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AN EFFICIENT MULTIGRID METHOD FOR GRAPH LAPLACIAN
SYSTEMS II: ROBUST AGGREGATION∗

ARTEM NAPOV† AND YVAN NOTAY†

Abstract. We consider the iterative solution of linear systems whose matrices are Laplacians
of undirected graphs. Designing robust solvers for this class of problems is challenging due to the
diversity of connectivity patterns encountered in practical applications. Our starting point is a
recently proposed aggregation-based algebraic multigrid method that combines the recursive static
elimination of the vertices of degree 1 with the degree-aware rooted aggregation (DRA) algorithm.
The latter always produces aggregates big enough to ensure that the preconditioner cost per iteration
is low. Here we further improve the robustness of the method by controlling the quality of the
aggregates. More precisely, “bad” vertices are removed from the aggregates formed by the DRA
algorithm until a quality test is passed. This ensures that the two-grid condition number is nicely
bounded, whereas the cost per iteration is kept low by reforming too small aggregates when it
happens that the mean aggregate size is not large enough. The effectiveness and the robustness of
the resulting method are assessed on a large set of undirected graphs by comparing with the variant
without quality control, as well as with another state-of-the art graph Laplacian solver.
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1. Introduction. We consider large sparse linear systems

Au = b, b ∈ R(A),(1)

where A is the Laplacian matrix of an undirected graph, that is, a singular matrix
with nonpositive off-diagonal entries and zero row-sum. Fast solvers for such systems
are a key to the efficiency of a number of numerical methods for graph problems,
including graph partitioning problems, maximum flow and minimum cut problems,
etc.; see [11, 20] for further examples.

As explained with more details in [14], developing a robust and efficient solver for
this class of problems is a difficult task because of the diversity of the connectivity
patterns. Sometimes, but not always, simple single-level preconditioners are effective,
whereas standard algebraic multigrid (AMG) methods [6, 19, 22] work well for some
graphs, especially mesh graphs [4], but may fail when applied to graphs with less
regular connectivity pattern.

Of course, solvers specifically tailored for graph Laplacians [5, 9, 11, 21] incur
less failure, and, in particular, the lean algebraic multigrid (LAMG) method from
[11] seems to be state-of-the-art with respect to robustness. However, this is at the
price of some heaviness that makes LAMG sometimes significantly slower than the
conjugate gradient (CG) method with mere single-level preconditioning [14].
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In [14], we introduce an aggregation-based AMG method, which is often faster
than LAMG, while being never significantly slower than a single-level preconditioning.
It exploits a hierarchy of coarse systems which are obtained by combining a recursive
static elimination of the vertices of degree 1 with a novel degree-aware rooted aggrega-
tion (DRA) algorithm. In the context of multigrid methods, the role of an aggregation
algorithm is to group unknowns into disjoint sets called aggregates, each aggregate
representing an unknown in the next coarser system. As a main feature, the DRA
algorithm has been designed to produce large enough aggregates independently of the
connectivity pattern; here, “large enough” means that the resulting method has low
memory usage (typically a fraction of the memory required by the matrix itself), fast
setup stage (a fraction of a second per million of nonzero entries in the matrix), and
small solution cost per iteration.

However, the relatively “crude” aggregation provided by the DRA algorithm does
not guarantee robustness, and, from that viewpoint, the results in [14] do not give full
satisfaction. On the one hand, the solver is fairly competitive on a large set of graphs.
On the other hand, the number of iterations is occasionally above 30, showing that
there is room for improvement.

In the present work, we address this lack of robustness by combining DRA with
the quality control along the lines of [12, 13]. In [12], a bound is proved that relates
the two-grid convergence with aggregates quality, a measure that is defined for each
aggregate and which is local in the sense that it requires only knowing the internal
connectivity of the aggregate and the global weights of its external connections. In
[13], this result is exploited to design a robust method via an aggregation algorithm
that forms aggregates while verifying their quality. The procedure, based on successive
pairwise aggregations, is, however, not appropriate for many graphs [14]. Hence, here
we keep the idea of accepting only aggregates that satisfy a given quality criterion,
but we consider it within the context of the DRA algorithm.

More precisely, the quality control in the DRA algorithm is implemented through
extracting high-quality subsets from aggregates produced by the DRA algorithm,
which are thus only tentative. This is achieved with filtering procedures that iden-
tify and remove “bad” vertices from the tentative aggregate until the quality test is
passed. Now, such a filtering should be designed with care as the repeated quality
testing can easily make the setup stage prohibitively expensive, especially when (as
sometimes happens) the tentative aggregates issued by the DRA algorithm have sev-
eral thousands of vertices. To keep the setup cost low, we therefore develop a proper
methodology, partly motivated by theoretical results.

On the other hand, the filtering has of course a negative impact on the aggregates
size. Nevertheless, it is harmless in many cases, whereas, to handle the other ones,
we develop a heuristic strategy that enables us to keep most of the benefit of the
quality control while ensuring that the mean aggregate size is big enough to preserve
the attractive features of the method without quality control.

The potentialities of the novel method are demonstrated by numerical tests per-
formed on a large set of graphs (the same as in [14]). The results show, among other
things, that the method is indeed significantly more robust than the original version
from [14], whereas the unavoidable increase in the solution cost per iteration and in
the memory requirements is moderate. On the other hand, the increase in the setup
time may be perceptible, but it is usually compensated by a faster solve stage.

The remainder of this paper is structured as follows. First, in what remains of
this section, we recall the definition of a Laplacian matrix and set some notation.
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The general framework of aggregation-based multigrid preconditioners as considered
in this work is described in section 2. The relation between the convergence rate and
the aggregates quality, further bounds on the quality measure, and some illustrative
examples are presented in section 3. These results are used in section 4 to design the
quality tests and the filtering procedures proposed to enhance the DRA algorithm.
Numerical results are reported in section 5, and conclusions are drawn in section 6.

Graph Laplacians. Here, by graph Laplacian matrix we mean any symmet-
ric matrix A = (aij) with nonnegative off-diagonal entries and zero row-sum (i.e.,
A1 = 0). Clearly, such a matrix is a singular symmetric M-matrix, hence positive
semidefinite [3].

To every n × n graph Laplacian matrix A corresponds a weighted undirected
graph G = (V,E,w); here V = {1, . . . , n} is the set of vertices, E ⊂ V × V is the set
of edges, and w : E 7→ R+ is a weight function. The weighted graph G = (V,E,w) is
undirected if (i, j) ∈ E implies (j, i) ∈ E, and w(i, j) = w(j, i) for every (i, j) ∈ E. A
graph G = (V,E,w) corresponds to a graph Laplacian matrix A = (aij) if

aij =
{
−w(i, j) if (i, j) ∈ E ,
0 otherwise .

In what follows, we assume further that the diagonal entries of a graph Laplacian
A = (aij) satisfy aii > 0. This is not a restrictive assumption, since the diagonal
entry is zero only if the corresponding vertex is isolated; then the entries are zero for
the whole row and column, and this row and column can be safely deleted from the
matrix.

Notation. For any ordered set G, |G| is its size and G(i) is its ith element. For
any matrix B, N (B) is its null space, and R(B) is its range. For any square matrix
C, tril(C) and triu(C) are matrices corresponding, respectively, to its lower and upper
triangular parts, including the diagonal.

