of quantities
q ∈ RN

+ with corresponding prices p ∈ RN
++. Generalizations for M -member households

can be obtained along the lines of Cherchye, De Rock and Vermeulen (2007; supplemental
material); this is also briefly discussed in Section 3. All goods can be consumed privately (e.g.
member 1 uses the car alone), publicly (e.g. member 1 and 2 use the car together), or both.
Generally, we have q = q1 + q2 + qh for q the (observed) aggregate quantities, q1 and q2 the
(unobserved) private quantities of each household member, and qh the (unobserved) public
quantities. Let S = {(pt, qt); t ∈ T ≡ {1 . . . , T}} be the corresponding set of T observations,
also referred to as the data. Note that this indeed implies that we only observe aggregate
information, and do not have any information concerning the intra-household allocation. For
ease of exposition, the scalar product p′tqt is written as ptqt.

The collective model explicitly recognizes the individual preferences of the household
members. Because we account for consumption externalities, these preferences may depend
not only on the own private and public quantities, but also on the other individual’s private
quantities. Formally, this means that the preferences of each household member m (m = 1, 2)
can be represented by a well-behaved utility function of the form Um that is defined in the
arguments q1, q2 and qh. (Well-behaved means that the utility functions should satisfy
‘local collective non-satiation’; this is the collective consumption analogue of standard local
non-satiation concept for the individual consumption model. See Cherchye, De Rock and
Vermeulen (2008) for more discussion.) Note that we do not demand that these utility
functions are concave. (Indeed, it has been argued that in the presence of externalities i.e.
the utility of one member depends on the private consumption of the other member, this
assumption of concave utility functions is problematic. See, for example, Starr (1969) and
Starret (1972).)

For aggregate quantities q, we define feasible personalized quantities q̂ as

q̂ =
(
q1, q2, qh

)
with q1, q2, qh ∈ Rn

+ and q1 + q2 + qh = q.
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In the following, we consider feasible personalized quantities because we assume the min-
imalistic prior that only the aggregate quantity bundle q and not the ‘true’ personalized
quantities are observed. Throughout, we will use that each q̂ defines a unique q.

Given this, a collective rationalization of S requires the existence of utility functions U1

and U2 such that each observed consumption bundle can be characterized as Pareto efficient,
in the following sense.

Definition 1 (collective rationalization). Let S = {(pt, qt); t ∈ T} be a set of observa-
tions. A pair of utility functions U1 and U2 provides a collective rationalization of S if for
each observation t there exist feasible personalized quantities q̂t such that Um (q̂r) > Um (q̂t)
implies U l (q̂r) < U l (q̂t) (m 6= l) for all feasible personalized quantities q̂r with ptqr ≤ ptqt.

2.2 Collective Axiom of Revealed Preference

This section defines CARP, which provides a testable nonparametric necessary and sufficient
condition for a collective rationalization of the data as described in the previous section. We
refer to Cherchye, De Rock and Vermeulen (2007, 2008) for detailed discussions on CARP
and the equivalence result.

Essentially, CARP imposes empirical restrictions on hypothetical member-specific pref-
erence relations Hm

0 and Hm; these relations represent feasible specifications of the true
individual preference relations that are consistent with the information that is revealed by
the set of observations S. First, qsH

m
0 qt means that we ‘hypothesize’ that member m (di-

rectly) prefers the quantities qs over the quantities qt, m = 1, 2. Next, qsH
mqt represents

the transitive closure, that is qsH
mqt means that there exists a (possibly empty) sequence

u, . . . , z ∈ T with qsH
m
0 qu, quH

m
0 qv,. . . and qzH

m
0 qt. Thus given Hm

0 for m ∈ {1, 2}, the
transitive closure Hm follows. Note that, while the ‘true’ preferences are -of course- ex-
pressed in terms of the feasible personalized quantities q̂ (i.e. member m prefers qs over
qt only if Um(q̂s) ≥ Um(q̂t)), the hypothetical preferences only use observable information
(captured by the observed aggregate prices p and quantities q in the set S). This naturally
complies with the assumption that in the general model we have no information concerning
the feasible personalized quantities.

Given this notion of hypothetical preference relations, we can define CARP. The next
definition, which reformulates Definition 6 of Cherchye, De Rock and Vermeulen (2008),
gives us a condition that can be empirically tested on aggregate price-quantity information.
Moreover, these authors show that there exists a collective rationalization of the data in
terms of Definition 1 if and only if the data is consistent with CARP. As such, we obtain
the desired test of Pareto efficiency.

Definition 2 (CARP). Let S = {(pt, qt); t ∈ T} be a set of observations. The set S
satisfies the Collective Axiom of Revealed Preference ( CARP) if there exist hypothetical
relations Hm

0 for each member m ∈ {1, 2} that meet:

Rule 1: For s, t ∈ T: if psqs ≥ psqt, then qsH
1
0qt or qsH

2
0qt;

Rule 2:

{
a) For s, t ∈ T : if psqs ≥ psqt and qtH

mqs, then qsH
l
0qt (l 6= m),

b) For s, t1, t2 ∈ T : if psqs ≥ ps(qt1 + qt2) and qt1H
mqs, then qsH

l
0qt2 (l 6= m)

;
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Rule 3:

{
a) For s, t ∈ T : if ptqt > ptqs, then ¬(qsH

1qt) or ¬(qsH
2qt)

b) For s, t1, t2 ∈ T : if ptqt > pt(qs1 + qs2), then ¬(qs1H
1qt) or ¬(qs2H

2qt)
.

