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Abstract. The paper compares the pseudo real-time forecasting performance of three

Dynamic Factor Models: (i) The standard principal-component model, Stock and Watson

(2002a), (ii) The model based on generalized principal components, Forni et al. (2005),

(iii) The model recently proposed in Forni et al. (2015) and Forni et al. (2016). We employ

a large monthly dataset of macroeconomic and financial time series for the US economy,

which includes the Great Moderation, the Great Recession and the subsequent recovery.

Using a rolling window for estimation and prediction, we find that (iii) neatly outperforms
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(i) and (ii) in the Great Moderation period for both Industrial Production and Inflation,

and for Inflation over the full sample. However, (iii) is outperfomed by (i) and (ii) over the

full sample for Industrial Production.

1 Introduction

This paper compares the pseudo real-time forecasting performance of three Large-

Dimensional Dynamic Factor Models for the US monthly macroeconomic dataset

over the period February 1985 to August 2014, this including the so-called Great

Moderation and the Great Recession.

Large-Dimensional Dynamic Factor Models represent each variable in the dataset

as decomposed into a common component, driven by a small (as compared to the

number of series in the dataset) number of common factors and an idiosyncratic

component. The latter are assumed to be orthogonal across different variables or

only weakly correlated, so that the covariance of the variables is mostly accounted

for by the common components. Typically, the asymptotic results are obtained for n,

the number of series, and T , the number of observations for each series, both tending

to infinity. Among the different versions of the Dynamic Factor Model we selected:

(i) SW. The model introduced in Stock and Watson (2002a,b). The factors are

estimated by means of the standard Principal Components of the variables in

the dataset. The forecast of the variable of interest, call it yt, is obtained by

regressing yt+h on the factors and the variable yt, plus possibly lags of the

factors and yt.

(ii) FHLR. A variant of the previous model which has been proposed in Forni et al.

(2005). In a first step the covariances of the common and the idiosyncratic com-

ponents are estimated using a frequency-domain method introduced in Forni

et al. (2000). In the second step such covariances are employed to estimate the

factors by means of Generalized Principal Components.

(iii) FHLZ. Both models (i) and (ii) assume that the space spanned by the common
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components at any time t stays finite-dimensional as n tends to infinity. In

two recent papers, (Forni et al., 2016, 2015), it is assumed that a finite num-

ber of common shocks drive the common components, though the common

components themselves are allowed to span an infinite-dimensional space. The

dynamic relationship between the variables and the factors in this model is more

general as compared to (i) and (ii). However, its estimation is rather complex

and no systematic comparison with (i) and (ii) has as yet been produced1.

The literature comparing SW and FHLR has reached mixed conclusions so far.

Using US data, Boivin and Ng (2005) found that SW generally outperforms FHLR,

whereas D’Agostino and Giannone (2012) found the two methods to perform equally

well in their sample even if different performances are found in subsamples. In

particular, FHLR fares better during the Great Moderation, consistently with the

results in the present paper. Schumacher (2007), using German data, finds that

FHLR provides more accurate forecasts of the GDP. A similar result is obtained in

den Reijer (2005) with Dutch macroeconomic data.

Let us point out that here we only consider the three factor models outlined

above. In particular, we do not consider variants of the Dynamic Factor Model or of

the estimation method such as Peña and Poncela (2004), Kapetanios and Marcellino

(2009) (which is included in Schumacher (2007)), Doz et al. (2011b), Doz et al.

(2011a). Comparison with such variants and alternative shrinkage methods, see e.g.

Stock and Watson (2012) and Kim and Swanson (2014), are left to future research.

For a review and evaluation of forecast results with Dynamic Factor Models see

Eickmeier and Ziegler (2008).

In the present paper we extend the comparisons in Boivin and Ng (2005) and

D’Agostino and Giannone (2012) to more recent US data and include the new FHLZ

forecasting model. We use a dataset of US macroeconomic and financial monthly

time series spanning from January 1959 to August 2014 thus including the Great

Moderation, the Great Recession and the subsequent recovery.

1See however Forni et al. (2016), in which forecasts obtained with models (i) and (iii) are
compared using simulated data and quarterly macroeconomic US data.
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A distinctive feature of our exercise is that we use a fairly large subsample,

February 1960 to December 1984, to calibrate the models, i.e. to decide which

method should be used to determine the number of factors, the number of lags of

the factors or of the variable to be predicted, etc. The selected models are then run

and compared in the remaining sample: January 1985 to August 2014.

Our results are:

(I) In the Great Moderation period, in which the assumption of stationarity of

the series in the dataset (after suitable transformations) underlying all factor

models is by and large fulfilled, FHLZ neatly outperforms the other factor mod-

els and the univariate AR model both for Industrial Production and Inflation.

FHLZ also prevails over the other factor models in the full sample for Inflation,

though all factor models loose ground with respect to the AR model. This

deterioration is the result of a bad performance of the factor models during the

crisis.

(II) In the full sample FHLR and SW outperform FHLZ and AR for Industrial

Production. Again, this reversal in the order among the factor models is com-

pletely accounted for by their performance in the crisis period.

(III) We also run forecasts for all single series in the dataset and find that, over the

full sample, FHLZ is the best method for the nominal variables, consistently

with (I) above, whereas FHLR is the best for real variables.

The structure of the paper is as follows. In Section 2 the factor models considered

are outlined and the particular features of FHLZ are discussed. In Section 3 we

describe the calibration of the models. In Section 4 we describe and discuss the

results. Section 5 concludes.
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2 Three forecasting methods

Let us start with the general form of the Large-Dimensional Dynamic Factor Model:

xit = χit + ξit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · ·+ ciq(L)

diq(L)
uqt + ξit, (2.1)

where L is the lag operator, t =∈ Z, i ∈ N,

cif (L) = cif,0 + cif,1L+ . . .+ cif,s1L
s1 , dif (L) = dif,0 + dif,1L+ . . .+ dif,s2L

s2 ,

ut = (u1t u2t · · · uqt)′ is a q-dimensional orthonormal white noise.

The processes χit, are called the common components, they are driven by the

common shocks ut, also called the dynamic (common) factors. We assume that the

polynomials dif (L) are stable so that χit is stationary and is co-stationary with χjt

for all i, j ∈ N. The processes ξit are called the idiosyncratic components. We assume

that ξit is stationary and co-stationary with ξjt for all i, j ∈ N. Moreover, ξit and ut

are orthogonal for all i ∈ N so that ξit and χjt are orthogonal for all i, j ∈ N. The

assumptions above trivially imply that the observable process xit is stationary and

costationary with xjt, for all i, j ∈ N.

Assumptions on the eigenvalues of the spectral density of the vector processes

χχχnt = (χ1t χ2t · · · χnt)′, ξξξnt = (ξ1t ξ2t · · · ξnt)′,

not specified here, imply that the common shocks and the common components

(and therefore the idiosyncratic components) can be recovered as limits of linear

combinations of the first n observables xit, as n tends to infinity. Roughly speaking,

while the common components are “strongly correlated” through the common shocks,

the idiosyncratic components are either orthogonal to one another or only “weakly

correlated”, so that if we take a linear combination of the first n variables and n is

large, the idiosyncratic component becomes negligible, as compared to the common

component. A detailed description of assumptions and results can be found in Forni

et al. (2016, 2015).
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Suppose now that for a given t̄ the common components

χit̄ =
ci1(L)

di1(L)
u1t̄ +

ci2(L)

di2(L)
u2t̄ + · · ·+ ciq(L)

diq(L)
uqt̄, i ∈ N,

span a finite-dimensional vector space St̄ and denote by r its dimension. Stationarity

of the common and idiosyncratic components implies that the same occurs for all

t ∈ Z, that the dimension of St is independent of t and there exists a “stationary

basis”

Ft = (F1t F2t · · · Frt)

such that (2.1) can be rewritten in the static form

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit, (2.2)

see Forni et al. (2009). Moreover, r ≥ q, i.e. the number of the so-called static

factors Fht is at least equal to the number of dynamic factors. For example, if q = 2

and

χit =
ci1

1− dL
u1t + ci2u2t + ci3u2,t−1, (2.3)

then the model has the static representation, with r = 3,

λij = cij, F1t = (1− dL)−1u1t, F2t = u2t, F3t = u2,t−1.