2. Aggregation-based algebraic multigrid. Multigrid methods correspond
to the recursive application of a two-grid scheme. A two-grid scheme is a combination
of smoothing iterations and a coarse grid correction. Smoothing iterations are station-
ary iterations with a simple single-level preconditioner. The coarse grid correction is
based on solving a coarse representation of the problem with a reduced number of
unknowns. This coarse system is solved exactly in a two-grid scheme, whereas actual
multigrid schemes use an approximate solution obtained by applying (few iterations
of) the same multigrid method, which then requires an even smaller coarse system,
and so on, until the direct solution becomes possible at a low cost.

Here we consider multigrid methods based on aggregation and the symmetrized
Gauss–Seidel smoothing. The corresponding building block—aggregation-based two-
grid scheme—is described by Algorithm 1 below. The smoothing iteration amounts
to a single forward Gauss–Seidel sweep as presmoother (see step 1 of Algorithm 1)
and a single backward Gauss–Seidel sweep as postsmoother (see step 7). Regarding
the coarse grid correction (steps 3–5), it is entirely determined by a partitioning of
the set of unknowns {1, . . . , n} into nc < n disjoint subsets Gi, i = 1, . . . , nc, called
aggregates. Every aggregate from the initial system then corresponds to an unknown
of the coarse system. In the algorithm, the residual is first restricted on this coarse
variable set (step 3); next, the corresponding nc×nc coarse system is solved (step 4);
eventually, the coarse solution is prolongated on the initial variable set (step 5).
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Algorithm 1. Application of two-grid preconditioner to r ∈ R(A) : v = BTG r.

1. Solve Lv1 = r, where L = tril(A) (presmoothing)
2. r̃ = r−Av1 (residual update)
3. Form r̃c such that (r̃c)s =

∑
i∈Gs

(r̃)i, s = 1, . . . , nc (restriction)
4. Solve Acvc = r̃c (coarse grid solution)
5. Form v2 such that (v2)i = (vc)s for all i ∈ Gs , s = 1, . . . , nc (prolongation)
6. r = r̃−Av2 (residual update)
7. Solve Uv3 = r, where U = triu(A) (postsmoothing)
8. v = v1 + v2 + v3 (final result of the preconditioner application)

The entries of the coarse level matrix Ac are obtained by summation of the entries
of the original matrix, namely,

(Ac)ij =
∑

k∈Gi

∑
`∈Gj

ak`.(2)

Note that this is also the Laplacian matrix of the coarse graph associated with the
partitioning into aggregates (i.e., the graph whose vertices correspond to aggregates,
and for which the weight of an edge (i, j) is given by the sum of the weights of all
the edges connecting the vertices from Gi to those in Gj). In particular, this means
that Ac is singular. However, one may check that if r ∈ R(A) (as follows for any
residual associated with a compatible system (1)), then the system to solve at step 4
is compatible; moreover, which particular solution is picked up actually does not
influence the convergence (even with Krylov subspace acceleration) [17].

Let us now express the two-grid preconditioner in the matrix form. We first define
the n× nc prolongation matrix

(P )ij =

{
1 if i ∈ Gj

0 otherwise
(1 ≤ i ≤ n, 1 ≤ j ≤ nc).(3)

The restriction at step 3 of Algorithm 1 may then be written r̃c = PT r̃, whereas the
prolongation at step 5 corresponds to v2 = P vc. On the other hand, a particular
solution to Acvc = r̃c (step 4) may be written vc = A

g
c r̃c, where A g

c is a pseudo-
inverse of Ac satisfying AcA

g
c Ac = Ac [2]. Using further D = diag(A) = L+ U − A

for L = tril(A) and U = triu(A), one may then check that the preconditioner BTG
defined by Algorithm 1 satisfies

BTG =
(
LD−1U

)−1 +
(
I − U−1A

)
P A

g
c P

T
(
I −AL−1) .(4)

The idea behind the approach is easier to see considering the iteration matrix
associated with stationary iterations, namely,

I − BTGA =
(
I − U−1A

) (
I − P A g

c P
T A
) (
I − L−1A

)
.(5)

Thus, one such stationary iteration combines the effect of the forward and backward
Gauss–Seidel iterations with the coarse grid correction represented by the term I −
P A

g
c P

T A.
A multigrid method is obtained by a recursive application of the two-grid scheme

from Algorithm 1: at step 4, instead of the exact solution, one uses the approximation
obtained by performing 1 or 2 iterations with the same two-grid method, but applied
this time at the coarse level. The chosen iterative scheme defines the multigrid cycle:
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the V-cycle is obtained with one stationary iteration, the W-cycle with two stationary
iterations, and the K-cycle [18] with two iterations accelerated by a Krylov method.

Here we consider the K-cycle which is the standard choice for aggregation-based
methods [16]. In the present setting this means that the coarse grid system at step 4
is solved with two iterations of the flexible CG method [15] (more precisely FCG(1))
preconditioned with the same aggregation-based two-grid scheme. Then, to a large
extent, two-grid convergence properties carry over to the multigrid scheme [18], and,
hence, the control of the two-grid convergence implies in practice the control of the
multigrid convergence.

The above description corresponds to standard aggregation-based multigrid meth-
ods. The solver in [14] is different in that every time the Algorithm 1 needs to be
applied to a system, the unknowns corresponding to degree-one vertices are recursively
eliminated from this latter, and Algorithm 1 is then applied to the resulting Schur
complement system. Note that if the matrix before elimination is a graph Laplacian,
then the Schur complement matrix is also a graph Laplacian, and the corresponding
graphs differ only by the set of the eliminated vertices and the edges adjacent to
them. The degree-one elimination is beneficial for both the convergence and the cost
per iteration of the resulting preconditioner, but the improvement is perceptible only
for the limited set of graphs that have a large number of degree-one vertices.

3. Convergence estimates and aggregate quality. In this section we de-
velop the convergence analysis of two-grid preconditioners defined in Algorithm 1.
First, we show in Theorem 3.2 below that the corresponding condition number can
be bounded as a function of a measure of aggregates quality. The quality measure is
then further analyzed in Theorem 3.3 and the subsequent examples.

Before stating these results, we need to recall in Theorem 3.1 below the sharp two-
grid convergence estimate from [8, 23] and a related bound, as extended to positive
semidefinite matrices in Theorems 3.4 and 3.5 of [17]. To alleviate the presentation,
we restrict the corresponding theorem below to the two-grid schemes as described in
the preceding section, with one forward Gauss–Seidel sweep as presmoother and one
backward Gauss–Seidel sweep as postsmoother. We also assume

N (A) ⊂ R(P ),(6)

since this is always satisfied with the methods considered in this paper (see [17] for
a more general formulation that does not require this assumption). Indeed, if the
considered graph has only one connected component, there holds N (A) = span(1),
which is clearly in the range of a piecewise constant prolongation as defined by (3).
On the other hand, if there are multiple connected components, the condition still
holds provided that no aggregate has vertices from two or more components. This
latter condition is satisfied with virtually all known aggregation algorithms, which
always group vertices by following the edges which connect them. This is also why we
further assume below that the subgraph associated to each aggregate is connected.

Theorem 3.1. Let A be an n× n symmetric positive (semi)definite matrix, and
let P be an n × nc matrix of rank nc < n satisfying (6). Let uk be the approximate
solution obtained after k steps of the CG method applied to a compatible system (1),
using the preconditioner (4) defined by Algorithm 1.

