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Abstract—Several exact recovery criteria (ERC) ensuring that
orthogonal matching pursuit (OMP) identifies the correct support
of sparse signals have been developed in the last few years.
These ERC rely on the restricted isometry property (RIP), the
associated restricted isometry constant (RIC) and sometimes the
restricted orthogonality constant (ROC). In this paper, three of
the most recent ERC for OMP are examined. The contribution is
to show that these ERC remain valid for a generalization of OMP,
entitled simultaneous orthogonal matching pursuit (SOMP), that
is capable to process several measurement vectors simultaneously
and return a common support estimate for the underlying sparse
vectors. The sharpness of the bounds is also briefly discussed in
light of previous works focusing on OMP.

Index Terms—Simultaneous orthogonal matching pursuit,
compressed sensing, restricted isometry property, restricted isom-
etry constant, restricted orthogonality constant, exact recovery
condition.

I. INTRODUCTION

RECOVERING a high dimensional sparse signal by
acquiring it through a linear measurement process

returning fewer observations than its dimension is a problem
often encountered in the digital signal processing literature.
The field of research associated with such problems is often
known to researchers as compressed sensing or compressive
sensing (CS) [12].

We define the support of a vector x ∈ Rn as supp(x) :=
{j ∈ [n] : xj 6= 0} where [n] denotes the set {1, 2, . . . , n} and
xj denotes the jth entry of x. A vector is said to be s-sparse
whenever its support exhibits a cardinality equal to or lower
than s.

A. Signal model

In this paper, we focus on a framework involving
1) K sparse signals xk ∈ Rn to be recovered (1 ≤ k ≤ K),
2) a common linear measurement process described by the

matrix Φ ∈ Rm×n,
3) K measurement vectors yk ∈ Rm gathering the obser-

vations of each sparse signal when acquired through Φ:
yk = Φxk.
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To simplify the signal model, we introduce Equation (1) to
summarize the K equations yk = Φxk into a single one:

Y = ΦX (1)

where Y =
(
y1, . . . ,yK

)
∈ Rm×K and

X =
(
x1, . . . ,xK

)
∈ Rn×K . Using this formulation,

the support of X , denoted by supp(X), is equal to the joint
support S := ∪k∈[K]supp(xk).

When a model involves one measurement vector, it is
referred to as a single measurement vector (SMV) model
while models incorporating K > 1 measurement vectors are
multiple measurement vector (MMV) models [14].

The columns of Φ are often referred to as the atoms. This
terminology being typically associated with dictionaries, it is
worth emphasizing that the problem of recovering a s-sparse
vector x on the basis of the measurement vector y = Φx is
equivalent to finding s columns (or atoms) of the (dictionary)
matrix Φ that fully express y when using the proper linear
combination. The notion of atom will thus be used in the rest
of this paper as it simplifies the mathematical discussions
that follow.

We now introduce additional notions that are used after-
wards. For 0 < p < ∞ and x ∈ Rn, we define the norms
‖x‖p := (

∑n
j=1 |xj |p)1/p and ‖x‖∞ := maxj∈[n] |xj |. In

this paper, every vector should be considered as a column
vector. Also, for S ⊆ [n], the quantity xS denotes the vector
formed by the entries of x indexed by S. Similarly, for a
matrix Φ ∈ Rm×n, we define ΦS as the matrix formed
by the columns of Φ indexed within S. The Moore-Penrose
pseudoinverse of any matrix Φ is denoted by Φ+ and its
transpose is given by ΦT. Finally, the inner product of two
vectors x and y is written as 〈x,y〉 and is equal to xTy.

B. Simultaneous orthogonal matching pursuit
Several algorithms exhibiting varying computational

complexities have been investigated to address the problem
above. For the SMV case, the greedy algorithm entitled
orthogonal matching pursuit (OMP) [9], [20] is a classical
choice because its complexity is lower than that of other
algorithms such as `1-minimization [13].