Interestingly, this CARP condition has a direct interpretation in terms of the Pareto
efficiency requirement that underlies collective rationality. Rule 1 states that, if the quantities
qs were chosen while the quantities qt were equally attainable (under the prices ps), then it
must be that at least one member prefers the quantities qs over the quantities qt (i.e. qsH

1
0qt

or qsH
2
0qt). Rule 2 can again be interpreted in terms of Pareto efficiency. Specifically, Rule

2a states that, if member m prefers qt over qs for the bundle qt not more expensive than qs

(i.e. psqs ≥ psqt), then the choice of qs can be rationalized only if the other member l prefers
qs over qt. Indeed, if this last condition were not satisfied, then the bundle qt (under the
given prices ps and expenditures psqs) would imply a Pareto improvement over the chosen
bundle qs. Analogously, Rule 2b states that, if the summed bundle qt1 + qt2 is attainable and
member m prefers qt1 over qs, then Pareto efficiency requires that the other member l prefers
qs over qt2 . Finally, Rule 3 complements Rule 2. Rule 3a states that, if qs was attainable
when qt was chosen, then it cannot be that both members prefer qs over qt; otherwise Pareto
improvements would have been possible (under the given prices pt and outlay ptqt), which
conflicts with collective rationality. Similarly, Rule 3b states that, if qs1 + qs2 was attainable
when qt was chosen, then it cannot be that member 1 prefers qs1 over qt while, at the same
time, member 2 prefers qs2 over qt.

3. A graph-theoretic formulation

Deciding whether the data S satisfy CARP is, in fact, a decision problem. In this section, we
show how to build a directed graph G(S) = (V (S), A(S)) with the following property: if the
nodes of V (S) can be partitioned into two sets such that each induced subgraph is acyclic,
then the data satisfy CARP. We also provide an example which shows that the converse
is not necessarily true; that is, there exist instances for which the graph G(S) does not
admit a partition into two acyclic subgraphs while there exist H1

0 , H2
0 satisfying Rules 1-3.

Finally, we show that deciding whether such a partition into two acyclic subgraphs exists for
our graph is NP-complete. In what follows we will, for reasons of notational convenience,
simply write G, V, and A instead of G(S), V (S), and A(S) respectively. An equivalent way of
phrasing the graph-theoretic problem is as follows: can we color each node of G red or blue
such that no monochromatic cycle exists? (A monochromatic cycle is a collection of arcs
(v1, v2), (v2, v3), . . . , (vk, v1) such that all vi’s have the same color). For an arbitrary directed
graph G, the problem of node-partitioning the graph into two acyclic induced subgraphs was
proven to be NP-complete by Deb (2008b). Results for undirected graphs can be found in
Chen (2000) (who gives an efficient algorithm to minimize the number of acyclic subgraphs),
and more recently by Chang, Chen and Chen (2004) (who study the complexity of the
problem for specific graph classes).

Let us now describe how the graph is built. Given a set of observations S = {(pt, qt); t ∈
T}, each distinct pair of observations (s, t) with s, t ∈ T represents a node in V if psqs ≥ psqt.
Hence, the nodes (s, t) and (t, s) (if they exist) are different. No other nodes exist in V . The
set of arcs A is defined in two stages:
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a: First of all, we draw an arc from a node (s, t) to a node (u, v) whenever t = u. The
resulting graph is denoted by G′ = (V, A′).

b: Second, for any given three distinct observations s, t1, t2 ∈ T, verify whether psqs ≥
ps(qt1 + qt2) and whether there exist u, v ∈ T (respectively u′, v′ ∈ T) such that
(t1, u), (v, s) ∈ V (respectively (t2, u

′), (v′, s) ∈ V ). If so, we distinguish two differ-
ent cases:

• (t1, u) 6= (v, s) (respectively (t2, u
′) 6= (v′, s)). If there is a path in G′ from (t1, u)

to (v, s) (respectively from (t2, u
′) to (v′, s)), then we draw an arc from (s, t2) to

(t1, u) (respectively from (s, t1) to (t2, u
′)). Notice that the nodes (s, t1) and (s, t2)

exist in V .

• (t1, u) = (v, s) (respectively (t2, u
′) = (v′, s)). Then we draw an arc from (s, t2)

to (t1, u) (respectively from (s, t1) to (t2, u
′)).

The directed graph G = (V, A) is then defined by the set of nodes V described above and
the set of arcs A described by a) and b). The arcs defined in b) will be called “double-sum
arcs”. Notice that if there is no extra arc defined in b), then G = G′. Observe that we
associate a node to a pair of observations. This allows us to take into account relationships
between three observations as formulated in Rule 2 and Rule 3.

The following result shows that when the graph G can be node-partitioned into two
acyclic subgraphs, the set of observations S = {(pt, qt); t ∈ T} satisfies CARP ; that is there
exist Hm

0 , m = 1, 2 satisfying Rules 1-3. In other words, when we can color each node of the
graph G with one of the two colors red or blue, such that V = VB ∪VR, VB ∩VR = ∅ and the
induced subgraphs GB = (VB, AB), GR = (VR, AR) are each acyclic, the preference relations
Hm

0 , m = 1, 2 exist.

Theorem 1. If the graph G can be node-partitioned into two acyclic subgraphs then the set
of observations S = {(pt, qt); t ∈ T} satisfies CARP; that is there exists H1

0 , H2
0 satisfying

Rule 1-3.

Proof: Suppose that G can be partitioned into two acyclic subgraphs GB = (VB, AB) and
GR = (VR, AR). From this partition we infer H1

0 and H2
0 as follows.

Consider H1
0 and H2

0 defined by qsH
1
0qt if and only if (s, t) ∈ VB and qsH

1
0qs for all s ∈ T.

Similarly, qsH
2
0qt if and only if (s, t) ∈ VR and qsH

2
0qs for all s ∈ T. In other words, for each

observation s ∈ T, qsH
1
0qs and for each node (s, t) that is colored blue, we have qsH

1
0qt. For

each node (s, t) that is colored red, we have qsH
2
0qt and for each observation s ∈ T, qsH

2
0qs.

We are now going to check that Rules 1-3 hold.
Rule 1: Let s, t ∈ T be two distinct observations such that psqs ≥ psqt then (s, t) ∈ V =
VB∪VR, which implies that (s, t) ∈ VB or (s, t) ∈ VR and hence qsH

1
0qt or qsH

2
0qt by construc-

tion of H1
0 and H2

0 . Moreover, for each observation s ∈ T qsH
i
0qs (i = 1, 2) by definition.