Model (2.2), i.e. the finite-dimension assumption, has been almost universally

adopted in the literature on Dynamic Factor Models, we only mention here the

seminal papers Stock and Watson (2002b), Stock and Watson (2002a) and Bai and

Ng (2002), Forni et al. (2005). Under the finite-dimension assumption, the factors Fjt

and the loadings λij can be estimated using the first r standard principal components,

or generalized principal components as in Forni et al. (2005), of the first n observables

xit.

The general model (2.1), with no finite-dimension assumption, has been studied in

Forni and Lippi (2011), Forni et al. (2015) and Forni et al. (2016), the last providing

consistent estimators for the loadings cif (L)/dif (L) and the dynamic factors uft.
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Predictions based on (2.2) and (2.1), described in Sections 2.1–2.3 and 2.2 re-

spectively, are referred to as the static and the dynamic method, the first including

SW and FHLR, the second FHLZ. On the other hand, we also refer to FHLR and

FHLZ as frequency-domain methods, as both employ the spectral density matrix of

the x’s, and to SW as a time-domain method.

A motivation for studying the general model (2.1), as argued in FHLZ (2015), is

that model (2.2) rules out cases as simple as

xit =
ci

1− diL
ut + ξit, (2.4)

for i ∈ N, where ut is a scalar white noise and the coefficients di are drawn from,

say, the uniform distribution between −0.8 and 0.8. For, unless di takes a finite

number of values as i ∈ N, the stochastic variables χit = ci(1 − diL)−1ut span an

infinite-dimensional space.

On the other hand, as pointed out in FHLZ (2015, end of Section 4.5), when a

dataset is given, with finite n (number of variables) and T (number of observations),

the static method might perform well even under misspecification, i.e. even if the

data were generated by a model not fulfilling the finite-dimension assumption. In

FHLZ (2014) the static and the dynamic methods have been applied to simulated

data in several Monte Carlo experiments. A very short summary of the results is

that: (i) when the data are generated by infinite-dimensional models like (2.4), the

estimation of impulse-response functions and predictions obtained by the dynamic

method are by far better than those obtained by the static method; (ii) when the

data are generated under the finite-dimension assumption, model (2.2), still the

dynamic method performs slightly better. In the present paper the comparison

between the static and dynamic methods is conducted using empirical data, namely

the US monthly macroeconomic dataset mentioned in the Introduction and fully

described in Section 3.
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2.1 Static method: SW

Given n, the number of series available, and T , the number of observations for each

series, firstly the number r of static factors is estimated. Several criteria are available

in the literature. In our exercise we make use of Bai and Ng (2002).

Secondly, let Γ̂̂Γ̂Γn be the estimate of the covariance matrix of xnt = (x1t x2t · · · xnt).
The first r principal components of xnt are defined as

P̂nhxnt = Pnh(x1t x2t · · · xnt)′,

for h = 1, 2, . . . , r, where P̂nh is the eigenvector corresponding to the h-th eigenvalue

(in decreasing order) of Γ̂̂Γ̂Γn.

The SW forecasting equation for xit is obtained by projecting xi,t+h on the space

spanned by

F̂t, F̂t−1, . . . , F̂t−g1 ; xi,t, xi,t−1, . . . , xi,t−g2

where the presence of the terms xi,t−k can be motivated as possibly capturing auto-

correlation in the idiosyncratic component ξit:

xSWi,t+h|t = αααi(L)F̂t + βi(L)xi,t, (2.5)

where αααi(L) is a 1× r matrix polynomial of degree gi1 and βi(L) a scalar polynomial

of degree gi2.

Estimation of equation (2.5) requires determining three parameters:

(i) the number of static factors r,

(ii) the maximum lag gi1 for αααi(L),

(iii) the maximum lag gi2 for βi(L).

This will be discussed in Section 3.2.
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2.2 Dynamic method: FHLZ

Let us rewrite here for convenience the common components of model (2.1):

χit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · ·+ ciq(L)

diq(L)
uqt.

The basic result we are using is that the vector

χχχt = (χ1t χ2t · · · χnt, · · · )′,

which is an infinite (or large) dimensional vector driven by a finite (relatively small)

number of shocks, has, under fairly general conditions, a blockwise autoregressive

representation of the form

A1 (L) 0 · · · 0 · · ·
0 A2 (L) · · · 0

. . .

0 0 · · · Ak (L)
...

. . .


χt =



R1

R2

...

Rk

...


ut, (2.6)

where Ak (L) is a (q + 1) × (q + 1) polynomial matrix with finite degree and Rk

is (q + 1)× q. See Forni et al. (2015).

Denoting by A(L) and R the (infinite) matrices on the left- and right-hand sides

of (2.6), using χχχt = xt − ξξξt, and setting Zt = A(L)xt:

Zt = Rut + A(L)ξξξt. (2.7)

Now, given n and T , estimation of the matrix polynomials Ak (L), the matrices

Rk and the common shocks ut is obtained by means of the procedure described

below. We assume for convenience that n is an integer multiple of q + 1, the size of

the blocks.
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(I) Estimation of the spectral density matrix of the x’s, call it Σ̂̂Σ̂Σx (θ)

Σ̂̂Σ̂Σx (θ) =
1

2π

M∑
k=−M

e−ikθwkΓ̂̂Γ̂Γk

where wk are the weights of a kernel function. See, Forni et al. (2016).

(II) The spectral density matrix of the common components χit, call it Σ̂̂Σ̂Σχ (θ), is

obtained by means of the first q frequency-domain principal components of Σ̂̂Σ̂Σx (θ).

See Forni et al. (2000), Forni et al. (2016).

(III) The autocovariance matrices of the χ’s are obtained as

Γ̂̂Γ̂Γχk =

ˆ π

−π
eikθΣ̂̂Σ̂Σχ (θ) dθ

See Forni et al. (2005), Forni et al. (2016).

(IV) The covariances Γ̂̂Γ̂Γχk are then used to compute the VAR matrices Âk(L).

(V) Lastly, the shocks ût and the matrices R̂k are obtained by means of standard

principal components of the estimated variables Ẑt. See Forni et al. (2016).

The matrix A(L) in 2.6 can be inverted blockwise:

χχχt = [A(L)]−1 Rut = W(L)ut = W0ut + W1ut−1 + · · · (2.8)

Inversion of the estimated version of (2.6) gives

χ̂̂χ̂χt =
[
Â(L)

]−1

R̂ût = Ŵ(L)ût = Ŵ0ût + Ŵ1ût−1 + · · · , (2.9)

where χ̂̂χ̂χt is n-dimensional, and the matrices Â(L), R̂ and Ŵ(L) are n× n. and the

corresponding prediction equation

xFHLZt+h|t = χFHLZt+h|t = Ŵhût + Ŵh+1ût−1 + · · · (2.10)

Estimation of FHLZ requires determining:

(i) the number of dynamic factors q,
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(ii) the kernel and the lag window for the estimation of ΣΣΣx(θ),

(iii) the maximum lag for the matrix polynomials Ak(L).

2.3 Static, frequency-domain method: FHLR

The procedure goes like in the previous section, steps (I) through (III), so obtaining

Γ̂χ
k , Γ̂ξ

k, k ∈ Z.