If the K sparse signals xk possess similar supports, i.e.,
their joint support S := ∪k∈[K]supp(xk) possesses a cardi-
nality that is comparable to those of the individual supports
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supp(xk), then it is interesting to perform a joint and common
estimation of their supports [10], [16]. The simultaneous
orthogonal matching pursuit (SOMP) algorithm [22], which
is described in Algorithm 1, is an extension of OMP to the
MMV case and performs a joint support recovery.

ALGORITHM 1:
Simultaneous orthogonal matching pursuit (SOMP)

Require: Y ∈ Rm×K , Φ ∈ Rm×n, s ≥ 1
1: Initialization: R(0) ← Y and S0 ← ∅
2: t← 0
3: while t < s do
4: Determine the atom of Φ to be included in the support:

jt ← argmaxj∈[n](‖(R(t))Tφj‖1)
5: Update the support : St+1 ← St ∪ {jt}
6: Projection of each measurement vector onto span(ΦSt+1):

Y (t+1) ← ΦSt+1Φ
+
St+1

Y
7: Projection of each measurement vector onto

span(ΦSt+1)
⊥ :

R(t+1) ← Y − Y (t+1)

8: t← t+ 1
9: end while

10: return Ss {Support at last step}

As shown in Algorithm 1, at each iteration t, SOMP adds
to the estimated support the index jt of the atom φjt max-
imizing the metric ‖(R(t))Tφj‖1 =

∑K
k=1 |〈φj , r

(t)
k 〉| (steps

4 and 5) where r(t)k denotes the kth column of the residual
matrix R(t). Each measurement vector yk is then projected
onto the orthogonal complement of span(ΦSt+1

), denoted by
span(ΦSt+1)

⊥, during steps 6 and 7. The algorithm terminates
when the prescribed number of iterations s has been reached.
It is worth noticing that an atom cannot be picked twice as,
once chosen, the projection onto span(ΦSt+1

)⊥ ensures that
〈φ, r(t+1)

k 〉 = 0 if φ ∈ St.

C. Definitions

We define the concepts needed to state the results of Section
II. First of all, the matrix Φ is said to satisfy the restricted
isometry property (RIP) [4] of order s with restricted isometry
constant (RIC) δs (of order s) whenever

(1− δs)‖u‖22 ≤ ‖Φu‖22 ≤ (1 + δs)‖u‖22 (2)

holds for all s-sparse vectors u. Thus, the RIP ensures that the
linear operator Φ maintains the `2-norm of s-sparse signals
up to a certain extent that is quantified by means of the RIC
δs. Furthermore, if u is supported onto S, the quantity ‖Φu‖22
is equal to ‖ΦSuS‖22 = uT

S (Φ
T
SΦS)uS . The RIP therefore

ensures that 1−δs ≤ λmin(Φ
T
SΦS) ≤ λmax(Φ

T
SΦS) ≤ 1+δs

for all the supports S of cardinality equal to or lower than
s where λmin and λmax denote the minimal and maximal
eigenvalues, respectively. Also, it is easy to show that
δs ≤ δs+1.

The (α, α′)-restricted orthogonality constant (ROC) [2] is
defined as the smallest real number θα,α′ for which

|〈Φc,Φc′〉| ≤ θα,α′‖c‖2‖c′‖2 (3)

holds for every c, c′ ∈ Rm exhibiting disjoint supports of
cardinality α and α′, respectively. Thus, the ROC quantifies
how vectors with disjoint supports stay approximately
orthogonal after projection by Φ.

The ROC and the RIP are linked by the inequality [3,
Lemma 2.1] θα,α′ ≤ δα+α′ which indicates that the RIC
can play a role similar to that of the ROC, albeit in a less
sharp manner. Another similar inequality has been obtained
in [23, Section 2.3] and is given by θ1,α′ ≤

√
α′/(α′ − 1)δα′

whenever α′ ≥ 2. Another upper bound of θ1,α′ has been
recently obtained in [28, Lemma II.3] where the so-called
2-coherence of the dictionnary matrix, denoted by να′ , is
used. They have shown [28, Lemma II.2] that να′ ≤ δα′+1 so
that the inequality θ1,α′ ≤ να′ is sharper than θ1,α′ ≤ δ1+α′ .
The developments presented hereafter use the RIC-based
inequality so that only the RIC intervenes in the final results.
However, expressing our results using να′ instead of δ1+α′ is
straightforward.

