
Emergence of resonant mode-locking via
delayed feedback in quantum dot

semiconductor lasers

B. Tykalewicz,1,2 D. Goulding,1,2,
∗

S. P. Hegarty,1,2 G. Huyet,1,2,3

T. Erneux,4 B. Kelleher,1,5 and E. A. Viktorov2,3,4

1Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork,
Ireland

2Centre for Advanced Photonics and Process Analysis, Cork Institute of Technology, Cork,
Ireland

3National Research University of Information Technologies, Mechanics and Optics, St
Petersburg, Russia
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Abstract: With conventional semiconductor lasers undergoing external
optical feedback, a chaotic output is typically observed even for moderate
levels of the feedback strength. In this paper we examine single mode
quantum dot lasers under strong optical feedback conditions and show
that an entirely new dynamical regime is found consisting of spontaneous
mode-locking via a resonance between the relaxation oscillation frequency
and the external cavity repetition rate. Experimental observations are sup-
ported by detailed numerical simulations of rate equations appropriate for
this laser type. The phenomenon constitutes an entirely new mode-locking
mechanism in semiconductor lasers.
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1. Introduction

Mode-locked lasers and their associated frequency combs have been at the centre of many
important advances in technology and fundamental science in recent years. Typically, mode-
locking is achieved in one (or a combination) of three ways: via active modulation, saturable
absorption or the Kerr effect [1]. In active mode locking the laser resonator contains an active
element modulating the output. For example, an electro-optic modulator or a Mach-Zehnder
optical modulator synchronized with the laser round-trip can generate short pulses. For passive
mode-locking, a saturable absorber - a passive but non-linear element - promotes the generation
of a pulsed output. The shortest pulse lengths are achieved with Kerr lens mode-locking, itself
a type of passive mode-locking, although self-starting mode-locking is not always achieved.
Methods to achieve passive mode-locking in the absence of a saturable absorber, including
crossed-polarization gain modulation [2] in vertical-external-cavity surface-emitting lasers for
example, have also been proposed but not yet demonstrated. This paper uncovers a new mech-
anism leading to mode-locking in semiconductor lasers. It takes the form of a resonant mode-
locking arising via a locking phenomenon between the two most important time scales in a
semiconductor laser: the cavity round-trip frequency and the relaxation oscillation frequency
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(ROF). The relaxation oscillations (ROs) in semiconductor lasers quantify the light-matter in-
teraction in the device. The ROs are damped oscillations arising from perturbations to stable
operation and represent an oscillating energy exchange between the electric field and the charge
carriers. Central to our discovery is the use of external optical feedback to excite the ROs, caus-
ing them to become undamped. There are in fact multiple resonances in the system, taking the
form of locking tongues with rational ratios between the ROF and the external cavity frequency.

External optical feedback in semiconductor lasers causes many undesirable instabilities
mainly due to the relatively large time delay of the feedback compared to the laser time
scales [3]. For conventional quantum well (QW) based or bulk semiconductor lasers, it is known
that even extremely weak feedback levels can lead to chaotic behaviour [4] while for quantum
dot (QD) lasers based on InAs material, the stability is improved remarkably [5]. The dynam-
ics of semiconductor lasers undergoing delayed optical feedback has a rich literature: results
include chaos synchronization [6], coherence resonance [7], bifurcation cascades [8] and pulse
packages [9] amongst many others (see [10] for a comprehensive set of references). Many stud-
ies concentrate on the chaotic regime where two distinct behaviours are identified: namely low
frequency fluctuations (LFF) and coherence collapse (CC) [3, 11]. Fully developed CC is char-
acterized by a completely irregular time series while LFF is characterized by deep intensity
drop-outs followed by gradual returns to the initial intensity. Both CC and LFF have been ob-
served for QW devices and quantum dash lasers [12] in contrast to lasers based on QD material.
This is largely a consequence of the enhanced damping of the ROs of QD devices [5, 13]. The
same property has also been shown to increase stability under optical injection [14] and mutual
coupling [15].

Thus, heretofore, chaotic regimes have dominated feedback studies. Indeed, once instabili-
ties appear, the only possible stable lasing obtained is a single external-cavity high-gain mode
operation [16]. In this paper we demonstrate experimentally that with QD lasers undergoing
optical feedback, a new stable state can be obtained manifesting as a periodic pulse train. The
findings are reproduced extremely well using a detailed model tailored for QD lasers. While
the famous Lang-Kobayashi rate equations [17] reproduce the observations for conventional
semiconductors very well, they are unsuitable for the QD case. This is mainly because high
feedback levels and long external cavities are required for the observations of dynamical insta-
bilities. In [18] a long cavity model was introduced accounting well for the observed features in
multimode QD experiments. In this work, we show that this model can be further improved by
taking into account two distinct delays corresponding to the short laser chip cavity and the long
external cavity. We show that the pulse train results from a spontaneous mode-locking amongst
external cavity modes (ECMs) which in turn results from a resonance between the ROF and the
external cavity repetition rate. It constitutes an entirely new mode-locking mechanism arising
through inherent device dynamics.