However, unlike in the previous section, it is assumed that the space spanned by the

common components has finite dimension r. Instead of using the standard principal

components, which are based on the covariances ΓΓΓx0 , the covariances ΓΓΓχ0 and ΓΓΓξ0 are

employed to estimate a basis in the factor space by means of generalized principal

components (the estimated variance of the idiosyncratic is taken into account):

Ĝt =
(
Ĝ1t, Ĝ2t, . . . , Ĝrt

)
= PG,rxnt

where PG,r is n × r and has the eigenvectors associated with the first r general-

ized eigenvalues of
(

ΓΓΓχ0 , ΓΓΓξ0

)
on the columns. The covariances ΓΓΓχh and ΓΓΓξh are then

employed to project χi,t+h on the factors:

xFHLRi,t+h|t = χFHLRi,t+h|t = γγγhĜt, (2.11)

with γγγh = Γ̂χhẑ
g ′
(
ẑgΓ̂0ẑ

g ′
)−1

(a dynamically more complex version, allowing for

lags of the factors and xit, as in (2.5), can be obtained in the same way). This

predictor is based on Forni, Hallin, Lippi and Reichlin (2000, 2005). We refer to it

as FHLR.

Although this method assumes a finite number of static factors, like SW, the

dynamic structure of the dataset is exploited in the calculation of the covariance

matrices ΓΓΓχk and ΓΓΓξk. Estimation requires determining:

(i) the number of dynamic factors q (like in FHLZ),

(ii) kernel and lag window for the estimation of ΣΣΣx(θ) (like in FHLZ),
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(iii) the number of static factors.

3 Data and Calibration of the Models

3.1 Data description, transformations, forecasts

The dataset consists of 115 U.S. macroeconomic and financial time series observed at

monthly frequency between January 1959 and August 2014. The series are grouped

into 12 main categories, see the Appendix for details.

To achieve stationarity the series are transformed into first difference of the log-

arithm (mainly real variables), first difference of yearly difference of the logarithm

(prices and wages), first difference (interest rates). A few stationary series are taken

in levels, see the Appendix for details. No treatment for outliers is applied.

Let Xt = (X1t, X2t, . . . , Xnt)
′ be the raw dataset and Zt = (Z1t, Z2t, . . . , Znt)

′

its stationary version after the transformations are applied. The models are estimated

using Zt and the forecasts of Zi,t+h, denoted Ẑi,t+h|t are computed (for simplicity,

Ẑi,t+h|t contains no reference to the model used to compute it).

On the other hand, the targets of the final forecasts have been usually defined

in the literature using our US monthly macroeconomic dataset, see e.g. Stock and

Watson (2002b), D’Agostino and Giannone (2012), as the level of the (log of) Indus-

trial Production Index (and of the real variables) and the change, yearly or monthly,

of the (log of) Consumer Price Index (and of prices and wages). As Industrial Pro-

duction, IPt = X1t, is transformed by first difference of the logarithm, the target at

time t+ h is

W1,t+h|t = log IPt+h − log IPt = Z1,t+1 + · · ·+ Z1,t+h,

so that

Ŵ1,t+h|t = Ẑ1,t+1|t + · · ·+ Ẑ1,t+h|t,
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and the prediction error, normalized for the horizon’s length,

FE1,t,h =
1

h
(Ŵ1,t+h|t −W1,t+h) =

1

h

(
(Ẑ1,t+1|t − Z1,t+1) + · · ·+ (Ẑ1,t+h|t − Z1,t+h)

)
.

For the consumer price index CPIt = X77,t, which is transformed by (1 − L)(1 −
L12) log, the target is defined as

W77,t+h|t = (1− L12) log CPIt+h − (1− L12) log CPIt.

Its forecast is obtained in the same way as Ŵ1,t+h|t. For series taken in levels the

target is the series itself. Forecasts of the targets Wi,t+h are computed and compared

for h = 6, 12, 24 months ahead.

In addition to SW, FHLZ, FHLR, we compute forecasts obtained with a uni-

variate AR. For all four methods we use a rolling ten-year window [t − 119, t], and

the models are re-estimated for each t. The sample is split into a calibration pre-

sample, from February 1960 (some observations at the beginning of the sample are

lost due to the difference transformations) to January 1985, and the sample proper,

from February 1985 to August 2014. The ten years from February 1975 to January

1985 are used to produce the first forecasts within the sample. Thus we start by

predicting July 1985, January 1986, January 1987 for h = 6, 12, 24 respectively.

The last forecast is 2014 for all horizons.

For each predictive model, the forecasting performance is evaluated by its mean

square forecast error (MSFE), which is defined as follows:

MSFEm
i,h =

1

(T1 − h)− T0 + 1

T1−h∑
τ=T0

FE2
i,τ,h, (3.1)

where (i) T0 and T1 denote the first and the last dates of the sample, (ii) the su-

perscript m stands for the model used and ranges over SW, FHLR, FHLZ, AR.

Replacing the limits of the summation in (3.1) with any time interval within the

sample we can measure local forecasting performances. We also use the cumulated
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sums:
t∑

τ=T0

FE2
i,τ,h, (3.2)

as a function of t, see Figure 1 in Section 4.1.

3.2 Calibration

The pre-sample period, February 1960 to January 1985, is used to calibrate the

methods SW, FHLZ, FHLR and AR, i.e. to compare the forecasting performance

of different specifications for each method. The best is then used in the sample for

comparison between methods.

To illustrate calibration, consider for example the SW method and let i = 1,

Industrial Production. A crucial parameter is the number r of static factors. We can

determine it in different ways. In particular:

SW1. Let P be the time interval starting with the 120-th date and ending with the

last date in the pre-sample. For each t ∈ P the number r is determined, using the

ten-year window [t − 119, t], according to Bai and Ng’s criterion IC2, see Bai and

Ng (2002)2. No lags are allowed for the factors or the variable to be predicted, thus

the prediction equation is (2.5) with βi(L) = 0 and αααi(L) of degree zero. The model

is estimated over the window [t− 119, t] and the forecasts for Wi,t+h computed. As

t + h varies from 120 + h to the end of the pre-sample, we compute a mean square

forecast error for each horizon, call it MSFESW1
1,h .

SW2. The parameter r is kept fixed as the window moves in the pre-sample. Again,

no lag for the factors or the variable to be predicted are allowed. With r varying

between, say, 3 and 7 we obtain five specifications with corresponding MSFESW2,j
1,h ,

j = 3, . . . , 7.

Note that different specifications can differ in the value of some parameters:

different fixed values of r in SW2, or in the procedure: fixed r as opposed to r

determined by the Bai and Ng’s criterion. Moreover, each of the six specifications

2We have run some experiments with other criteria, such as Alessi et al. (2010), Onatski (2009),
with no significant differences.
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above can be augmented by including lags of the predicted variable and the factors

in the prediction equation, see Section 3.2.1.

To compare specifications m1 and m2 of method m at horizon h = 6, 12, 24 we

use the ratio

RMSFE
m1/m2

i,h =
MSFEm1

i,h

MSFEm2
i,h

. (3.3)

Because in many cases no specification prevails uniformly across different horizons,

we choose according to the average of the ratio (3.3) over all three horizons. The

calibration procedure is limited to aggregate industrial production, IPt = X1,t, con-

sumer price, CPIt = X77,t. The chosen specifications are then used, respectively, in

the forecast of disaggregated real and nominal variables.

3.2.1 Calibration of SW.

It is easily seen that detailed consideration of all alternatives leads to thousands of

alternatives:

(i) Like in SW1, the number r is determined by one of Bai and Ng’s criteria.

(ii) Like in SW2, the number r is fixed as the window moves, with r to be chosen

within an interval of values.

(iii) Lags are allowed for the variable to be predicted and the order of the polynomial

βi(L) in (2.5) is determined by the AIC or the BIC criterion. Alternatives are the

criterion and the maximum lag used in its application.