Thus Rule 1 is satisfied.
Rule 2: a) Clearly, this rule is satisfied for a single observation s. Let s, t ∈ T be
two distinct observations such that psqs ≥ psqt and qtH

1qs. psqs ≥ psqt implies that
(s, t) ∈ V and qtH

1qs implies that there exist observations u, u0, u1, . . . , uk, v ∈ T such

6



that (t, u), (u, u0), (u0, u1), . . . , (uk−1, uk), (uk, v), (v, s) ∈ V . By construction of G, there is
a cycle containing the nodes (s, t), (t, u), (u, u0), (u0, u1), . . . , (uk−1, uk), (uk, v) and (v, s).
As qtH

1qs, all the nodes (t, u), (u, u0), (u0, u1), . . . , (uk−1, uk), (uk, v), (v, s) are in VB. Since
GB = (VB, AB) is an acyclic subgraph, (s, t) ∈ VR and hence qsH

2
0qt. Notice that a similar

reasoning is applied to show that if psqs ≥ psqt and qtH
2qs then qsH

1
0qt for any observations

s and t. This completes the proof that the Rule 2: a) is satisfied.
Rule 2: b) Suppose s, t1, t2 ∈ T. Notice that if s = t1 or s = t2 then psqs < ps(qt1 + qt2)
and if t1 = t2 checking this rule becomes equivalent to checking Rule 2: a). Hence, we
assume that s, t1, t2 are three distinct observations such that psqs ≥ ps(qt1 +qt2) and qt1H

1qs.
psqs ≥ ps(qt1 + qt2) implies that (s, t1) and (s, t2) belong to V . qt1H

1qs implies that there
exists u, v ∈ T such that (t1, u), (v, s) ∈ V and either (t1, u) 6= (v, s) and there is a path from
(t1, u) to (v, s) or (t1, u) = (v, s). By construction of G, there is a cycle containing the node
(s, t2) and (t1, u). Remark that if (t1, u) = (v, s) then that cycle contains only two nodes
which are (t1, s) and (s, t2). Moreover, qt1H

1qs indicates that all the nodes of the path from
(t1, u) to (v, s) (included) are in VB or (t1, s) ∈ VB if (t1, u) = (v, s). Since GB = (VB, AB) is
an acyclic subgraph, (s, t2) ∈ VR and qsH

2
0qt2 . As in the proof of Rule 2: a), the symmetry

between H1
0 and H2

0 allows this reasoning to be applied to show that if psqs ≥ ps(qt1 + qt2)
and qt1H

2qs, qsH
1
0qt2 for any three distinct observations s, t1, t2. This completes the proof of

the Rule 2: b).
Rule 3: a) As VB ∩ VR = ∅ and psqs = psqs for each s ∈ T, this property holds.
Rule 3: b) Suppose that s, t1, t2 ∈ T are three distinct observations such that psqs >
ps(qt1 + qt2) and qt1H

1qs and qt2H
2qs. psqs > ps(qt1 + qt2) implies that (s, t1) ∈ V = VB ∪VR.

From qt2H
2qs and Rule 2: b), we know that (s, t1) ∈ VB. qt1H

1qs implies that there exists
u, v ∈ T such that (t1, u), (v, s) ∈ V and either (t1, u) 6= (v, s) and there is a path from
(t1, u) to (v, s) in GB = (VB, AB) or (t1, u) = (v, s) and (t1, s) ∈ VB. (s, t1) ∈ VB implies
that GB = (VB, AB) contains a cycle. This contradicts the fact that GB is acyclic.
We have shown that if the graph G can be partitioned into two acyclic subgraphs, then from
these subgraphs, we can infer H1

0 and H2
0 satisfying Rules 1-3. �

Notice that the arguments used to prove Theorem 1 can be generalized for a household with
M ≥ 2 members. Hence, for a household with more than two members, if the graph G
can be node-partitioned into at most M acyclic subgraphs, then there exist H1

0 , H2
0 , . . . , HM

0

satisfying the corresponding generalization of Rules 1-3.
The following example shows how the graph is built from a specific set of observations

using the procedure described above.

Example 1. Consider a situation with 3 goods (N = 3) and two household members (M =
2), with the following three observed price-quantity combinations (T = 3):
q1 = (8 2 2)′; q2 = (1 8 3)′; q3 = (1 2 8)′; p1 = (6 2 2)′; p2 = (2 6 1)′;
p3 = (2 3 5)′. Notice that the following double sum inequalities hold: p1q1 > p1(q2 + q3)
and p2q2 > p2(q1 + q3). The graph representation of this problem is given by Figure 1.

In Figure 1, we have colored the nodes red and blue such that both subgraphs are acyclic.
The result of Theorem 1 implies that the set of observations of Example 1 satisfies CARP.

Example 2 shows that the converse of Theorem 1 is not true.

7



Figure 1: The graph built from the data of example 1.

Example 2. Consider a situation with 4 goods (N = 4) and two household members (M =
2), with the following four observed price-quantity combinations (T = 4):
q1 = (8 2 2 0)′; q2 = (1 8 3 0)′; q3 = (1 2 8 0)′; q4 = (1 2 0 5)′; p1 =
(6 2 2 10)′; p2 = (2 6 1 10)′; p3 = (2 3 10 4)′; p4 = (1 1 1 1)′. Notice
that the following double sum inequalities hold: p1q1 > p1(q2 + q3), p2q2 > p2(q1 + q3),
p3q3 > p3(q1 + q4) and p3q3 > p3(q2 + q4). The graph representation of this problem is given
by Figure 2.

In Figure 2, we realize that it is not possible to color the nodes of the graph using only two
colors in such a way that both subgraphs are acyclic. More explicitly, in any feasible coloring
of this graph, one can deduce that nodes (1, 3) and (2, 3) need to have a different color. It
follows that (3, 4) cannot be feasibly colored.