As mentioned, the locking mechanism arises via rational ratios of the ROF and the external
cavity repetition rate. This is reminiscent of mode-locking via the devil’s staircase [19–21] and
we may speak of a winding number in this context as the ratio of the two frequencies. For a
fixed cavity length the ROF can be varied by changing the bias current driving the laser. As
the ratio of the ROF and the external cavity frequency varies different winding numbers are
obtained and confirmed via time series and radio frequency (RF) measurements. Changing the
external cavity round-trip length is shown to produce a similar change in the winding number
for a fixed ROF. Numerical simulations show remarkable agreement with the experiment. The
system is shown to be highly multistable with certain winding numbers having a larger basin
of attraction than others similar to the way in which the simplest fractions have the largest step
lengths in the devil’s staircase. Because of the varying basin of attraction sizes some traces are
far more likely to be observed experimentally.
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Fig. 1. Experimental times traces showing (a) the nearly sinusoidal oscillation and (c)the
fundamental TEP pulse train. The corresponding RF spectra are shown in (b) and (d), re-
spectively. The bias current was 79 mA and the feedback strengths were -16 dB and -
15.8 dB respectively. The two frequencies are in a ratio of 1:5 in this case.

2. Experimental details

The device used for the experiment is a single mode distributed feedback (DFB) laser. The DFB
laser used has an active region consisting of a stack of ten InAs QD layers with a cavity length
of 900 μm, as-cleaved facets and a threshold current of 67 mA. The side mode suppression ratio
is in excess of 40 dB at all the currents used in the experiments presented here. The external
cavity lengths used were quite long, on the order of 0.5 m to 1 m. As is typical with these
devices, the RO damping rate is very high as discussed in [13,14,22]; so high in fact that the RF
spectrum of the free-running device does not display any observable peak in marked contrast
to conventional semiconductor lasers. We investigate the behaviour at a fixed external cavity
round-trip length of 0.9 m and varying bias currents. For low feedback levels the intensity was
constant (modulo noise). Using a variable optical attenuator in the external cavity, the feedback
level was increased until continuous operation was lost. In its place a regular, nearly-sinusoidal
oscillation was obtained. An example of this oscillatory behaviour for a bias current of 79 mA
is shown in Fig. 1(a). The frequency of the oscillation at this bias current was ∼1.55 GHz, see
Fig. 1(b). As the level of feedback is slowly increased the generation of sidebands in the RF
spectra, spaced at the round-trip frequency of ∼0.31 GHz, was observed. Further increase of
the feedback strength led to the creation of an extremely distinct pulse train. The train consisted
of short pulses followed by broad trailing edge plateaux (TEP) reminiscent of pulses obtained
using two section passively mode-locked QD devices in [23] with the frequency of the train
matching the round-trip frequency of the external cavity [24]. Figure 1(c) shows an example of
this fundamental pulse train. It is quite striking that the pulse train repetition rate, at this bias
current, is in a 1:5 resonance with the initial periodic trace, as is clear from the corresponding
RF spectra in Figs. 1(b) and 1(d).

As the feedback strength is further increased, the output intensity evolves from single to
multiple pulses per round-trip. This progression, with increasing feedback strength, continues
until a nearly-sinusoidal oscillation at the frequency of the original instability (∼1.55 GHz)
was obtained. Further increase in the feedback strength resulted in the observation of chaotic
intensity output from the laser. The system also displayed noise induced switching between
pulse trains and short time itinerancy of single mode operation, indicating that multistability
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Fig. 2. Experimental times traces showing (a) the nearly sinusoidal oscillation and (c)the
fundamental TEP pulse train. The corresponding RF spectra are shown in (b) and (d), re-
spectively. The injection current was 100 mA and the feedback strengths were -12 dB and
-6.8 dB. The two frequencies are in a ratio of 1:9 in this case.

is a feature of the system. We note pockets of incoherence, which we define as an absence of
rational resonance in the system, are also common and display quasiperiodic intensity traces
strongly affected by the inherent noise in the system.