(iv) Same as in (ii) for the lags of the factors, i.e. the vector polynomial αααi(L).

Again, there are alternative critera and maximum lags.

(v) Same as in (ii) and (iii) with lags for both the factors and the predicted variable.

(vi) The lags in (iii), (iv) and (v) can be kept fixed as the window moves and be

chosen within intervals of values.

On the other hand, choosing SW1 and SW2 as benchmarks and running some

examples from categories (iii) to (vi), we find no evidence that lags in the factors

and the predicted variable, in addition to the factors at t, do help predicting CPIt+h

or IPt+h, for h = 6, 12, 24, in the pre-sample period. Thus we limit our exploration

of the “cartesian product” of the alternatives outlined above to the following steps.
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S1. We compute the ratios RMSFE
m1/m2

i,h where: (1) m2 is SW2 with r equal to 5,

(2) m1 is either SW1 or SW2 with r = 1, . . . , 8, (3) i = 1 (IP) or i = 77 (CPI),

(4) h = 6, 12, 24. The results are reported in Table 1, Panel SW:S1. We see that

the best models are: (I) SW2 with r = 6 for IP with r = 7, 8 very close, (II) SW2

with r = 5 for CPI, the second best being SW1. The two best models are denoted

by SW2(6) and SW2(5) respectively.

S2. Now we run the prediction equation (2.5) with r = 6, r = 5 for IP and CPI

respectvely, augmented with lags for the predicted variable. The degree of βi(L) is

determined by the AIC and the BIC criteria setting the maximum number of lags to

15. The results are reported in the Panel SW:S2 of Table 1, the benchmark for the

RMSFE being SW2(6) for IP and SW2(5) for CPI. For both IP and CPI the best

result is obtained using the BIC criterion. On average they are are worse though not

far from SW2(6) and SW2(5) respectively.

S3 and S4. Now the models SW2(6) and SW2(5) augmented with lags of the factors

are run. The degree of αααi(L) is determined by the AIC and the BIC criteria setting

the maximum numer of lags to 15. Again, the results are worse as compared to

SW2(6) and SW2(5) and are not reported, with the exception of that obtained with

the BIC criterion for IP, which is 1.03 on average over h. Lastly, SW2(6) and SW2(5)

are augmented with both lags of the factors and of the predicted variable. The results

are very poor (see Table 1, Panel SW:S3, S4 ).

In conclusion, our exploration of the space of possible SW specifications points

to SW2(6) and SW2(5) as good models for IP and CPI respectively. They are our

first choice for SW in the in-sample comparison.

3.2.2 Calibration of FHLZ

S1, order of the variables. FHLZ is based on equations (2.9) and (2.10), which are

obtained from inversion of (2.6). Now, a change in the order of the variables xit and

χit obviously causes a change in the matrices Ak(L) and Rk in (2.6). However, under

mild assumptions, see Forni et al. (2016), no change occurs in the (infinite) moving

average polynomials in (2.8). For example, the q moving average polynomials of χ1t
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in (2.8) do not change if the variables χit, i = 2, . . . , q + 1 are replaced by other

variables in the first block of size q + 1.

Things change when Ak(L) and Rk are replaced by their estimated counterparts

Âk(L) and R̂k. Because the idiosyncratic components have not yet been erased

and because their size is heterogeneous, each of the estimated polynomials in (2.8)

depends on the grouping of the variables xit. An obvious course of action, see Forni

et al. (2016), consists in averaging over the predictions produced using different

random permutations of the x’s. We determine the number of permutations Nper by

the procedure described below.

(i) Preliminary comparisons suggest the following specification. The Triangular Ker-

nel and B = 30 (the bandwidth corresponding to a five-year window) for the estima-

tion of the spectral density of the observable vector. The dimension q is determined

at each t by means of the Hallin-Lǐska criterion, see Hallin and Lǐska (2007). We

then determine the order of the (q+ 1)-dimensional VAR’s by the BIC criterion with

maximum lag 5.

(ii) Let s1, . . . , s10 be 10 seeds (random number generators). Using the Matlab com-

mand randsample, we produce Nper permutations for each seed.

(iii) Denote by AMSFE(Nper, sk, h, i) the average of the MSFE, over the Nper per-

mutations corresponding to the seed sk, the horizon h and the variable i, the latter

being either IP or CPI.

(iv) We then define:

µ(Nper, h, i) = max
k

(AMSFE(Nper, sk, h, i)) /min
k

(AMSFE(Nper, sk, h, i)) ,

the maximum ratio between AMSFE’s across seeds, and

ν(Nper, i) = max
h

µ(Nper, h, i).

In the Panel FHLZ: S1 of Table 2 we report the values of ν(Nper, i) for IP and CPI,

for Nper taking some values from 1 to 150. We see that ν gets stabilized for Nper

between 50 and 150. All the specifications compared below are run with Nper = 100.
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The remaining steps of the calibration of FHLZ are the following.

S2. We compare the specification described in (i) above with the one in which the

BIC is replaced by the AIC criterion to determine order of the (q + 1)-dimensional

VAR’s. In both cases the maximum lag 5 and Nper = 100. The results are shown

in the Panel FHLZ: S2 of Table 2, with the model using the BIC criterion taken as

benchmark. The AIC criterion shows some advantage and is therefore adopted. Call

it FHLZ1.

S3 and S4. We try different maxima for the maximum lag in the AIC criterion,

from 3 to 7. Taking FHLZ1 as benchmark, the best result is 1.000 (see Table 2,

Panel FHLZ: S3 ). The same flatness is obtained when we try different values for the

bandwidth: 25, 35 and 40 (see Table 2, Panel FHLZ: S4 ). Thus we stick to FHLZ1

as our preferred specification.

Some experiments using fixed values for q or the alternative criterion to determine

q in Onatski (2009) do not produce significant changes.3 The same applies to different

shapes of the Kernel for the estimation of the spectral density.

3.2.3 Calibration of FHLR

S1. We use the Triangular Kernel, determine q by the Hallin-Lǐska criterion, and

compare the results with different values of B. We choose B = 40, which improves

CPI predictions at 12- and especially 24-step ahead with respect to those obtained

with B = 30 (see Table 3).

4 Results

4.1 Industrial Production and Inflation

We now compare the performance of the factor models in the prediction of IP and

CPI over the sample starting with February 1985. For FHLZ and FHLR we stick

to the specifications selected in the previous section. For SW we ran in the sample

3The criterion to determine q in Amengual and Watson (2007) only applies under the finite-
dimension assumption, see Section 2.
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several of the specifications that were discarded in the pre-sample. None of them

outperforms SW2(5) for CPI. However, SW2(5) outperforms SW2(6) for IP, the latter

having been selected in the calibration. Table 4 reports the results obtained with

both SW2(5) and SW2(6) for IP. However, when commenting on SW we always refer

to SW2(5), i.e. the specification performing better in the sample.

The common benchmark for the factor models is the univariate AR. We determine

the number of lags for each window by the BIC criterion with maximum lag 13. This

is the best among several specifications in the sample.

In Table 4 we report the average performance, measured by the RMSFE, of the

three factor models relative to AR for our main variables of interest, namely IP and

CPI. We give results for the Great Moderation, or pre-crisis period, starting with

February 1985 and ending at December 2007, the beginning of the Great Recession

(from December 2007 to June 2009), Panel A, and the full sample period, from

February 1985 to September 2014, Panel B. We use one, two or three asterisks to

indicate that the null of equal performance of the three factor models relative to

AR is rejected at the 1%, 5%, 10% significance level, respectively, by the Diebold-

Mariano test, see Diebold and Mariano (1995). One, two or three daggers indicate

the for FHLZ or FHLR same with respect to SW. All the p-values are reported in

Table 5.