However, it is easy to see that H1
0 and H2

0 defined as follows satisfy Rules 1-3. Define
H1

0 and H2
0 by q1H

1
0q2, q1H

1
0q3, q3H

1
0q2, q3H

1
0q4 and qiH

1
0qi for i = 1, . . . , 4. q2H

2
0q1, q2H

2
0q3,

q3H
2
0q1, q3H

2
0q4 and qiH

2
0qi for i = 1, . . . , 4. Notice that H1

0 and H2
0 have non-trivial inter-

section; that is there exist two distinct observations s, t such that qsH
1
0qt and qsH

2
0qt. In

fact, any H1
0 and H2

0 satisfying Rules 1-3 for this graph will have a non-trivial intersection.
This non-trivial intersection of H1

0 and H2
0 is necessary for this example to hold. Therefore,

if there exists H1
0 and H2

0 with only trivial intersection, then the corresponding graph can
be partitioned into two acyclic subgraphs and the converse of Theorem 1 will hold.

Now, we show that deciding whether it is possible to partition the nodes of a graph
G = (V, A), which originates from the data of a collectively rational consumption behavior
problem, into two sets such that each induced subgraph is acyclic, is NP-complete.
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Figure 2: The graph built from the data of example 2.

Theorem 2. Given a directed graph G = (V, A) built from the data of a collectively ratio-
nal consumption behavior problem, deciding whether a node-partitioning of G into 2 acyclic
subgraphs exists, is NP-complete.

Proof: See the Appendix. �

Notice that this result does not imply that testing CARP is NP-complete; this is because
Theorem 1 is not an equivalence. Theorem 2 shows that when one imposes that solutions
should be found quickly (and we describe heuristics in the next section), the consequence is
that there are instances allowing a feasible partition, which will not be found by the method
employed (unless P = NP ).

4. Heuristics

This section is devoted to simple heuristics for partitioning the graph G = (V, A) described
in Section 3. We first present an algorithm which partitions the graph G into two acyclic
subgraphs when G = G′. Thus, we prove here that in case there are no double-sum arcs, the
data satisfy CARP. We next present heuristics for solving the general case by combining a
greedy rule for coloring the nodes of G with a specific sequence of the nodes.

4.1 The special case where G = G′

We present an algorithm which partitions the graph G into two acyclic subgraphs when
G = G′. This corresponds to the case where there are no double sum arcs. Notice that the
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graph G still may contain a cycle.

Algorithm 1 Node-partitioning G when G = G′

1: for t = 1, . . . , T − 1 do
2: for s = t + 1, . . . , T do
3: if (t, s) ∈ V then
4: color (t, s) red
5: end if
6: if (s, t) ∈ V then
7: color (s, t) blue
8: end if
9: end for

10: end for

The following result shows that Algorithm 1 partitions the graph G into two acyclic
subgraphs when G = G′.

Lemma 1. If G = G′, then Algorithm 1 partitions the graph G into two acyclic subgraphs.

Proof: Applying Algorithm 1 yields a coloring of the nodes of G. Let VR = {(s, t) ∈
V, (s, t) red} and VB = {(s, t) ∈ V, (s, t) blue}. Clearly, by construction, we have VR∩VB = ∅
and VR ∪ VB = V . It remains to show that the subgraph GB induced by VB (as well as
the subgraph GR induced by VR) is acyclic. Since G = G′ there are no double sum arcs,
hence, each arc goes from a node (s, t) to a node (t, u). Now, suppose that GB is cyclic.
Then there exists a sequence of distinct observations t1, t2, . . . , tn ∈ T such that the nodes
(ti, ti+1), i = 1, . . . , n− 1 and (tn, t1) are in VB (all these nodes are blue). However, ∃i0 such
that ti0 < ti0+1 and (ti0 , ti0+1) ∈ VB (otherwise, we have t1 > t2 > . . . > tn > t1, which is
impossible). As ti0 < ti0+1, Algorithm 1 colors (ti0 , ti0+1) red and hence GB is not cyclic, a
contradiction. A similar argument shows that GR is acyclic. �

Algorithm 1 runs in time O(T 2). Moreover, it can be applied for any value of M ≥ 2. In
this case, at most two subgraphs are non-empty. Finally, we remark that this special case is
quite relevant: we refer to Section 5 for more details.

4.2 Heuristics for arbitrary data

We distinguish coloring strategies on the one hand, and specific node orderings, or sequences,
on the other hand. More specifically, we present 4 coloring strategies for attempting to color
a directed graph into two acyclic subgraphs and 13 sequences of nodes. A heuristic then is
a combination of a coloring strategy and an ordering.

4.2.1 Coloring strategies

CS1: This coloring strategy works as follows: Given a sequence of nodes, color iteratively
each node red, unless this would create a red cycle. In case coloring the current node
blue would create a blue cycle, we stop (and output: 0), else we color it blue, and
continue.
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CS2: Given a sequence of nodes, this coloring strategy colors iteratively each even (respec-
tively odd) node red (respectively blue), unless this would create a red (respectively
blue) cycle. In case coloring the current node blue (respectively red) would create a
blue (respectively red) cycle, we stop (and output: 0), else we color it blue(respectively
red), and continue. Notice that in this coloring strategy, a node is called “even” (re-
spectively “odd”) when its position in the sequence is even (respectively odd).

CS3: For a given a sequence of nodes, this coloring strategy colors iteratively each node
by a randomly generated color (from the set {blue, red}), unless this would create a
monochromatic cycle. If coloring the current node red or blue would create a monochro-
matic cycle, we stop (and output: 0), else we color it with the remaining color, and
continue.

CS4: Given a sequence of nodes, this coloring strategy colors iteratively each node with
the same color as its predecessor, unless this would create a monochromatic cycle.
If coloring the current node with the other color would also create a monochromatic
cycle, we stop (and output: 0), else we color it with the other color, and continue.

4.2.2 Ordering of the nodes

In the previous section, we assumed that a sequence of the nodes was given as input for each
of the strategies. Since there are n! possible sequences for a graph G consisting of n nodes,
it is not practical to try all of them. Therefore, we now describe specific sequences of nodes
(often based on the structure of the graph) that will be used as input for the above coloring
strategies.