Then there holds

‖u− uk‖A ≤ 2
(√

κeff − 1
√
κeff + 1

)k

‖u− u0‖A,
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where

κeff = sup
v∈Rn

v 6∈N (A)

vT X(I − P (PTX P )−1PTX) v
vT Av

(7)

with X = UD−1L, U = triu(A), D = diag(A), and L = tril(A). Moreover,

κeff ≤ sup
v∈Rn

v 6∈N (A)

vT X(I − P (PT X P )−1PT X) v
vT Av

(8)

for any matrix X such that X −X is nonnegative definite.

The convergence estimate from [8, 23] is exploited in [12] to bound the condition
number of aggregation-based two-grid methods applied to symmetric matrices with
nonpositive offdiagonal entries and nonnegative row-sum. This bound is equal to
the maximum over all aggregates of an algebraic quantity that is associated to each
aggregate and that can thus be used to characterize its quality. Clearly, avoiding
aggregates of bad quality allows one then to control the two-grid condition number,
and a related method for PDE problems is developed in [13].

The analysis in [12], however, is restricted to positive definite matrices and to
smoothers based on preconditioners that are block diagonal with respect to the parti-
tioning in aggregates. In the following theorem, we extend the approach to semidefi-
nite matrices and Gauss–Seidel smoothing as implemented in Algorithm 1. Regarding
terminology, the quantity µ(G) defined in the theorem below is referred to as the qual-
ity measure of an aggregate G.

Theorem 3.2. Let A be an n× n symmetric matrix with nonpositive offdiagonal
entries and nonnegative row-sum. Let P be defined via (3), with Gi, i = 1, . . . , nc,
being disjoint subsets whose union is {1, . . . , n}. Let, for i = 1, . . . , nc, A|Gi

be the
submatrix of A corresponding to the indices in Gi.

For i = 1, . . . , nc, assume that the submatrix A|Gi is irreducible, and let the
diagonal matrices ΣGi and ΓGi be such that, for j = 1, . . . , |Gi|,

(ΣGi
)jj =

∑
k 6∈Gi

|aGi(j)k| and (ΓGi
)jj =

(
(U −D)D−1(L−D)1

)
Gi(j) + 2(ΣGi

)jj ,

where U = triu(A), D = diag(A), and L = tril(A).
Then, κeff as defined in (7) satisfies

κeff ≤ max
1≤i≤nc

µ(Gi),

where

µ(Gi) =


1 if |Gi| = 1,

sup v∈R|Gi|

v 6∈N (AGi
)

vT XGi(I − 1(1TXGi1)−11TXGi) v
vT AGi

v
otherwise,(9)

with AGi
= A|Gi

− ΣGi
and XGi

= AGi
+ ΓGi

.

Proof. First, the null space of A contains at most the vectors that are constant
over each connected component. Then, (6) holds for a prolongation matrix defined
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by (3) providing that no aggregate has vertices from two or more components, which
is ensured by the assumption that all submatrices A|Gi

are irreducible.
Then, the stated result is a straightforward corollary of (8) and Theorem 3.2 in

[12] if we can show that

A− blockdiag(AGi
) and blockdiag(XGi

)−X

are both nonnegative definite. (The result in [12] is given for a symmetric positive
definite matrix A, but its extension to a symmetric semipositive definite A is straight-
forward.)

Now, the definition of AGi
implies that A − blockdiag(AGi

) has zero row-sum
and nonnegative offdiagonal entries (equal to aij if i and j do not belong to the same
aggregate and zero otherwise); hence it is weakly diagonally dominant and therefore
nonnegative definite.

On the other hand, the matrix

blockdiag(A|Gi
+ ΣGi

)−A = blockdiag(AGi
+ 2 ΣGi

)−A(10)

is also weakly diagonally dominant. Further, since

X = UD−1L = A+ (U −D)D−1(L−D),

the matrix

A +diag((U − D)D−1(L − D)1) − X =diag((U − D)D−1(L − D)1) − (U − D)D−1(L − D)

has nonpositive offdiagonal entries and zero row-sums; i.e., it is weakly diagonally
dominant as well. Summing with (10) then shows that

blockdiag(AGi
+ 2 ΣGi

) + diag
(
(U −D)D−1(L−D)1

)
−X = blockdiag(XGi

)−X

is nonnegative definite as claimed.

We now take a closer look at the quality measure of an individual aggregate. In
the particular case of a graph Laplacian, the matrix A has nonpositive offdiagonal
entries and zero row-sum, which entails that the submatrices AGi

as defined in The-
orem 3.2 also have nonpositive offdiagonal entries and zero row-sum; that is, AGi

is
the Laplacian matrix of the subgraph associated with Gi. The assumption that AGi

is irreducible amounts thus to the assumption that this subgraph is connected, which
is naturally satisfied with known aggregation schemes. This assumption guarantees
that the constant vector is the only kernel mode of AGi

and hence, as shown in [12,
Theorem 3.2], that µGi

is finite. This latter property is also clear from the following
theorem, where we further analyze the quality indicator µ(G) in the case where AG

has zero row-sum; note that ng in this theorem is the size of the matrix AG and plays
thus the role of the aggregate size |G| in Theorem 3.2.

Theorem 3.3. Let AG = (aij) be an irreducible symmetric ng × ng matrix with
nonpositive offdiagonal entries and zero row-sum, and let ΓG = diag(γj) be a non-
negative ng × ng diagonal matrix. Assuming ng > 1 and letting XG = AG + ΓG, the
quantity

µ(G) = sup
v∈Rng

v 6∈N (AG)

vT XG

(
I − 1

(
1TXG1

)−1
1TXG

)
v

vT AG v
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satisfies µ(G) = 1 if ΓG is the zero matrix and, otherwise,

µ(G) = 1 + min
w∈Rng

max
v∈Rng

v⊥w

vT ΓG v
vT AG v

= 1 + max
v∈Rng

v⊥ΓG 1

vT ΓG v
vT AG v

.(11)

Moreover,

1 + max
1≤j≤ng

γj∑ng

k=1
k 6=j

|ajk|

(
1− γj∑ng

k=1 γk

)
≤ µ(G) ≤ 1 + min

1≤i≤ng

 max
1≤j≤ng

j 6=i

γj

|aji|

.(12)

Proof. Because AG is an irreducible M-matrix with zero row-sum, it is singular
with a single kernel vector equal to 1. Then, we know by [12, Theorem 3.4] that
µ(G) coincides with the inverse of the second smallest eigenvalue of the generalized
eigenvalue problem

AG z = λ XG z.

Since the eigenvector associated with the smallest eigenvalue (i.e., the zero eigenvalue)
is 1, the Courant–Fisher characterization of the second smallest eigenvalue then yields(

µ(G)
)−1 = max

w∈Rng
min

v∈Rng

v⊥w

vT AG v
vT XG v

= min
v∈Rng

v⊥XG 1

vT AG v
vT XG v

.