Increasing the bias current leads to similar evolutions. However, the details change: the fre-
quency of the nearly-sinusoidal periodic oscillation increased and again a fundamental pulse
train is observed - the TEP pulse train - with a change in the ratio between the two frequencies.
The RF trace of the TEP pulses displays many more harmonics than the trace in Fig. 1(d) and
the pulses are correspondingly sharper. We continue to increase the current and obtain similar
evolutions in each case. The case for a 1:9 resonance is shown in Fig. 2. We find resonances
up to and including 1:11. Examining the frequency of the nearly-sinusoidal curve shows that
the frequency scales with the square root of the current as shown in Fig. 3 as one would ex-
pect for the ROF of a semiconductor laser and we interpret it as such. That the first instability
occurs at the ROF is in line with studies of conventional semiconductor lasers [25, 26]; the dif-
ference being that chaos quickly ensues with conventional devices. We therefore interpret the
TEP pulse train as a mode-locked train, resulting from a resonance between the ROF and the
external cavity frequency.

We stress that the evolution does not end at 1:11. However, as the ROF is slowly varying
for higher currents, we find situations where the locking jumps stochastically between different
ratios as the repetition rate is close to several different ROF subharmonics. The TEP pulses be-
come ever sharper with increasing current as the number of harmonics grows. The appearance
of these regular pulse trains signifies a phase-locking of ECMs with a high level of organi-
zation resulting from the resona nce. The large number of higher order harmonics in the RF
spectra with narrow widths at the detection resolution limit (∼ 1 MHz) strongly supports our
interpretation of the phenomenon as a new mode-locking mechanism. These narrow RF lines
also confirm that the periodic traces observed are indeed stable. We also tested external cav-
ity round-trip lengths of 0.5 m and 1.4 m and found the same qualitative behaviour. Thus, the
mode-locking appears to be robust to control parameter variations. We note that the feedback
does not result in any excitation of the other short-cavity modes, suppressed by the DFB grat-
ing. We also note that modal groupings leading to pulses with trailing edge plateaux seem to be
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Fig. 3. Experimentally obtained frequencies of the nearly sinusoidal oscillations (black
circles) as the injection current was varied. The red solid line shows a square root fit.

a common feature of mode-locked QD lasers: they have also been observed in [23] and more
recently in [27]. In all cases, there is a dominant mode responsible for the plateaux observed.

3. Numerical model

We model the system as a laser consisting of two sections: namely, the semiconductor laser
itself and the external cavity. The first section, of length Lint, is very short and contains the
gain medium and the second section, of length Lext � Lint, is empty. The equation describing
the evolution of the electric field envelope E (t) is

γ−1 dE
dt

+E(t) =
√

κ exp((1− iα)G(t − τ)/2+ iφ)E (t − τ)

+ε exp((1− iα)G(t − τ −T )/2+ iψ)E (t − τ −T ) (1)

and is a generalization of the field equation in [28, 29]. E (t) is the normalized complex
amplitude of the electric field, while t is the time normalized by the short cavity round-trip
time. The dimensionless time delays τ and T correspond to the short and long cavity round-trip
times, determined by the cavity lengths Lint and Lext, respectively. The attenuation factor κ < 1
describes total non-resonant linear intensity losses per cavity round-trip, γ is the dimensionless
bandwidth of the cavity, and α is the linewidth enhancement factor. We note that regardless
of the feedback level no other modes of the short 900 μm cavity were excited experimentally
allowing us to limit the value of the bandwidth in the model. ε describes the feedback strength
and the phases φ and ψ are control parameters determined by the detuning of the frequency of
the gain maximum from the optical frequency of the closest cavity mode. Although the phase
amplitude coupling in QD lasers can be a complicated variable, [30], we here assume a constant
α for mathematical simplicity while maintaining the essential physics of the system.

An appropriate set of QD carrier equations are also required. The variable G(t) is the nor-
malized gain defined by

G(t)≡ 2gLint [2ρg(t)−1] , (2)

where ρg (t) describes the ground state (GS) dot occupation probability and g is the effective
gain factor. The evolution of the occupation probabilities satisfy the following equations
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Fig. 4. Numerical traces showing (a) the nearly sinusoidal RO time series, (c) the funda-
mental TEP pulse train and (b) and (d) the corresponding RF spectra, respectively. The
parameters are ε = 0.1375 (a) and ε = 0.2 (b); N0 = 10, κ = 0.3,φ = 2 and ψ = 4. The
two frequencies are in a ratio of 1:5 in this case.