Finally, it is worth defining the `∞-induced norm for matri-
ces as ‖Φ‖∞→∞ := sup‖φ‖∞=1 ‖Φφ‖∞ (where Φ ∈ Rm×n)
that can be computed as ‖Φ‖∞→∞ = maxi∈[m]

∑n
j=1 |φi,j |

[15, Lemma A.5]. This quantity is interesting as it al-
lows to write, for A ⊆ [n], maxj∈A(‖(R(t))Tφj‖1) =

‖ΦT
AR

(t)‖∞→∞, which is reminiscent of the decision metric
of SOMP. Some authors choose to write the `∞-induced
norm of Φ as ‖Φ‖∞ but, to avoid confusions, we prefer to
emphasize the distinction between the `∞-norms for vectors
and matrices as both coexist in Section IV.

II. CONTRIBUTION AND RELATED WORK

The main contribution of this paper is to extend a recent
exact recovery criterion (ERC) for OMP to its MMV counter-
part, i.e., SOMP. An ERC is a sufficient condition to ensure
that the algorithm commits no mistake. The cornerstone of the
results presented in this paper is given by Lemma 1.

Lemma 1 (A RIP and ROC-based lower bound on the maxi-
mal residual projection). Let X ∈ Rn×K possess the support
S. Let Φ ∈ Rm×n admit the RIC δ|S| < 1 and the (1, |S|)-
ROC θ1,|S| < 1. Furthermore, P (t) = ΦSt

Φ+
St

denotes the
orthogonal projector onto span(ΦSt

) where St ⊆ S, i.e., only
correct atoms have been included to the estimated support
before iteration t. Let R(t) be equal to (I − P (t))Y =
(I − P (t))ΦX . Then,

‖ΦT
SR

(t)‖∞→∞
‖ΦT

S
R(t)‖∞→∞

≥
1− δ|S|
θ1,|S|

√
|S|

(4)

where S is the relative complement of S with respect to [n].

Lemma 1 establishes a lower bound on the ratio of the
SOMP metric obtained for the correct atoms to that obtained
for the incorrect ones. In that sense, and as it will be clarified in
Theorem 1, it straightforwardly provides an ERC guaranteeing
that SOMP commits no error when picking atoms. We now
propose a corollary of Lemma 1 that only relies on the RIC.
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Lemma 2 (RIP lower bounds on the maximal residual projec-
tion). Let X ∈ Rn×K possess the support S. Let Φ ∈ Rm×n
admit the RIC δ|S| < 1. Furthermore, P (t) = ΦStΦ

+
St

denotes
the orthogonal projector onto span(ΦSt

) where St ⊆ S,
i.e., only correct atoms have been included to the estimated
support before iteration t. Let R(t) be equal to (I−P (t))Y =
(I − P (t))ΦX . Then, both inequalities below hold

‖ΦT
SR

(t)‖∞→∞
‖ΦT

S
R(t)‖∞→∞

≥
1− δ|S|+1

δ|S|+1

√
|S|

(5)

‖ΦT
SR

(t)‖∞→∞
‖ΦT

S
R(t)‖∞→∞

≥
(1− δ|S|)

√
|S| − 1

δ|S||S|
(6)

where S is the relative complement of S with respect to [n].