The equalities (11) follow using XG = AG + ΓG and XG 1 = ΓG 1 .
Now, let i be any index in [1, ng], and let ei be the ith unit vector, i.e., the vector

satisfying (ei)k = δik. Considering the middle term of (11) with w = ei, one sees
that

µ(G) ≤ 1 + max
v 6=0

vT Γ(i)
G v

vT A
(i)
G v

,(13)

where Γ(i)
G and A(i)

G are the submatrices obtained by deleting the ith row and the ith
column of ΓG and AG, respectively. Since the row-sum of the jth row of A(i)

G is now
given by |aji|, one further has

max
v 6=0

vT Γ(i)
G v

vT A
(i)
G v

≤ max
v 6=0

vT Γ(i)
G v

vT diagj 6=i(|aji|) v
= max

1≤j≤ng

j 6=i

γj

|aji|
,

which gives the upper bound (12).
To prove the lower bound, consider v = ej − α1 with coefficient α such that

the orthogonality condition v ⊥ ΓG1 holds; that is, α = (1T ΓG ej)/(1T ΓG 1). Since
AG1 = 0, one has, using the zero row-sum condition,

vT AG v = eT
j AG ej = (AG)jj =

ng∑
k=1
k 6=j

|ajk|.

On the other hand, the orthogonality condition implies

vT ΓG v = eT
j ΓG ej − α 1T ΓG ej = γj −

(
1T ΓG ej

)2
1T ΓG 1

= γj −
γ2

j∑
k γk

.

Using these relations together with the right equality (11) yields the required
result.
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In what remains of this section, we illustrate the above theorem with two ex-
amples. These show, among other results, that both the upper and lower bounds in
(12) can be sharp. In both examples, we assume that all γi are equal for the sake of
simplicity. More general results are easily derived with the help of (11), which implies
that µ(G) for the case where γi = γ for all i provides an upper bound for the general
case setting γ = maxi γi and a lower bound setting γ = mini γi.

Example 3.1. In this example the subgraph of the aggregate is a clique and all
weights are equal to a; that is, all offdiagonal entries are equal to −a and

AG = a
(
ng I − 1 1T

)
.

With ΓG = γ I, (11) implies µ(G) = 1 +γ/(ang). Moreover, this value coincides with
the lower bound (12), since

∑
k 6=j |ajk| = a(ng−1), whereas (ng−1)−1(1−n−1

g ) = n−1
g .

Thus, in this example, the inequalities (12) become

lower bound = µ(G) = 1 +
γ

ang
≤ 1 +

γ

a
= upper bound.

Example 3.2. In this example, we consider the aggregate with n1 +n2 +1 vertices
and

AG = a



n1 + n2 −1 . . . −1 −1 −1 . . . −1
−1 n1 −1 . . . −1 0 . . . 0
−1 −1 n1 −1 0 . . . 0
...

...
. . .

...
... . . .

...
−1 −1 . . . −1 n1 0 . . . 0
−1 0 . . . . . . 0 n2 −1 −1
...

... . . . . . .
... −1

. . . −1
−1 0 . . . . . . 0 −1 −1 n2


;

that is, the aggregate is the union of two cliques of size n1 + 1 ≥ 2 and n2 + 1 ≥ 2,
with exactly one common vertex and no other interconnection between the cliques.

Let 11 be the vector such that

(11)i =

{
1 if i belongs to clique 1,
0 otherwise,

and I1 = diag(11), and define similarly 12 and I2. The matrix AG can be written

AG = a
(
(n1 + 1)I1 − 11 1T

1 + (n2 + 1)I2 − 12 1T
2
)
.

Then, consider the right equality (11) with trial vector

v = α1 (11 − e1) + α2 (12 − e1) ,

where e1 is the unit vector corresponding to the first vertex, which is the common
vertex of both cliques. Choosing α1, α2 such that the condition v ⊥ ΓG 1 holds, the
associate ratio vT ΓG v/vT AG v provides a lower bound on (µ(G)− 1). One finds

vT AG v = α2
1 (11 − e1)T

AG (11 − e1) + α2
2 (12 − e1)T

AG (12 − e1)
= a

(
α2

1 n1 + α2
2 n2

)
,
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whereas, with ΓG = γ I,

vT ΓG v = γ
(
α2

1 n1 + α2
2 n2

)
.

Therefore, the associate lower bound on µ(G) is 1 + γ/a. Since it coincides with the
upper bound (12), it necessarily gives the exact value. For this example, (12) becomes
then

lower bound = 1 +
γ

a min(n1, n2)

(
1− 1

n1 + n2 − 1

)
≤ µ(G)

= 1 +
γ

a
= upper bound.

If ng is relatively large in the first example, and if n1, n2 are relatively large in the
second example, one sees that in both cases the lower bound is significantly smaller
than the upper bound. One could then be afraid that none of the bounds is really use-
ful. However, in the next section, we show how the combined use of both bounds can
help to design a procedure that builds aggregates of required quality at affordable cost.

4. DRA with quality control. In this section, we first recall the DRA al-
gorithm (section 4.1). Then (section 4.2), we consider how to inexpensively check
whether the quality measure of a given aggregate is below a given threshold. Next
(section 4.3), we explain how, starting from a tentative aggregate—as, e.g., produced
by the DRA algorithm—one can progressively remove “bad” vertices until the qual-
ity test is passed. A heuristic strategy to increase mean aggregate size is further
discussed (section 4.4), and the section is concluded with a global overview of the
proposed approach (section 4.5).

4.1. DRA algorithm. The DRA scheme [14], whose algorithm is recalled be-
low, proceeds as follows. First, the vertices are ordered in decreasing order of their
degree. More precisely, to avoid excessive complexity, only a partial sort is made
based on the rounded value (toward smallest integer) of the logarithm of the degree
in base 2. Then, at each step, a root vertex is picked among the unaggregated vertices,
using the so defined preordering. An associated aggregate is next formed with this
root, its unaggregated neighbors, and, if the so formed aggregate is too small, the
unaggregated neighbors of these neighbors. If there remain unaggregated vertices,
one proceeds with the next step, and so on until all the vertices are aggregated.

Algorithm 2. DRA.

Input: A = (aij) % graph Laplacian matrix

Output: nc % number of aggregates

Gi, i = 1, . . . , nc % aggregates

1. Compute floor[log2(degree(i))] for all vertices i, i = 1, . . . , n
2. nc = 0
3. while there are vertices outside ∪nc

s=1Gs

4. Select as root a vertex r /∈ ∪nc
s=1Gs with maximal value of floor[log2(degree(r))]

5. nc ← nc + 1 and Gnc
= {r} ∪ {j /∈ ∪nc−1

s=1 Gs | arj 6= 0}
6. if |Gnc

| ≤ 6
Gnc
← Gnc

∪ {j /∈ ∪nc−1
s=1 Gs | ∃k ∈ Gnc

: akj 6= 0}
end if

7. end while
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The results in [14] show that in practice this algorithm always produces aggregates
big enough to ensure a low computational complexity for the associated multigrid
algorithm. More precisely, low computational complexity is guaranteed if the number
of nonzero elements of the coarse grid matrix decreases at least by a factor 3 from
one level to the next (see section 4.4 for an explanation); this is typically ensured if
the average aggregate size is at least 4. The latter requirement motivates step 6 of
the algorithm, which expands small root-and-neighbors aggregates.1

Now, this algorithm does not control the quality of the aggregates, which, as seen
in [14], sometimes leads to relatively large two-grid condition numbers.