η−1 dρg

dt
=−ρg +2F (ρg,ρe)−

(
eG −1

) |E|2 , (3)

η−1 dρe

dt
=−ρe −F (ρg,ρe)+D(ρe,N) , (4)

η−1 dN
dt

= N0 −N −4D(ρe,N) , (5)

where ρe (t) describes the excited state (ES) dot occupation probability and N (t) the carrier
density in the wetting layer, scaled to the QD carrier density. η ≡ ττ−1

c << 1 where τc denotes
carrier recombination time. The dimensionless parameter N0 describes the pumping process
in the gain section. The factors 2 and 4 in Eqs. (2) and (5) account for the spin degeneracy
in the QD energy levels. The function D(ρe,N) describes the carrier exchange rate between
the wetting layer and the ES of the dots. In its most general form, this carrier exchange is
formulated as

D(ρe,N) = Rcap
w (1−ρe)−Resc

w ρe, (6)

where Rcap
w ≡ BN describes the carrier capture from the wetting layer to the dots with rate B.

Resc
w a temperature-dependent coefficient corresponding to carrier escape from the dots to the

wetting layer. F (ρg,ρe) describes carrier exchange between the GS and ES of the dots and can
be written as:

F (ρg,ρe) = Rcap (1−ρg)−Resc (1−ρe) , (7)

where Rcap ≡ Bρe and Resc ≡Cρg define the energy exchange between the GS and ES. The
(1−ρe,g) factors describe Pauli blocking in the expressions (6) and (7). Equations (1)-(5) are in
dimensionless form. For the numerical simulations we choose common material parameters for
QD lasers. We consider η = 0.1 (η = ττ−1

c where τ = 100 ps is the short cavity round-trip time
and τc ∼ 1000 ps is the recombination time), α = 4, B = 100,C = 10, Resc

w = 1, 2gLint = 4 and
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the rescaled dimensionless time delays are τ = 1 and τ +T = 31 � τ . The narrow bandwidth
γ = 1.2 of the cavity was chosen to match the single mode operation provided by the DFB. The
numerical parameters were chosen in order to match the two most important laser time scales:
the ROF and external cavity round-trip time.

Direct simulations reproduce the experimental findings extremely well. For low feedback
strengths, the output has a constant intensity. Increasing the feedback strength, a periodic, al-
most sinusoidal trace is eventually obtained as seen in Fig. 4(a). The frequency of this trace
is the ROF. Increasing the feedback strength still further yields a TEP pulse train. As with the
experiment, the ratio between the ROF and the external cavity frequency can be varied depend-
ing on the cavity length and injected current. Figure 4 shows the case for a 1:5 ratio and the
correspondence with the experiment is excellent. It is worth noting here that the amplitude of
the oscillations in the sinusoidal trace at the ROF is significantly smaller than that of the TEP
pulse train, as also observed in the experiment.

As the feedback strength is further increased, more complex patterns were obtained. These
include the evolution from single to multipulse trains similar to those observed in the exper-
iment. Numerically we find that the system is highly multistable with different pulse trains
possible for the same control parameters. We note that variations of the phases φ and ψ may
sufficiently affect the pulse shapes and the locking ranges as could be expected, but do not
change the scenario of the resonant mode locking qualitatively.

This evolution of dynamics is in stark contrast to that observed with conventional semicon-
ductor lasers. The key property of QD lasers in this phenomenon is the high damping of the
ROs. With conventional semiconductor lasers the ROs become undamped at very low feedback
strengths and chaos quickly follows. The high damping in QD lasers allows the lasers to remain
stable up to the high feedback levels required for the mode-locking mechanism to take effect.

The physics of the phenomenon can be understood as follows: At the onset of the first in-
stability a Hopf bifurcation occurs corresponding to an undamping of the ROs. This yields co-
herent sidebands around the central optical frequency. When these are close to external cavity
mode frequencies they can in turn excite these via optical injection yielding new modes coher-
ent with the central tone. A second Hopf bifurcation then arises at the round-trip frequency and
the sidebands that result here can inject and excite neighbouring external cavity modes.

4. Conclusion

In conclusion, we have uncovered a new mode-locking mechanism in semiconductor lasers.
The ECMs in QD lasers undergoing moderately high levels of external optical feedback be-
come mutually phase-locked via a resonance with the ROF. The resonance takes the form of
rational ratios between the external cavity repetition rate and the ROF. Depending on the control
parameters of the system, different ratios of the frequencies are possible. The mechanism relies
on the high RO damping in these devices which allows high feedback strengths to be tolerated
without the generation of chaos.
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