Sq1: Sequence 1 is a natural sequence given by: (0, 1), (0, 2), . . . , (0, T ), (1, 0), (1, 2), . . . , (1, T ),
(2, 0), (2, 1), . . . , (2, T ), . . . , (T−1, 1), (T−1, 2), . . . , (T−1, T ) (recall that T is the num-
ber of observations). Of course, not all of these nodes need to exist, the non-existing
nodes are simply removed from the list.

Sq2: Sequence 2 is the reverse of Sequence 1, hence it starts with (T − 1, T ) and ends with
(0, 1) (provided these nodes exist).

Sq3: Sequence 3 is found by placing each node (s, t) with s < t before each node (s, t) with
s > t; within each of these two sets of nodes we use the ordering implied by Sequence
1.

Sq4: Sequence 4 is the reverse of Sequence 3. Here, we follow the idea of Sequence 1, but
we select node (s, t) with s > t before node (s, t) with s < t.

The next two sequences partition the nodes into those involved in a double-sum inequality,
and those that are not. A node (s, t) is called double-sum node if there exist an observation
u such that psqs ≥ ps(qt + qu) for some observations s and t. The idea is that nodes involved
in a double-sum inequality might be more difficult to color than other nodes, and hence it
might be worthwhile to place these nodes in the beginning of the sequence.

Sq5: Sequence 5 also uses the ordering of Sequence 1, but we place each double-sum node
before each other node.

11



Sq6: Sequence 6 is the reverse of Sequence 5.

The following 6 sequences are based on the degree of a node. The degree of a node is the
number of arcs it is incident to; the indegree is the number of arcs that enter a node; the
outdegree of a node is the number of arcs that leave a node. Again, the rationale for using
this measure is that the number of arcs a node is incident to is a measure of the difficulty of
coloring that node.

Sq7: Sequence 7 is found by sorting the nodes with respect to their degree in increasing
order; if there is a tie we use the ordering of Sequence 1.

Sq8: Sequence 8 is the reverse of Sequence 7.

Sq9: Sequence 9 is found by sorting the nodes in increasing order of their indegree; if there
is a tie we use the ordering of Sequence 1.

Sq10: Sequence 10 is the reverse of Sequence 9.

Sq11: Sequence 11 is found by sorting the nodes in increasing order of their outdegree; if
there is a tie we use the ordering of Sequence 1.

Sq12: Sequence 12 is the reverse of Sequence 11.

Sq13: In this sequence, the position of a node is chosen randomly.

Notice that we have specified 13 × 4 = 52 heuristics since we can combine each of the
four coloring strategies with each of the 13 sequences. Indeed, we apply all these heuristics
on the given instances, and we comment on their quality in Section 5.3.

5. Computational experiments

5.1 Data

Our goal is to investigate the usefulness of the graph construction from Section 3, and to
assess the quality and the speed of the heuristics proposed above. To do so, we apply the
heuristics to two types of data sets drawn from Phase II of the Russian Longitudinal Monitor-
ing Survey, which covers detailed consumption data from a nationally representative sample
of Russian two-person households (or couples) during the time period between 1994 and 2003
(Rounds V-XII). When assuming homogeneity of the intra-household allocation process and
individual preferences over time, such panel data enable us to treat each household as a
time series in its own right. For each household, we focus on a rather detailed consumption
bundle that consists of 21 nondurable goods. Only two-person households sharing certain
characteristics are retained, which results in a basic sample consisting of 148 couples that
are observed 8 times. We refer to Cherchye et al. (2008) for more details on the data.

Data I consists of the same real-life instances as used by Cherchye et al. (2008); as such
this allows us to compare the integer programming approach and the heuristics described
here, see Section 5.3. In order to obtain bigger datasets that are still usefully interpretable
from an economic point of view, these authors merged all households of which males share
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the same birth year into one data set. In fact, this pertains to testing homogeneity of the
intra-household allocation process and individual preferences for these couples. Next, to
optimize the CPU times of the Integer Programming approach they applied two efficiency
enhancing procedures to minimize the number of observations that need to be considered
by their procedures. This resulted in 69 instances with a number of observations that varies
between 2 and 101, for which CARP was tested; for more details, see Cherchye et al. (2008).
We refer to this set of instances as Data I.

Second, on the basis of the above sample of 148 households, we also construct 120 syn-
thetic data sets (instances) with varying size; these are contained in Data II. Every synthetic
data set is obtained by randomly drawing households from the basic sample. Since each
household is observed 8 times, data set sizes are multiples of 8 and range from 8 to 96.
As such, we consider data sets with substantially more observations than existing consumer
panels; this allows us to analyze in further detail the performance of our heuristics. As far as
we know, existing panel data with detailed consumption only contain a rather limited num-
ber of observations per household. For example, Christensen (2007) and Blow, Browning,
and Crawford (2008) use, respectively, Spanish and Danish consumer panels with at most
24 observations per household.

5.2 Implementation

Building the set of nodes V

The data are the observations defined by S = {(pt, qt); t ∈ T} where qt ∈ RN
+ are consumption

bundles and pt ∈ RN
++ corresponding prices (t ∈ T = {1 . . . , T}). From this data, we build

the graph G as described in Section 3. Algorithm 2 depicts the steps to follow to derive the
set V of nodes. It also identifies the nodes involved in the double sum inequalities. The time
complexity of the Algorithm 2 is O(T 3).
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Algorithm 2 Build the set V of nodes

1: V = ∅ // set of nodes
2: DS = ∅ // nodes involved in the double sum inequalities
3: for t = 1, . . . , T − 1 do
4: for s = t + 1, . . . , T do
5: if psqs ≥ psqt then
6: (s, t) ∈ V
7: end if
8: if ptqt ≥ ptqs then
9: (t, s) ∈ V

10: end if
11: for t2 = s + 1, . . . , T do
12: if psqs ≥ ps(qt + qt2) then
13: (s; t, t2) ∈ DS
14: end if
15: if ptqt ≥ pt(qs + qt2) then
16: (t; s, t2) ∈ DS
17: end if
18: if pt2qt2 ≥ pt2(qt + qs) then
19: (t2; t, s) ∈ DS
20: end if
21: end for
22: end for
23: end for

Building the set of arcs A

The arcs of the graph G′ are easily identified. To build the arcs coming from the double sum,
we proceed as follows. For a given node (s, t) involved in a double sum inequality (that is
there exists t1 such that psqs ≥ ps(qt + qt1)), we use Dijkstra’s algorithm (Ahuja, Magnanti
and Orlin (1993)) to find all the nodes which are such that there is a path from (s, t) to
those nodes. Among those nodes, we identify those ending with s (these are nodes (., s))
and draw an arc from (s, t1) to the node (t, .) appearing in each path.