4.2. Quality tests. Computing µ(G) for a given (tentative) aggregate is too
costly to be done repeatedly within the setup phase of an AMG method. Fortunately,
as observed in [13], an explicit computation is not needed to check that µ(G) is below
a given threshold κ. It suffices to verify whether the matrix

ZG = κAG −XG

(
I − 1

(
1TXG1

)−1
1TXG

)
(14)

is nonnegative definite, which can be done performing a Cholesky factorization. More
precisely, if AG has zero row-sum (as always in this work), then ZG has also zero row-
sum (and therefore is singular). Then, the last pivot of the Cholesky factorization is
always zero (in exact arithmetic), and ZG is nonnegative definite if and only if the
factorization of any principal submatrix of size |G| − 1 yields no negative pivot.

We may further use the upper bound in Theorem 3.3 as a sufficient condition. Let
r be the index of the root vertex of G and let, for all j in G,

δj =
(
(U −D)D−1(L−D)1

)
j
,(15)

with, as before, U = triu(A), D = diag(A) and L = tril(A). From the right inequality
(12) (considered with i = r) and the definition of ΓG = diag(γj) in Theorem 3.2 one
sees that one will have µ(G) < κ if

2
∑

k 6∈G |ajk|+ δj

|ajr|
≤ κ− 1 ∀ j ∈ G\{r}.(16)

This criterion is useful in two ways. First, when it is met, one may skip the
factorization of the matrix (14) and hence save some computing time. Next, and
more importantly, in some graphs, there are vertices with thousands of neighbors,
for which the DRA algorithm will produce huge tentative aggregates (remember that
vertices of high degree have priority for being selected as root vertex). Because the
cost of the factorization of the matrix (14) is O(|G|3), we can in fact not afford it
when |G| is too large. Then the only viable way to guarantee aggregate quality is to
use (16) as a necessary condition, although we know that it is only a sufficient one.

In practice, we observed that the impact of the factorization on the overall com-
puting time was significant beyond the size of 1024. Hence, when |G| > 1024 , a
tentative aggregate will be considered passing the quality test only if (16) holds
(regardless ZG), whereas if |G| ≤ 1024 , the main criterion is based on the factor-
ization of the matrix ZG in (14) (which is skipped only if (16) turns out to be
satisfied).

1The expansion size threshold is set to 6, this value being observed in [14] to deliver on average
the best trade-off between larger aggregates obtained with larger thresholds and the better average
quality that typically results when using smaller thresholds.
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Note that (16) can be passed only if all vertices are connected to the root vertex
(otherwise, some of the |ajr| are zero). This is usually the case for large aggregates
produced by the DRA algorithm, since step 6 in Algorithm 2 is skipped when the root
vertex has more than five unaggregated neighbors.

4.3. Aggregate filtering. The probability that an aggregate directly produced
by Algorithm 2 passes the quality test is relatively low. However, in most of the cases
that we encountered, it turns out to be possible to extract a reasonably large subset
of vertices that form an aggregate of acceptable quality. Here we present the two tools
that we use to identify such subset of vertices in a given tentative aggregate.

The first tool, presented in section 4.3.1, detects and removes “bad” vertices, that
is, vertices that fail to satisfy given criteria based on the two-sided bound (12). This
tool is systematically applied to every aggregate produced by the DRA algorithm,
before testing explicitly for quality as explained in the preceding subsection.

The second tool, presented in section 4.3.2, is applied when the aggregate fails
the explicit quality test based on (14). It selects a subgroup of vertices in a way that
allows one to properly handle the situations like in Example 3.2.

4.3.1. Bad vertices removal. Our approach is inspired by the two-sided bound
(12). It is better explained by rewriting these bounds for the context of Theorem 3.2
(as already done for (16) before), with i being again set to the root index r of the
tentative aggregate G. This gives

∀j ∈ G\{r} : 1 +
2
∑

k 6∈G |ajk|+ δj∑
k∈G
k 6=j
|ajk|

ξj ≤ µ(G) ≤ 1 +
2
∑

k 6∈G |ajk|+ δj

|ajr|
,(17)

where

δj =
(
(U −D)D−1(L−D)1

)
j

and ξj = 1−
2
∑
6̀∈G |aj`|+ δj∑

k∈G

(
2
∑

` 6∈G |ak`|+ δk

) .
Based on this we decide that a vertex j 6= r should be kept in G if

2
∑

k 6∈G |ajk|+ δj

|ajr|
≤ κ− 1(18)

or

2
∑

k 6∈G |ajk|+ δj∑
k∈G
k 6=j
|ajk|

≤ κ− 1
η

and |G| ≤ 1024,(19)

where η > 1 is a security factor (we typically use η = 2). In other words, only
the criterion (18) applies for aggregates larger than 1024, while vertices in smaller
aggregates are accepted if they satisfy either (18) or (19).

The rationale for this is as follows. If all vertices are accepted thanks to the
first condition (18), the inequality (16) holds, and hence the aggregate passes the
quality test. However, in view of Example 3.1, it would be too restrictive to use
this sole condition, at least when |G| ≤ 1024 , so that the aggregate has a chance to
pass the quality test when (16) does not hold. This motivates the second criterion
(19), which disregards the upper bound, but tends to ensure that the lower bound on
µ(G) is significantly below the largest admissible value (we neglect the factor ξj , the
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approach being heuristic, anyway). Observe also that, apart from the term δj , this
criterion is essentially a constraint on the ratio∑

k 6∈G |ajk|∑
k∈G
k 6=j
|ajk|

,(20)

that is, on the sum of the weights of external connections divided by the sum of
the weights of internal connections. Intuitively, the smaller this ratio, the larger the
probability that the vertex is a “good” aggregate member.

From a practical viewpoint, it is worth noting that the removal of a vertex from G
possibly implies, for the vertices j still in G , an increase of

∑
k 6∈G |ajk| and decrease of∑

k∈G,k 6=j |ajk| . This negatively affects the satisfaction of the criteria (18) and (19).
To take this into account, we continuously sweep through the vertices of an aggregate,
assessing (18) and (19) based on the most recent tentative aggregate G, and stopping
only once a complete sweep has been achieved without any removal. In practice, we
observed that the number of times each vertex is visited during this procedure is most
often between 2 and 4.

4.3.2. Subgroup extraction. Here we consider the treatment of tentative ag-
gregates issued from the just exposed removal procedure but that nevertheless fail the
quality test based on the factorization of (14). Such aggregates necessarily contain
vertices accepted thanks to (19). Hence a further filtering is possible by increasing the
security factor η to make this criterion more stringent. However, in view of situations
like that of Example 3.2, this is not always sufficient.

This motivates the subgroup extraction technique presented here, which exploits
the fact that the cases we are interested in are those where the Cholesky factoriza-
tion of ZG in (14) has broken down. As a by-product of the factorization, one can
inexpensively retrieve a vector w such that

wT ZG w = p < 0,

where p is the encountered negative pivot. Because ZG is symmetric and ZG 1 = 0,
we have as well

(w + α1)T ZG (w + α1) = p

for any α, thus also for v = w + α1 satisfying 1T XG v = 0. For this specific vector
we have (see (14))

p = vT ZG v = κ vT AG v − vT XG v = (κ− 1) vT AG v − vT ΓG v,

where ΓG = XG −AG. Hence,

1 +
vT ΓG v
vT AG v

= κ− p

vT AG v
> κ.