Compared to former works that directly derived the ERC
[7], [19], [23]–[25], we believe that Lemma 1 and Lemma 2
are interesting as they quantify the robustness of the decisions
made at each iteration of SOMP in the noiseless case. Such
quantities can then be used to produce theoretical analyses
of greedy algorithms in a noisy setting (see [1], [7], [10]).
Other similar works analysing OMP in a noisy environment
include [21] and [28]. The analysis presented in [7] actually
uses a result fundamentally identical to Lemma 1 for K = 1
to conduct a theoretical analysis of OMP inspired from [1].
We now state the three ERC deriving from Lemma 1 and
Lemma 2.

Theorem 1 (Several RIP and ROC-based ERC for SOMP).
Let X ∈ Rn×K possess the support S. Let Φ ∈ Rm×n admit
the RIC δ|S| < 1 and the (1, |S|)-ROC θ1,|S| < 1. Then, SOMP
commits no error and identifies the full support of X at the
end of iteration |S| − 1 whenever at least one of the three
conditions below hold:

1− δ|S|
θ1,|S|

√
|S|

> 1 (ERC1)

δ|S|+1 <
1√
|S|+ 1

(ERC2)

(for|S| ≥ 2) δ|S| <

√
|S| − 1√

|S| − 1 + |S|
. (ERC3)

As demonstrated in Section IV-C, Theorem 1 is a
straightforward consequence of Lemma 1 and Lemma 2.
The authors of [24] and [7] independently obtained (ERC1)
for OMP. To the best of the authors’ knowledge, the second
ERC was first obtained simultaneously in [19] and [25] while
(ERC3) was initially published in [23], both ERC being
derived for OMP.

Regarding older works, it is also worth pointing out that
the ERC δ|S|+1 < 1/((1 +

√
2)
√
|S|), first obtained in [17,

Theorem 5.2] for OMP, has been shown to remain valid
for SOMP in [11, Corollary 1]. Thereby, the authors of
[11] also proved that the older ERC δ|S|+1 < 1/(3

√
|S|),

initially derived in [8, Theorem 3.1] for OMP, remains
correct for SOMP as δ|S|+1 < 1/(3

√
|S|) is implied by

δ|S|+1 < 1/((1 +
√
2)
√
|S|). Very recently, (ERC2) was

extended to SOMP in [27, Remark 1]. However, the extension
to SOMP of both (ERC1) and (ERC3) is a novel result. In
[18], the author has derived the ERC δ|S|+1 < 1/

√
|S|+ 1,

which is sharper than (ERC2). Combining the ideas developed
in [18] and our paper could possibly extend this ERC to
SOMP.

Finally, we would like to point out that, if any of the
considered ERC holds, running K independent executions of
OMP instead of a single instance of SOMP would enable one
to retrieve the individual supports supp(xk) (1 ≤ k ≤ K)
and, by extension, the joint support S. While it may seem to
undermine the interest of this work, the following observations
convince otherwise:

1) If one of the considered ERC guarantees that each one
of the K instances of OMP returns the correct support
of each sparse vector xk, then SOMP is also guaranteed
to return the correct joint support so that there is no
penalty switching from OMP to SOMP, except maybe
that SOMP returns a joint support instead of possibly
smaller (yet correct) supports for each xk.

2) Lemma 1 and Lemma 2 should be thought of as the
central results of this paper as they quantify the robust-
ness of the support recovery in the noiseless case, the
resulting ERC being merely direct consequences of the
aforementioned lemmas. As mentioned previously, these
lemmas can be used to produce theoretical analyses of
SOMP for noisy scenarios while it is not the case for
the ERC.

III. SHARPNESS OF THE BOUNDS

In [6], it is shown that (ERC1) is sharp for OMP in the
sense that it is possible to construct a measurement matrix
Φbad satisfying (1 − δ|S|)/(θ1,|S|

√
|S|) = 1 for which there

exists a |S|-sparse signal xbad that OMP fails to recover.
The sharpness property is immediately extended to SOMP by
noticing that if OMP fails to recover xbad on the basis of the
measurement vector ybad = Φbadxbad, then SOMP also fails
with Y bad = ΦbadXbad where Xbad =

(
xbad, . . . ,xbad

)
as both algorithms make the same decisions in this case.