The reason for splitting the sample is that the forecast performance of all meth-

ods, absolute and relative to one another, changes dramatically during the Great

Recession. This is clearly illustrated in the lower graph in Figure 1, which shows

the cumulated sum of the square forecast errors for CPI for all methods at horizon

6, see (3.2). The shaded areas correspond to recessionary periods according to the

NBER. We observe a steady increase of the cumulated sums in the pre-crisis period,

a dramatic jump during the Great Recession, followed by another period of steady

increase after the crisis. All the crossings take place during or immediately after

the Great Recession. The graphs for the other horizons and for IP show the same

pattern.4

4Using the graph of the MSFEs at t instead of the cumulated sums would give a less clear picture
of the relative performance.
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Further graphic evidence is provided in Figures 2 and 3. The solid line is the

graph of the difference between the Square Forecast Error with methods m1 and m2,

FHLZ and SW for example, relative to IP and CPI, at each horizon, normalized

by its estimated standard deviation and smoothed by a centered moving average of

length m = 61, with the coefficients equal to 1/m. Giacomini and Rossi (2010) use

it to test against the null of equal local performance of two forecasting methods.

The zero horizontal line indicates equal performance, the dotted lines indicate the

5% critical values, so that m1 outperforms (underperforms) m2 locally, at the 5%

significance level, when the solid line is below (above) the lower (upper) dashed line.

Because the moving averages are centered of length 61, the last 30 values are not

computed or graphed.

IP. We see that on average FHLZ outperforms the other three methods in the

pre-crisis period, significantly both with respect to AR and SW, see Panel A

in Table 4. The performance of FHLZ is somewhat improving before the crisis

with respect to the three other methods at horizons 12 and 24, see Figure

2. During the crisis, see again Figure 2, SW and FHLR behave significantly

better than FHLZ and AR, while AR performs significantly better than FHLZ.

However, with the end of the crisis almost all the solid lines are clearly heading

back to the pre-crisis pattern. On average over the whole sample, FHLZ is

outperformed by FHLR and SW at horizons 6 and 12. All methods do better

than AR with the exception of SW at horizon 24, see Panel B in Table 4.

CPI. In the pre-crisis period, FHLZ outperforms significantly the other methods on

average, see Panel A in Table 4. In this case the crisis has a negative effect

on the performance of all three factor methods as compared to AR, see Figure

3. However, on average over the full sample, the best method remains FHLZ,

with the exception of horizon 24, for which it is outperformed by SW. In many

cases, though not as regularly as for IP, with the end of the crisis the solid lines

in Figure 3 go back to the pre-crisis pattern.

To partially understand our results let us recall that the factor models employed

here are based on the assumption of stationarity and co-stationarity (after suitable
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transformations) of the variables in the dataset, while the AR method only requires

stationarity of the variable to be predicted. During the Great Moderation, when

such assumptions are by and large fulfilled, the relative performance of the factor

models and the AR change little (see again the pre-crisis period in Figures 2 and 3 as

well as in the lower graph in Figure 1). In particular, FHLZ outperforms the other

methods, consistently with the results obtained with simulated stationary data in

Forni et al. (2016).

On the other hand, as soon as the crisis breaks out the covariance structure of the

dataset changes abruptly. This is roughly but convincingly described in the upper

graph in Figure 1, where we plot the sum of squares

t∑
τ=1

115∑
i=1

z2
iτ ,

where zit is equal to Zit after standardization. We observe a steady growth except for

the recession periods, with a particularly sharp increase in the slope during the Great

Recession. The latter corresponds to the dramatic deterioration of the predictive

performance of all methods. More specifically, the sudden change in the covariance

structure of the dataset may affect the forecasting performance of the factor and AR

models in two ways:

(I) The targets themselves exhibit instability. This is the only possible cause

of deterioration for the AR model. Figure 4 shows the target variables, i.e.

log(IP) and (1 − L12) log(CPI). Though both variables are non-stationary, a

marked change of behaviour of IP in the Great Recession is fairly obvious, both

absolutely and in comparison to CPI, which only exhibits a mild increase in

volatility.

(II) The estimation of the factors and of the loadings, i.e. the coefficients in (2.5),

(2.10), (2.11), take time to adjust. This only affects the factor models.

In the case of CPI, where (I) is less important as a cause of prediction deteriora-

tion, all factor models loose ground with respect to the AR model. FHLZ remains
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the best method, though by little with respect to AR. Moreover, in this relatively

less unstable situation, the performance of the factor models relative to one another

does not change much.

In the case of Industrial Production, with both (I) and (II) affecting the pre-

dictions, FHLR and SW, which are simpler as compared to FHLZ, exhibit more

robustness with respct to FHLZ and AR. 5

4.2 Forecasting the whole dataset

The pseudo real-time exercise is then extended for each time series in the dataset. We

should recall that a good forecasting performance of factor models can be expected

when the variable contains a substantial common component. On the other hand,

if the dynamic behaviour of a variable is dominated by that of its idiosyncratic

component, then univariate methods are likely to prevail. Therefore, as in Stock

and Watson (2012), we exclude from the evaluation the variables associated with a

superior forecasting performance of AR. Precisely, in our exercise we rule out the

variables whose AR prediction is at least 10 percent more accurate for at least one

predictive horizon and for all the three factor models. We find 23 such variables. In

particular, those belonging to the housing category (category 4 in Table 8) do not

survive6. For real variables we use the specification adopted for IP, while for the

nominal variables that adopted for CPI.

For every group of variables, in Table 6 we report the mean RMSE within the

group. The best performance is given in bold. We see that FHLZ and FHLR generally

perform better than SW, the latter being the most accurate only for the employment

6 and 12 steps ahead. All in all, FHLR is more accurate for the real variables, i.e.

IP, Employment, Unemployment Rate, Inventories, while FHLZ is more accurate for

nominal variables, i.e. Prices, Wages, Interest Rates, Money and Stock Prices. For

5The effect of data instability on forecasting with factor models has been studied in D’Agostino
et al. (2007), D’Agostino et al. (2013), Clements (2015).

6These conclusions apply to our monthly dataset. In other works, with quarterly datasets,
dynamic factor models are successfully applied to housing market data, see Luciani (2015), Stock
and Watson (2008) and Moench and Ng (2011).
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Exchange Rates and Wages at horizon 12 the AR is still the most accurate model.

Considering median values rather than means we obtain similar results.

In Table 7 the distribution of the RMSE of the models is calculated excluding

the same variables as before. Only FHLZ improves at every horizon upon AR for

more than the half of the series. FHLR does so only 24-step ahead, is less accurate

than AR 6-step ahead by 4.1 percent and 2.1 percent 12-step ahead. Furthermore,

FHLZ is roughly as accurate as AR even at his 75-th percentile. SW is outperformed

by frequency domain models at most percentiles and horizons. His performance

deteriorates as the predictive horizon increases while the contrary holds for FHLR

and FHLZ. Within the frequency domain methods FHLZ performs better at the

95-th percentile and FHLR is more accurate at the 5-th percentile.

5 Conclusions

The paper has compared the forecasting performance of FHLZ, FHLR and SW over

a time period including the Great Moderation, the Great Depression and the sub-

sequent recovery. We find that during the Great Moderation, when the dataset is

relatively stationary (after suitable transformations), FHLZ neatly prevails for both

IP and CPI.

Over the full sample, the performance of FHLZ remains the best for CPI, though

all factor models loose ground with respect to the simple AR model. FHLR and SW,

in this order, become the best models over the full sample for IP, thus exhibiting

more robustness than FHLZ in a situation where both the target variable and the

whole dataset undergo instability.

Forecasting each single series in the dataset for the full sample confirms the above

results, with FHLZ being the best method for the nominal variables, FHLR for the

real variables.