Remembering that 1T XG v = 0 and, therefore, 1T ΓG v = 0 (here 1T ΓG is always
nonzero if µ(G) > 1), the vector v may be seen as an approximation of
arg maxv⊥ΓG 1(vT ΓG v/vT AG v) which provides the exact value of µ(G) ; see (11).
On the other hand, as noted in the proof of Theorem 3.3, this latter is the eigenvector
associated with the second smallest eigenvalue of the generalized eigenvalue problem

AG z = λ XG z.(21)
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This eigenvector may be seen as a generalized Fielder vector. Since the sign of the
entries in the Fiedler vector is often used for graph partitioning, this motivates us in
discriminating aggregate members based on the sign of the corresponding entry in v.
More precisely, we proceed as follows. We preselect as remaining aggregate members
all vertices for which the component in v has the same sign as that of the root vertex.
Letting Gp be the set of preselected vertices, we then effectively keep in the tentative
aggregate G the vertices other than root such that

2
∑

k 6∈Gp

k 6=j

|ajk|+ δj

|ajr|
≤ κ− 1 or

2
∑

k 6∈Gp

k 6=j

|ajk|+ δj∑
k∈Gp

k 6=j

|ajk|
≤ κ− 1

η
.(22)

Note that, in this way, the vertices not initially preselected (i.e., those in G\Gp) can
finally stay in the tentative aggregate; i.e., we avoid a too crude decision based on the
sole signs in v.

Once this new tentative aggregate has been obtained, it will undergo the bad
vertices removal procedure described in the preceding subsection, before a new quality
test is performed. It may then reenter the procedure described here only in case of a
new factorization failure, which turns out to be extremely rare.

The following example illustrates how the subgroup extraction works and can
successfully face situations like that of Example 3.2.

Example 4.1. We consider a particular instance of Example 3.2, with n1 = 10 and
n2 = 12, except that some randomly chosen edges have been removed; see Figure 1,
left. To make the case more realistic, a random reordering of the vertices is applied,
and the connectivity pattern of the tentative aggregate is as illustrated in Figure 1,
right. All weights are equal to one, and the diagonal of ΓG is filled with random
numbers uniformly distributed in (0, 25):2

∑
k 6∈G

|ajk|+ δj


j=1,...,21

=
(

7.4 13.3 4.8 1.7 19.7 16.4 15.9 14.4 1.0 8.9 23.6

1.5 21.6 21.9 1.3 16.3 13.8 14.9 12.1 7.1 7.4
)
.

Fig. 1. Sparsity pattern of the Laplacian matrix AG associated to the aggregate G from
Example 4.1; left and right figures represent the pattern before and after a random reordering of
the vertices, respectively.
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Fig. 2. Same as Figures 1 (in reversed order), but with entries corresponding to Gp marked by
red circles.

It turns out that the largest value for the ratio in the left-hand side of (19) is 3.7,
which is below (κ− 1)/η for the standard values κ = 10 and η = 2.

Hence, the aggregate passes the “bad vertices removal” procedure described in
section 4.3.1 without any vertex removed. However, the factorization of the matrix
(14) yields a negative pivot. The corresponding vector v is

v =
(
− 0.24 0.88 − 1.16 − 1.09 1.09 1.29 − 1.32 − 1.24 0.60 0.99 1.04

− 1.12 − 1.44 1.42 − 1.13 − 1.36 0.85 0.01 − 1.00 − 1.00 − 1.00
)
.

One may check that it satisfies the proper orthogonality condition. On the other
hand,

1 +
vT ΓG v
vT AG v

= 11.2,

whereas a numerical computation reveals that µ(G) = 14.4. Moreover, v is relatively
close to the eigenvector z2 associated with the second smallest eigenvalue of (21),
since we obtain

cos(v, z2) = 0.97.

Further, the preselection based on the sign of the entries in v yields the result
illustrated in Figure 2, left. In fact, Gp is precisely the set of vertices belonging to
the second group of vertices, as is better seen looking at Figure 2, right.

It follows that the test (22) yields the same discrimination as the test based
on the signs in v, hence Gp is also the new tentative aggregate we restart the bad
vertices removal procedure with. Moreover, all vertices satisfy (19) (the values of the
ratio (20) are unchanged from the previous step), whereas the factorization test is
here successful. Hence, Gp is the finally accepted aggregate. A further numerical
computation reveals that µ(Gp) = 4.2, which is indeed below κ = 10 and about 3.5
times smaller than the initial value µ(G) = 14.4.

4.4. Enhancing complexity. As stated in the introduction (see also section 4.1),
one of the attractive features of the DRA algorithm lies in its ability to produce “large
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enough” aggregates independently of the connectivity pattern of the graph. Clearly,
the quality control may have a negative impact on aggregate size, which needs to be
investigated before going further.

To develop the discussion, it is useful to recall how aggregate size is related to
the complexity of the multigrid algorithm. Because we use the K-cycle, the work
per iteration and the memory requirements are controlled, respectively, through the
weighted and operator complexities [13, 14], defined by

CW = 1 +
L∑

`=2

2`−1 nnz(A`)
nnz(A)

and CA = 1 +
L∑

`=2

nnz(A`)
nnz(A)

,(23)

where A1 = A and where A2, . . . , AL are the successive coarse grid matrices, L being
the number of levels. More precisely, CW indicates the cost of the preconditioner
application relative to the cost of smoothing iterations at fine grid level, whereas CA
provides the memory needed to store the preconditioner relative to that needed for
the system matrix A. Note that in our case the cost of smoothing iterations at the
fine grid level, including the residual updates at steps 2 and 6 of Algorithm 1, is equal
to2 the cost of 2.5 matrix-vector products by the matrix A. Both parameters are kept
under control by ensuring that

nnz(A`−1)/nnz(A`) ≥ τ, ` = 2, . . . , L,

with τ well beyond 2; for instance, if τ = 3, then CW ≤ 3 and CA ≤ 3/2.
Clearly, larger aggregates imply smaller coarse grid matrices with, on average,

fewer nonzero entries, i.e., larger coarsening ratios nnz(A`−1)/nnz(A`) . When we
state that the DRA algorithm produces “large enough” aggregates, we mean that
it consistently succeeds in achieving low weighted and operator complexities, the
coarsening ratios being never significantly below 3 [14]. Regarding the quality control,
we therefore need to check whether it has a significant impact on these ratios.

In this regard, one may consider the first two groups of columns in Table 1 (the
third group is addressed later on), where relevant quantities are shown for a sample
of six test problems that are representative of the different situations met in practice.
With no surprise, when using the DRA algorithm alone, the coarsening ratios are
always above 3 but the condition number is sometimes large, whereas, adding the
quality control, some coarsening ratios become small, while, in agreement with the
theory, the condition number is always below the prescribed limit κ = 10 .

Going into detail, the first two problems are representative of situations where
the quality control has little impact: the condition number is already nice without
it, and, although the coarsening ratio is significantly reduced, it is still far above the
limit that guarantees low complexities. The third and fourth problems show cases
where the condition number is significantly improved thanks to the quality control,
while the impact on the coarsening speed is again marginal. The difficult cases are
represented by the fifth and sixth problems. In the fifth one, one would better skip
the quality control, since it has only a marginal effect on the already nice condition
number, but it has a dramatic impact on the coarsening ratio. The situation is more
mixed in the sixth case, where the quality control brings the needed improvement of
the condition number, whereas the coarsening ratio, although small, is not that small.