Regarding (ERC2) and (ERC3), it has been shown in [18]
that there exists a signal xbad of support S and a matrix
Φbad satisfying δ|S|+1 = 1/

√
|S|+ 1 for which OMP fails to

recover the support of xbad on the basis of ybad = Φbadxbad.
Note that earlier works (see [19] and [25]) proved that the
statement above holds with Φbad satisfying δ|S|+1 = 1/

√
|S|.

Using an approach identical to that of the previous paragraph,
one shows that this statement remains true for SOMP with
Y bad = ΦbadXbad and Xbad =

(
xbad, . . . ,xbad

)
. It shows

that (ERC2) is near-optimal as, for |S| → ∞, it boils down
to the condition δ|S|+1 < 1/

√
|S|+ 1. It can be shown

that (ERC3) is also near-optimal but the discussion is more
involved as δ|S| intervenes instead of δ|S|+1. In [23, Section
3], it is shown that δ|S|+1 < 1/(|S|+3−

√
2) implies (ERC3),

therefore indicating that (ERC3) is also at least near-optimal.
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IV. PROOFS

A. Proof of Lemma 1

The proof presented in this section is analog to what has
been proposed in [7], [23], [24], the only difference being
the additional quantities needed to deal with the MMV model.

The proof is decomposed in three steps:
1) Derive an upper bound on ‖ΦT

S
R(t)‖∞→∞ expressed as

θ1,|S|‖z(t)‖2 where z(t) is to be specified in the detailed
development.

2) Derive a lower bound on ‖ΦT
SR

(t)‖∞→∞ expressed as
(1/
√
|S|)(1 − δ|S|)‖z(t)‖2 where z(t) is identical for

steps 1) and 2).
3) Compute the ratio of the lower bound to the upper bound

and observe that the desired result is obtained due to the
cancellation of the quantity ‖z(t)‖2.

Let us first tackle the quantity ‖ΦT
S
R(t)‖∞→∞ =

maxj∈S(
∑K
k=1 |〈r

(t)
k ,φj〉|) and define j∗(t) :=

argmaxj∈S(
∑K
k=1 |〈r

(t)
k ,φj〉|). Then, if c

(t)
k :=

sign(〈r(t)k ,φj∗(t)〉), we have

‖ΦT
S
R(t)‖∞→∞ = max

j∈S

(
K∑
k=1

|〈r(t)k ,φj〉|

)

=

∣∣∣∣∣
K∑
k=1

c
(t)
k 〈r

(t)
k ,φj∗(t)〉

∣∣∣∣∣
=

∣∣∣∣∣
〈

K∑
k=1

c
(t)
k r

(t)
k ,φj∗(t)

〉∣∣∣∣∣ .
Since St ⊆ S, r(t)k = (I −P (t))rk belongs to span(ΦS) and
can thus be expressed as a linear combination of the atoms
whose indexes belong to S by means of r(t)k = ΦSa

(t)
k where

a
(t)
k ∈ R|S| contains the coefficients of the linear combination

of interest. It is also worth defining the extension ã(t)
k of a(t)

k

to Rn by ensuring that supp(ã(t)
k ) ⊆ S and (ã

(t)
k )S = a

(t)
k .

Another relation of interest is φj∗(t) = Φej∗(t) where ej∗(t)
denotes the j∗(t)th vector of the canonical basis of Rn. Hence,
using consecutively the equations of this paragraph and the
definition of the ROC yields

‖ΦT
S
R(t)‖∞→∞ =

∣∣∣∣∣
〈

Φ

K∑
k=1

c
(t)
k ã

(t)
k ,Φej∗(t)

〉∣∣∣∣∣
≤ θ1,|S|

∥∥∥∥∥
K∑
k=1

c
(t)
k ã

(t)
k

∥∥∥∥∥
2

where ‖ej∗(t)‖2 is equal to 1. It is worth explicitly pointing
out that the ROC definition is applicable in that case because
the supports of ej∗(t) and

∑K
k=1 c

(t)
k ã

(t)
k are disjoint as

j∗(t) ∈ S and supp(ã(t)
k ) ⊆ S for 1 ≤ k ≤ K.