The two methods based on frequency-domain estimation methods, FHLZ and

FHLR, perform very well. The more general dynamic structure of FHLZ is an ad-

vantage in “stationary” periods but may be a weakness in some cases during periods

of instability.
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Table 1: Calibration: SW

Panel SW: S1 - number of static factors

h IP(1) IP(2) IP(3) IP(4) IP(5) IP(6) IP(7) IP(8) IP(BN)
6 1.562 1.066 1.040 1.069 1.0 0.911 0.928 0.932 0.963
12 1.469 0.987 0.961 1.014 1.0 0.915 0.967 0.969 1.004
24 1.095 0.910 0.931 0.983 1.0 0.952 0.934 0.949 0.994
mean 1.376 0.988 0.977 1.022 1.0 0.926 0.943 0.950 0.987

h CPI(1) CPI(2) CPI(3) CPI(4) CPI(5) CPI(6) CPI(7) CPI(8) CPI(BN)
6 1.179 1.164 1.034 1.017 1.0 1.055 1.114 1.151 1.010
12 1.173 1.252 1.095 1.051 1.0 1.080 1.209 1.240 1.025
24 1.338 1.289 1.167 1.148 1.0 1.036 1.059 1.122 1.093
mean 1.230 1.235 1.099 1.072 1.0 1.057 1.127 1.171 1.043

Panel SW: S2 - target lag order βi (L)

h IP(1) CPI(1) IP(BIC) CPI(BIC) IP(AIC) CPI(AIC)
6 1.0 1.0 1.003 1.095 0.999 0.963
12 1.0 1.0 1.048 1.074 1.047 1.011
24 1.0 1.0 1.040 1.028 1.048 1.123
mean 1.0 1.0 1.030 1.066 1.031 1.033

Panel SW: S3 - factors lag order αi (L)

h IP(0) CPI(0) IP(BIC) CPI(BIC) IP(AIC) CPI(AIC)
6 1.0 1.0 1.101 1.121 1.424 1.206
12 1.0 1.0 1.034 1.258 1.070 1.432
24 1.0 1.0 1.008 1.129 1.145 1.349
mean 1.0 1.0 1.048 1.169 1.213 1.329

Panel SW: S4 - target and factors lag order βi (L), αi (L)

h IP(1,0) CPI(1,0) IP(BIC,BIC) CPI(BIC,BIC) IP(AIC,AIC) CPI(AIC,AIC)
6 1.0 1.0 1.134 1.126 1.418 1.120
12 1.0 1.0 1.069 1.287 1.140 1.275
24 1.0 1.0 1.048 1.195 1.234 1.532
mean 1.0 1.0 1.084 1.203 1.264 1.309
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Table 2: Calibration: FHLZ

Panel FHLZ: S1 - order of the variables

Nper 1 10 25 50 100 150
IP 1.348 1.103 1.064 1.040 1.027 1.021
CPI 1.494 1.150 1.083 1.068 1.045 1.041

Panel FHLZ: S2 - lag order criterion

h IP(AIC) CPI(AIC) IP(BIC) CPI(BIC)
6 0.980 0.960 1.0 1.0
12 0.982 0.965 1.0 1.0
24 0.975 0.980 1.0 1.0
mean 0.979 0.968 1.0 1.0

Panel FHLZ: S3 - max lag order

h IP(3) CPI(3) IP(4) CPI(4) IP(5) CPI(5) IP(6) CPI(6) IP(7) CPI(7)
6 1.002 1.001 1.000 1.001 1.0 1.0 1.000 1.000 0.999 1.000
12 1.002 1.001 1.001 1.001 1.0 1.0 1.000 1.000 1.000 1.000
24 1.001 1.001 1.000 1.001 1.0 1.0 1.000 1.000 1.000 1.000
mean 1.002 1.001 1.000 1.001 1.0 1.0 1.000 1.000 1.000 1.000

Panel FHLZ: S4 - bandwidth

h IP(25) CPI(25) IP(30) CPI(30) IP(35) CPI(35) IP(40) CPI(40)
6 0.998 1.003 1.0 1.0 0.998 0.996 1.004 0.997
12 0.996 1.002 1.0 1.0 1.000 1.000 1.003 1.000
24 0.994 1.000 1.0 1.0 1.002 1.000 1.006 1.000
mean 0.996 1.002 1.0 1.0 1.000 0.999 1.004 0.999
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Table 3: Calibration: FHLR

FHLR: S1 - bandwidth

h IP(25) CPI(25) IP(30) CPI(30) IP(35) CPI(35) IP(40) CPI(40)
6 1.018 1.011 1.0 1.0 1.011 1.004 1.008 1.012
12 1.006 1.030 1.0 1.0 1.005 0.996 0.995 0.985
24 0.992 1.042 1.0 1.0 1.012 0.971 1.002 0.943
mean 1.006 1.028 1.0 1.0 1.009 0.990 1.001 0.980
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Table 4: Mean Square Forecast Error Relative to AR

Panel A : Pre Crisis (1985 : 1− 2007 : 11)

IP
FHLZ FHLR SW2(5) SW2(6)

h=6 0.847∗∗∗†† 0.986†† 1.054 1.064
h=12 0.897∗∗∗† 0.995†† 1.100 1.192
h=24 0.968∗† 0.960†† 1.137 1.323
mean 0.904 0.980 1.097 1.193

CPI
FHLZ FHLR SW

h=6 0.920∗† 1.022 1.040
h=12 0.840∗∗† 0.941†† 1.025
h=24 0.862∗∗∗ 0.823 0.850
mean 0.874 0.929 0.972

Panel B : Full Sample (1985 : 1− 2014 : 8)

IP
FHLZ FHLR SW2(5) SW2(6)

h=6 0.950 0.868 0.861 0.904
h=12 0.942 0.879 0.862 0.982
h=24 0.970 0.929∗∗†† 1.061 1.174
mean 0.954 0.892 0.928 1.020

CPI
FHLZ FHLR SW

h=6 0.948†† 1.086 1.144
h=12 0.997††† 1.152 1.060
h=24 1.037 1.014 0.953
mean 0.994 1.084 1.052

We use one, two or three asterisks to indicate that the null of equal performance of the three
factor models relative to AR is rejected at the 1%, 5%, 10% significance level, respectively,
by the Diebold-Mariano test. One, two or three daggers indicate the for FHLZ or FHLR
same with respect to SW. All the p-values are reported in Table 5.
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Table 5: Diebold-Mariano test: p-values

Panel A : Pre Crisis (1985 : 1− 2007 : 11)

IP
FHLZ vs SW2 (5) FHLR vs SW2 (5) FHLZ vs FHLR FHLZ vs AR FHLR vs AR SW2 (5) vs AR SW2 (6) vs AR

h=6 0.049 0.027 0.097 0.003 0.444 0.679 0.722
h=12 0.051 0.031 0.109 0.000 0.479 0.776 0.937
h=24 0.068 0.044 0.560 0.094 0.254 0.909 0.976

CPI
FHLZ vs SW FHLR vs SW FHLZ vs FHLR FHLZ vs AR FHLR vs AR SW vs AR

h=6 0.071 0.218 0.077 0.091 0.527 0.583
h=12 0.074 0.016 0.154 0.019 0.309 0.528
h=24 0.523 0.319 0.605 0.007 0.174 0.259

Panel B : Full Sample (1985 : 1− 2014 : 8)

IP
FHLZ vs SW2 (5) FHLR vs SW2 (5) FHLZ vs FHLR FHLZ vs AR FHLR vs AR SW2 (5) vs AR SW2 (6) vs AR

h=6 0.712 0.542 0.765 0.300 0.130 0.130 0.226
h=12 0.708 0.630 0.727 0.500 0.152 0.189 0.463
h=24 0.129 0.012 0.783 0.500 0.019 0.980 0.939