2The value 2.5 takes into account the solution steps 1 and 7 of Algorithm 1 as well as the
residual evaluation at steps 2 and 6, the former evaluation being performed via r̃ = (D−U) v1 with
U = triu(A) and D = diag(A).
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Table 1
Condition number and coarsening ratios for a two-grid method when using the DRA algorithm

alone (DRA), the DRA algorithm with quality control (DRA-QC), and the DRA algorithm with both
quality control and complexity enhancement (DRA-QC-CE). The dagger symbol † indicates that the
Laplacian matrix of the graph comes from the University of Florida Sparse Matrix Collection [7]; a
double dagger ‡ indicates matrices from the LAMG test set suite [10]; the subscript lcc means that
the experiment was performed with the largest connected component of the matrix; and nc represents
the number of rows and columns of A2, that is, the number of aggregates.

DRA DRA-QC DRA-QC-CE

Graph κeff
n
nc

nnz(A)
nnz(A2) κeff

n
nc

nnz(A)
nnz(A2) κeff

n
nc

nnz(A)
nnz(A2)

bcsstk29‡ 2.8 19.8 121.6 2.3 5.7 14.1 (2.3) (5.7) (14.1)

nopoly† 6.7 7.1 8.0 6.0 4.8 5.0 (6.0) (4.8) (5.0)

Oregon-2†lcc 4.7 3.6 6.1 2.1 10.0 5.8 (2.1) (10.0) (5.8)

web-NotreDame‡lcc 58.2 13.4 12.3 7.2 13.1 8.5 (7.2) (13.1) (8.5)

t60k† ‡ 4.0 4.1 3.0 3.5 2.2 1.7 3.8 4.9 2.9

web-BerkStan‡lcc 85.5 15.8 52.3 8.8 3.2 2.9 18.2 13.7 27.8

To improve the situation when the coarsening ratio becomes small while keeping
(hopefully) most of the benefit of the quality control, we then propose the following
strategy. If, after the DRA algorithm with control has completed, it turns out that
the ratio n/nc between the number of variables and the number of aggregates is below
4,3 then the vertices of aggregates of size 3 or less are marked as unaggregated, and
the DRA aggregation procedure is applied to them without any quality control—the
aggregates of size 4 or more obtained during the first pass being kept unchanged. Note
that the decision is based on the ratio n/nc because the coarsening ratio (based on
the number of nonzero entries) is known only when the coarse grid matrix is formed,
which is usually done only after the aggregation has been finalized. On the other
hand, satisfactory complexity values are typically obtained if the ratio n/nc is above
4 (see Table 1 for an illustration); this in turn explains the threshold value.

This strategy, referred to as DRA with quality control and complexity enhance-
ment (DRA-QC-CE), is illustrated with the last group of columns in Table 1. In
the first four problems, the ratio n/nc is above the target, hence no extra step is per-
formed, and the results are the same as for DRA with quality control. The extra step is
performed in the remaining two cases, and one may observe that the coarsening ratios
become indeed acceptable. More precisely, in the fifth problem, one actually recovers
almost the situation one had without quality control, and which is optimal in this case.
In the last problem, one gets in some sense the best of two worlds: the coarsening ratio
is pretty large as it was without quality control, but the condition number, although
above the limit κ = 10 , remains far below the one obtained without quality control.

4.5. Summary. We summarize the resulting aggregation scheme with
Algorithm 3 below. The aggregates are initially formed as in Algorithm 2 above
(steps 4–6): first a root vertex is chosen among those with the highest value of
floor[log2(degree)]; then the neighboring vertices are added and, if the aggregate size
is at most 6, neighbors of neighbors are appended.

However, unlike in Algorithm 2, the resulting aggregates are only tentative. They
further undergo the bad vertices removal described in section 4.3.1 (step 10). Next,
the aggregates are tested for quality, first via the criterion (16) (step 11), and, if

3This ratio is also the mean aggregate size.
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needed, via the factorization of the matrix ZG in (14) (step 12)—as written above,
this is in fact never done when the size of the tentative aggregate is above 1024, since
then the removal procedure only keeps vertices satisfying (18). If the factorization
of ZG yields a negative pivot, the subgraph extraction tool described in section 4.3.2
is further applied (steps 13–16). The resulting new tentative aggregate then reenters
the procedure at step 9; i.e., bad vertices removal is again applied (with a slightly
larger value of η) before a new explicit quality test based on (14). And so on, until the
tentative aggregate G satisfies either the upper bound (16) (step 11) or the explicit
quality criterion based on (14) (step 12); in either case it satisfies µ(G) < κ when it
is accepted (step 19).

Eventually, after all vertices have been assigned to an aggregate with verified
quality, we check if the number of coarse variables (i.e., the number of aggregates) is
at least four times smaller than the number of vertices (step 21). If not, the complexity
enhancement procedure described in section 4.4 is applied (steps 22–24); that is, small
aggregates are deleted, and the DRA algorithm without control is executed to group
the so released vertices into additional aggregates.

Algorithm 3. DRA-QC-CE.

Input: A = (aij) % a graph Laplacian matrix

κ % quality threshold (here set to 10)
Output: nc % number of aggregates

Gi, i = 1, . . . , nc % aggregates

1. Compute floor[log2(degree(i))] for all vertices i, i = 1, . . . , n
2. nc = 0
3. while there are vertices outside ∪nc

s=1Gs

% compute next tentative aggregates using DRA (steps 4-6)

4. Select as root a vertex r /∈ ∪nc
s=1Gs with maximal value of floor[log2(degree(r))]

5. G = {r} ∪ {j /∈ ∪nc
s=1Gs | arj 6= 0}

6. if |G| ≤ 6
G← G ∪ {j /∈ ∪nc

s=1Gs | ∃k ∈ G : akj 6= 0}
end if
% extract a good-quality aggregate (steps 7-18)

7. η ← 2
8. accept ← false
9. while not accept

cleaned ← false
% filter bad vertices (step 10)

10. while not cleaned
cleaned ← true
for j ∈ G, j 6= r

if criteria (18) and (19) not satisfied for j
G← G\{j}
cleaned ← false

end if
end for

end while
% test quality (steps 11, 12)
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11. if criterion (16) is satisfied
accept ← true

else
12. if Cholesky factorization of ZG defined by (14) fails

% subgraph extraction (steps 13-16)

13. η ← η + 0.5
14. Gp ← {j ∈ G |v(j) v(r) ≥ 0} with v as defined in section 4.3.2
15. if v(r) = 0 : Gp ← {j ∈ G |v(j) ≥ 0} end if
16. G← {j ∈ G |j = r or criterion (22) satisfied with respect to Gp}
17. else

accept ← true
end if

end if
18. end while

% form aggregate (step 19)

19. nc ← nc + 1 and Gnc
← G

20. end while
% if needed, reform small aggregates (steps 21-25)

21. if nc > n/4
22. delete all Gj such that |Gj | ≤ 3 ;
23. reset nc equal to the number of nondeleted aggregates;
24. add aggregates obtained by running Algorithm 2 from step 3 with

Gj , j = 1, . . . , nc being the nondeleted aggregates
25. end if

5. Numerical experiments. We begin by describing in section 5.1 the exten-
sive test set used for the experiments, providing details of the experimental setting,
and commenting on the representation of the reported results. We then assess the
new method in section 5.2, comparing with the former variant without quality con-
trol. Eventually, we provide in section 5.3 a comparison with the LAMG solver
from [11].

5.1. General setting. The experiments have been performed on all the graph
Laplacian matrices of undirected graphs that come from either the University of
Florida Sparse Matrix Collection [7] or the LAMG test set suite [10]. In both cases,
only the graphs with more than 104 vertices and with limited variation of edge weights
have been considered. This gave a total of 142 graphs. For graphs with several con-
nected components, the tests were run on the largest component.