Checking acyclicness of (V, A)

Clearly, in our heuristics we need to check often whether some induced subgraph is acyclic.
We use the topological ordering algorithm, see Ahuja, Magnanti and Orlin (1993) for more
details. This algorithm labels the nodes of the graph (order(i) to each node i) in such a
way that every arc joins a lower-labeled node to a higher-labeled node. If for each connected
pair of nodes i, j with an arc from i to j we have order(i) > order(j), the graph is acyclic.
Otherwise, it contains a cycle. Its time complexity is O(m) where m is the number of arcs.

We have implemented all algorithms in Visual Studio C++ 2005; all the experiments
were run on a HP Pavilion dv6000 laptop with AMD Turion(tm) 64×2 Mobile Technology
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TL-56 processor with 1.80 GHz clock speed and 2047 MB RAM, equipped with Windows
Vista.

5.3 Computational results

Let us first consider the instances from Data I. The name of the instance is represented by
three numbers. The first is the year, the second represents the number of that instance in
that year and the last one is the number of observations considered in that instance. Density
is the density of the graph.

Table 1, 2 and 3 give the properties of the graph representation of these instances. Notice
that each graph contains at least one cycle; that is, each graph is cyclic. The analysis of
these tables shows that 57 instances out of 69 can be partitioned into acyclic subgraphs
using Algorithm 1 (see Subsection 4.2.1); that is because they have no double sum arc.
This represents more than 82% of the instances! This clearly shows that it is worthwhile to
detect the absence of double-sum arcs in the data; and if these arcs are absent one can use
Algorithm 1 to get a conclusive answer whether the data satisfy CARP (instead of having
to solve an IP-model).

We then apply the heuristics to the remaining 12 instances. Table 4 and 5 display the
output of the heuristics. In each of these tables, a row (except for the first row and the
last row) corresponds to a single instance. The column called “time” (which corresponds
to a specific sequence) is expressed in seconds, and is the mean value of the time needed
for the four strategies using that particular sequence. The column “Opt. CS” identifies the
strategies for which we have obtained a partition into acyclic subgraphs. Finally, the last
row gives, for each sequence, the number of strategies for which a feasible coloring was found.

From Tables 4 and 5, we see that for each instance except 1935-3-101, there is at least
one heuristic finding a feasible coloring, meaning that each instance (except 1935-3-101) can
be partitioned into acyclic subgraphs, and hence, by Theorem 1, satisfies CARP. This shows
that (at least for this set of real-life instances) using the graph construction described in
Section 2 does not lead to a loss of the ability to test whether the data satisfy CARP.

When looking at the results of the heuristics in more detail, we find that strategies 1 and
4 are more successful than the other strategies. In particular, strategy 1 (CS1) is successful
(meaning there is a sequence for which a coloring is found) in 11 out of the 12 instances,
and strategy 4 (CS4) is successful for 10 instances. This contrasts with strategies 2 and 3
which are only successful for 2 and 5 instances, respectively. Apparently, when coloring the
nodes sequentially, it is better to keep using the same color, and only resort to another color
when forced, than to build a “balanced” coloring, having approximately the same number
of nodes of each color in any partial coloring.

When analyzing the sequences, it can be concluded that the relevance of a particular
sequence is limited. Indeed, when a strategy is successful for some instance, there are often
(but not always) many sequences for which this strategy is successful. Sequence 5 and 12
contain the highest number of strategies for which a feasible coloring was found, making them
the most attractive sequences. In particular, the heuristic obtained by combining sequence
5 and strategy 1 (CS1) is very successful indeed: it solves all the instances except the one
that is not solved by any heuristic (1935-3-101).

In fact, instance 1935-3-101 is a particular instance in the sense that it is the only instance
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that was not solved by the IP-model of Cherchye et al. (2008) after one hour of computing
time. Our best heuristic (combining strategy 1 and sequence 5) led to a partial feasible
coloring of 4224 nodes, i.e., about 95% of the nodes; however, it still remains to be decided
whether these data satisfy CARP.

Tables 4 and 5 also show that the heuristics are quite fast. Computing times for most
instances are within 0.1 second, and always (except for 1935-3-101) within 2 seconds. This is
in contrast with the computing times of Cherchye et al. (2008), who report computing times
up to 5 minutes for their instances. It should be noted, though, that solving the IP-model
leads to a conclusive answer, while the possible failure of a heuristic to produce a coloring
gives no information about whether the data satisfy CARP. Nonetheless, investing a little
computation time to test for CARP quickly seems a sensible approach for Data I.

Now, we turn to the instances from Data II. The name of a group of instances is rep-
resented by “Rand” followed by a number. Each group contains 10 randomly generated
instances. Rand is used to express the random characteristics of these instances and the
number refers to the number of instances with 8 observations aggregated. For instance,
Rand-5 has 8 × 5 = 40 observations as it is the aggregation of 5 instances, each with 8
observations.

Table 6 gives the properties of the graph representation of the instances in Data II. In
this table, each entry (except the entries in the last column) represents the average value
of the 10 values obtained for each instance in that group. In the last column (Cyclic), we
give the number of instances in that group that contain both cycle and double sum arc.
Therefore, instances with only cycle and no double sum arc are not counted.

Table 7 and 8 display the output of the heuristics when applied to the instances in Data
II. The notations are the same as in Table 4 and 5; an entry in the column “Opt. CS” is a
4-tuple indicating the number of instances solved by CS1, CS2, CS3, and CS4 respectively.
Notice however that here an entry in the column time is the average over the 10 values
obtained for the instances in that group. The last column of Table 8 (Nr. solved) reported
the number of instance in each group for which the heuristics are able to find an optimal
partition.