CPI
FHLZ vs SW FHLR vs SW FHLZ vs FHLR FHLZ vs AR FHLR vs AR SW vs AR

h=6 0.025 0.210 0.052 0.393 0.670 0.740
h=12 0.001 0.767 0.032 0.493 0.729 0.644
h=24 0.735 0.784 0.612 0.600 0.545 0.364
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Table 6: Mean RMSE by category

FHLZ

h=6 h=12 h=24

IP 0.948 0.923 0.976
Employment 1.131 1.069 0.979
Unemployment Rate 0.873 0.907 0.938
Inventories 1.005 0.927 0.984
Prices 0.978 1.008 0.987
Wages 0.977 0.990 0.986
Interest Rates 0.989 0.983 0.950
Money 0.870 0.864 0.753
Exchange Rates 1.015 1.014 1.010
Stock Prices 0.975 0.972 0.945

FHLR

h=6 h=12 h=24

IP 0.929 0.902 0.966
Employment 0.985 0.947 0.908
Unemployment Rate 0.666 0.723 0.853
Inventories 0.951 0.893 0.970
Prices 1.111 1.153 1.035
Wages 1.077 1.049 0.967
Interest Rates 1.123 1.138 1.074
Money 0.900 0.930 0.790
Exchange Rates 1.072 1.067 1.014
Stock Prices 1.020 1.090 1.011

SW

h=6 h=12 h=24

IP 0.950 0.915 1.114
Employment 0.939 0.940 1.005
Unemployment Rate 0.684 0.737 0.968
Inventories 1.037 0.973 1.239
Prices 1.224 1.162 1.069
Wages 1.151 1.121 1.123
Interest Rates 1.321 1.521 1.546
Money 0.980 0.936 0.878
Exchange Rates 1.176 1.148 1.137
Stock Prices 1.248 1.340 1.305
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Table 7: Distribution RMSE

FHLZ
Percentile: 0.05 0.25 0.50 0.75 0.95
h=6 0.819 0.925 0.987 1.018 1.219
h=12 0.845 0.924 0.982 1.013 1.136
h=24 0.817 0.942 0.983 1.012 1.068

FHLR
Percentile: 0.05 0.25 0.50 0.75 0.95
h=6 0.639 0.933 1.041 1.122 1.183
h=12 0.696 0.915 1.021 1.136 1.257
h=24 0.775 0.900 0.981 1.057 1.210

SW
Percentile: 0.05 0.25 0.50 0.75 0.95
h=6 0.650 0.955 1.120 1.226 1.382
h=12 0.667 0.910 1.071 1.189 1.613
h=24 0.730 0.963 1.075 1.286 1.626
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Figure 1: Graph of
∑t

τ=1

∑115
i=1 z

2
iτ and Cumulated Sum of Square Forecast Error,

6-step ahead, CPI

Shaded areas indicate NBER recession dates
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Figure 4: Target variables, log(IP) and (1− L12) log(CPI)

Shaded areas indicate NBER recession dates
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Appendix: Dataset and transformations

We give here a description of the dataset, the transformation applied to each series

and the category to which they belong. We use an updated version of the database in

Stock and Watson (2012) and their classification in categories. Stock and Watson’s

monthly section consists of 108 US macroeconomic time series over the period from

January 1959 through December 2009. All the series could be updated through

August 2014, with the exception of

1. Index Of Help-Wanted Advertising In Newspapers (1967=100;Sa),

2. Employment: Ratio; Help-Wanted Ads:No. Unemployed Clf,

which were therefore excluded. The following Consumer Price series, used in Stock

and Watson (2005), have been added:

1. Consumer Price Index for All Urban Consumers: All Items Less Food,

2. Consumer Price Index for All Urban Consumers: All items less medical care,

3. Consumer Price Index for All Urban Consumers: All items less shelter,

4. Consumer Price Index for All Urban Consumers: Apparel,

5. Consumer Price Index for All Urban Consumers: Commodities,

6. Consumer Price Index for All Urban Consumers: Durables,

7. Consumer Price Index for All Urban Consumers: Medical Care,

8. Consumer Price Index for All Urban Consumers: Services,

9. Consumer Price Index for All Urban Consumers: Transportation,

The final database contains 115 monthly macroeconomic time series. While this

work was yet in preparation, a similar, publicly available7 and constantly updated

7The website is: http://research.stlouisfed.org/econ/mccracken/sel/.
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dataset described by McCracken and Ng (2015) has been made available by the

Federal Reserve Bank of St. Louis. We leave its analysis to future research.

The Transformation Codes, Tcode in Table 8, are as follows. Calling Xt a raw series,

the transformations adopted are:

Zt =



Xt if Tcode=1

(1− L)Xt if Tcode=2

(1− L)(1− L12)Xt if Tcode=3

logXt if Tcode=4

(1− L) logXt if Tcode=5

(1− L)(1− L12) logXt if Tcode=6
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Table 8: List of the series