The elapsed time is reported only for the 113 graphs that have more than 2 · 105

nonzero entries in their Laplacian matrix. (The elapsed times for the remaining 29
graphs are too small and hence subject to large relative variations from run to run.)
Time experiments were performed by running a Fortran 90 implementation of the
method on a single core of a computing node with two Intel Xeon L5420 processors
at 2.50 GHz and 16 GB RAM memory. When considering the absolute value of the
reported times, it is good to remember that this machine dates back to 2009.

In all cases, we used the flexible conjugate gradient method (FCG(1)) with the
zero vector as initial approximation, the stopping criterion being a 10−6 reduction
in the residual norm. Right-hand sides were generated randomly, the compatibility
condition being enforced by an explicit projection onto R(A) = 1⊥.
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Numerical results are reported here using bar diagrams, see Figure 3 for an exam-
ple. Each abscissa segment corresponds to an individual graph from the test set, and
each bar based on this segment is a reported value. All bar diagrams simultaneously
report two parameters, which then correspond to superposed bars of a different color.
More precisely, the semitransparent green (light gray) bar is always printed over the
opaque blue (dark gray) bar; since the former bar is semitransparent, the latter bar
is clearly visible even when it is completely covered by the other bar; the color of
the overlapping area is dark green (gray). Hence, if the semitransparent green bars
are higher than the blue ones, the resulting diagram looks like the one in Figure 3,
bottom. However, if the blue bars are higher, as is the case for most of the bars in
Figure 3, top and center, the blue bar will remain partly uncovered.

The problems in the diagram are gathered into three groups, depending on the
ratio p between the maximal and the average number of nonzeros per row: group
g1 corresponds to p < 1.2 and mainly contains the regular mesh graphs; group g2
corresponds to 1.2 < p < 12 and includes some unstructured finite element meshes,
road network graphs, as well as some low-degree referencing graphs; and group g3
corresponds to p > 12 and contains social networks, e-mail, citation, and web refer-
encing graphs—this group contains in principle all scale-free type of graphs [1] from
our test set. We refer to [14] (where the same test suite is considered) for more details
on the rationale of this classification. Within each group the problems are ordered by
increasing value of their average number of nonzeros per row (or nnz/n).

5.2. Assessment of the new method. Let us first summarize how the ingre-
dients of the new method are combined. It first recursively eliminates all the vertices
of degree 1 in the system matrix, yielding a reduced Schur complement system (this
applies only to graphs having such vertices, and the importance of this preprocessing
step is discussed in [14]). This system is solved with FCG(1), using the preconditioner
defined by Algorithm 1, in which step 4 is modified when n`+1 > n

1/3
1 , the vertices

of degree 1 being first eliminated, and the reduced Schur complement system being
approximately solved with 2 FCG(1) using the same two-grid preconditioner at this
coarse level. The aggregates Gi, i = 1, . . . , nc, used at each level are obtained with the
DRA-QC-EC algorithm (Algorithm 3) applied to the Schur complement matrix re-
sulting from the elimination of degree 1 vertices. The only difference with the method
in [14] lies in this use of the DRA-QC-EC algorithm instead of the original DRA
algorithm (Algorithm 2).

The difference between both methods is illustrated in Figure 3, where we display
the weighted and operator complexities as defined by (23), as well as the number of
iterations needed to solve the test problems. The results are along the lines expected
from the discussion in the preceding section. On the one hand, thanks, in some cases,
to the complexity enhancement, the impact of the quality control on the complexities
is fairly moderate, and, in particular, the weighted complexity remains below 3 as
desired. On the other hand, the quality control clearly brings the robustness it has
been designed for, the number of iterations being stabilized in the interval 15−30
independently of the problem.

The timing results are displayed in Figure 4 in seconds per million nonzeros.
The new aggregation algorithm is significantly more costly during the setup phase,
but the setup time remains fairly low in absolute value, exceeding rarely and never
dramatically half a second per million nonzeros. Regarding the solve times, they are
very close to each other in roughly two-thirds of the problems, whereas the new method
brings a significant improvement in the remaining one-third. Hence it is always a good
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Fig. 3. Weighted (top) and operator (center) complexities, as well as iteration counts (bottom)
for the solver [14] based on DRA and on the new DRA-QC-EC aggregation scheme. The test prob-
lems are gathered into three groups–g1, g2, and g3–as described at the end of section 5.1; consecutive
groups are separated with a dashed line.
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Fig. 4. Setup (top), solution (center), and total time (bottom) for the solvers based on DRA
and on the new DRA-QC-EC aggregation scheme; only graph Laplacians with more than 2 · 105

nonzero entries are considered.
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Fig. 5. Setup (top), solution (center), and total time (bottom) for the solvers based on the new
DRA-QC-EC aggregation scheme and for the LAMG code; only graph Laplacians with more than
2 · 105 nonzero entries are considered.
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idea to use the new DRA-QC-CE algorithm when emphasis is on the solve time, for
instance, because several systems have to be solved with the same matrix. For one-shot
applications, the results are more mixed, as illustrated by the reported total times.

5.3. Comparison with LAMG. We now report on the comparison between the
solver based on the new aggregation scheme and the LAMG solver [10] implementing
the method by Livne and Brandt [11]. The main LAMG driver is a MATLAB function,
but computationally intensive routines are written in C. The code was run on a
single computing node, using the standard MATLAB environment. Note that [11],
regarding numerical experiments, mainly reports timing results, leading us to think
that the LAMG code has been optimized enough with respect to speed and hence that
a comparison with our code based on time measurements is reasonably fair although
programming languages are different.

Timing results are displayed in Figure 5. Up to a few exceptions, both the setup
and solution times are lower for the new solver and, as a result, the total times are also
typically two to three times lower. In fact, LAMG is better mainly for graphs with
few nonzero entries per row. Most of these graphs correspond to road networks with
the number of nonzero entries per row below 4, meaning that the average degree of the
vertices is below 3. In these cases, LAMG benefits from an extended preprocessing
step that eliminates vertices with degree up to 4, whereas our method only eliminates
vertices of degree 1. Such an extended elimination is thus worth considering if the
focus is on graphs with very small average degree.

6. Conclusions. We considered the solution of graph Laplacian systems with
aggregation-based multigrid. We incorporated quality control in the DRA algorithm
proposed in [14] in order to improve its robustness. Moreover, we successfully faced
the two inherent obstacles. First, we avoided an excessive increase of the setup time
thanks to a clever filtering procedure that extracts an aggregate of verified quality
from a given tentative aggregate without using any time-consuming step. Second, we
avoided a dramatic impact on the complexity by running, in case of need, a second
pass where vertices in too small aggregates (of size 1, 2, or 3) are regrouped into
bigger ones. This results in a new aggregation scheme, referred to as degree-aware
rooted aggregation with quality control and complexity enhancement.

The numerical results demonstrate the robustness and effectiveness of the solver
based on this new aggregation scheme: the number of iterations needed for a six orders
of magnitude reduction in the residual norm remains below 33 for all the 142 graphs
in the considered test set. The new solver also compares favorably to the LAMG
solver [10], being significantly faster in most cases, whereas, in the few cases where
LAMG is better, it brings only a relatively marginal improvement.
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