When analyzing the results of Table 7 and 8, we see that for the instances with less than
or equal to 40 observations, the heuristics behave excellent. In fact, for each instance, the
heuristics found an acyclic partition. Moreover, the CPU time used by the heuristics is less
than 2 seconds. These observations confirm the results from Data I.

When the number of observations grows, the effectiveness of the heuristics drops. This
is clearly seen from the last column of Table 8. Still, more than 60% of the instances
whose number of observations is between 48 and 72 is solved in a reasonable amount of
time (less than a minute). However, when the number of observations further increases,
the effectiveness of the heuristic goes further down. Notice that there are three possible
situations: either a coloring exists, but the heuristics fail to find one, or the graph does not
admit a coloring in spite of the fact that the data satisfy CARP, or the data simply do not
satisfy CARP. More sophisticated heuristics might shed a light on this question.

Overall, Table 8 reports that 83 instances out of 120 are solved using the heuristics; that
is around 69% of the instances. The findings obtained after the application of heuristics to
the instances in Data I are confirmed here. For instance, sequence 5 and 12 are still the most
attractive sequences, while coloring strategies 1 (CS1) and 4 (CS4) are the most successful
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strategies.
Summarizing, the computational results suggest that

• verifying whether the graph derived from the data contains double-sum arcs is reward-
ing for real life instances,

• the graph construction from section 2 is useful for testing CARP at least for medium-
sized instances (up to 75 observations), and

• investing a little computation time (2 seconds) trying to find a heuristic coloring often
prevents the usage of a much more time-demanding exact algorithm.
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6. Summary and conclusions

We introduced a graph for addressing the computational problem of testing whether ob-
served household consumption behavior satisfies the Collective Axiom of Revealed Prefer-
ences (CARP). More precisely, we obtained that the existence of a node-partitioning giving
rise to two induced subgraphs that are acyclic implies that the data satisfies CARP. This
graph representation allowed us to propose and implement heuristics that are quite fast and
that can be used to check large datasets for CARP. Moreover, these can be used before using
a computational demanding approach. Finally, our computational results suggest that these
heuristics are very effective for testing CARP.

Appendix: proof of Theorem 2

Proof: The proof is a refinement of Deb’s proof (2008b) for arbitrary graphs G to our special
case. It uses the Not-All-Equal-3Sat problem defined as follows.
INSTANCE: Set X = {x1, . . . , xn} of n variables, collection C = {C1, . . . , Cm} of m clauses
over X such that each clause Cl = xi ∨ xj ∨ xk depends on exactly three distinct variables.
QUESTION: Is there a truth assignment for C such that each clause in C has at least one
true literal and at least one false literal?
Garey and Johnson (1979) proved that the Not-All-Equal-3Sat problem is NP-complete.

For a given instance of the Not-All-Equal-3Sat problem, consider the following polynomial
time reduction to an instance of our graph partitioning problem. For each variable xi ∈ X,
we have a pair of observations, that gives rise to the existence of two nodes called (xi, x̄i)
and (x̄i, xi). (Notice that the existence of these nodes has implications for the prices and
the quantities of goods corresponding to those observations. Here, we will ignore this issue,
and simply create nodes assuming that the prices and quantities satisfy the corresponding
relationships.) Hence, if |X| = n, we have 2n such nodes called variable nodes as they
come from variables. For each clause Cl = xi ∨ xj ∨ xk ∈ C, we define 18 clause nodes
as follows. There are three initial nodes (xl

i, x
l
j), (xl

j, x
l
k) and (xl

k, x
l
i) and there are three

complement nodes (xl
j, x

l
i), (xl

k, x
l
j) and (xl

i, x
l
k). Moreover, for each initial node, we define

four path nodes which are used to create a path from that initial node to a given variable
node. We say that these four path nodes are associated to this initial node. Explicitly, for
the first initial node (xl

i, x
l
j), we have (sl, x̄i), (x̄i, s

l) , (sl, xl
j) and (xl

j, s
l); we refer to these

four path nodes as the first, the second, the third and the fourth path nodes. For the second
initial node (xl

j, x
l
k), we define (tl, x̄j), (x̄j, t

l) , (tl, xl
k) and (xl

k, t
l). Finally, for the third

initial node (xl
k, x

l
i), are created the path nodes (ul, x̄k), (x̄k, u

l), (ul, xl
i) and (xl

i, u
l). For

each initial node, we define the path containing the nodes from the first path node to the
complement node via the initial node. For instance, for the initial node (xl

i, x
l
j), we have

the path P (xl
i, x

l
j) = {(sl, x̄i), (x̄i, s

l), (sl, xl
j), (xl

j, s
l), (xl

i, x
l
j), (xl

j, x
l
i)}. We use P to denote

such path. In total, we have |V | = 2n + 18m nodes. To complete the definition of our graph
G = (V, A), we now specify the arcs. Clearly, as described in Section 3, there is an arc
directed from (u, v) to (v, t) whenever (u, v) and (v, t) are nodes in V . Also, we add specific
double-sum arcs. These arcs are derived from specific double sum inequalities. For a given
clause Cl = xi ∨ xj ∨ xk ∈ C, we consider 9 double sum inequalities, 3 for each initial node.

26



For the initial node (xl
i, x

l
j), we have three inequalities:

1. pxl
j
qxl

j
≥ pxl

j
(qxl

i
+ qsl). This inequality implies the existence of arcs from node (xl

j, s
l)

to nodes (xl
i, .), and arcs from node (xl

j, x
l
i) to nodes (sl, .). Notice that all these double sum

arcs are between clause nodes from the clause Cl.
2. pslqsl ≥ psl(qxl

j
+ qx̄i

). This inequality implies the existence of double sum arcs from

node (sl, x̄i) to nodes (xl
j, .), and from node (sl, xl

j) to nodes (x̄i, .). Notice that there may
be an arc between two nodes of different clauses; indeed, if xi occurs in another clause Cr,
then there is a double sum arc from (sl, xl

j) to node (x̄i, s
r).