The first step of the proof is now completed and the
last problem to be dealt with is deriving a lower bound
for ‖ΦT

SR
(t)‖∞→∞. For any d

(t)
k ∈ {−1; 1}, we have

|〈r(t)k ,φj〉| = |d
(t)
k 〈r

(t)
k ,φj〉| = |〈d

(t)
k r

(t)
k ,φj〉|. In particular,

it remains true for the choice d(t)k = c
(t)
k . Thus, by using the

equation above and the triangle inequality, one obtains

‖ΦT
SR

(t)‖∞→∞ = max
j∈S

(
K∑
k=1

|〈r(t)k ,φj〉|

)

= max
j∈S

(
K∑
k=1

|〈c(t)k r
(t)
k ,φj〉|

)

≥ max
j∈S

∣∣∣∣∣
〈

K∑
k=1

c
(t)
k r

(t)
k ,φj

〉∣∣∣∣∣
=

∥∥∥∥∥ΦT
S

(
K∑
k=1

c
(t)
k r

(t)
k

)∥∥∥∥∥
∞

≥ 1√
|S|

∥∥∥∥∥ΦT
S

(
K∑
k=1

c
(t)
k r

(t)
k

)∥∥∥∥∥
2

where ΦT
S (
∑K
k=1 c

(t)
k r

(t)
k ) ∈ R|S|. Also, we have previously

obtained r(t)k = ΦSa
(t)
k . The lower bound on ‖ΦT

SR
(t)‖∞→∞

is thus finally obtained by successively using the two previous
relations and the inequality 1− δ|S| ≤ λmin(Φ

T
SΦS) resulting

from the RIP (see Section I-C) in the following manner:

‖ΦT
SR

(t)‖∞→∞ ≥
1√
|S|

∥∥∥∥∥ΦT
SΦS

(
K∑
k=1

c
(t)
k a

(t)
k

)∥∥∥∥∥
2

≥
1− δ|S|√
|S|

∥∥∥∥∥
K∑
k=1

c
(t)
k a

(t)
k

∥∥∥∥∥
2

where ‖
∑K
k=1 c

(t)
k a

(t)
k ‖2 = ‖

∑K
k=1 c

(t)
k ã

(t)
k ‖2. The final

result is now established by expressing the ratio of the
lower bound on ‖ΦT

SR
(t)‖∞→∞ to the upper bound on

‖ΦT
S
R(t)‖∞→∞.

B. Proof of Lemma 2

The proof consists in finding lower bounds on the ratio
(1− δ|S|)/(θ1,|S|

√
|S|) intervening in Lemma 1. For the first

bound, it is sufficient to use the inequalities δ|S| ≤ δ|S|+1

and θ1,|S| ≤ δ|S|+1 [3, Lemma 2.1], for the numerator and
the denominator respectively. The second bound is obtained
by using the inequality θ1,|S| ≤

√
|S|/(|S| − 1)δ|S| on the

denominator for |S| ≥ 2 [23, Section 2.3].

C. Proof of Theorem 1

Let us first address the proof of (ERC1). At iteration 0, we
have R(t) = Y and Lemma 1 shows that a sufficient condition
for SOMP to pick a correct atom is (1−δ|S|)/(θ1,|S|

√
|S|) > 1

as it means that the highest metric is necessarily obtained for
one of the correct atoms. Thus, at iteration 1, the condition
S1 ⊆ S is verified and Lemma 1 shows, once again, that
a correct decision will be made. By repeatedly applying the
same train of thought, one proves the theorem by induction.
The remaining ERC are obtained in an identical manner by
using the two bounds provided by Lemma 2 instead of that of
Lemma 1.
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