N Mnemonic Description Tcode Category

1 USIPTOT.G US INDUSTRIAL PRODUCTION - TOTAL INDEX VOLA 5 2

2 USIPMPROH US INDL PROD - PRDS, TOTAL VOLN 5 2

3 USIPMFING US INDL PROD - FINAL PRODUCTS, TOTAL VOLA 5 2

4 USIPMCOGG US INDL PROD - CONSUMER GOODS VOLA 5 2

5 USIPMDUCG US INDL PROD - DURABLE CONSUMER GOODS VOLA 5 2

6 USIPMNOCG US INDL PROD - NONDURABLE CONSUMER GOODS VOLA 5 2

7 USIPMBUQG US INDL PROD - BUSINESS EQUIPMENT VOLA 5 2

8 USIPMMATG US INDL PROD - MATERIALS, TOTAL VOLA 5 2

9 USIPMDUMH US INDL PROD - DURABLE GOODS MATERIALS VOLN 5 2

10 USIPMNDMG US INDL PROD - NONDURB GOODS MATERIALS VOLA 5 2

11 USIPMFGSG US INDUSTRIAL PRODUCTION - MANUFACTURING (SIC) VOLA 5 2

12 USIP512UG US INDL PROD - RESIDENTIAL UTILITIES VOLA 5 2

13 USIP512FG US INDL PROD - FUELS VOLA 5 2

14 NAPM ISM Manufacturing: PMI Composite Index 1 2

15 MCUMFN Capacity Utilization: Manufacturing (NAICS) 1 2

16 AHE: goods AVG HRLY EARNINGS, PROD WRKRS, NONFARM - GOODS-PRODUCING 6 8

17 AHE: const AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION 6 8

18 AHE: mfg AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG 6 8

19 Real AHE: goods REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - GOODS-PRODUCING 5 8

20 Real AHE: const REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION 5 8

21 Real AHE: mfg REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG 5 8

22 USEMIP..O US EMPLOYED - TOTAL PRIVATE VOLA 5 3

23 USEMPG..O US EMPLOYED - GOODS-PRODUCING VOLA 5 3

24 CES1021000001 EMPLOYEES, NONFARM - MINING 5 3

25 USEM23..O US EMPLOYED - CONSTRUCTION VOLA 5 3

26 USEMPMANO US EMPLOYED - MANUFACTURING VOLA 5 3

27 USEMIMD.O US EMPLOYED - DURABLE GOODS VOLA 5 3

28 USEMIMN.O US EMPLOYED - NONDURABLE GOODS VOLA 5 3

29 USEMPS..O US EMPLOYED - SERVICE-PROVIDING VOLA 5 3

30 USEMIT..O US EMPLOYED - TRADE, TRANSPORTATION, & UTILITIES VOLA 5 3

31 USEM42..O US EMPLOYED - WHOLESALE TRADE VOLA 5 3

32 USEMIR..O US EMPLOYED - RETAIL TRADE VOLA 5 3

33 USEMIF..O US EMPLOYED - FINANCIAL ACTIVITIES VOLA 5 3

34 USEMIG..O US EMPLOYED - GOVERNMENT VOLA 5 3

35 USEMPTOTO US TOTAL CIVILIAN EMPLOYMENT VOLA 5 3

36 USEMPALLO US EMPLOYED - NONFARM INDUSTRIES TOTAL (PAYROLL SURVEY) VOLA 5 3

37 UNRATE Civilian Unemployment Rate 2 4

38 UEMPMEAN Average (Mean) Duration of Unemployment 2 4

39 USUNWK5.O US UNEMPLOYED FOR LESS THAN 5 WEEKS VOLA 5 4

40 USUNWK14O US UNEMPLOYED FOR 5 TO 14 WEEKS VOLA 5 4

41 USUNPLNGE US UNEMPLOYED FOR 15 WEEKS OR MORE VOLA 5 4

42 USUNWK26O US UNEMPLOYED FOR 15 TO 26 WEEKS VOLA 5 4

43 USUNWK27O US UNEMPLOYED FOR 27 WEEKS & OVER VOLA 5 4

44 USHKPG..P US AVG HOURS PROD WRKRS-GOODS-PRODUCING VOLN 1 3

45 USHXPMANO US AVG OVERTIME HOURS - MANUFACTURING VOLA 2 3

46 USHOUSATE US NEW PRIVATE HOUSING UNITS AUTHORIZED BY BLDG.PERMIT (AR) VOLA 4 5

47 USHOUSE.O US NEW PRIVATE HOUSING UNITS STARTED (AR) VOLA 4 5

48 HOUSTNE Housing Starts in Northeast Census Region 4 5

49 HOUSTMW Housing Starts in Midwest Census Region 4 5

50 HOUSTS Housing Starts in South Census Region 4 5

51 HOUSTW Housing Starts in West Census Region 4 5

52 FEDFUNDS Effective Federal Funds Rate 2 9

53 TB3MS 3-Month Treasury Bill: Secondary Market Rate 2 9

54 TB6MS 6-Month Treasury Bill: Secondary Market Rate 2 9

55 GS1 1-Year Treasury Constant Maturity Rate 2 9

56 GS5 5-Year Treasury Constant Maturity Rate 2 9

57 GS10 10-Year Treasury Constant Maturity Rate 2 9

58 AAA Moody’s Seasoned Aaa Corporate Bond Yield 2 9

- Continued on next page -
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59 BAA Moody’s Seasoned Baa Corporate Bond Yield 2 9

60 Sfygm6 fygm6-fygm3 1 9

61 Sfygt1 fygt1-fygm3 1 9

62 Sfygt10 fygt10-fygm3 1 9

63 sFYAAAC FYAAAC-Fygt10 1 9

64 sFYBAAC FYBAAC-Fygt10 1 9

65 M1SL M1 Money Stock 6 10

66 MZMSL MZM Money Stock 6 10

67 M2SL M2 Money Stock 6 10

68 BOGAMBSL Board of Governors Monetary Base, Adj. for Changes in Res. Requirements 6 10

69 USTOTRSAB US TOTAL RESERVES OF DEPOSITORY INSTITUTIONS CURA 6 10

70 USNBRRSAB US NONBORROWED RESERVES OF DEPOSITORY INSTITUTIONS CURA 3 10

71 BUSLOANS Commercial and Industrial Loans at All Commercial Banks 6 10

72 NONREVSL Total Nonrevolving Credit Owned and Securitized, Outstanding 6 10

73 USCP...CE US CHAIN-TYPE PRICE INDEX FOR PERSONAL CONSMPTN.EXPENDITURE SADJ 6 7

74 USCONDUCE US CHAIN-TYPE PRICE INDEX FOR PCE - DURABLES SADJ 6 7

75 USCONNDCE US CHAIN-TYPE PRICE INDEX FOR PCE - NONDURABLE GOODS SADJ 6 7

76 USCONSRCE US CHAIN-TYPE PRICE INDEX FOR PCE - SERVICES SADJ 6 7

77 CPIAUCSL CPI for All Urban Consumers: All Items 6 7

78 CPILFESL CPI for All Urban Consumers: All Items Less Food & Energy 6 7

79 PCEPILFE PCE Excluding Food and Energy (Chain-Type Price Index) 6 7

80 PPIFGS PPI: Finished Goods 6 7

81 PPIFCG PPI: Finished Consumer Goods 6 7

82 PPIITM PPI: Intermediate Materials: Supplies & Components 6 7

83 PPICRM PPI: Crude Materials for Further Processing 6 7

84 PWCMSAR Real PPI:CRUDE MATERIALS (82=100,SA) (PWSMSA/PCEPILFE) 5 7

85 CRBSPOT CRB BLS Spot Index (1967=100) - PRICE INDEX 6 7

86 PSCCOMR Real SPOT MARKET PRICE INDEX (PSCCOM/PCEPILFE) 5 7

87 USPCIPCOF US PPI - CRUDE PETROLEUM NADJ 6 7

88 PW561R PPI Crude (Relative to Core PCE) (pw561/PCEPiLFE) 5 7

89 NAPMPRI ISM Manufacturing: Prices Index 1 7

90 EXRUS UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) 5 11

91 EXSZUS Switzerland / U.S. Foreign Exchange Rate 5 11

92 EXJPUS Japan / U.S. Foreign Exchange Rate 5 11

93 EXUSUK U.S. / U.K. Foreign Exchange Rate 5 11

94 EXCAUS Canada / U.S. Foreign Exchange Rate 5 11

95 US500STK US STANDARD & POOR’S INDEX OF 500 COMMON STOCKS(MONTHLY AVE NADJ 5 12

96 USS&PIND US STANDARD & POORS’ SHARE PRICE INDEX - INDUSTRIALS (EP) 5 12

97 USSPDIVY US STANDARD AND POORS’ 500 COMPOSITE - DIVIDEND YLD 2 12

98 USSPRPER US STANDARD AND POORS’ 500 COMPOSITE - REAL P/E RATIO 2 12

99 USSHRPRCF US DOW JONES INDUSTRIALS SHARE PRICE INDEX (EP) NADJ 5 12

100 USUMCONEH US UNIV OF MICHIGAN CONSUMER SENTIMENT - EXPECTATIONS VOLN 2 13

101 NAPM ISM Manufacturing: PMI Composite Index 1 6

102 NAPMNOI ISM Manufacturing: New Orders Index 1 6

103 NAPMSDI ISM Manufacturing: Supplier Deliveries Index 1 6

104 NAPMII ISM Manufacturing: Inventories Index 1 6

105 USIPNOMAD US MANUFACTURERS NEW ORDERS, CONSUMER GOODS & MATERIALS CONA 5 6

106 USNONDCGD US MANUFACTURERS NEW ORDERS - NONDEFENSE CAPITAL GOODS CONA 5 6

107 CPIULFSL CPI for All Urban Consumers: All Items Less Food 6 7

108 CUSR0000SA0L5 CPI for All Urban Consumers: All items less medical care 6 7

109 CUSR0000SA0L2 CPI for All Urban Consumers: All items less shelter 6 7

110 CPIAPPSL CPI for All Urban Consumers: Apparel 6 7

111 CUSR0000SAC CPI for All Urban Consumers: Commodities 6 7

112 CUSR0000SAD CPI for All Urban Consumers: Durables 6 7

113 CPIMEDSL CPI for All Urban Consumers: Medical Care 6 7

114 CUSR0000SAS CPI for All Urban Consumers: Services 6 7

115 CPITRNSL CPI for All Urban Consumers: Transportation 6 7
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