3. px̄i
qx̄i
≥ px̄i

(qxi
+ qsl

). This inequality implies the existence of arcs from node (x̄i, s
l)

to nodes (xi, .), and from node (x̄i, xi) to nodes (sl, .). Again, if x̄i occurs in another clause
Cr, then there is an arc from (x̄i, s

l) to node (xi, s
r).

For each of the two remaining initial nodes (xl
j, x

l
k) and (xl

k, x
l
i), the construction is

similar. We simply list here the corresponding double sum inequalities. For the initial node
(xl

j, x
l
k), we have the three inequalities

4. pxl
k
qxl

k
≥ pxl

k
(qxl

j
+ qtl) 5. ptlqtl ≥ ptl(qxl

k
+ qx̄j

) 6. px̄j
qx̄j
≥ px̄j

(qxj
+ qtl),

and for the initial node (xl
k, x

l
i), the double sum inequalities are:

7. pxl
i
qxl

i
≥ pxl

i
(qxl

k
+ qul) 8. pulqul ≥ pul(qxl

i
+ qx̄k

) 9. px̄k
qx̄k
≥ px̄k

(qxk
+ qul

).
This completes the definition of our graph. Clearly, the above reduction can be done in

polynomial time. Notice that each consecutive pair of nodes in each path P induces a cycle.
To have an overview of the above reduction, let us consider the following example. X =

{x, y, z} and there are two clauses C1 = x∨y∨z and C2 = ¬x∨y∨¬z. Remark that the assign-
ment x = y = 1 and z = 0 is a solution to this Not-All-Equal-3Sat problem. From our reduc-
tion, V = {(x,¬x), (¬x, x), (y,¬y), (¬y, y), (z,¬z), (¬z, z), (x1, y1), (y1, x1), (y1, s1), (s1, y1),
(¬x, s1), (s1,¬x), (y1, z1), (z1, y1), (z1, t1), (t1, z1), (¬y, t1), (t1,¬y), (z1, x1), (x1, z1), (x1, u1),
(u1, x1), (¬z, u1), (u1,¬z), (¬x2, y2), (y2,¬x2), (y2, s2), (s2, y2), (x, s2), (s2, x), (y2,¬z2), (¬z2, y2),
(¬z2, t2), (t2,¬z2), (¬y, t2), (t2,¬y), (¬z2,¬x2), (¬x2,¬z2), (¬x2, u2), (u2,¬x2), (z, u2), (u2, z)}.
The graph obtained is depicted in Figure 3. Notice that for reason of clarity, not all the
double sum arcs are present in that figure.

Now, we prove that the graph G = (V, A) obtained by the reduction can be partitioned
into two acyclic subgraphs if and only if the instance of the Not-All-Equal-3Sat problem is
a Yes-instance.

On one hand, if graph G can be partitioned into two acyclic subgraphs G1 and G2, then
for each variable xi ∈ X, if the node (xi, x̄i) ∈ G1, then we set the variable xi = 1; else we
set the variable xi = 0. Let us prove that this assignment is a truth assignment for the set
of clauses C. Let Cl = xi ∨ xj ∨ xk ∈ C be any clause 1 ≤ l ≤ m. If xi = xj = xk = 1 or
xi = xj = xk = 0, then the nodes (xl

i, x
l
j), (xl

j, x
l
k) and (xl

k, x
l
i) are in the same partition and

this will contradict the fact that each subgraph is acyclic.
On the other hand, if there is a truth assignment for C, then consider the following

partition of G. For each xi ∈ X, if xi = 1 we color the variable node (xi, x̄i) red and (x̄i, xi)
blue. Otherwise, if xi = 0 we color the variable node (xi, x̄i) blue and (x̄i, xi) red. Moreover,
we alternate the color of the nodes on the path P by coloring the first path node different
from the corresponding variable node. This completes the coloring.

Clearly, the blue subgraph and the red subgraph define a partition of G. It remains to
show that each subgraph is acyclic. We associate a parity to each node (except variable
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Figure 3: Example of reduction
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nodes) as follows: the first path node, the third path node, and the corresponding initial
node are odd nodes, while the second path node, the fourth path node, and the complement
node of the corresponding initial node are even nodes. Let us now argue that each cycle in
G is not monochromatic. First, we consider cycles containing nodes from different clauses.

As described above, some double sum arcs may link path nodes of different clauses.
From the definition of our coloring, it turns out that such an arc links nodes of different
colors. In fact, suppose that there is a double sum arc from (sl, xl

j) to a path node (x̄j, s
r) of

another clause Cr. Then the coloring implies that (x̄j, s
r) and (x̄j, s

l) have the same color.
Therefore, (x̄j, s

r) and (sl, xl
j) have different colors. Thus, any cycle including nodes from

different clauses linked using a double sum arc, is not monochromatic. It follows that any
monochromatic cycle containing nodes of different clauses necessarily contains a variable
node. Moreover, since each arc leaving a variable node goes to a node with a different color,
any cycle containing a variable node is not monochromatic. We conclude that cycles with
clause nodes from different clauses are not monochromatic.

Second, we consider cycles within the subgraph defined by a single clause. Obviously, no
monochromatic cycle can contain an arc between two consecutive nodes from path P . Thus
each cycle in the subgraph consists of three arcs, linking three nodes of the three different
paths that exist within each subgraph.

We claim that there do not exist arcs between nodes of different parity.
This claim implies that a monochromatic cycle would consist of three nodes of the same

parity. However, the three initial nodes have the same parity, and the solution of the Not-
All-Equal-3Sat problem implies that these nodes do not form a monochromatic cycle. The
coloring then implies that any set of three nodes of the same parity do not form a monochro-
matic cycle. Hence, the validity of our claim implies the result.

To establish the claim, observe that each regular (i.e., non double sum) arc between nodes
of different paths is induced by a literal from the initial nodes, e.g. from (., xl

i) to (xl
i, .).

Since this literal occurs in the three nodes once in the first position and once in second
position, this implies that each regular arc links nodes of the same parity. In fact, it can be
verified that this is also true for double sum arcs. Hence, the claim is valid. this completes
the proof. �
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